xsysace.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250
  1. /*
  2. * Xilinx SystemACE device driver
  3. *
  4. * Copyright 2007 Secret Lab Technologies Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. */
  10. /*
  11. * The SystemACE chip is designed to configure FPGAs by loading an FPGA
  12. * bitstream from a file on a CF card and squirting it into FPGAs connected
  13. * to the SystemACE JTAG chain. It also has the advantage of providing an
  14. * MPU interface which can be used to control the FPGA configuration process
  15. * and to use the attached CF card for general purpose storage.
  16. *
  17. * This driver is a block device driver for the SystemACE.
  18. *
  19. * Initialization:
  20. * The driver registers itself as a platform_device driver at module
  21. * load time. The platform bus will take care of calling the
  22. * ace_probe() method for all SystemACE instances in the system. Any
  23. * number of SystemACE instances are supported. ace_probe() calls
  24. * ace_setup() which initialized all data structures, reads the CF
  25. * id structure and registers the device.
  26. *
  27. * Processing:
  28. * Just about all of the heavy lifting in this driver is performed by
  29. * a Finite State Machine (FSM). The driver needs to wait on a number
  30. * of events; some raised by interrupts, some which need to be polled
  31. * for. Describing all of the behaviour in a FSM seems to be the
  32. * easiest way to keep the complexity low and make it easy to
  33. * understand what the driver is doing. If the block ops or the
  34. * request function need to interact with the hardware, then they
  35. * simply need to flag the request and kick of FSM processing.
  36. *
  37. * The FSM itself is atomic-safe code which can be run from any
  38. * context. The general process flow is:
  39. * 1. obtain the ace->lock spinlock.
  40. * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
  41. * cleared.
  42. * 3. release the lock.
  43. *
  44. * Individual states do not sleep in any way. If a condition needs to
  45. * be waited for then the state much clear the fsm_continue flag and
  46. * either schedule the FSM to be run again at a later time, or expect
  47. * an interrupt to call the FSM when the desired condition is met.
  48. *
  49. * In normal operation, the FSM is processed at interrupt context
  50. * either when the driver's tasklet is scheduled, or when an irq is
  51. * raised by the hardware. The tasklet can be scheduled at any time.
  52. * The request method in particular schedules the tasklet when a new
  53. * request has been indicated by the block layer. Once started, the
  54. * FSM proceeds as far as it can processing the request until it
  55. * needs on a hardware event. At this point, it must yield execution.
  56. *
  57. * A state has two options when yielding execution:
  58. * 1. ace_fsm_yield()
  59. * - Call if need to poll for event.
  60. * - clears the fsm_continue flag to exit the processing loop
  61. * - reschedules the tasklet to run again as soon as possible
  62. * 2. ace_fsm_yieldirq()
  63. * - Call if an irq is expected from the HW
  64. * - clears the fsm_continue flag to exit the processing loop
  65. * - does not reschedule the tasklet so the FSM will not be processed
  66. * again until an irq is received.
  67. * After calling a yield function, the state must return control back
  68. * to the FSM main loop.
  69. *
  70. * Additionally, the driver maintains a kernel timer which can process
  71. * the FSM. If the FSM gets stalled, typically due to a missed
  72. * interrupt, then the kernel timer will expire and the driver can
  73. * continue where it left off.
  74. *
  75. * To Do:
  76. * - Add FPGA configuration control interface.
  77. * - Request major number from lanana
  78. */
  79. #undef DEBUG
  80. #include <linux/module.h>
  81. #include <linux/ctype.h>
  82. #include <linux/init.h>
  83. #include <linux/interrupt.h>
  84. #include <linux/errno.h>
  85. #include <linux/kernel.h>
  86. #include <linux/delay.h>
  87. #include <linux/slab.h>
  88. #include <linux/blkdev.h>
  89. #include <linux/mutex.h>
  90. #include <linux/ata.h>
  91. #include <linux/hdreg.h>
  92. #include <linux/platform_device.h>
  93. #if defined(CONFIG_OF)
  94. #include <linux/of_address.h>
  95. #include <linux/of_device.h>
  96. #include <linux/of_platform.h>
  97. #endif
  98. MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
  99. MODULE_DESCRIPTION("Xilinx SystemACE device driver");
  100. MODULE_LICENSE("GPL");
  101. /* SystemACE register definitions */
  102. #define ACE_BUSMODE (0x00)
  103. #define ACE_STATUS (0x04)
  104. #define ACE_STATUS_CFGLOCK (0x00000001)
  105. #define ACE_STATUS_MPULOCK (0x00000002)
  106. #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
