skbuff.h 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623
  1. /* Copyright (c) 2015 Samsung Electronics Co., Ltd. */
  2. /*
  3. * Definitions for the 'struct sk_buff' memory handlers.
  4. *
  5. * Authors:
  6. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  7. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. /*
  15. * Changes:
  16. * KwnagHyun Kim <kh0304.kim@samsung.com> 2015/07/08
  17. * Baesung Park <baesung.park@samsung.com> 2015/07/08
  18. * Vignesh Saravanaperumal <vignesh1.s@samsung.com> 2015/07/08
  19. * Add codes to share UID/PID information
  20. *
  21. */
  22. #ifndef _LINUX_SKBUFF_H
  23. #define _LINUX_SKBUFF_H
  24. #include <linux/kernel.h>
  25. #include <linux/kmemcheck.h>
  26. #include <linux/compiler.h>
  27. #include <linux/time.h>
  28. #include <linux/bug.h>
  29. #include <linux/cache.h>
  30. #include <linux/atomic.h>
  31. #include <asm/types.h>
  32. #include <linux/spinlock.h>
  33. #include <linux/net.h>
  34. #include <linux/textsearch.h>
  35. #include <net/checksum.h>
  36. #include <linux/rcupdate.h>
  37. #include <linux/dmaengine.h>
  38. #include <linux/hrtimer.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/netdev_features.h>
  41. /* Don't change this without changing skb_csum_unnecessary! */
  42. #define CHECKSUM_NONE 0
  43. #define CHECKSUM_UNNECESSARY 1
  44. #define CHECKSUM_COMPLETE 2
  45. #define CHECKSUM_PARTIAL 3
  46. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  47. ~(SMP_CACHE_BYTES - 1))
  48. #define SKB_WITH_OVERHEAD(X) \
  49. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  50. #define SKB_MAX_ORDER(X, ORDER) \
  51. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  52. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  53. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  54. /* return minimum truesize of one skb containing X bytes of data */
  55. #define SKB_TRUESIZE(X) ((X) + \
  56. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  57. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  58. /* A. Checksumming of received packets by device.
  59. *
  60. * NONE: device failed to checksum this packet.
  61. * skb->csum is undefined.
  62. *
  63. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  64. * skb->csum is undefined.
  65. * It is bad option, but, unfortunately, many of vendors do this.
  66. * Apparently with secret goal to sell you new device, when you
  67. * will add new protocol to your host. F.e. IPv6. 8)
  68. *
  69. * COMPLETE: the most generic way. Device supplied checksum of _all_
  70. * the packet as seen by netif_rx in skb->csum.
  71. * NOTE: Even if device supports only some protocols, but
  72. * is able to produce some skb->csum, it MUST use COMPLETE,
  73. * not UNNECESSARY.
  74. *
  75. * PARTIAL: identical to the case for output below. This may occur
  76. * on a packet received directly from another Linux OS, e.g.,
  77. * a virtualised Linux kernel on the same host. The packet can
  78. * be treated in the same way as UNNECESSARY except that on
  79. * output (i.e., forwarding) the checksum must be filled in
  80. * by the OS or the hardware.
  81. *
  82. * B. Checksumming on output.
  83. *
  84. * NONE: skb is checksummed by protocol or csum is not required.
  85. *
  86. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  87. * from skb->csum_start to the end and to record the checksum
  88. * at skb->csum_start + skb->csum_offset.
  89. *
  90. * Device must show its capabilities in dev->features, set
  91. * at device setup time.
  92. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  93. * everything.
  94. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  95. * TCP/UDP over IPv4. Sigh. Vendors like this
  96. * way by an unknown reason. Though, see comment above
  97. * about CHECKSUM_UNNECESSARY. 8)
  98. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  99. *
  100. * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
  101. * that do not want net to perform the checksum calculation should use
  102. * this flag in their outgoing skbs.
  103. * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
  104. * offload. Correspondingly, the FCoE protocol driver
  105. * stack should use CHECKSUM_UNNECESSARY.
