callchain.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. /*
  2. * Performance counter callchain support - powerpc architecture code
  3. *
  4. * Copyright © 2009 Paul Mackerras, IBM Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/sched.h>
  13. #include <linux/perf_event.h>
  14. #include <linux/percpu.h>
  15. #include <linux/uaccess.h>
  16. #include <linux/mm.h>
  17. #include <asm/ptrace.h>
  18. #include <asm/pgtable.h>
  19. #include <asm/sigcontext.h>
  20. #include <asm/ucontext.h>
  21. #include <asm/vdso.h>
  22. #ifdef CONFIG_PPC64
  23. #include "../kernel/ppc32.h"
  24. #endif
  25. /*
  26. * Is sp valid as the address of the next kernel stack frame after prev_sp?
  27. * The next frame may be in a different stack area but should not go
  28. * back down in the same stack area.
  29. */
  30. static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
  31. {
  32. if (sp & 0xf)
  33. return 0; /* must be 16-byte aligned */
  34. if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
  35. return 0;
  36. if (sp >= prev_sp + STACK_FRAME_OVERHEAD)
  37. return 1;
  38. /*
  39. * sp could decrease when we jump off an interrupt stack
  40. * back to the regular process stack.
  41. */
  42. if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
  43. return 1;
  44. return 0;
  45. }
  46. void
  47. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  48. {
  49. unsigned long sp, next_sp;
  50. unsigned long next_ip;
  51. unsigned long lr;
  52. long level = 0;
  53. unsigned long *fp;
  54. lr = regs->link;
  55. sp = regs->gpr[1];
  56. perf_callchain_store(entry, regs->nip);
  57. if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
  58. return;
  59. for (;;) {
  60. fp = (unsigned long *) sp;
  61. next_sp = fp[0];
  62. if (next_sp == sp + STACK_INT_FRAME_SIZE &&
  63. fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
  64. /*
  65. * This looks like an interrupt frame for an
  66. * interrupt that occurred in the kernel
  67. */
  68. regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
  69. next_ip = regs->nip;
  70. lr = regs->link;
  71. level = 0;
  72. perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
  73. } else {
  74. if (level == 0)
  75. next_ip = lr;
  76. else
  77. next_ip = fp[STACK_FRAME_LR_SAVE];
  78. /*
  79. * We can't tell which of the first two addresses
  80. * we get are valid, but we can filter out the
  81. * obviously bogus ones here. We replace them
  82. * with 0 rather than removing them entirely so
  83. * that userspace can tell which is which.
  84. */
  85. if ((level == 1 && next_ip == lr) ||
  86. (level <= 1 && !kernel_text_address(next_ip)))
  87. next_ip = 0;
  88. ++level;
  89. }
  90. perf_callchain_store(entry, next_ip);
  91. if (!valid_next_sp(next_sp, sp))
  92. return;
  93. sp = next_sp;
  94. }
  95. }
  96. #ifdef CONFIG_PPC64
  97. /*
  98. * On 64-bit we don't want to invoke hash_page on user addresses from
  99. * interrupt context, so if the access faults, we read the page tables
  100. * to find which page (if any) is mapped and access it directly.
  101. */
  102. static int read_user_stack_slow(void __user *ptr, void *ret, int nb)
  103. {
  104. pgd_t *pgdir;
  105. pte_t *ptep, pte;
  106. unsigned shift;
  107. unsigned long addr = (unsigned long) ptr;
  108. unsigned long offset;
  109. unsigned long pfn;
  110. void *kaddr;
  111. pgdir = current->mm->pgd;
  112. if (!pgdir)
  113. return -EFAULT;
  114. ptep = find_linux_pte_or_hugepte(pgdir, addr, &shift);
  115. if (!shift)
  116. shift = PAGE_SHIFT;
  117. /* align address to page boundary */
  118. offset = addr & ((1UL << shift) - 1);
  119. addr -= offset;
  120. if (ptep == NULL)
  121. return -EFAULT;
  122. pte = *ptep;
  123. if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER))
  124. return -EFAULT;
  125. pfn = pte_pfn(pte);
  126. if (!page_is_ram(pfn))
  127. return -EFAULT;
  128. /* no highmem to worry about here */
  129. kaddr = pfn_to_kaddr(pfn);
  130. memcpy(ret, kaddr + offset, nb);
  131. return 0;
  132. }
  133. static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
  134. {
  135. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
  136. ((unsigned long)ptr & 7))
  137. return -EFAULT;
  138. pagefault_disable();
  139. if (!__get_user_inatomic(*ret, ptr)) {
  140. pagefault_enable();
  141. return 0;
  142. }
  143. pagefault_enable();
  144. return read_user_stack_slow(ptr, ret, 8);
  145. }
  146. static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
  147. {
  148. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
  149. ((unsigned long)ptr & 3))
  150. return -EFAULT;
  151. pagefault_disable();
  152. if (!__get_user_inatomic(*ret, ptr)) {
  153. pagefault_enable();
  154. return 0;
  155. }
  156. pagefault_enable();
  157. return read_user_stack_slow(ptr, ret, 4);
  158. }
  159. static inline int valid_user_sp(unsigned long sp, int is_64)
  160. {
  161. if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
  162. return 0;
  163. return 1;
  164. }
  165. /*
  166. * 64-bit user processes use the same stack frame for RT and non-RT signals.