  107. #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
  108. #define ACE_STATUS_CFDETECT (0x00000010)
  109. #define ACE_STATUS_DATABUFRDY (0x00000020)
  110. #define ACE_STATUS_DATABUFMODE (0x00000040)
  111. #define ACE_STATUS_CFGDONE (0x00000080)
  112. #define ACE_STATUS_RDYFORCFCMD (0x00000100)
  113. #define ACE_STATUS_CFGMODEPIN (0x00000200)
  114. #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
  115. #define ACE_STATUS_CFBSY (0x00020000)
  116. #define ACE_STATUS_CFRDY (0x00040000)
  117. #define ACE_STATUS_CFDWF (0x00080000)
  118. #define ACE_STATUS_CFDSC (0x00100000)
  119. #define ACE_STATUS_CFDRQ (0x00200000)
  120. #define ACE_STATUS_CFCORR (0x00400000)
  121. #define ACE_STATUS_CFERR (0x00800000)
  122. #define ACE_ERROR (0x08)
  123. #define ACE_CFGLBA (0x0c)
  124. #define ACE_MPULBA (0x10)
  125. #define ACE_SECCNTCMD (0x14)
  126. #define ACE_SECCNTCMD_RESET (0x0100)
  127. #define ACE_SECCNTCMD_IDENTIFY (0x0200)
  128. #define ACE_SECCNTCMD_READ_DATA (0x0300)
  129. #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
  130. #define ACE_SECCNTCMD_ABORT (0x0600)
  131. #define ACE_VERSION (0x16)
  132. #define ACE_VERSION_REVISION_MASK (0x00FF)
  133. #define ACE_VERSION_MINOR_MASK (0x0F00)
  134. #define ACE_VERSION_MAJOR_MASK (0xF000)
  135. #define ACE_CTRL (0x18)
  136. #define ACE_CTRL_FORCELOCKREQ (0x0001)
  137. #define ACE_CTRL_LOCKREQ (0x0002)
  138. #define ACE_CTRL_FORCECFGADDR (0x0004)
  139. #define ACE_CTRL_FORCECFGMODE (0x0008)
  140. #define ACE_CTRL_CFGMODE (0x0010)
  141. #define ACE_CTRL_CFGSTART (0x0020)
  142. #define ACE_CTRL_CFGSEL (0x0040)
  143. #define ACE_CTRL_CFGRESET (0x0080)
  144. #define ACE_CTRL_DATABUFRDYIRQ (0x0100)
  145. #define ACE_CTRL_ERRORIRQ (0x0200)
  146. #define ACE_CTRL_CFGDONEIRQ (0x0400)
  147. #define ACE_CTRL_RESETIRQ (0x0800)
  148. #define ACE_CTRL_CFGPROG (0x1000)
  149. #define ACE_CTRL_CFGADDR_MASK (0xe000)
  150. #define ACE_FATSTAT (0x1c)
  151. #define ACE_NUM_MINORS 16
  152. #define ACE_SECTOR_SIZE (512)
  153. #define ACE_FIFO_SIZE (32)
  154. #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
  155. #define ACE_BUS_WIDTH_8 0
  156. #define ACE_BUS_WIDTH_16 1
  157. struct ace_reg_ops;
  158. struct ace_device {
  159. /* driver state data */
  160. int id;
  161. int media_change;
  162. int users;
  163. struct list_head list;
  164. /* finite state machine data */
  165. struct tasklet_struct fsm_tasklet;
  166. uint fsm_task; /* Current activity (ACE_TASK_*) */
  167. uint fsm_state; /* Current state (ACE_FSM_STATE_*) */
  168. uint fsm_continue_flag; /* cleared to exit FSM mainloop */
  169. uint fsm_iter_num;
  170. struct timer_list stall_timer;
  171. /* Transfer state/result, use for both id and block request */
  172. struct request *req; /* request being processed */
  173. void *data_ptr; /* pointer to I/O buffer */
  174. int data_count; /* number of buffers remaining */
  175. int data_result; /* Result of transfer; 0 := success */
  176. int id_req_count; /* count of id requests */
  177. int id_result;
  178. struct completion id_completion; /* used when id req finishes */
  179. int in_irq;
  180. /* Details of hardware device */
  181. resource_size_t physaddr;
  182. void __iomem *baseaddr;
  183. int irq;
  184. int bus_width; /* 0 := 8 bit; 1 := 16 bit */
  185. struct ace_reg_ops *reg_ops;
  186. int lock_count;
  187. /* Block device data structures */
  188. spinlock_t lock;
  189. struct device *dev;
  190. struct request_queue *queue;
  191. struct gendisk *gd;
  192. /* Inserted CF card parameters */
  193. u16 cf_id[ATA_ID_WORDS];
  194. };
  195. static DEFINE_MUTEX(xsysace_mutex);
  196. static int ace_major;
  197. /* ---------------------------------------------------------------------
  198. * Low level register access
  199. */
  200. struct ace_reg_ops {
  201. u16(*in) (struct ace_device * ace, int reg);
  202. void (*out) (struct ace_device * ace, int reg, u16 val);
  203. void (*datain) (struct ace_device * ace);
  204. void (*dataout) (struct ace_device * ace);
  205. };
  206. /* 8 Bit bus width */
  207. static u16 ace_in_8(struct ace_device *ace, int reg)
  208. {
  209. void __iomem *r = ace->baseaddr + reg;
  210. return in_8(r) | (in_8(r + 1) << 8);
  211. }
  212. static void ace_out_8(struct ace_device *ace, int reg, u16 val)
  213. {
  214. void __iomem *r = ace->baseaddr + reg;
  215. out_8(r, val);
  216. out_8(r + 1, val >> 8);
  217. }
  218. static void ace_datain_8(struct ace_device *ace)
  219. {
  220. void __iomem *r = ace->baseaddr + 0x40;
  221. u8 *dst = ace->data_ptr;
  222. int i = ACE_FIFO_SIZE;
  223. while (i--)
  224. *dst++ = in_8(r++);
  225. ace->data_ptr = dst;
  226. }
  227. static void ace_dataout_8(struct ace_device *ace)
  228. {
  229. void __iomem *r = ace->baseaddr + 0x40;
  230. u8 *src = ace->data_ptr;
  231. int i = ACE_FIFO_SIZE;