  106. *
  107. * Any questions? No questions, good. --ANK
  108. */
  109. struct net_device;
  110. struct scatterlist;
  111. struct pipe_inode_info;
  112. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  113. struct nf_conntrack {
  114. atomic_t use;
  115. };
  116. #endif
  117. #ifdef CONFIG_BRIDGE_NETFILTER
  118. struct nf_bridge_info {
  119. atomic_t use;
  120. struct net_device *physindev;
  121. struct net_device *physoutdev;
  122. unsigned int mask;
  123. unsigned long data[32 / sizeof(unsigned long)];
  124. };
  125. #endif
  126. struct sk_buff_head {
  127. /* These two members must be first. */
  128. struct sk_buff *next;
  129. struct sk_buff *prev;
  130. __u32 qlen;
  131. spinlock_t lock;
  132. };
  133. struct sk_buff;
  134. /* To allow 64K frame to be packed as single skb without frag_list we
  135. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  136. * buffers which do not start on a page boundary.
  137. *
  138. * Since GRO uses frags we allocate at least 16 regardless of page
  139. * size.
  140. */
  141. #if (65536/PAGE_SIZE + 1) < 16
  142. #define MAX_SKB_FRAGS 16UL
  143. #else
  144. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  145. #endif
  146. typedef struct skb_frag_struct skb_frag_t;
  147. struct skb_frag_struct {
  148. struct {
  149. struct page *p;
  150. } page;
  151. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  152. __u32 page_offset;
  153. __u32 size;
  154. #else
  155. __u16 page_offset;
  156. __u16 size;
  157. #endif
  158. };
  159. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  160. {
  161. return frag->size;
  162. }
  163. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  164. {
  165. frag->size = size;
  166. }
  167. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  168. {
  169. frag->size += delta;
  170. }
  171. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  172. {
  173. frag->size -= delta;
  174. }
  175. #define HAVE_HW_TIME_STAMP
  176. /**
  177. * struct skb_shared_hwtstamps - hardware time stamps
  178. * @hwtstamp: hardware time stamp transformed into duration
  179. * since arbitrary point in time
  180. * @syststamp: hwtstamp transformed to system time base
  181. *
  182. * Software time stamps generated by ktime_get_real() are stored in
  183. * skb->tstamp. The relation between the different kinds of time
  184. * stamps is as follows:
  185. *
  186. * syststamp and tstamp can be compared against each other in
  187. * arbitrary combinations. The accuracy of a
  188. * syststamp/tstamp/"syststamp from other device" comparison is
  189. * limited by the accuracy of the transformation into system time
  190. * base. This depends on the device driver and its underlying
  191. * hardware.
  192. *
  193. * hwtstamps can only be compared against other hwtstamps from
  194. * the same device.
  195. *
  196. * This structure is attached to packets as part of the
  197. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  198. */
  199. struct skb_shared_hwtstamps {
  200. ktime_t hwtstamp;
  201. ktime_t syststamp;
  202. };
  203. /* Definitions for tx_flags in struct skb_shared_info */
  204. enum {
  205. /* generate hardware time stamp */
  206. SKBTX_HW_TSTAMP = 1 << 0,
  207. /* generate software time stamp */
  208. SKBTX_SW_TSTAMP = 1 << 1,
  209. /* device driver is going to provide hardware time stamp */
  210. SKBTX_IN_PROGRESS = 1 << 2,
  211. /* device driver supports TX zero-copy buffers */
  212. SKBTX_DEV_ZEROCOPY = 1 << 3,
  213. /* generate wifi status information (where possible) */
  214. SKBTX_WIFI_STATUS = 1 << 4,
  215. };
  216. /*
  217. * The callback notifies userspace to release buffers when skb DMA is done in
  218. * lower device, the skb last reference should be 0 when calling this.
  219. * The ctx field is used to track device context.
  220. * The desc field is used to track userspace buffer index.
  221. */
  222. struct ubuf_info {
  223. void (*callback)(struct ubuf_info *);
  224. void *ctx;
  225. unsigned long desc;
  226. };
  227. /* This data is invariant across clones and lives at
  228. * the end of the header data, ie. at skb->end.
