exit.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/iocontext.h>
  15. #include <linux/key.h>
  16. #include <linux/security.h>
  17. #include <linux/cpu.h>
  18. #include <linux/acct.h>
  19. #include <linux/tsacct_kern.h>
  20. #include <linux/file.h>
  21. #include <linux/fdtable.h>
  22. #include <linux/binfmts.h>
  23. #include <linux/nsproxy.h>
  24. #include <linux/pid_namespace.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/profile.h>
  27. #include <linux/mount.h>
  28. #include <linux/proc_fs.h>
  29. #include <linux/kthread.h>
  30. #include <linux/mempolicy.h>
  31. #include <linux/taskstats_kern.h>
  32. #include <linux/delayacct.h>
  33. #include <linux/freezer.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/signal.h>
  37. #include <linux/posix-timers.h>
  38. #include <linux/cn_proc.h>
  39. #include <linux/mutex.h>
  40. #include <linux/futex.h>
  41. #include <linux/pipe_fs_i.h>
  42. #include <linux/audit.h> /* for audit_free() */
  43. #include <linux/resource.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/task_io_accounting_ops.h>
  46. #include <linux/tracehook.h>
  47. #include <linux/fs_struct.h>
  48. #include <linux/init_task.h>
  49. #include <linux/perf_event.h>
  50. #include <trace/events/sched.h>
  51. #include <linux/hw_breakpoint.h>
  52. #include <linux/oom.h>
  53. #include <linux/writeback.h>
  54. #include <linux/shm.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/unistd.h>
  57. #include <asm/pgtable.h>
  58. #include <asm/mmu_context.h>
  59. static void exit_mm(struct task_struct * tsk);
  60. static void __unhash_process(struct task_struct *p, bool group_dead)
  61. {
  62. nr_threads--;
  63. detach_pid(p, PIDTYPE_PID);
  64. if (group_dead) {
  65. detach_pid(p, PIDTYPE_PGID);
  66. detach_pid(p, PIDTYPE_SID);
  67. list_del_rcu(&p->tasks);
  68. list_del_init(&p->sibling);
  69. __this_cpu_dec(process_counts);
  70. }
  71. list_del_rcu(&p->thread_group);
  72. list_del_rcu(&p->thread_node);
  73. }
  74. /*
  75. * This function expects the tasklist_lock write-locked.
  76. */
  77. static void __exit_signal(struct task_struct *tsk)
  78. {
  79. struct signal_struct *sig = tsk->signal;
  80. bool group_dead = thread_group_leader(tsk);
  81. struct sighand_struct *sighand;
  82. struct tty_struct *uninitialized_var(tty);
  83. sighand = rcu_dereference_check(tsk->sighand,
  84. lockdep_tasklist_lock_is_held());
  85. spin_lock(&sighand->siglock);
  86. posix_cpu_timers_exit(tsk);
  87. if (group_dead) {
  88. posix_cpu_timers_exit_group(tsk);
  89. tty = sig->tty;
  90. sig->tty = NULL;
  91. } else {
  92. /*
  93. * This can only happen if the caller is de_thread().
  94. * FIXME: this is the temporary hack, we should teach
  95. * posix-cpu-timers to handle this case correctly.
  96. */
  97. if (unlikely(has_group_leader_pid(tsk)))
  98. posix_cpu_timers_exit_group(tsk);
  99. /*
  100. * If there is any task waiting for the group exit
  101. * then notify it:
  102. */
  103. if (sig->notify_count > 0 && !--sig->notify_count)
  104. wake_up_process(sig->group_exit_task);
  105. if (tsk == sig->curr_target)
  106. sig->curr_target = next_thread(tsk);
  107. /*
  108. * Accumulate here the counters for all threads but the
  109. * group leader as they die, so they can be added into
  110. * the process-wide totals when those are taken.
  111. * The group leader stays around as a zombie as long
  112. * as there are other threads. When it gets reaped,
  113. * the exit.c code will add its counts into these totals.
  114. * We won't ever get here for the group leader, since it
  115. * will have been the last reference on the signal_struct.
  116. */
  117. sig->utime += tsk->utime;
  118. sig->stime += tsk->stime;
  119. sig->gtime += tsk->gtime;
  120. sig->min_flt += tsk->min_flt;
  121. sig->maj_flt += tsk->maj_flt;
  122. sig->nvcsw += tsk->nvcsw;
  123. sig->nivcsw += tsk->nivcsw;
  124. sig->inblock += task_io_get_inblock(tsk);
  125. sig->oublock += task_io_get_oublock(tsk);
  126. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  127. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  128. }
  129. sig->nr_threads--;
  130. __unhash_process(tsk, group_dead);
  131. /*
  132. * Do this under ->siglock, we can race with another thread
  133. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  134. */
  135. flush_sigqueue(&tsk->pending);
  136. tsk->sighand = NULL;
  137. spin_unlock(&sighand->siglock);
  138. __cleanup_sighand(sighand);
  139. clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
  140. if (group_dead) {
  141. flush_sigqueue(&sig->shared_pending);
  142. tty_kref_put(tty);
  143. }
  144. }
  145. static void delayed_put_task_struct(struct rcu_head *rhp)
  146. {
  147. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  148. perf_event_delayed_put(tsk);
  149. trace_sched_process_free(tsk);
  150. put_task_struct(tsk);
  151. }
  152. void release_task(struct task_struct * p)
  153. {
  154. struct task_struct *leader;
  155. int zap_leader;
  156. repeat:
  157. /* don't need to get the RCU readlock here - the process is dead and
  158. * can't be modifying its own credentials. But shut RCU-lockdep up */
  159. rcu_read_lock();
  160. atomic_dec(&__task_cred(p)->user->processes);
  161. rcu_read_unlock();
  162. proc_flush_task(p);
  163. write_lock_irq(&tasklist_lock);
  164. ptrace_release_task(p);
  165. __exit_signal(p);
  166. /*
  167. * If we are the last non-leader member of the thread
  168. * group, and the leader is zombie, then notify the
  169. * group leader's parent process. (if it wants notification.)
  170. */
  171. zap_leader = 0;
  172. leader = p->group_leader;
  173. if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
  174. /*
  175. * If we were the last child thread and the leader has
  176. * exited already, and the leader's parent ignores SIGCHLD,
  177. * then we are the one who should release the leader.
  178. */
  179. zap_leader = do_notify_parent(leader, leader->exit_signal);
  180. if (zap_leader)
  181. leader->exit_state = EXIT_DEAD;
  182. }
  183. write_unlock_irq(&tasklist_lock);
  184. release_thread(p);
  185. call_rcu(&p->rcu, delayed_put_task_struct);
  186. p = leader;
  187. if (unlikely(zap_leader))
  188. goto repeat;
  189. }
  190. /*
  191. * This checks not only the pgrp, but falls back on the pid if no
  192. * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
  193. * without this...
  194. *
  195. * The caller must hold rcu lock or the tasklist lock.
  196. */
  197. struct pid *session_of_pgrp(struct pid *pgrp)
  198. {
  199. struct task_struct *p;
  200. struct pid *sid = NULL;
  201. p = pid_task(pgrp, PIDTYPE_PGID);
  202. if (p == NULL)
  203. p = pid_task(pgrp, PIDTYPE_PID);
  204. if (p != NULL)
  205. sid = task_session(p);
  206. return sid;
  207. }
  208. /*
  209. * Determine if a process group is "orphaned", according to the POSIX
  210. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  211. * by terminal-generated stop signals. Newly orphaned process groups are
  212. * to receive a SIGHUP and a SIGCONT.