  232. while (i--)
  233. out_8(r++, *src++);
  234. ace->data_ptr = src;
  235. }
  236. static struct ace_reg_ops ace_reg_8_ops = {
  237. .in = ace_in_8,
  238. .out = ace_out_8,
  239. .datain = ace_datain_8,
  240. .dataout = ace_dataout_8,
  241. };
  242. /* 16 bit big endian bus attachment */
  243. static u16 ace_in_be16(struct ace_device *ace, int reg)
  244. {
  245. return in_be16(ace->baseaddr + reg);
  246. }
  247. static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
  248. {
  249. out_be16(ace->baseaddr + reg, val);
  250. }
  251. static void ace_datain_be16(struct ace_device *ace)
  252. {
  253. int i = ACE_FIFO_SIZE / 2;
  254. u16 *dst = ace->data_ptr;
  255. while (i--)
  256. *dst++ = in_le16(ace->baseaddr + 0x40);
  257. ace->data_ptr = dst;
  258. }
  259. static void ace_dataout_be16(struct ace_device *ace)
  260. {
  261. int i = ACE_FIFO_SIZE / 2;
  262. u16 *src = ace->data_ptr;
  263. while (i--)
  264. out_le16(ace->baseaddr + 0x40, *src++);
  265. ace->data_ptr = src;
  266. }
  267. /* 16 bit little endian bus attachment */
  268. static u16 ace_in_le16(struct ace_device *ace, int reg)
  269. {
  270. return in_le16(ace->baseaddr + reg);
  271. }
  272. static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
  273. {
  274. out_le16(ace->baseaddr + reg, val);
  275. }
  276. static void ace_datain_le16(struct ace_device *ace)
  277. {
  278. int i = ACE_FIFO_SIZE / 2;
  279. u16 *dst = ace->data_ptr;
  280. while (i--)
  281. *dst++ = in_be16(ace->baseaddr + 0x40);
  282. ace->data_ptr = dst;
  283. }
  284. static void ace_dataout_le16(struct ace_device *ace)
  285. {
  286. int i = ACE_FIFO_SIZE / 2;
  287. u16 *src = ace->data_ptr;
  288. while (i--)
  289. out_be16(ace->baseaddr + 0x40, *src++);
  290. ace->data_ptr = src;
  291. }
  292. static struct ace_reg_ops ace_reg_be16_ops = {
  293. .in = ace_in_be16,
  294. .out = ace_out_be16,
  295. .datain = ace_datain_be16,
  296. .dataout = ace_dataout_be16,
  297. };
  298. static struct ace_reg_ops ace_reg_le16_ops = {
  299. .in = ace_in_le16,
  300. .out = ace_out_le16,
  301. .datain = ace_datain_le16,
  302. .dataout = ace_dataout_le16,
  303. };
  304. static inline u16 ace_in(struct ace_device *ace, int reg)
  305. {
  306. return ace->reg_ops->in(ace, reg);
  307. }
  308. static inline u32 ace_in32(struct ace_device *ace, int reg)
  309. {
  310. return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
  311. }
  312. static inline void ace_out(struct ace_device *ace, int reg, u16 val)
  313. {
  314. ace->reg_ops->out(ace, reg, val);
  315. }
  316. static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
  317. {
  318. ace_out(ace, reg, val);
  319. ace_out(ace, reg + 2, val >> 16);
  320. }
  321. /* ---------------------------------------------------------------------
  322. * Debug support functions
  323. */
  324. #if defined(DEBUG)
  325. static void ace_dump_mem(void *base, int len)
  326. {
  327. const char *ptr = base;
  328. int i, j;
  329. for (i = 0; i < len; i += 16) {
  330. printk(KERN_INFO "%.8x:", i);
  331. for (j = 0; j < 16; j++) {
  332. if (!(j % 4))
  333. printk(" ");
  334. printk("%.2x", ptr[i + j]);
  335. }
  336. printk(" ");
  337. for (j = 0; j < 16; j++)
  338. printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
  339. printk("\n");
  340. }
  341. }
  342. #else
  343. static inline void ace_dump_mem(void *base, int len)
  344. {
  345. }
  346. #endif
  347. static void ace_dump_regs(struct ace_device *ace)
  348. {
  349. dev_info(ace->dev,
  350. " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
  351. " status:%.8x mpu_lba:%.8x busmode:%4x\n"
  352. " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
  353. ace_in32(ace, ACE_CTRL),
  354. ace_in(ace, ACE_SECCNTCMD),
  355. ace_in(ace, ACE_VERSION),
  356. ace_in32(ace, ACE_STATUS),
  357. ace_in32(ace, ACE_MPULBA),
  358. ace_in(ace, ACE_BUSMODE),
  359. ace_in32(ace, ACE_ERROR),
  360. ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
  361. }
  362. void ace_fix_driveid(u16 *id)
  363. {
  364. #if defined(__BIG_ENDIAN)
  365. int i;
  366. /* All half words have wrong byte order; swap the bytes */
  367. for (i = 0; i < ATA_ID_WORDS; i++, id++)
  368. *id = le16_to_cpu(*id);
  369. #endif
  370. }
  371. /* ---------------------------------------------------------------------
  372. * Finite State Machine (FSM) implementation
  373. */
  374. /* FSM tasks; used to direct state transitions */
  375. #define ACE_TASK_IDLE 0
  376. #define ACE_TASK_IDENTIFY 1
  377. #define ACE_TASK_READ 2
  378. #define ACE_TASK_WRITE 3
  379. #define ACE_FSM_NUM_TASKS 4
  380. /* FSM state definitions */
  381. #define ACE_FSM_STATE_IDLE 0
  382. #define ACE_FSM_STATE_REQ_LOCK 1
  383. #define ACE_FSM_STATE_WAIT_LOCK 2
  384. #define ACE_FSM_STATE_WAIT_CFREADY 3