  229. */
  230. struct skb_shared_info {
  231. unsigned char nr_frags;
  232. __u8 tx_flags;
  233. unsigned short gso_size;
  234. /* Warning: this field is not always filled in (UFO)! */
  235. unsigned short gso_segs;
  236. unsigned short gso_type;
  237. struct sk_buff *frag_list;
  238. struct skb_shared_hwtstamps hwtstamps;
  239. __be32 ip6_frag_id;
  240. /*
  241. * Warning : all fields before dataref are cleared in __alloc_skb()
  242. */
  243. atomic_t dataref;
  244. /* Intermediate layers must ensure that destructor_arg
  245. * remains valid until skb destructor */
  246. void * destructor_arg;
  247. /* must be last field, see pskb_expand_head() */
  248. skb_frag_t frags[MAX_SKB_FRAGS];
  249. };
  250. /* We divide dataref into two halves. The higher 16 bits hold references
  251. * to the payload part of skb->data. The lower 16 bits hold references to
  252. * the entire skb->data. A clone of a headerless skb holds the length of
  253. * the header in skb->hdr_len.
  254. *
  255. * All users must obey the rule that the skb->data reference count must be
  256. * greater than or equal to the payload reference count.
  257. *
  258. * Holding a reference to the payload part means that the user does not
  259. * care about modifications to the header part of skb->data.
  260. */
  261. #define SKB_DATAREF_SHIFT 16
  262. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  263. enum {
  264. SKB_FCLONE_UNAVAILABLE,
  265. SKB_FCLONE_ORIG,
  266. SKB_FCLONE_CLONE,
  267. };
  268. enum {
  269. SKB_GSO_TCPV4 = 1 << 0,
  270. SKB_GSO_UDP = 1 << 1,
  271. /* This indicates the skb is from an untrusted source. */
  272. SKB_GSO_DODGY = 1 << 2,
  273. /* This indicates the tcp segment has CWR set. */
  274. SKB_GSO_TCP_ECN = 1 << 3,
  275. SKB_GSO_TCPV6 = 1 << 4,
  276. SKB_GSO_FCOE = 1 << 5,
  277. };
  278. #if BITS_PER_LONG > 32
  279. #define NET_SKBUFF_DATA_USES_OFFSET 1
  280. #endif
  281. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  282. typedef unsigned int sk_buff_data_t;
  283. #else
  284. typedef unsigned char *sk_buff_data_t;
  285. #endif
  286. #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
  287. defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
  288. #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
  289. #endif
  290. /**
  291. * struct sk_buff - socket buffer
  292. * @next: Next buffer in list
  293. * @prev: Previous buffer in list
  294. * @tstamp: Time we arrived
  295. * @sk: Socket we are owned by
  296. * @dev: Device we arrived on/are leaving by
  297. * @cb: Control buffer. Free for use by every layer. Put private vars here
  298. * @_skb_refdst: destination entry (with norefcount bit)
  299. * @sp: the security path, used for xfrm
  300. * @len: Length of actual data
  301. * @data_len: Data length
  302. * @mac_len: Length of link layer header
  303. * @hdr_len: writable header length of cloned skb
  304. * @csum: Checksum (must include start/offset pair)
  305. * @csum_start: Offset from skb->head where checksumming should start
  306. * @csum_offset: Offset from csum_start where checksum should be stored
  307. * @priority: Packet queueing priority
  308. * @local_df: allow local fragmentation
  309. * @cloned: Head may be cloned (check refcnt to be sure)
  310. * @ip_summed: Driver fed us an IP checksum
  311. * @nohdr: Payload reference only, must not modify header
  312. * @nfctinfo: Relationship of this skb to the connection
  313. * @pkt_type: Packet class
  314. * @fclone: skbuff clone status
  315. * @ipvs_property: skbuff is owned by ipvs
  316. * @peeked: this packet has been seen already, so stats have been
  317. * done for it, don't do them again
  318. * @nf_trace: netfilter packet trace flag
  319. * @protocol: Packet protocol from driver
  320. * @destructor: Destruct function
  321. * @nfct: Associated connection, if any
  322. * @nfct_reasm: netfilter conntrack re-assembly pointer
  323. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  324. * @skb_iif: ifindex of device we arrived on
  325. * @tc_index: Traffic control index
  326. * @tc_verd: traffic control verdict
  327. * @rxhash: the packet hash computed on receive
  328. * @queue_mapping: Queue mapping for multiqueue devices
  329. * @ndisc_nodetype: router type (from link layer)
  330. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  331. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  332. * ports.