  167. */
  168. struct signal_frame_64 {
  169. char dummy[__SIGNAL_FRAMESIZE];
  170. struct ucontext uc;
  171. unsigned long unused[2];
  172. unsigned int tramp[6];
  173. struct siginfo *pinfo;
  174. void *puc;
  175. struct siginfo info;
  176. char abigap[288];
  177. };
  178. static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
  179. {
  180. if (nip == fp + offsetof(struct signal_frame_64, tramp))
  181. return 1;
  182. if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
  183. nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
  184. return 1;
  185. return 0;
  186. }
  187. /*
  188. * Do some sanity checking on the signal frame pointed to by sp.
  189. * We check the pinfo and puc pointers in the frame.
  190. */
  191. static int sane_signal_64_frame(unsigned long sp)
  192. {
  193. struct signal_frame_64 __user *sf;
  194. unsigned long pinfo, puc;
  195. sf = (struct signal_frame_64 __user *) sp;
  196. if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
  197. read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
  198. return 0;
  199. return pinfo == (unsigned long) &sf->info &&
  200. puc == (unsigned long) &sf->uc;
  201. }
  202. static void perf_callchain_user_64(struct perf_callchain_entry *entry,
  203. struct pt_regs *regs)
  204. {
  205. unsigned long sp, next_sp;
  206. unsigned long next_ip;
  207. unsigned long lr;
  208. long level = 0;
  209. struct signal_frame_64 __user *sigframe;
  210. unsigned long __user *fp, *uregs;
  211. next_ip = regs->nip;
  212. lr = regs->link;
  213. sp = regs->gpr[1];
  214. perf_callchain_store(entry, next_ip);
  215. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  216. fp = (unsigned long __user *) sp;
  217. if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
  218. return;
  219. if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
  220. return;
  221. /*
  222. * Note: the next_sp - sp >= signal frame size check
  223. * is true when next_sp < sp, which can happen when
  224. * transitioning from an alternate signal stack to the
  225. * normal stack.
  226. */
  227. if (next_sp - sp >= sizeof(struct signal_frame_64) &&
  228. (is_sigreturn_64_address(next_ip, sp) ||
  229. (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
  230. sane_signal_64_frame(sp)) {
  231. /*
  232. * This looks like an signal frame
  233. */
  234. sigframe = (struct signal_frame_64 __user *) sp;
  235. uregs = sigframe->uc.uc_mcontext.gp_regs;
  236. if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
  237. read_user_stack_64(&uregs[PT_LNK], &lr) ||
  238. read_user_stack_64(&uregs[PT_R1], &sp))
  239. return;
  240. level = 0;
  241. perf_callchain_store(entry, PERF_CONTEXT_USER);
  242. perf_callchain_store(entry, next_ip);
  243. continue;
  244. }
  245. if (level == 0)
  246. next_ip = lr;
  247. perf_callchain_store(entry, next_ip);
  248. ++level;
  249. sp = next_sp;
  250. }
  251. }
  252. static inline int current_is_64bit(void)
  253. {
  254. /*
  255. * We can't use test_thread_flag() here because we may be on an
  256. * interrupt stack, and the thread flags don't get copied over
  257. * from the thread_info on the main stack to the interrupt stack.
  258. */
  259. return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
  260. }
  261. #else /* CONFIG_PPC64 */
  262. /*
  263. * On 32-bit we just access the address and let hash_page create a
  264. * HPTE if necessary, so there is no need to fall back to reading
  265. * the page tables. Since this is called at interrupt level,
  266. * do_page_fault() won't treat a DSI as a page fault.