  213. *
  214. * "I ask you, have you ever known what it is to be an orphan?"
  215. */
  216. static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
  217. {
  218. struct task_struct *p;
  219. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  220. if ((p == ignored_task) ||
  221. (p->exit_state && thread_group_empty(p)) ||
  222. is_global_init(p->real_parent))
  223. continue;
  224. if (task_pgrp(p->real_parent) != pgrp &&
  225. task_session(p->real_parent) == task_session(p))
  226. return 0;
  227. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  228. return 1;
  229. }
  230. int is_current_pgrp_orphaned(void)
  231. {
  232. int retval;
  233. read_lock(&tasklist_lock);
  234. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  235. read_unlock(&tasklist_lock);
  236. return retval;
  237. }
  238. static bool has_stopped_jobs(struct pid *pgrp)
  239. {
  240. struct task_struct *p;
  241. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  242. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  243. return true;
  244. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  245. return false;
  246. }
  247. /*
  248. * Check to see if any process groups have become orphaned as
  249. * a result of our exiting, and if they have any stopped jobs,
  250. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  251. */
  252. static void
  253. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  254. {
  255. struct pid *pgrp = task_pgrp(tsk);
  256. struct task_struct *ignored_task = tsk;
  257. if (!parent)
  258. /* exit: our father is in a different pgrp than
  259. * we are and we were the only connection outside.
  260. */
  261. parent = tsk->real_parent;
  262. else
  263. /* reparent: our child is in a different pgrp than
  264. * we are, and it was the only connection outside.
  265. */
  266. ignored_task = NULL;
  267. if (task_pgrp(parent) != pgrp &&
  268. task_session(parent) == task_session(tsk) &&
  269. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  270. has_stopped_jobs(pgrp)) {
  271. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  272. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  273. }
  274. }
  275. /**
  276. * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
  277. *
  278. * If a kernel thread is launched as a result of a system call, or if
  279. * it ever exits, it should generally reparent itself to kthreadd so it
  280. * isn't in the way of other processes and is correctly cleaned up on exit.
  281. *
  282. * The various task state such as scheduling policy and priority may have
  283. * been inherited from a user process, so we reset them to sane values here.
  284. *
  285. * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
  286. */
  287. static void reparent_to_kthreadd(void)
  288. {
  289. write_lock_irq(&tasklist_lock);
  290. ptrace_unlink(current);
  291. /* Reparent to init */
  292. current->real_parent = current->parent = kthreadd_task;
  293. list_move_tail(&current->sibling, &current->real_parent->children);
  294. /* Set the exit signal to SIGCHLD so we signal init on exit */
  295. current->exit_signal = SIGCHLD;
  296. if (task_nice(current) < 0)
  297. set_user_nice(current, 0);
  298. /* cpus_allowed? */
  299. /* rt_priority? */
  300. /* signals? */
  301. memcpy(current->signal->rlim, init_task.signal->rlim,
  302. sizeof(current->signal->rlim));
  303. atomic_inc(&init_cred.usage);
  304. commit_creds(&init_cred);
  305. write_unlock_irq(&tasklist_lock);
  306. }
  307. void __set_special_pids(struct pid *pid)
  308. {
  309. struct task_struct *curr = current->group_leader;
  310. if (task_session(curr) != pid)
  311. change_pid(curr, PIDTYPE_SID, pid);
  312. if (task_pgrp(curr) != pid)
  313. change_pid(curr, PIDTYPE_PGID, pid);
  314. }
  315. static void set_special_pids(struct pid *pid)
  316. {
  317. write_lock_irq(&tasklist_lock);
  318. __set_special_pids(pid);
  319. write_unlock_irq(&tasklist_lock);
  320. }
  321. /*
  322. * Let kernel threads use this to say that they allow a certain signal.
  323. * Must not be used if kthread was cloned with CLONE_SIGHAND.
  324. */
  325. int allow_signal(int sig)
  326. {
  327. if (!valid_signal(sig) || sig < 1)
  328. return -EINVAL;
  329. spin_lock_irq(&current->sighand->siglock);
  330. /* This is only needed for daemonize()'ed kthreads */
  331. sigdelset(&current->blocked, sig);
  332. /*
  333. * Kernel threads handle their own signals. Let the signal code
  334. * know it'll be handled, so that they don't get converted to
  335. * SIGKILL or just silently dropped.
  336. */
  337. current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
  338. recalc_sigpending();
  339. spin_unlock_irq(&current->sighand->siglock);
  340. return 0;
  341. }
  342. EXPORT_SYMBOL(allow_signal);
  343. int disallow_signal(int sig)
  344. {
  345. if (!valid_signal(sig) || sig < 1)
  346. return -EINVAL;
  347. spin_lock_irq(&current->sighand->siglock);
  348. current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
  349. recalc_sigpending();
  350. spin_unlock_irq(&current->sighand->siglock);
  351. return 0;
  352. }
  353. EXPORT_SYMBOL(disallow_signal);
  354. /*
  355. * Put all the gunge required to become a kernel thread without
  356. * attached user resources in one place where it belongs.
  357. */
  358. void daemonize(const char *name, ...)
  359. {
  360. va_list args;
  361. sigset_t blocked;
  362. va_start(args, name);
  363. vsnprintf(current->comm, sizeof(current->comm), name, args);
  364. va_end(args);
  365. /*
  366. * If we were started as result of loading a module, close all of the
  367. * user space pages. We don't need them, and if we didn't close them
  368. * they would be locked into memory.
  369. */
  370. exit_mm(current);
  371. /*
  372. * We don't want to get frozen, in case system-wide hibernation
  373. * or suspend transition begins right now.
  374. */
  375. current->flags |= (PF_NOFREEZE | PF_KTHREAD);
  376. if (current->nsproxy != &init_nsproxy) {
  377. get_nsproxy(&init_nsproxy);
  378. switch_task_namespaces(current, &init_nsproxy);
  379. }
  380. set_special_pids(&init_struct_pid);
  381. proc_clear_tty(current);
  382. /* Block and flush all signals */
  383. sigfillset(&blocked);
  384. sigprocmask(SIG_BLOCK, &blocked, NULL);
  385. flush_signals(current);
  386. /* Become as one with the init task */
  387. daemonize_fs_struct();
  388. exit_files(current);
  389. current->files = init_task.files;
  390. atomic_inc(&current->files->count);
  391. reparent_to_kthreadd();
  392. }
  393. EXPORT_SYMBOL(daemonize);
  394. static void close_files(struct files_struct * files)
  395. {
  396. int i, j;
  397. struct fdtable *fdt;
  398. j = 0;
  399. /*
  400. * It is safe to dereference the fd table without RCU or
  401. * ->file_lock because this is the last reference to the
  402. * files structure. But use RCU to shut RCU-lockdep up.
  403. */
  404. rcu_read_lock();
  405. fdt = files_fdtable(files);
  406. rcu_read_unlock();
  407. for (;;) {
  408. unsigned long set;
  409. i = j * BITS_PER_LONG;
  410. if (i >= fdt->max_fds)
  411. break;
  412. set = fdt->open_fds[j++];
  413. while (set) {
  414. if (set & 1) {
  415. struct file * file = xchg(&fdt->fd[i], NULL);
  416. if (file) {
  417. filp_close(file, files);
  418. cond_resched();
  419. }
  420. }
  421. i++;
  422. set >>= 1;
  423. }
  424. }
  425. }
  426. struct files_struct *get_files_struct(struct task_struct *task)
  427. {
  428. struct files_struct *files;
  429. task_lock(task);
  430. files = task->files;
  431. if (files)
  432. atomic_inc(&files->count);
  433. task_unlock(task);
  434. return files;
  435. }
  436. void put_files_struct(struct files_struct *files)
  437. {
  438. struct fdtable *fdt;
  439. if (atomic_dec_and_test(&files->count)) {
  440. close_files(files);
  441. /*
  442. * Free the fd and fdset arrays if we expanded them.