  333. * @wifi_acked_valid: wifi_acked was set
  334. * @wifi_acked: whether frame was acked on wifi or not
  335. * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
  336. * @dma_cookie: a cookie to one of several possible DMA operations
  337. * done by skb DMA functions
  338. * @secmark: security marking
  339. * @mark: Generic packet mark
  340. * @dropcount: total number of sk_receive_queue overflows
  341. * @vlan_tci: vlan tag control information
  342. * @transport_header: Transport layer header
  343. * @network_header: Network layer header
  344. * @mac_header: Link layer header
  345. * @tail: Tail pointer
  346. * @end: End pointer
  347. * @head: Head of buffer
  348. * @data: Data head pointer
  349. * @truesize: Buffer size
  350. * @users: User count - see {datagram,tcp}.c
  351. */
  352. struct sk_buff {
  353. /* These two members must be first. */
  354. struct sk_buff *next;
  355. struct sk_buff *prev;
  356. ktime_t tstamp;
  357. struct sock *sk;
  358. struct net_device *dev;
  359. /*
  360. * This is the control buffer. It is free to use for every
  361. * layer. Please put your private variables there. If you
  362. * want to keep them across layers you have to do a skb_clone()
  363. * first. This is owned by whoever has the skb queued ATM.
  364. */
  365. char cb[48] __aligned(8);
  366. unsigned long _skb_refdst;
  367. #ifdef CONFIG_XFRM
  368. struct sec_path *sp;
  369. #endif
  370. unsigned int len,
  371. data_len;
  372. __u16 mac_len,
  373. hdr_len;
  374. union {
  375. __wsum csum;
  376. struct {
  377. __u16 csum_start;
  378. __u16 csum_offset;
  379. };
  380. };
  381. __u32 priority;
  382. kmemcheck_bitfield_begin(flags1);
  383. __u8 local_df:1,
  384. cloned:1,
  385. ip_summed:2,
  386. nohdr:1,
  387. nfctinfo:3;
  388. __u8 pkt_type:3,
  389. fclone:2,
  390. ipvs_property:1,
  391. peeked:1,
  392. nf_trace:1;
  393. kmemcheck_bitfield_end(flags1);
  394. __be16 protocol;
  395. void (*destructor)(struct sk_buff *skb);
  396. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  397. struct nf_conntrack *nfct;
  398. #endif
  399. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  400. struct sk_buff *nfct_reasm;
  401. #endif
  402. #ifdef CONFIG_BRIDGE_NETFILTER
  403. struct nf_bridge_info *nf_bridge;
  404. #endif
  405. int skb_iif;
  406. __u32 rxhash;
  407. __u16 vlan_tci;
  408. #ifdef CONFIG_NET_SCHED
  409. __u16 tc_index; /* traffic control index */
  410. #ifdef CONFIG_NET_CLS_ACT
  411. __u16 tc_verd; /* traffic control verdict */
  412. #endif
  413. #endif
  414. __u16 queue_mapping;
  415. kmemcheck_bitfield_begin(flags2);
  416. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  417. __u8 ndisc_nodetype:2;
  418. #endif
  419. __u8 ooo_okay:1;
  420. __u8 l4_rxhash:1;
  421. __u8 wifi_acked_valid:1;
  422. __u8 wifi_acked:1;
  423. __u8 no_fcs:1;
  424. /* 9/11 bit hole (depending on ndisc_nodetype presence) */
  425. kmemcheck_bitfield_end(flags2);
  426. #ifdef CONFIG_NET_DMA
  427. dma_cookie_t dma_cookie;
  428. #endif
  429. #ifdef CONFIG_NETWORK_SECMARK
  430. __u32 secmark;
  431. #endif
  432. union {
  433. __u32 mark;
  434. __u32 dropcount;
  435. __u32 reserved_tailroom;
  436. };
  437. sk_buff_data_t transport_header;
  438. sk_buff_data_t network_header;
  439. sk_buff_data_t mac_header;
  440. /* These elements must be at the end, see alloc_skb() for details. */
  441. sk_buff_data_t tail;
  442. sk_buff_data_t end;
  443. unsigned char *head,
  444. *data;
  445. unsigned int truesize;
  446. atomic_t users;
  447. };
  448. #ifdef __KERNEL__
  449. /*
  450. * Handling routines are only of interest to the kernel
  451. */
  452. #include <linux/slab.h>
  453. /*
  454. * skb might have a dst pointer attached, refcounted or not.