  385. #define ACE_FSM_STATE_IDENTIFY_PREPARE 4
  386. #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
  387. #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
  388. #define ACE_FSM_STATE_REQ_PREPARE 7
  389. #define ACE_FSM_STATE_REQ_TRANSFER 8
  390. #define ACE_FSM_STATE_REQ_COMPLETE 9
  391. #define ACE_FSM_STATE_ERROR 10
  392. #define ACE_FSM_NUM_STATES 11
  393. /* Set flag to exit FSM loop and reschedule tasklet */
  394. static inline void ace_fsm_yield(struct ace_device *ace)
  395. {
  396. dev_dbg(ace->dev, "ace_fsm_yield()\n");
  397. tasklet_schedule(&ace->fsm_tasklet);
  398. ace->fsm_continue_flag = 0;
  399. }
  400. /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
  401. static inline void ace_fsm_yieldirq(struct ace_device *ace)
  402. {
  403. dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
  404. if (!ace->irq)
  405. /* No IRQ assigned, so need to poll */
  406. tasklet_schedule(&ace->fsm_tasklet);
  407. ace->fsm_continue_flag = 0;
  408. }
  409. /* Get the next read/write request; ending requests that we don't handle */
  410. struct request *ace_get_next_request(struct request_queue * q)
  411. {
  412. struct request *req;
  413. while ((req = blk_peek_request(q)) != NULL) {
  414. if (req->cmd_type == REQ_TYPE_FS)
  415. break;
  416. blk_start_request(req);
  417. __blk_end_request_all(req, -EIO);
  418. }
  419. return req;
  420. }
  421. static void ace_fsm_dostate(struct ace_device *ace)
  422. {
  423. struct request *req;
  424. u32 status;
  425. u16 val;
  426. int count;
  427. #if defined(DEBUG)
  428. dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
  429. ace->fsm_state, ace->id_req_count);
  430. #endif
  431. /* Verify that there is actually a CF in the slot. If not, then
  432. * bail out back to the idle state and wake up all the waiters */
  433. status = ace_in32(ace, ACE_STATUS);
  434. if ((status & ACE_STATUS_CFDETECT) == 0) {
  435. ace->fsm_state = ACE_FSM_STATE_IDLE;
  436. ace->media_change = 1;
  437. set_capacity(ace->gd, 0);
  438. dev_info(ace->dev, "No CF in slot\n");
  439. /* Drop all in-flight and pending requests */
  440. if (ace->req) {
  441. __blk_end_request_all(ace->req, -EIO);
  442. ace->req = NULL;
  443. }
  444. while ((req = blk_fetch_request(ace->queue)) != NULL)
  445. __blk_end_request_all(req, -EIO);
  446. /* Drop back to IDLE state and notify waiters */
  447. ace->fsm_state = ACE_FSM_STATE_IDLE;
  448. ace->id_result = -EIO;
  449. while (ace->id_req_count) {
  450. complete(&ace->id_completion);
  451. ace->id_req_count--;
  452. }
  453. }
  454. switch (ace->fsm_state) {
  455. case ACE_FSM_STATE_IDLE:
  456. /* See if there is anything to do */
  457. if (ace->id_req_count || ace_get_next_request(ace->queue)) {
  458. ace->fsm_iter_num++;
  459. ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
  460. mod_timer(&ace->stall_timer, jiffies + HZ);
  461. if (!timer_pending(&ace->stall_timer))
  462. add_timer(&ace->stall_timer);
  463. break;
  464. }
  465. del_timer(&ace->stall_timer);
  466. ace->fsm_continue_flag = 0;
  467. break;
  468. case ACE_FSM_STATE_REQ_LOCK:
  469. if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
  470. /* Already have the lock, jump to next state */
  471. ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
  472. break;
  473. }
  474. /* Request the lock */
  475. val = ace_in(ace, ACE_CTRL);
  476. ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
  477. ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
  478. break;
  479. case ACE_FSM_STATE_WAIT_LOCK:
  480. if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
  481. /* got the lock; move to next state */
  482. ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
  483. break;
  484. }
  485. /* wait a bit for the lock */
  486. ace_fsm_yield(ace);
  487. break;
  488. case ACE_FSM_STATE_WAIT_CFREADY:
  489. status = ace_in32(ace, ACE_STATUS);
  490. if (!(status & ACE_STATUS_RDYFORCFCMD) ||
  491. (status & ACE_STATUS_CFBSY)) {
  492. /* CF card isn't ready; it needs to be polled */
  493. ace_fsm_yield(ace);
  494. break;
  495. }
  496. /* Device is ready for command; determine what to do next */
  497. if (ace->id_req_count)
  498. ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
  499. else
  500. ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
  501. break;
  502. case ACE_FSM_STATE_IDENTIFY_PREPARE:
  503. /* Send identify command */
  504. ace->fsm_task = ACE_TASK_IDENTIFY;
  505. ace->data_ptr = ace->cf_id;
  506. ace->data_count = ACE_BUF_PER_SECTOR;
  507. ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
  508. /* As per datasheet, put config controller in reset */
  509. val = ace_in(ace, ACE_CTRL);
  510. ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
  511. /* irq handler takes over from this point; wait for the