  443. * If the fdtable was embedded, pass files for freeing
  444. * at the end of the RCU grace period. Otherwise,
  445. * you can free files immediately.
  446. */
  447. rcu_read_lock();
  448. fdt = files_fdtable(files);
  449. if (fdt != &files->fdtab)
  450. kmem_cache_free(files_cachep, files);
  451. free_fdtable(fdt);
  452. rcu_read_unlock();
  453. }
  454. }
  455. void reset_files_struct(struct files_struct *files)
  456. {
  457. struct task_struct *tsk = current;
  458. struct files_struct *old;
  459. old = tsk->files;
  460. task_lock(tsk);
  461. tsk->files = files;
  462. task_unlock(tsk);
  463. put_files_struct(old);
  464. }
  465. void exit_files(struct task_struct *tsk)
  466. {
  467. struct files_struct * files = tsk->files;
  468. if (files) {
  469. task_lock(tsk);
  470. tsk->files = NULL;
  471. task_unlock(tsk);
  472. put_files_struct(files);
  473. }
  474. }
  475. #ifdef CONFIG_MM_OWNER
  476. /*
  477. * A task is exiting. If it owned this mm, find a new owner for the mm.
  478. */
  479. void mm_update_next_owner(struct mm_struct *mm)
  480. {
  481. struct task_struct *c, *g, *p = current;
  482. retry:
  483. /*
  484. * If the exiting or execing task is not the owner, it's
  485. * someone else's problem.
  486. */
  487. if (mm->owner != p)
  488. return;
  489. /*
  490. * The current owner is exiting/execing and there are no other
  491. * candidates. Do not leave the mm pointing to a possibly
  492. * freed task structure.
  493. */
  494. if (atomic_read(&mm->mm_users) <= 1) {
  495. mm->owner = NULL;
  496. return;
  497. }
  498. read_lock(&tasklist_lock);
  499. /*
  500. * Search in the children
  501. */
  502. list_for_each_entry(c, &p->children, sibling) {
  503. if (c->mm == mm)
  504. goto assign_new_owner;
  505. }
  506. /*
  507. * Search in the siblings
  508. */
  509. list_for_each_entry(c, &p->real_parent->children, sibling) {
  510. if (c->mm == mm)
  511. goto assign_new_owner;
  512. }
  513. /*
  514. * Search through everything else. We should not get
  515. * here often
  516. */
  517. do_each_thread(g, c) {
  518. if (c->mm == mm)
  519. goto assign_new_owner;
  520. } while_each_thread(g, c);
  521. read_unlock(&tasklist_lock);
  522. /*
  523. * We found no owner yet mm_users > 1: this implies that we are
  524. * most likely racing with swapoff (try_to_unuse()) or /proc or
  525. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  526. */
  527. mm->owner = NULL;
  528. return;
  529. assign_new_owner:
  530. BUG_ON(c == p);
  531. get_task_struct(c);
  532. /*
  533. * The task_lock protects c->mm from changing.
  534. * We always want mm->owner->mm == mm
  535. */
  536. task_lock(c);
  537. /*
  538. * Delay read_unlock() till we have the task_lock()
  539. * to ensure that c does not slip away underneath us
  540. */
  541. read_unlock(&tasklist_lock);
  542. if (c->mm != mm) {
  543. task_unlock(c);
  544. put_task_struct(c);
  545. goto retry;
  546. }
  547. mm->owner = c;
  548. task_unlock(c);
  549. put_task_struct(c);
  550. }
  551. #endif /* CONFIG_MM_OWNER */
  552. /*
  553. * Turn us into a lazy TLB process if we
  554. * aren't already..
  555. */
  556. static void exit_mm(struct task_struct * tsk)
  557. {
  558. struct mm_struct *mm = tsk->mm;
  559. struct core_state *core_state;
  560. int mm_released;
  561. mm_release(tsk, mm);
  562. if (!mm)
  563. return;
  564. sync_mm_rss(mm);
  565. /*
  566. * Serialize with any possible pending coredump.
  567. * We must hold mmap_sem around checking core_state
  568. * and clearing tsk->mm. The core-inducing thread
  569. * will increment ->nr_threads for each thread in the
  570. * group with ->mm != NULL.
  571. */
  572. down_read(&mm->mmap_sem);
  573. core_state = mm->core_state;
  574. if (core_state) {
  575. struct core_thread self;
  576. up_read(&mm->mmap_sem);
  577. self.task = tsk;
  578. self.next = xchg(&core_state->dumper.next, &self);
  579. /*
  580. * Implies mb(), the result of xchg() must be visible
  581. * to core_state->dumper.
  582. */
  583. if (atomic_dec_and_test(&core_state->nr_threads))
  584. complete(&core_state->startup);
  585. for (;;) {
  586. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  587. if (!self.task) /* see coredump_finish() */
  588. break;
  589. schedule();
  590. }
  591. __set_task_state(tsk, TASK_RUNNING);
  592. down_read(&mm->mmap_sem);
  593. }
  594. atomic_inc(&mm->mm_count);
  595. BUG_ON(mm != tsk->active_mm);
  596. /* more a memory barrier than a real lock */
  597. task_lock(tsk);
  598. tsk->mm = NULL;
  599. up_read(&mm->mmap_sem);
  600. enter_lazy_tlb(mm, current);
  601. task_unlock(tsk);
  602. mm_update_next_owner(mm);
  603. mm_released = mmput(mm);
  604. if (mm_released)
  605. set_tsk_thread_flag(tsk, TIF_MM_RELEASED);
  606. }
  607. /*
  608. * When we die, we re-parent all our children, and try to:
  609. * 1. give them to another thread in our thread group, if such a member exists
  610. * 2. give it to the first ancestor process which prctl'd itself as a
  611. * child_subreaper for its children (like a service manager)
  612. * 3. give it to the init process (PID 1) in our pid namespace
  613. */
  614. static struct task_struct *find_new_reaper(struct task_struct *father)
  615. __releases(&tasklist_lock)
  616. __acquires(&tasklist_lock)
  617. {
  618. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  619. struct task_struct *thread;
  620. thread = father;
  621. while_each_thread(father, thread) {
  622. if (thread->flags & PF_EXITING)
  623. continue;
  624. if (unlikely(pid_ns->child_reaper == father))
  625. pid_ns->child_reaper = thread;
  626. return thread;
  627. }
  628. if (unlikely(pid_ns->child_reaper == father)) {
  629. write_unlock_irq(&tasklist_lock);
  630. if (unlikely(pid_ns == &init_pid_ns)) {
  631. panic("Attempted to kill init! exitcode=0x%08x\n",
  632. father->signal->group_exit_code ?:
  633. father->exit_code);
  634. }
  635. zap_pid_ns_processes(pid_ns);
  636. write_lock_irq(&tasklist_lock);
  637. /*
  638. * We can not clear ->child_reaper or leave it alone.
  639. * There may by stealth EXIT_DEAD tasks on ->children,
  640. * forget_original_parent() must move them somewhere.
  641. */
  642. pid_ns->child_reaper = init_pid_ns.child_reaper;
  643. } else if (father->signal->has_child_subreaper) {
  644. struct task_struct *reaper;
  645. /*
  646. * Find the first ancestor marked as child_subreaper.