  455. * _skb_refdst low order bit is set if refcount was _not_ taken
  456. */
  457. #define SKB_DST_NOREF 1UL
  458. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  459. /**
  460. * skb_dst - returns skb dst_entry
  461. * @skb: buffer
  462. *
  463. * Returns skb dst_entry, regardless of reference taken or not.
  464. */
  465. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  466. {
  467. /* If refdst was not refcounted, check we still are in a
  468. * rcu_read_lock section
  469. */
  470. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  471. !rcu_read_lock_held() &&
  472. !rcu_read_lock_bh_held());
  473. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  474. }
  475. /**
  476. * skb_dst_set - sets skb dst
  477. * @skb: buffer
  478. * @dst: dst entry
  479. *
  480. * Sets skb dst, assuming a reference was taken on dst and should
  481. * be released by skb_dst_drop()
  482. */
  483. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  484. {
  485. skb->_skb_refdst = (unsigned long)dst;
  486. }
  487. extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
  488. /**
  489. * skb_dst_is_noref - Test if skb dst isn't refcounted
  490. * @skb: buffer
  491. */
  492. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  493. {
  494. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  495. }
  496. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  497. {
  498. return (struct rtable *)skb_dst(skb);
  499. }
  500. extern void kfree_skb(struct sk_buff *skb);
  501. extern void consume_skb(struct sk_buff *skb);
  502. extern void __kfree_skb(struct sk_buff *skb);
  503. extern struct sk_buff *__alloc_skb(unsigned int size,
  504. gfp_t priority, int fclone, int node);
  505. extern struct sk_buff *build_skb(void *data);
  506. static inline struct sk_buff *alloc_skb(unsigned int size,
  507. gfp_t priority)
  508. {
  509. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  510. }
  511. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  512. gfp_t priority)
  513. {
  514. return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
  515. }
  516. extern void skb_recycle(struct sk_buff *skb);
  517. extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
  518. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  519. extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  520. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  521. gfp_t priority);
  522. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  523. gfp_t priority);
  524. extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
  525. int headroom, gfp_t gfp_mask);
  526. extern int pskb_expand_head(struct sk_buff *skb,
  527. int nhead, int ntail,
  528. gfp_t gfp_mask);
  529. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  530. unsigned int headroom);
  531. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  532. int newheadroom, int newtailroom,
  533. gfp_t priority);
  534. extern int skb_to_sgvec(struct sk_buff *skb,
  535. struct scatterlist *sg, int offset,
  536. int len);
  537. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  538. struct sk_buff **trailer);
  539. extern int skb_pad(struct sk_buff *skb, int pad);
  540. #define dev_kfree_skb(a) consume_skb(a)
  541. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  542. int getfrag(void *from, char *to, int offset,
  543. int len,int odd, struct sk_buff *skb),
  544. void *from, int length);
  545. struct skb_seq_state {
  546. __u32 lower_offset;
  547. __u32 upper_offset;
  548. __u32 frag_idx;
  549. __u32 stepped_offset;
  550. struct sk_buff *root_skb;
  551. struct sk_buff *cur_skb;
  552. __u8 *frag_data;
  553. };
  554. extern void skb_prepare_seq_read(struct sk_buff *skb,
  555. unsigned int from, unsigned int to,
  556. struct skb_seq_state *st);
  557. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  558. struct skb_seq_state *st);
  559. extern void skb_abort_seq_read(struct skb_seq_state *st);