  512. * transfer to complete */
  513. ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
  514. ace_fsm_yieldirq(ace);
  515. break;
  516. case ACE_FSM_STATE_IDENTIFY_TRANSFER:
  517. /* Check that the sysace is ready to receive data */
  518. status = ace_in32(ace, ACE_STATUS);
  519. if (status & ACE_STATUS_CFBSY) {
  520. dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
  521. ace->fsm_task, ace->fsm_iter_num,
  522. ace->data_count);
  523. ace_fsm_yield(ace);
  524. break;
  525. }
  526. if (!(status & ACE_STATUS_DATABUFRDY)) {
  527. ace_fsm_yield(ace);
  528. break;
  529. }
  530. /* Transfer the next buffer */
  531. ace->reg_ops->datain(ace);
  532. ace->data_count--;
  533. /* If there are still buffers to be transfers; jump out here */
  534. if (ace->data_count != 0) {
  535. ace_fsm_yieldirq(ace);
  536. break;
  537. }
  538. /* transfer finished; kick state machine */
  539. dev_dbg(ace->dev, "identify finished\n");
  540. ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
  541. break;
  542. case ACE_FSM_STATE_IDENTIFY_COMPLETE:
  543. ace_fix_driveid(ace->cf_id);
  544. ace_dump_mem(ace->cf_id, 512); /* Debug: Dump out disk ID */
  545. if (ace->data_result) {
  546. /* Error occurred, disable the disk */
  547. ace->media_change = 1;
  548. set_capacity(ace->gd, 0);
  549. dev_err(ace->dev, "error fetching CF id (%i)\n",
  550. ace->data_result);
  551. } else {
  552. ace->media_change = 0;
  553. /* Record disk parameters */
  554. set_capacity(ace->gd,
  555. ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
  556. dev_info(ace->dev, "capacity: %i sectors\n",
  557. ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
  558. }
  559. /* We're done, drop to IDLE state and notify waiters */
  560. ace->fsm_state = ACE_FSM_STATE_IDLE;
  561. ace->id_result = ace->data_result;
  562. while (ace->id_req_count) {
  563. complete(&ace->id_completion);
  564. ace->id_req_count--;
  565. }
  566. break;
  567. case ACE_FSM_STATE_REQ_PREPARE:
  568. req = ace_get_next_request(ace->queue);
  569. if (!req) {
  570. ace->fsm_state = ACE_FSM_STATE_IDLE;
  571. break;
  572. }
  573. blk_start_request(req);
  574. /* Okay, it's a data request, set it up for transfer */
  575. dev_dbg(ace->dev,
  576. "request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
  577. (unsigned long long)blk_rq_pos(req),
  578. blk_rq_sectors(req), blk_rq_cur_sectors(req),
  579. rq_data_dir(req));
  580. ace->req = req;
  581. ace->data_ptr = req->buffer;
  582. ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
  583. ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);
  584. count = blk_rq_sectors(req);
  585. if (rq_data_dir(req)) {
  586. /* Kick off write request */
  587. dev_dbg(ace->dev, "write data\n");
  588. ace->fsm_task = ACE_TASK_WRITE;
  589. ace_out(ace, ACE_SECCNTCMD,
  590. count | ACE_SECCNTCMD_WRITE_DATA);
  591. } else {
  592. /* Kick off read request */
  593. dev_dbg(ace->dev, "read data\n");
  594. ace->fsm_task = ACE_TASK_READ;
  595. ace_out(ace, ACE_SECCNTCMD,
  596. count | ACE_SECCNTCMD_READ_DATA);
  597. }
  598. /* As per datasheet, put config controller in reset */
  599. val = ace_in(ace, ACE_CTRL);
  600. ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
  601. /* Move to the transfer state. The systemace will raise
  602. * an interrupt once there is something to do
  603. */
  604. ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
  605. if (ace->fsm_task == ACE_TASK_READ)
  606. ace_fsm_yieldirq(ace); /* wait for data ready */
  607. break;
  608. case ACE_FSM_STATE_REQ_TRANSFER:
  609. /* Check that the sysace is ready to receive data */
  610. status = ace_in32(ace, ACE_STATUS);
  611. if (status & ACE_STATUS_CFBSY) {
  612. dev_dbg(ace->dev,
  613. "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
  614. ace->fsm_task, ace->fsm_iter_num,
  615. blk_rq_cur_sectors(ace->req) * 16,
  616. ace->data_count, ace->in_irq);
  617. ace_fsm_yield(ace); /* need to poll CFBSY bit */
  618. break;
  619. }
  620. if (!(status & ACE_STATUS_DATABUFRDY)) {
  621. dev_dbg(ace->dev,
  622. "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
  623. ace->fsm_task, ace->fsm_iter_num,
  624. blk_rq_cur_sectors(ace->req) * 16,
  625. ace->data_count, ace->in_irq);
  626. ace_fsm_yieldirq(ace);
  627. break;
  628. }
  629. /* Transfer the next buffer */
  630. if (ace->fsm_task == ACE_TASK_WRITE)
  631. ace->reg_ops->dataout(ace);
  632. else
  633. ace->reg_ops->datain(ace);
  634. ace->data_count--;
  635. /* If there are still buffers to be transfers; jump out here */
  636. if (ace->data_count != 0) {
  637. ace_fsm_yieldirq(ace);
  638. break;
  639. }
  640. /* bio finished; is there another one? */
  641. if (__blk_end_request_cur(ace->req, 0)) {
  642. /* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