  647. * Note that the code below checks same_thread_group(reaper,
  648. * pid_ns->child_reaper). This is what we need to DTRT in a
  649. * PID namespace. However we still need the check above, see
  650. * http://marc.info/?l=linux-kernel&m=131385460420380
  651. */
  652. for (reaper = father->real_parent;
  653. reaper != &init_task;
  654. reaper = reaper->real_parent) {
  655. if (same_thread_group(reaper, pid_ns->child_reaper))
  656. break;
  657. if (!reaper->signal->is_child_subreaper)
  658. continue;
  659. thread = reaper;
  660. do {
  661. if (!(thread->flags & PF_EXITING))
  662. return reaper;
  663. } while_each_thread(reaper, thread);
  664. }
  665. }
  666. return pid_ns->child_reaper;
  667. }
  668. /*
  669. * Any that need to be release_task'd are put on the @dead list.
  670. */
  671. static void reparent_leader(struct task_struct *father, struct task_struct *p,
  672. struct list_head *dead)
  673. {
  674. list_move_tail(&p->sibling, &p->real_parent->children);
  675. /*
  676. * If this is a threaded reparent there is no need to
  677. * notify anyone anything has happened.
  678. */
  679. if (same_thread_group(p->real_parent, father))
  680. return;
  681. /*
  682. * We don't want people slaying init.
  683. *
  684. * Note: we do this even if it is EXIT_DEAD, wait_task_zombie()
  685. * can change ->exit_state to EXIT_ZOMBIE. If this is the final
  686. * state, do_notify_parent() was already called and ->exit_signal
  687. * doesn't matter.
  688. */
  689. p->exit_signal = SIGCHLD;
  690. if (p->exit_state == EXIT_DEAD)
  691. return;
  692. /* If it has exited notify the new parent about this child's death. */
  693. if (!p->ptrace &&
  694. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  695. if (do_notify_parent(p, p->exit_signal)) {
  696. p->exit_state = EXIT_DEAD;
  697. list_move_tail(&p->sibling, dead);
  698. }
  699. }
  700. kill_orphaned_pgrp(p, father);
  701. }
  702. static void forget_original_parent(struct task_struct *father)
  703. {
  704. struct task_struct *p, *n, *reaper;
  705. LIST_HEAD(dead_children);
  706. write_lock_irq(&tasklist_lock);
  707. /*
  708. * Note that exit_ptrace() and find_new_reaper() might
  709. * drop tasklist_lock and reacquire it.
  710. */
  711. exit_ptrace(father);
  712. reaper = find_new_reaper(father);
  713. list_for_each_entry_safe(p, n, &father->children, sibling) {
  714. struct task_struct *t = p;
  715. do {
  716. t->real_parent = reaper;
  717. if (t->parent == father) {
  718. BUG_ON(t->ptrace);
  719. t->parent = t->real_parent;
  720. }
  721. if (t->pdeath_signal)
  722. group_send_sig_info(t->pdeath_signal,
  723. SEND_SIG_NOINFO, t);
  724. } while_each_thread(p, t);
  725. reparent_leader(father, p, &dead_children);
  726. }
  727. write_unlock_irq(&tasklist_lock);
  728. BUG_ON(!list_empty(&father->children));
  729. list_for_each_entry_safe(p, n, &dead_children, sibling) {
  730. list_del_init(&p->sibling);
  731. release_task(p);
  732. }
  733. }
  734. /*
  735. * Send signals to all our closest relatives so that they know
  736. * to properly mourn us..
  737. */
  738. static void exit_notify(struct task_struct *tsk, int group_dead)
  739. {
  740. bool autoreap;
  741. /*
  742. * This does two things:
  743. *
  744. * A. Make init inherit all the child processes
  745. * B. Check to see if any process groups have become orphaned
  746. * as a result of our exiting, and if they have any stopped
  747. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  748. */
  749. forget_original_parent(tsk);
  750. exit_task_namespaces(tsk);
  751. write_lock_irq(&tasklist_lock);
  752. if (group_dead)
  753. kill_orphaned_pgrp(tsk->group_leader, NULL);
  754. if (unlikely(tsk->ptrace)) {
  755. int sig = thread_group_leader(tsk) &&
  756. thread_group_empty(tsk) &&
  757. !ptrace_reparented(tsk) ?
  758. tsk->exit_signal : SIGCHLD;
  759. autoreap = do_notify_parent(tsk, sig);
  760. } else if (thread_group_leader(tsk)) {
  761. autoreap = thread_group_empty(tsk) &&
  762. do_notify_parent(tsk, tsk->exit_signal);
  763. } else {
  764. autoreap = true;
  765. }
  766. tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
  767. /* mt-exec, de_thread() is waiting for group leader */
  768. if (unlikely(tsk->signal->notify_count < 0))
  769. wake_up_process(tsk->signal->group_exit_task);
  770. write_unlock_irq(&tasklist_lock);
  771. /* If the process is dead, release it - nobody will wait for it */
  772. if (autoreap)
  773. release_task(tsk);
  774. }
  775. #ifdef CONFIG_DEBUG_STACK_USAGE
  776. static void check_stack_usage(void)
  777. {
  778. static DEFINE_SPINLOCK(low_water_lock);
  779. static int lowest_to_date = THREAD_SIZE;
  780. unsigned long free;
  781. int islower = false;
  782. free = stack_not_used(current);
  783. if (free >= lowest_to_date)
  784. return;
  785. spin_lock(&low_water_lock);
  786. if (free < lowest_to_date) {
  787. lowest_to_date = free;
  788. islower = true;
  789. }
  790. spin_unlock(&low_water_lock);
  791. if (islower) {
  792. printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
  793. "left\n",
  794. current->comm, free);
  795. }
  796. }
  797. #else
  798. static inline void check_stack_usage(void) {}
  799. #endif
  800. void do_exit(long code)
  801. {
  802. struct task_struct *tsk = current;
  803. int group_dead;
  804. profile_task_exit(tsk);
  805. WARN_ON(blk_needs_flush_plug(tsk));
  806. if (unlikely(in_interrupt()))
  807. panic("Aiee, killing interrupt handler!");
  808. if (unlikely(!tsk->pid) || unlikely(tsk->pid==1))
  809. panic("Attempted to kill the idle task! or init task");
  810. /*
  811. * If do_exit is called because this processes oopsed, it's possible
  812. * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
  813. * continuing. Amongst other possible reasons, this is to prevent
  814. * mm_release()->clear_child_tid() from writing to a user-controlled
  815. * kernel address.
  816. */
  817. set_fs(USER_DS);
  818. ptrace_event(PTRACE_EVENT_EXIT, code);
  819. validate_creds_for_do_exit(tsk);
  820. /*
  821. * We're taking recursive faults here in do_exit. Safest is to just
  822. * leave this task alone and wait for reboot.
  823. */
  824. if (unlikely(tsk->flags & PF_EXITING)) {
  825. printk(KERN_ALERT
  826. "Fixing recursive fault but reboot is needed!\n");
  827. /*
  828. * We can do this unlocked here. The futex code uses
  829. * this flag just to verify whether the pi state
  830. * cleanup has been done or not. In the worst case it
  831. * loops once more. We pretend that the cleanup was
  832. * done as there is no way to return. Either the
  833. * OWNER_DIED bit is set by now or we push the blocked
  834. * task into the wait for ever nirwana as well.
  835. */
  836. tsk->flags |= PF_EXITPIDONE;
  837. set_current_state(TASK_UNINTERRUPTIBLE);
  838. schedule();
  839. }
  840. exit_signals(tsk); /* sets PF_EXITING */
  841. if (tsk->flags & PF_SU) {
  842. su_exit();
  843. }
  844. /*
  845. * tsk->flags are checked in the futex code to protect against
  846. * an exiting task cleaning up the robust pi futexes.