  560. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  561. unsigned int to, struct ts_config *config,
  562. struct ts_state *state);
  563. extern void __skb_get_rxhash(struct sk_buff *skb);
  564. static inline __u32 skb_get_rxhash(struct sk_buff *skb)
  565. {
  566. if (!skb->rxhash)
  567. __skb_get_rxhash(skb);
  568. return skb->rxhash;
  569. }
  570. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  571. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  572. {
  573. return skb->head + skb->end;
  574. }
  575. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  576. {
  577. return skb->end;
  578. }
  579. #else
  580. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  581. {
  582. return skb->end;
  583. }
  584. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  585. {
  586. return skb->end - skb->head;
  587. }
  588. #endif
  589. /* Internal */
  590. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  591. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  592. {
  593. return &skb_shinfo(skb)->hwtstamps;
  594. }
  595. /**
  596. * skb_queue_empty - check if a queue is empty
  597. * @list: queue head
  598. *
  599. * Returns true if the queue is empty, false otherwise.
  600. */
  601. static inline int skb_queue_empty(const struct sk_buff_head *list)
  602. {
  603. return list->next == (struct sk_buff *)list;
  604. }
  605. /**
  606. * skb_queue_is_last - check if skb is the last entry in the queue
  607. * @list: queue head
  608. * @skb: buffer
  609. *
  610. * Returns true if @skb is the last buffer on the list.
  611. */
  612. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  613. const struct sk_buff *skb)
  614. {
  615. return skb->next == (struct sk_buff *)list;
  616. }
  617. /**
  618. * skb_queue_is_first - check if skb is the first entry in the queue
  619. * @list: queue head
  620. * @skb: buffer
  621. *
  622. * Returns true if @skb is the first buffer on the list.
  623. */
  624. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  625. const struct sk_buff *skb)
  626. {
  627. return skb->prev == (struct sk_buff *)list;
  628. }
  629. /**
  630. * skb_queue_next - return the next packet in the queue
  631. * @list: queue head
  632. * @skb: current buffer
  633. *
  634. * Return the next packet in @list after @skb. It is only valid to
  635. * call this if skb_queue_is_last() evaluates to false.
  636. */
  637. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  638. const struct sk_buff *skb)
  639. {
  640. /* This BUG_ON may seem severe, but if we just return then we
  641. * are going to dereference garbage.
  642. */
  643. BUG_ON(skb_queue_is_last(list, skb));
  644. return skb->next;
  645. }
  646. /**
  647. * skb_queue_prev - return the prev packet in the queue
  648. * @list: queue head
  649. * @skb: current buffer
  650. *
  651. * Return the prev packet in @list before @skb. It is only valid to
  652. * call this if skb_queue_is_first() evaluates to false.
  653. */
  654. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  655. const struct sk_buff *skb)
  656. {
  657. /* This BUG_ON may seem severe, but if we just return then we
  658. * are going to dereference garbage.
  659. */
  660. BUG_ON(skb_queue_is_first(list, skb));
  661. return skb->prev;
  662. }
  663. /**
  664. * skb_get - reference buffer
  665. * @skb: buffer to reference
  666. *
  667. * Makes another reference to a socket buffer and returns a pointer
  668. * to the buffer.
  669. */
  670. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  671. {
  672. atomic_inc(&skb->users);
  673. return skb;
  674. }
  675. /*
  676. * If users == 1, we are the only owner and are can avoid redundant
  677. * atomic change.
  678. */
  679. /**
  680. * skb_cloned - is the buffer a clone
  681. * @skb: buffer to check
  682. *
  683. * Returns true if the buffer was generated with skb_clone() and is
  684. * one of multiple shared copies of the buffer. Cloned buffers are
  685. * shared data so must not be written to under normal circumstances.