  267. */
  268. static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
  269. {
  270. int rc;
  271. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
  272. ((unsigned long)ptr & 3))
  273. return -EFAULT;
  274. pagefault_disable();
  275. rc = __get_user_inatomic(*ret, ptr);
  276. pagefault_enable();
  277. return rc;
  278. }
  279. static inline void perf_callchain_user_64(struct perf_callchain_entry *entry,
  280. struct pt_regs *regs)
  281. {
  282. }
  283. static inline int current_is_64bit(void)
  284. {
  285. return 0;
  286. }
  287. static inline int valid_user_sp(unsigned long sp, int is_64)
  288. {
  289. if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
  290. return 0;
  291. return 1;
  292. }
  293. #define __SIGNAL_FRAMESIZE32 __SIGNAL_FRAMESIZE
  294. #define sigcontext32 sigcontext
  295. #define mcontext32 mcontext
  296. #define ucontext32 ucontext
  297. #define compat_siginfo_t struct siginfo
  298. #endif /* CONFIG_PPC64 */
  299. /*
  300. * Layout for non-RT signal frames
  301. */
  302. struct signal_frame_32 {
  303. char dummy[__SIGNAL_FRAMESIZE32];
  304. struct sigcontext32 sctx;
  305. struct mcontext32 mctx;
  306. int abigap[56];
  307. };
  308. /*
  309. * Layout for RT signal frames
  310. */
  311. struct rt_signal_frame_32 {
  312. char dummy[__SIGNAL_FRAMESIZE32 + 16];
  313. compat_siginfo_t info;
  314. struct ucontext32 uc;
  315. int abigap[56];
  316. };
  317. static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
  318. {
  319. if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
  320. return 1;
  321. if (vdso32_sigtramp && current->mm->context.vdso_base &&
  322. nip == current->mm->context.vdso_base + vdso32_sigtramp)
  323. return 1;
  324. return 0;
  325. }
  326. static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
  327. {
  328. if (nip == fp + offsetof(struct rt_signal_frame_32,
  329. uc.uc_mcontext.mc_pad))
  330. return 1;
  331. if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
  332. nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
  333. return 1;
  334. return 0;
  335. }
  336. static int sane_signal_32_frame(unsigned int sp)
  337. {
  338. struct signal_frame_32 __user *sf;
  339. unsigned int regs;
  340. sf = (struct signal_frame_32 __user *) (unsigned long) sp;
  341. if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
  342. return 0;
  343. return regs == (unsigned long) &sf->mctx;
  344. }
  345. static int sane_rt_signal_32_frame(unsigned int sp)
  346. {
  347. struct rt_signal_frame_32 __user *sf;
  348. unsigned int regs;
  349. sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
  350. if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
  351. return 0;
  352. return regs == (unsigned long) &sf->uc.uc_mcontext;
  353. }
  354. static unsigned int __user *signal_frame_32_regs(unsigned int sp,
  355. unsigned int next_sp, unsigned int next_ip)
  356. {
  357. struct mcontext32 __user *mctx = NULL;
  358. struct signal_frame_32 __user *sf;
  359. struct rt_signal_frame_32 __user *rt_sf;
  360. /*
  361. * Note: the next_sp - sp >= signal frame size check
  362. * is true when next_sp < sp, for example, when
  363. * transitioning from an alternate signal stack to the
  364. * normal stack.
  365. */
  366. if (next_sp - sp >= sizeof(struct signal_frame_32) &&
  367. is_sigreturn_32_address(next_ip, sp) &&
  368. sane_signal_32_frame(sp)) {
  369. sf = (struct signal_frame_32 __user *) (unsigned long) sp;
  370. mctx = &sf->mctx;
  371. }
  372. if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
  373. is_rt_sigreturn_32_address(next_ip, sp) &&
  374. sane_rt_signal_32_frame(sp)) {
  375. rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
  376. mctx = &rt_sf->uc.uc_mcontext;
  377. }
  378. if (!mctx)
  379. return NULL;
  380. return mctx->mc_gregs;
  381. }
  382. static void perf_callchain_user_32(struct perf_callchain_entry *entry,
  383. struct pt_regs *regs)
  384. {
  385. unsigned int sp, next_sp;
  386. unsigned int next_ip;
  387. unsigned int lr;
  388. long level = 0;
  389. unsigned int __user *fp, *uregs;
  390. next_ip = regs->nip;
  391. lr = regs->link;
  392. sp = regs->gpr[1];
  393. perf_callchain_store(entry, next_ip);
  394. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  395. fp = (unsigned int __user *) (unsigned long) sp;
  396. if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
  397. return;
  398. if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
  399. return;
  400. uregs = signal_frame_32_regs(sp, next_sp, next_ip);
  401. if (!uregs && level <= 1)
  402. uregs = signal_frame_32_regs(sp, next_sp, lr);
  403. if (uregs) {
  404. /*
  405. * This looks like an signal frame, so restart
  406. * the stack trace with the values in it.
  407. */
  408. if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
  409. read_user_stack_32(&uregs[PT_LNK], &lr) ||
  410. read_user_stack_32(&uregs[PT_R1], &sp))
  411. return;
  412. level = 0;
  413. perf_callchain_store(entry, PERF_CONTEXT_USER);
  414. perf_callchain_store(entry, next_ip);
  415. continue;
  416. }
  417. if (level == 0)
  418. next_ip = lr;
  419. perf_callchain_store(entry, next_ip);
  420. ++level;
  421. sp = next_sp;
  422. }
  423. }
  424. void
  425. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  426. {
  427. if (current_is_64bit())
  428. perf_callchain_user_64(entry, regs);
  429. else
  430. perf_callchain_user_32(entry, regs);
  431. }