  847. */
  848. smp_mb();
  849. raw_spin_unlock_wait(&tsk->pi_lock);
  850. exit_irq_thread();
  851. if (unlikely(in_atomic()))
  852. printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
  853. current->comm, task_pid_nr(current),
  854. preempt_count());
  855. acct_update_integrals(tsk);
  856. /* sync mm's RSS info before statistics gathering */
  857. if (tsk->mm)
  858. sync_mm_rss(tsk->mm);
  859. group_dead = atomic_dec_and_test(&tsk->signal->live);
  860. if (group_dead) {
  861. hrtimer_cancel(&tsk->signal->real_timer);
  862. exit_itimers(tsk->signal);
  863. if (tsk->mm)
  864. setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
  865. }
  866. acct_collect(code, group_dead);
  867. if (group_dead)
  868. tty_audit_exit();
  869. audit_free(tsk);
  870. tsk->exit_code = code;
  871. taskstats_exit(tsk, group_dead);
  872. exit_mm(tsk);
  873. if (group_dead)
  874. acct_process();
  875. trace_sched_process_exit(tsk);
  876. exit_sem(tsk);
  877. exit_shm(tsk);
  878. exit_files(tsk);
  879. exit_fs(tsk);
  880. check_stack_usage();
  881. exit_thread();
  882. /*
  883. * Flush inherited counters to the parent - before the parent
  884. * gets woken up by child-exit notifications.
  885. *
  886. * because of cgroup mode, must be called before cgroup_exit()
  887. */
  888. perf_event_exit_task(tsk);
  889. cgroup_exit(tsk, 1);
  890. if (group_dead)
  891. disassociate_ctty(1);
  892. proc_exit_connector(tsk);
  893. /*
  894. * FIXME: do that only when needed, using sched_exit tracepoint
  895. */
  896. ptrace_put_breakpoints(tsk);
  897. exit_notify(tsk, group_dead);
  898. #ifdef CONFIG_NUMA
  899. task_lock(tsk);
  900. mpol_put(tsk->mempolicy);
  901. tsk->mempolicy = NULL;
  902. task_unlock(tsk);
  903. #endif
  904. #ifdef CONFIG_FUTEX
  905. if (unlikely(current->pi_state_cache))
  906. kfree(current->pi_state_cache);
  907. #endif
  908. /*
  909. * Make sure we are holding no locks:
  910. */
  911. debug_check_no_locks_held();
  912. /*
  913. * We can do this unlocked here. The futex code uses this flag
  914. * just to verify whether the pi state cleanup has been done
  915. * or not. In the worst case it loops once more.
  916. */
  917. tsk->flags |= PF_EXITPIDONE;
  918. if (tsk->io_context)
  919. exit_io_context(tsk);
  920. if (tsk->splice_pipe)
  921. __free_pipe_info(tsk->splice_pipe);
  922. validate_creds_for_do_exit(tsk);
  923. preempt_disable();
  924. if (tsk->nr_dirtied)
  925. __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
  926. exit_rcu();
  927. /*
  928. * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
  929. * when the following two conditions become true.
  930. * - There is race condition of mmap_sem (It is acquired by
  931. * exit_mm()), and
  932. * - SMI occurs before setting TASK_RUNINNG.
  933. * (or hypervisor of virtual machine switches to other guest)
  934. * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
  935. *
  936. * To avoid it, we have to wait for releasing tsk->pi_lock which
  937. * is held by try_to_wake_up()
  938. */
  939. smp_mb();
  940. raw_spin_unlock_wait(&tsk->pi_lock);
  941. /* causes final put_task_struct in finish_task_switch(). */
  942. tsk->state = TASK_DEAD;
  943. tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
  944. schedule();
  945. BUG();
  946. /* Avoid "noreturn function does return". */
  947. for (;;)
  948. cpu_relax(); /* For when BUG is null */
  949. }
  950. EXPORT_SYMBOL_GPL(do_exit);
  951. void complete_and_exit(struct completion *comp, long code)
  952. {
  953. if (comp)
  954. complete(comp);
  955. do_exit(code);
  956. }
  957. EXPORT_SYMBOL(complete_and_exit);
  958. SYSCALL_DEFINE1(exit, int, error_code)
  959. {
  960. do_exit((error_code&0xff)<<8);
  961. }
  962. /*
  963. * Take down every thread in the group. This is called by fatal signals
  964. * as well as by sys_exit_group (below).
  965. */
  966. void
  967. do_group_exit(int exit_code)
  968. {
  969. struct signal_struct *sig = current->signal;
  970. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  971. if (signal_group_exit(sig))
  972. exit_code = sig->group_exit_code;
  973. else if (!thread_group_empty(current)) {
  974. struct sighand_struct *const sighand = current->sighand;
  975. spin_lock_irq(&sighand->siglock);
  976. if (signal_group_exit(sig))
  977. /* Another thread got here before we took the lock. */
  978. exit_code = sig->group_exit_code;
  979. else {
  980. sig->group_exit_code = exit_code;
  981. sig->flags = SIGNAL_GROUP_EXIT;
  982. zap_other_threads(current);
  983. }
  984. spin_unlock_irq(&sighand->siglock);
  985. }
  986. do_exit(exit_code);
  987. /* NOTREACHED */
  988. }
  989. /*
  990. * this kills every thread in the thread group. Note that any externally
  991. * wait4()-ing process will get the correct exit code - even if this
  992. * thread is not the thread group leader.
  993. */
  994. SYSCALL_DEFINE1(exit_group, int, error_code)
  995. {
  996. do_group_exit((error_code & 0xff) << 8);
  997. /* NOTREACHED */
  998. return 0;
  999. }
  1000. struct wait_opts {
  1001. enum pid_type wo_type;
  1002. int wo_flags;
  1003. struct pid *wo_pid;
  1004. struct siginfo __user *wo_info;
  1005. int __user *wo_stat;
  1006. struct rusage __user *wo_rusage;
  1007. wait_queue_t child_wait;
  1008. int notask_error;
  1009. };
  1010. static inline
  1011. struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  1012. {
  1013. if (type != PIDTYPE_PID)
  1014. task = task->group_leader;
  1015. return task->pids[type].pid;
  1016. }
  1017. static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
  1018. {
  1019. return wo->wo_type == PIDTYPE_MAX ||
  1020. task_pid_type(p, wo->wo_type) == wo->wo_pid;
  1021. }
  1022. static int eligible_child(struct wait_opts *wo, struct task_struct *p)
  1023. {
  1024. if (!eligible_pid(wo, p))
  1025. return 0;
  1026. /* Wait for all children (clone and not) if __WALL is set;
  1027. * otherwise, wait for clone children *only* if __WCLONE is
  1028. * set; otherwise, wait for non-clone children *only*. (Note:
  1029. * A "clone" child here is one that reports to its parent
  1030. * using a signal other than SIGCHLD.) */
  1031. if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
  1032. && !(wo->wo_flags & __WALL))
  1033. return 0;
  1034. return 1;
  1035. }
  1036. static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
  1037. pid_t pid, uid_t uid, int why, int status)
  1038. {
  1039. struct siginfo __user *infop;
  1040. int retval = wo->wo_rusage
  1041. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1042. put_task_struct(p);
  1043. infop = wo->wo_info;
  1044. if (infop) {
  1045. if (!retval)
  1046. retval = put_user(SIGCHLD, &infop->si_signo);
  1047. if (!retval)
  1048. retval = put_user(0, &infop->si_errno);
  1049. if (!retval)
  1050. retval = put_user((short)why, &infop->si_code);
  1051. if (!retval)
  1052. retval = put_user(pid, &infop->si_pid);
  1053. if (!retval)
  1054. retval = put_user(uid, &infop->si_uid);
  1055. if (!retval)
  1056. retval = put_user(status, &infop->si_status);
  1057. }
  1058. if (!retval)
  1059. retval = pid;
  1060. return retval;
  1061. }
  1062. /*
  1063. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  1064. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1065. * the lock and this task is uninteresting. If we return nonzero, we have
  1066. * released the lock and the system call should return.