  643. * blk_rq_sectors(ace->req),
  644. * blk_rq_cur_sectors(ace->req));
  645. */
  646. ace->data_ptr = ace->req->buffer;
  647. ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
  648. ace_fsm_yieldirq(ace);
  649. break;
  650. }
  651. ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
  652. break;
  653. case ACE_FSM_STATE_REQ_COMPLETE:
  654. ace->req = NULL;
  655. /* Finished request; go to idle state */
  656. ace->fsm_state = ACE_FSM_STATE_IDLE;
  657. break;
  658. default:
  659. ace->fsm_state = ACE_FSM_STATE_IDLE;
  660. break;
  661. }
  662. }
  663. static void ace_fsm_tasklet(unsigned long data)
  664. {
  665. struct ace_device *ace = (void *)data;
  666. unsigned long flags;
  667. spin_lock_irqsave(&ace->lock, flags);
  668. /* Loop over state machine until told to stop */
  669. ace->fsm_continue_flag = 1;
  670. while (ace->fsm_continue_flag)
  671. ace_fsm_dostate(ace);
  672. spin_unlock_irqrestore(&ace->lock, flags);
  673. }
  674. static void ace_stall_timer(unsigned long data)
  675. {
  676. struct ace_device *ace = (void *)data;
  677. unsigned long flags;
  678. dev_warn(ace->dev,
  679. "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
  680. ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
  681. ace->data_count);
  682. spin_lock_irqsave(&ace->lock, flags);
  683. /* Rearm the stall timer *before* entering FSM (which may then
  684. * delete the timer) */
  685. mod_timer(&ace->stall_timer, jiffies + HZ);
  686. /* Loop over state machine until told to stop */
  687. ace->fsm_continue_flag = 1;
  688. while (ace->fsm_continue_flag)
  689. ace_fsm_dostate(ace);
  690. spin_unlock_irqrestore(&ace->lock, flags);
  691. }
  692. /* ---------------------------------------------------------------------
  693. * Interrupt handling routines
  694. */
  695. static int ace_interrupt_checkstate(struct ace_device *ace)
  696. {
  697. u32 sreg = ace_in32(ace, ACE_STATUS);
  698. u16 creg = ace_in(ace, ACE_CTRL);
  699. /* Check for error occurrence */
  700. if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
  701. (creg & ACE_CTRL_ERRORIRQ)) {
  702. dev_err(ace->dev, "transfer failure\n");
  703. ace_dump_regs(ace);
  704. return -EIO;
  705. }
  706. return 0;
  707. }
  708. static irqreturn_t ace_interrupt(int irq, void *dev_id)
  709. {
  710. u16 creg;
  711. struct ace_device *ace = dev_id;
  712. /* be safe and get the lock */
  713. spin_lock(&ace->lock);
  714. ace->in_irq = 1;
  715. /* clear the interrupt */
  716. creg = ace_in(ace, ACE_CTRL);
  717. ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
  718. ace_out(ace, ACE_CTRL, creg);
  719. /* check for IO failures */
  720. if (ace_interrupt_checkstate(ace))
  721. ace->data_result = -EIO;
  722. if (ace->fsm_task == 0) {
  723. dev_err(ace->dev,
  724. "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
  725. ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
  726. ace_in(ace, ACE_SECCNTCMD));
  727. dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
  728. ace->fsm_task, ace->fsm_state, ace->data_count);
  729. }
  730. /* Loop over state machine until told to stop */
  731. ace->fsm_continue_flag = 1;
  732. while (ace->fsm_continue_flag)
  733. ace_fsm_dostate(ace);
  734. /* done with interrupt; drop the lock */
  735. ace->in_irq = 0;
  736. spin_unlock(&ace->lock);
  737. return IRQ_HANDLED;
  738. }
  739. /* ---------------------------------------------------------------------
  740. * Block ops
  741. */
  742. static void ace_request(struct request_queue * q)
  743. {
  744. struct request *req;
  745. struct ace_device *ace;
  746. req = ace_get_next_request(q);
  747. if (req) {
  748. ace = req->rq_disk->private_data;
  749. tasklet_schedule(&ace->fsm_tasklet);
  750. }
  751. }
  752. static unsigned int ace_check_events(struct gendisk *gd, unsigned int clearing)
  753. {
  754. struct ace_device *ace = gd->private_data;
  755. dev_dbg(ace->dev, "ace_check_events(): %i\n", ace->media_change);
  756. return ace->media_change ? DISK_EVENT_MEDIA_CHANGE : 0;
  757. }
  758. static int ace_revalidate_disk(struct gendisk *gd)
  759. {
  760. struct ace_device *ace = gd->private_data;
  761. unsigned long flags;
  762. dev_dbg(ace->dev, "ace_revalidate_disk()\n");
  763. if (ace->media_change) {
  764. dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
  765. spin_lock_irqsave(&ace->lock, flags);
  766. ace->id_req_count++;
  767. spin_unlock_irqrestore(&ace->lock, flags);
  768. tasklet_schedule(&ace->fsm_tasklet);
  769. wait_for_completion(&ace->id_completion);
  770. }
  771. dev_dbg(ace->dev, "revalidate complete\n");
  772. return ace->id_result;
  773. }
  774. static int ace_open(struct block_device *bdev, fmode_t mode)
  775. {
  776. struct ace_device *ace = bdev->bd_disk->private_data;
  777. unsigned long flags;