  1067. */
  1068. static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
  1069. {
  1070. unsigned long state;
  1071. int retval, status, traced;
  1072. pid_t pid = task_pid_vnr(p);
  1073. uid_t uid = __task_cred(p)->uid;
  1074. struct siginfo __user *infop;
  1075. if (!likely(wo->wo_flags & WEXITED))
  1076. return 0;
  1077. if (unlikely(wo->wo_flags & WNOWAIT)) {
  1078. int exit_code = p->exit_code;
  1079. int why;
  1080. get_task_struct(p);
  1081. read_unlock(&tasklist_lock);
  1082. if ((exit_code & 0x7f) == 0) {
  1083. why = CLD_EXITED;
  1084. status = exit_code >> 8;
  1085. } else {
  1086. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1087. status = exit_code & 0x7f;
  1088. }
  1089. return wait_noreap_copyout(wo, p, pid, uid, why, status);
  1090. }
  1091. /*
  1092. * Try to move the task's state to DEAD
  1093. * only one thread is allowed to do this:
  1094. */
  1095. state = xchg(&p->exit_state, EXIT_DEAD);
  1096. if (state != EXIT_ZOMBIE) {
  1097. BUG_ON(state != EXIT_DEAD);
  1098. return 0;
  1099. }
  1100. traced = ptrace_reparented(p);
  1101. /*
  1102. * It can be ptraced but not reparented, check
  1103. * thread_group_leader() to filter out sub-threads.
  1104. */
  1105. if (likely(!traced) && thread_group_leader(p)) {
  1106. struct signal_struct *psig;
  1107. struct signal_struct *sig;
  1108. unsigned long maxrss;
  1109. cputime_t tgutime, tgstime;
  1110. /*
  1111. * The resource counters for the group leader are in its
  1112. * own task_struct. Those for dead threads in the group
  1113. * are in its signal_struct, as are those for the child
  1114. * processes it has previously reaped. All these
  1115. * accumulate in the parent's signal_struct c* fields.
  1116. *
  1117. * We don't bother to take a lock here to protect these
  1118. * p->signal fields, because they are only touched by
  1119. * __exit_signal, which runs with tasklist_lock
  1120. * write-locked anyway, and so is excluded here. We do
  1121. * need to protect the access to parent->signal fields,
  1122. * as other threads in the parent group can be right
  1123. * here reaping other children at the same time.
  1124. *
  1125. * We use thread_group_times() to get times for the thread
  1126. * group, which consolidates times for all threads in the
  1127. * group including the group leader.
  1128. */
  1129. thread_group_times(p, &tgutime, &tgstime);
  1130. spin_lock_irq(&p->real_parent->sighand->siglock);
  1131. psig = p->real_parent->signal;
  1132. sig = p->signal;
  1133. psig->cutime += tgutime + sig->cutime;
  1134. psig->cstime += tgstime + sig->cstime;
  1135. psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
  1136. psig->cmin_flt +=
  1137. p->min_flt + sig->min_flt + sig->cmin_flt;
  1138. psig->cmaj_flt +=
  1139. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  1140. psig->cnvcsw +=
  1141. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  1142. psig->cnivcsw +=
  1143. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  1144. psig->cinblock +=
  1145. task_io_get_inblock(p) +
  1146. sig->inblock + sig->cinblock;
  1147. psig->coublock +=
  1148. task_io_get_oublock(p) +
  1149. sig->oublock + sig->coublock;
  1150. maxrss = max(sig->maxrss, sig->cmaxrss);
  1151. if (psig->cmaxrss < maxrss)
  1152. psig->cmaxrss = maxrss;
  1153. task_io_accounting_add(&psig->ioac, &p->ioac);
  1154. task_io_accounting_add(&psig->ioac, &sig->ioac);
  1155. spin_unlock_irq(&p->real_parent->sighand->siglock);
  1156. }
  1157. /*
  1158. * Now we are sure this task is interesting, and no other
  1159. * thread can reap it because we set its state to EXIT_DEAD.
  1160. */
  1161. read_unlock(&tasklist_lock);
  1162. retval = wo->wo_rusage
  1163. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1164. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  1165. ? p->signal->group_exit_code : p->exit_code;
  1166. if (!retval && wo->wo_stat)
  1167. retval = put_user(status, wo->wo_stat);
  1168. infop = wo->wo_info;
  1169. if (!retval && infop)
  1170. retval = put_user(SIGCHLD, &infop->si_signo);
  1171. if (!retval && infop)
  1172. retval = put_user(0, &infop->si_errno);
  1173. if (!retval && infop) {
  1174. int why;
  1175. if ((status & 0x7f) == 0) {
  1176. why = CLD_EXITED;
  1177. status >>= 8;
  1178. } else {
  1179. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1180. status &= 0x7f;
  1181. }
  1182. retval = put_user((short)why, &infop->si_code);
  1183. if (!retval)
  1184. retval = put_user(status, &infop->si_status);
  1185. }
  1186. if (!retval && infop)
  1187. retval = put_user(pid, &infop->si_pid);
  1188. if (!retval && infop)
  1189. retval = put_user(uid, &infop->si_uid);
  1190. if (!retval)
  1191. retval = pid;
  1192. if (traced) {
  1193. write_lock_irq(&tasklist_lock);
  1194. /* We dropped tasklist, ptracer could die and untrace */
  1195. ptrace_unlink(p);
  1196. /*
  1197. * If this is not a sub-thread, notify the parent.
  1198. * If parent wants a zombie, don't release it now.
  1199. */
  1200. if (thread_group_leader(p) &&
  1201. !do_notify_parent(p, p->exit_signal)) {
  1202. p->exit_state = EXIT_ZOMBIE;
  1203. p = NULL;
  1204. }
  1205. write_unlock_irq(&tasklist_lock);
  1206. }
  1207. if (p != NULL)
  1208. release_task(p);
  1209. return retval;
  1210. }
  1211. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1212. {
  1213. if (ptrace) {
  1214. if (task_is_stopped_or_traced(p) &&
  1215. !(p->jobctl & JOBCTL_LISTENING))
  1216. return &p->exit_code;
  1217. } else {
  1218. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1219. return &p->signal->group_exit_code;
  1220. }
  1221. return NULL;
  1222. }
  1223. /**
  1224. * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
  1225. * @wo: wait options
  1226. * @ptrace: is the wait for ptrace
  1227. * @p: task to wait for
  1228. *
  1229. * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
  1230. *
  1231. * CONTEXT:
  1232. * read_lock(&tasklist_lock), which is released if return value is
  1233. * non-zero. Also, grabs and releases @p->sighand->siglock.
  1234. *
  1235. * RETURNS:
  1236. * 0 if wait condition didn't exist and search for other wait conditions
  1237. * should continue. Non-zero return, -errno on failure and @p's pid on
  1238. * success, implies that tasklist_lock is released and wait condition
  1239. * search should terminate.
  1240. */
  1241. static int wait_task_stopped(struct wait_opts *wo,
  1242. int ptrace, struct task_struct *p)
  1243. {
  1244. struct siginfo __user *infop;
  1245. int retval, exit_code, *p_code, why;
  1246. uid_t uid = 0; /* unneeded, required by compiler */
  1247. pid_t pid;
  1248. /*
  1249. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1250. */
  1251. if (!ptrace && !(wo->wo_flags & WUNTRACED))
  1252. return 0;
  1253. if (!task_stopped_code(p, ptrace))
  1254. return 0;
  1255. exit_code = 0;
  1256. spin_lock_irq(&p->sighand->siglock);
  1257. p_code = task_stopped_code(p, ptrace);
  1258. if (unlikely(!p_code))
  1259. goto unlock_sig;
  1260. exit_code = *p_code;
  1261. if (!exit_code)
  1262. goto unlock_sig;
  1263. if (!unlikely(wo->wo_flags & WNOWAIT))
  1264. *p_code = 0;
  1265. uid = task_uid(p);
  1266. unlock_sig:
  1267. spin_unlock_irq(&p->sighand->siglock);
  1268. if (!exit_code)
  1269. return 0;
  1270. /*
  1271. * Now we are pretty sure this task is interesting.
  1272. * Make sure it doesn't get reaped out from under us while we
  1273. * give up the lock and then examine it below. We don't want to
  1274. * keep holding onto the tasklist_lock while we call getrusage and
  1275. * possibly take page faults for user memory.
  1276. */
  1277. get_task_struct(p);
  1278. pid = task_pid_vnr(p);
  1279. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1280. read_unlock(&tasklist_lock);
  1281. if (unlikely(wo->wo_flags & WNOWAIT))
  1282. return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
  1283. retval = wo->wo_rusage
  1284. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1285. if (!retval && wo->wo_stat)
  1286. retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
  1287. infop = wo->wo_info;
  1288. if (!retval && infop)
  1289. retval = put_user(SIGCHLD, &infop->si_signo);
  1290. if (!retval && infop)
  1291. retval = put_user(0, &infop->si_errno);
  1292. if (!retval && infop)
  1293. retval = put_user((short)why, &infop->si_code);
  1294. if (!retval && infop)
  1295. retval = put_user(exit_code, &infop->si_status);
  1296. if (!retval && infop)
  1297. retval = put_user(pid, &infop->si_pid);
  1298. if (!retval && infop)
  1299. retval = put_user(uid, &infop->si_uid);
  1300. if (!retval)
  1301. retval = pid;
  1302. put_task_struct(p);
  1303. BUG_ON(!retval);
  1304. return retval;
  1305. }
  1306. /*
  1307. * Handle do_wait work for one task in a live, non-stopped state.
  1308. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1309. * the lock and this task is uninteresting. If we return nonzero, we have
  1310. * released the lock and the system call should return.
  1311. */
  1312. static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
  1313. {
  1314. int retval;
  1315. pid_t pid;
  1316. uid_t uid;
  1317. if (!unlikely(wo->wo_flags & WCONTINUED))
  1318. return 0;
  1319. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1320. return 0;
  1321. spin_lock_irq(&p->sighand->siglock);
  1322. /* Re-check with the lock held. */
  1323. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1324. spin_unlock_irq(&p->sighand->siglock);
  1325. return 0;
  1326. }
  1327. if (!unlikely(wo->wo_flags & WNOWAIT))
  1328. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1329. uid = task_uid(p);
  1330. spin_unlock_irq(&p->sighand->siglock);
  1331. pid = task_pid_vnr(p);
  1332. get_task_struct(p);
  1333. read_unlock(&tasklist_lock);
  1334. if (!wo->wo_info) {
  1335. retval = wo->wo_rusage
  1336. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1337. put_task_struct(p);
  1338. if (!retval && wo->wo_stat)
  1339. retval = put_user(0xffff, wo->wo_stat);
  1340. if (!retval)
  1341. retval = pid;
  1342. } else {
  1343. retval = wait_noreap_copyout(wo, p, pid, uid,
  1344. CLD_CONTINUED, SIGCONT);
  1345. BUG_ON(retval == 0);
  1346. }
  1347. return retval;
  1348. }
  1349. /*
  1350. * Consider @p for a wait by @parent.
  1351. *
  1352. * -ECHILD should be in ->notask_error before the first call.
  1353. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1354. * Returns zero if the search for a child should continue;
  1355. * then ->notask_error is 0 if @p is an eligible child,
  1356. * or another error from security_task_wait(), or still -ECHILD.
  1357. */
  1358. static int wait_consider_task(struct wait_opts *wo, int ptrace,
  1359. struct task_struct *p)
  1360. {
  1361. int ret = eligible_child(wo, p);
  1362. if (!ret)
  1363. return ret;
  1364. ret = security_task_wait(p);
  1365. if (unlikely(ret < 0)) {
  1366. /*
  1367. * If we have not yet seen any eligible child,
  1368. * then let this error code replace -ECHILD.
  1369. * A permission error will give the user a clue
  1370. * to look for security policy problems, rather
  1371. * than for mysterious wait bugs.
  1372. */
  1373. if (wo->notask_error)
  1374. wo->notask_error = ret;
  1375. return 0;
  1376. }
  1377. /* dead body doesn't have much to contribute */
  1378. if (unlikely(p->exit_state == EXIT_DEAD)) {
  1379. /*
  1380. * But do not ignore this task until the tracer does
  1381. * wait_task_zombie()->do_notify_parent().
  1382. */
  1383. if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
  1384. wo->notask_error = 0;
  1385. return 0;
  1386. }
  1387. /* slay zombie? */
  1388. if (p->exit_state == EXIT_ZOMBIE) {
  1389. /*
  1390. * A zombie ptracee is only visible to its ptracer.
  1391. * Notification and reaping will be cascaded to the real
  1392. * parent when the ptracer detaches.
  1393. */
  1394. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1395. /* it will become visible, clear notask_error */
  1396. wo->notask_error = 0;
  1397. return 0;
  1398. }
  1399. /* we don't reap group leaders with subthreads */
  1400. if (!delay_group_leader(p))
  1401. return wait_task_zombie(wo, p);
  1402. /*
  1403. * Allow access to stopped/continued state via zombie by
  1404. * falling through. Clearing of notask_error is complex.
  1405. *
  1406. * When !@ptrace:
  1407. *
  1408. * If WEXITED is set, notask_error should naturally be
  1409. * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
  1410. * so, if there are live subthreads, there are events to
  1411. * wait for. If all subthreads are dead, it's still safe
  1412. * to clear - this function will be called again in finite
  1413. * amount time once all the subthreads are released and
  1414. * will then return without clearing.
  1415. *
  1416. * When @ptrace:
  1417. *
  1418. * Stopped state is per-task and thus can't change once the
  1419. * target task dies. Only continued and exited can happen.
  1420. * Clear notask_error if WCONTINUED | WEXITED.
  1421. */
  1422. if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
  1423. wo->notask_error = 0;
  1424. } else {
  1425. /*
  1426. * If @p is ptraced by a task in its real parent's group,
  1427. * hide group stop/continued state when looking at @p as
  1428. * the real parent; otherwise, a single stop can be
  1429. * reported twice as group and ptrace stops.
  1430. *
  1431. * If a ptracer wants to distinguish the two events for its
  1432. * own children, it should create a separate process which
  1433. * takes the role of real parent.
  1434. */
  1435. if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
  1436. return 0;
  1437. /*
  1438. * @p is alive and it's gonna stop, continue or exit, so
  1439. * there always is something to wait for.