  778. dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
  779. mutex_lock(&xsysace_mutex);
  780. spin_lock_irqsave(&ace->lock, flags);
  781. ace->users++;
  782. spin_unlock_irqrestore(&ace->lock, flags);
  783. check_disk_change(bdev);
  784. mutex_unlock(&xsysace_mutex);
  785. return 0;
  786. }
  787. static int ace_release(struct gendisk *disk, fmode_t mode)
  788. {
  789. struct ace_device *ace = disk->private_data;
  790. unsigned long flags;
  791. u16 val;
  792. dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
  793. mutex_lock(&xsysace_mutex);
  794. spin_lock_irqsave(&ace->lock, flags);
  795. ace->users--;
  796. if (ace->users == 0) {
  797. val = ace_in(ace, ACE_CTRL);
  798. ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
  799. }
  800. spin_unlock_irqrestore(&ace->lock, flags);
  801. mutex_unlock(&xsysace_mutex);
  802. return 0;
  803. }
  804. static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  805. {
  806. struct ace_device *ace = bdev->bd_disk->private_data;
  807. u16 *cf_id = ace->cf_id;
  808. dev_dbg(ace->dev, "ace_getgeo()\n");
  809. geo->heads = cf_id[ATA_ID_HEADS];
  810. geo->sectors = cf_id[ATA_ID_SECTORS];
  811. geo->cylinders = cf_id[ATA_ID_CYLS];
  812. return 0;
  813. }
  814. static const struct block_device_operations ace_fops = {
  815. .owner = THIS_MODULE,
  816. .open = ace_open,
  817. .release = ace_release,
  818. .check_events = ace_check_events,
  819. .revalidate_disk = ace_revalidate_disk,
  820. .getgeo = ace_getgeo,
  821. };
  822. /* --------------------------------------------------------------------
  823. * SystemACE device setup/teardown code
  824. */
  825. static int __devinit ace_setup(struct ace_device *ace)
  826. {
  827. u16 version;
  828. u16 val;
  829. int rc;
  830. dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
  831. dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
  832. (unsigned long long)ace->physaddr, ace->irq);
  833. spin_lock_init(&ace->lock);
  834. init_completion(&ace->id_completion);
  835. /*
  836. * Map the device
  837. */
  838. ace->baseaddr = ioremap(ace->physaddr, 0x80);
  839. if (!ace->baseaddr)
  840. goto err_ioremap;
  841. /*
  842. * Initialize the state machine tasklet and stall timer
  843. */
  844. tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
  845. setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace);
  846. /*
  847. * Initialize the request queue
  848. */
  849. ace->queue = blk_init_queue(ace_request, &ace->lock);
  850. if (ace->queue == NULL)
  851. goto err_blk_initq;
  852. blk_queue_logical_block_size(ace->queue, 512);
  853. /*
  854. * Allocate and initialize GD structure
  855. */
  856. ace->gd = alloc_disk(ACE_NUM_MINORS);
  857. if (!ace->gd)
  858. goto err_alloc_disk;
  859. ace->gd->major = ace_major;
  860. ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
  861. ace->gd->fops = &ace_fops;
  862. ace->gd->queue = ace->queue;
  863. ace->gd->private_data = ace;
  864. snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
  865. /* set bus width */
  866. if (ace->bus_width == ACE_BUS_WIDTH_16) {
  867. /* 0x0101 should work regardless of endianess */
  868. ace_out_le16(ace, ACE_BUSMODE, 0x0101);
  869. /* read it back to determine endianess */
  870. if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
  871. ace->reg_ops = &ace_reg_le16_ops;
  872. else
  873. ace->reg_ops = &ace_reg_be16_ops;
  874. } else {
  875. ace_out_8(ace, ACE_BUSMODE, 0x00);
  876. ace->reg_ops = &ace_reg_8_ops;
  877. }
  878. /* Make sure version register is sane */
  879. version = ace_in(ace, ACE_VERSION);
  880. if ((version == 0) || (version == 0xFFFF))
  881. goto err_read;
  882. /* Put sysace in a sane state by clearing most control reg bits */
  883. ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
  884. ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
  885. /* Now we can hook up the irq handler */
  886. if (ace->irq) {
  887. rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
  888. if (rc) {
  889. /* Failure - fall back to polled mode */
  890. dev_err(ace->dev, "request_irq failed\n");
  891. ace->irq = 0;
  892. }
  893. }
  894. /* Enable interrupts */
  895. val = ace_in(ace, ACE_CTRL);
  896. val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
  897. ace_out(ace, ACE_CTRL, val);
  898. /* Print the identification */
  899. dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
  900. (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
  901. dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
  902. (unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
  903. ace->media_change = 1;
  904. ace_revalidate_disk(ace->gd);
  905. /* Make the sysace device 'live' */
  906. add_disk(ace->gd);
  907. return 0;
  908. err_read:
  909. put_disk(ace->gd);
  910. err_alloc_disk:
  911. blk_cleanup_queue(ace->queue);
  912. err_blk_initq:
  913. iounmap(ace->baseaddr);
  914. err_ioremap:
  915. dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
  916. (unsigned long long) ace->physaddr);
  917. return -ENOMEM;
  918. }
  919. static void __devexit ace_teardown(struct ace_device *ace)
  920. {
  921. if (ace->gd) {
  922. del_gendisk(ace->gd);
  923. put_disk(ace->gd);
  924. }
  925. if (ace->queue)
  926. blk_cleanup_queue(ace->queue);
  927. tasklet_kill(&ace->fsm_tasklet);
  928. if (ace->irq)
  929. free_irq(ace->irq, ace);
  930. iounmap(ace->baseaddr);
  931. }
  932. static int __devinit
  933. ace_alloc(struct device *dev, int id, resource_size_t physaddr,
  934. int irq, int bus_width)
  935. {
  936. struct ace_device *ace;
  937. int rc;
  938. dev_dbg(dev, "ace_alloc(%p)\n", dev);
  939. if (!physaddr) {
  940. rc = -ENODEV;
  941. goto err_noreg;
  942. }
  943. /* Allocate and initialize the ace device structure */
  944. ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
  945. if (!ace) {
  946. rc = -ENOMEM;
  947. goto err_alloc;
  948. }
  949. ace->dev = dev;
  950. ace->id = id;
  951. ace->physaddr = physaddr;
  952. ace->irq = irq;
  953. ace->bus_width = bus_width;
  954. /* Call the setup code */
  955. rc = ace_setup(ace);
  956. if (rc)
  957. goto err_setup;
  958. dev_set_drvdata(dev, ace);
  959. return 0;
  960. err_setup:
  961. dev_set_drvdata(dev, NULL);
  962. kfree(ace);
  963. err_alloc:
  964. err_noreg:
  965. dev_err(dev, "could not initialize device, err=%i\n", rc);
  966. return rc;
  967. }
  968. static void __devexit ace_free(struct device *dev)
  969. {
  970. struct ace_device *ace = dev_get_drvdata(dev);
  971. dev_dbg(dev, "ace_free(%p)\n", dev);
  972. if (ace) {
  973. ace_teardown(ace);
  974. dev_set_drvdata(dev, NULL);
  975. kfree(ace);
  976. }
  977. }
  978. /* ---------------------------------------------------------------------
  979. * Platform Bus Support
  980. */
  981. static int __devinit ace_probe(struct platform_device *dev)
  982. {
  983. resource_size_t physaddr = 0;
  984. int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
  985. u32 id = dev->id;
  986. int irq = 0;
  987. int i;
  988. dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
  989. /* device id and bus width */
  990. of_property_read_u32(dev->dev.of_node, "port-number", &id);
  991. if (id < 0)
  992. id = 0;
  993. if (of_find_property(dev->dev.of_node, "8-bit", NULL))
  994. bus_width = ACE_BUS_WIDTH_8;
  995. for (i = 0; i < dev->num_resources; i++) {
  996. if (dev->resource[i].flags & IORESOURCE_MEM)
  997. physaddr = dev->resource[i].start;
  998. if (dev->resource[i].flags & IORESOURCE_IRQ)
  999. irq = dev->resource[i].start;
  1000. }
  1001. /* Call the bus-independent setup code */
  1002. return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
  1003. }
  1004. /*
  1005. * Platform bus remove() method
  1006. */
  1007. static int __devexit ace_remove(struct platform_device *dev)
  1008. {
  1009. ace_free(&dev->dev);
  1010. return 0;
  1011. }
  1012. #if defined(CONFIG_OF)
  1013. /* Match table for of_platform binding */
  1014. static const struct of_device_id ace_of_match[] __devinitconst = {
  1015. { .compatible = "xlnx,opb-sysace-1.00.b", },
  1016. { .compatible = "xlnx,opb-sysace-1.00.c", },
  1017. { .compatible = "xlnx,xps-sysace-1.00.a", },
  1018. { .compatible = "xlnx,sysace", },
  1019. {},
  1020. };
  1021. MODULE_DEVICE_TABLE(of, ace_of_match);
  1022. #else /* CONFIG_OF */
  1023. #define ace_of_match NULL
  1024. #endif /* CONFIG_OF */
  1025. static struct platform_driver ace_platform_driver = {
  1026. .probe = ace_probe,
  1027. .remove = __devexit_p(ace_remove),
  1028. .driver = {
  1029. .owner = THIS_MODULE,
  1030. .name = "xsysace",
  1031. .of_match_table = ace_of_match,
  1032. },
  1033. };
  1034. /* ---------------------------------------------------------------------
  1035. * Module init/exit routines
  1036. */
  1037. static int __init ace_init(void)
  1038. {
  1039. int rc;
  1040. ace_major = register_blkdev(ace_major, "xsysace");
  1041. if (ace_major <= 0) {
  1042. rc = -ENOMEM;
  1043. goto err_blk;
  1044. }
  1045. rc = platform_driver_register(&ace_platform_driver);
  1046. if (rc)
  1047. goto err_plat;
  1048. pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
  1049. return 0;
  1050. err_plat:
  1051. unregister_blkdev(ace_major, "xsysace");
  1052. err_blk:
  1053. printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
  1054. return rc;
  1055. }
  1056. module_init(ace_init);
  1057. static void __exit ace_exit(void)
  1058. {
  1059. pr_debug("Unregistering Xilinx SystemACE driver\n");
  1060. platform_driver_unregister(&ace_platform_driver);
  1061. unregister_blkdev(ace_major, "xsysace");
  1062. }
  1063. module_exit(ace_exit);