  1440. */
  1441. wo->notask_error = 0;
  1442. }
  1443. /*
  1444. * Wait for stopped. Depending on @ptrace, different stopped state
  1445. * is used and the two don't interact with each other.
  1446. */
  1447. ret = wait_task_stopped(wo, ptrace, p);
  1448. if (ret)
  1449. return ret;
  1450. /*
  1451. * Wait for continued. There's only one continued state and the
  1452. * ptracer can consume it which can confuse the real parent. Don't
  1453. * use WCONTINUED from ptracer. You don't need or want it.
  1454. */
  1455. return wait_task_continued(wo, p);
  1456. }
  1457. /*
  1458. * Do the work of do_wait() for one thread in the group, @tsk.
  1459. *
  1460. * -ECHILD should be in ->notask_error before the first call.
  1461. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1462. * Returns zero if the search for a child should continue; then
  1463. * ->notask_error is 0 if there were any eligible children,
  1464. * or another error from security_task_wait(), or still -ECHILD.
  1465. */
  1466. static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
  1467. {
  1468. struct task_struct *p;
  1469. list_for_each_entry(p, &tsk->children, sibling) {
  1470. int ret = wait_consider_task(wo, 0, p);
  1471. if (ret)
  1472. return ret;
  1473. }
  1474. return 0;
  1475. }
  1476. static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
  1477. {
  1478. struct task_struct *p;
  1479. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1480. int ret = wait_consider_task(wo, 1, p);
  1481. if (ret)
  1482. return ret;
  1483. }
  1484. return 0;
  1485. }
  1486. static int child_wait_callback(wait_queue_t *wait, unsigned mode,
  1487. int sync, void *key)
  1488. {
  1489. struct wait_opts *wo = container_of(wait, struct wait_opts,
  1490. child_wait);
  1491. struct task_struct *p = key;
  1492. if (!eligible_pid(wo, p))
  1493. return 0;
  1494. if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
  1495. return 0;
  1496. return default_wake_function(wait, mode, sync, key);
  1497. }
  1498. void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
  1499. {
  1500. __wake_up_sync_key(&parent->signal->wait_chldexit,
  1501. TASK_INTERRUPTIBLE, 1, p);
  1502. }
  1503. static long do_wait(struct wait_opts *wo)
  1504. {
  1505. struct task_struct *tsk;
  1506. int retval;
  1507. trace_sched_process_wait(wo->wo_pid);
  1508. init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
  1509. wo->child_wait.private = current;
  1510. add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1511. repeat:
  1512. /*
  1513. * If there is nothing that can match our critiera just get out.
  1514. * We will clear ->notask_error to zero if we see any child that
  1515. * might later match our criteria, even if we are not able to reap
  1516. * it yet.
  1517. */
  1518. wo->notask_error = -ECHILD;
  1519. if ((wo->wo_type < PIDTYPE_MAX) &&
  1520. (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
  1521. goto notask;
  1522. set_current_state(TASK_INTERRUPTIBLE);
  1523. read_lock(&tasklist_lock);
  1524. tsk = current;
  1525. do {
  1526. retval = do_wait_thread(wo, tsk);
  1527. if (retval)
  1528. goto end;
  1529. retval = ptrace_do_wait(wo, tsk);
  1530. if (retval)
  1531. goto end;
  1532. if (wo->wo_flags & __WNOTHREAD)
  1533. break;
  1534. } while_each_thread(current, tsk);
  1535. read_unlock(&tasklist_lock);
  1536. notask:
  1537. retval = wo->notask_error;
  1538. if (!retval && !(wo->wo_flags & WNOHANG)) {
  1539. retval = -ERESTARTSYS;
  1540. if (!signal_pending(current)) {
  1541. schedule();
  1542. goto repeat;
  1543. }
  1544. }
  1545. end:
  1546. __set_current_state(TASK_RUNNING);
  1547. remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1548. return retval;
  1549. }
  1550. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1551. infop, int, options, struct rusage __user *, ru)
  1552. {
  1553. struct wait_opts wo;
  1554. struct pid *pid = NULL;
  1555. enum pid_type type;
  1556. long ret;
  1557. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1558. return -EINVAL;
  1559. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1560. return -EINVAL;
  1561. switch (which) {
  1562. case P_ALL:
  1563. type = PIDTYPE_MAX;
  1564. break;
  1565. case P_PID:
  1566. type = PIDTYPE_PID;
  1567. if (upid <= 0)
  1568. return -EINVAL;
  1569. break;
  1570. case P_PGID:
  1571. type = PIDTYPE_PGID;
  1572. if (upid <= 0)
  1573. return -EINVAL;
  1574. break;
  1575. default:
  1576. return -EINVAL;
  1577. }
  1578. if (type < PIDTYPE_MAX)
  1579. pid = find_get_pid(upid);
  1580. wo.wo_type = type;
  1581. wo.wo_pid = pid;
  1582. wo.wo_flags = options;
  1583. wo.wo_info = infop;
  1584. wo.wo_stat = NULL;
  1585. wo.wo_rusage = ru;
  1586. ret = do_wait(&wo);
  1587. if (ret > 0) {
  1588. ret = 0;
  1589. } else if (infop) {
  1590. /*
  1591. * For a WNOHANG return, clear out all the fields
  1592. * we would set so the user can easily tell the
  1593. * difference.
  1594. */
  1595. if (!ret)
  1596. ret = put_user(0, &infop->si_signo);
  1597. if (!ret)
  1598. ret = put_user(0, &infop->si_errno);
  1599. if (!ret)
  1600. ret = put_user(0, &infop->si_code);
  1601. if (!ret)
  1602. ret = put_user(0, &infop->si_pid);
  1603. if (!ret)
  1604. ret = put_user(0, &infop->si_uid);
  1605. if (!ret)
  1606. ret = put_user(0, &infop->si_status);
  1607. }
  1608. put_pid(pid);
  1609. /* avoid REGPARM breakage on x86: */
  1610. asmlinkage_protect(5, ret, which, upid, infop, options, ru);
  1611. return ret;
  1612. }
  1613. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1614. int, options, struct rusage __user *, ru)
  1615. {
  1616. struct wait_opts wo;
  1617. struct pid *pid = NULL;
  1618. enum pid_type type;
  1619. long ret;
  1620. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1621. __WNOTHREAD|__WCLONE|__WALL))
  1622. return -EINVAL;
  1623. if (upid == -1)
  1624. type = PIDTYPE_MAX;
  1625. else if (upid < 0) {
  1626. type = PIDTYPE_PGID;
  1627. pid = find_get_pid(-upid);
  1628. } else if (upid == 0) {
  1629. type = PIDTYPE_PGID;
  1630. pid = get_task_pid(current, PIDTYPE_PGID);
  1631. } else /* upid > 0 */ {
  1632. type = PIDTYPE_PID;
  1633. pid = find_get_pid(upid);
  1634. }
  1635. wo.wo_type = type;
  1636. wo.wo_pid = pid;
  1637. wo.wo_flags = options | WEXITED;
  1638. wo.wo_info = NULL;
  1639. wo.wo_stat = stat_addr;
  1640. wo.wo_rusage = ru;
  1641. ret = do_wait(&wo);
  1642. put_pid(pid);
  1643. /* avoid REGPARM breakage on x86: */
  1644. asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
  1645. return ret;
  1646. }
  1647. #ifdef __ARCH_WANT_SYS_WAITPID
  1648. /*
  1649. * sys_waitpid() remains for compatibility. waitpid() should be
  1650. * implemented by calling sys_wait4() from libc.a.
  1651. */
  1652. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1653. {
  1654. return sys_wait4(pid, stat_addr, options, NULL);
  1655. }
  1656. #endif