  686. */
  687. static inline int skb_cloned(const struct sk_buff *skb)
  688. {
  689. return skb->cloned &&
  690. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  691. }
  692. static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
  693. {
  694. might_sleep_if(pri & __GFP_WAIT);
  695. if (skb_cloned(skb))
  696. return pskb_expand_head(skb, 0, 0, pri);
  697. return 0;
  698. }
  699. /**
  700. * skb_header_cloned - is the header a clone
  701. * @skb: buffer to check
  702. *
  703. * Returns true if modifying the header part of the buffer requires
  704. * the data to be copied.
  705. */
  706. static inline int skb_header_cloned(const struct sk_buff *skb)
  707. {
  708. int dataref;
  709. if (!skb->cloned)
  710. return 0;
  711. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  712. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  713. return dataref != 1;
  714. }
  715. /**
  716. * skb_header_release - release reference to header
  717. * @skb: buffer to operate on
  718. *
  719. * Drop a reference to the header part of the buffer. This is done
  720. * by acquiring a payload reference. You must not read from the header
  721. * part of skb->data after this.
  722. */
  723. static inline void skb_header_release(struct sk_buff *skb)
  724. {
  725. BUG_ON(skb->nohdr);
  726. skb->nohdr = 1;
  727. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  728. }
  729. /**
  730. * skb_shared - is the buffer shared
  731. * @skb: buffer to check
  732. *
  733. * Returns true if more than one person has a reference to this
  734. * buffer.
  735. */
  736. static inline int skb_shared(const struct sk_buff *skb)
  737. {
  738. return atomic_read(&skb->users) != 1;
  739. }
  740. /**
  741. * skb_share_check - check if buffer is shared and if so clone it
  742. * @skb: buffer to check
  743. * @pri: priority for memory allocation
  744. *
  745. * If the buffer is shared the buffer is cloned and the old copy
  746. * drops a reference. A new clone with a single reference is returned.
  747. * If the buffer is not shared the original buffer is returned. When
  748. * being called from interrupt status or with spinlocks held pri must
  749. * be GFP_ATOMIC.
  750. *
  751. * NULL is returned on a memory allocation failure.
  752. */
  753. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  754. gfp_t pri)
  755. {
  756. might_sleep_if(pri & __GFP_WAIT);
  757. if (skb_shared(skb)) {
  758. struct sk_buff *nskb = skb_clone(skb, pri);
  759. kfree_skb(skb);
  760. skb = nskb;
  761. }
  762. return skb;
  763. }
  764. /*
  765. * Copy shared buffers into a new sk_buff. We effectively do COW on
  766. * packets to handle cases where we have a local reader and forward
  767. * and a couple of other messy ones. The normal one is tcpdumping
  768. * a packet thats being forwarded.
  769. */
  770. /**
  771. * skb_unshare - make a copy of a shared buffer
  772. * @skb: buffer to check
  773. * @pri: priority for memory allocation
  774. *
  775. * If the socket buffer is a clone then this function creates a new
  776. * copy of the data, drops a reference count on the old copy and returns
  777. * the new copy with the reference count at 1. If the buffer is not a clone
  778. * the original buffer is returned. When called with a spinlock held or
  779. * from interrupt state @pri must be %GFP_ATOMIC
  780. *
  781. * %NULL is returned on a memory allocation failure.
  782. */
  783. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  784. gfp_t pri)
  785. {
  786. might_sleep_if(pri & __GFP_WAIT);
  787. if (skb_cloned(skb)) {
  788. struct sk_buff *nskb = skb_copy(skb, pri);
  789. kfree_skb(skb); /* Free our shared copy */
  790. skb = nskb;
  791. }
  792. return skb;
  793. }
  794. /**
  795. * skb_peek - peek at the head of an &sk_buff_head
  796. * @list_: list to peek at
  797. *
  798. * Peek an &sk_buff. Unlike most other operations you _MUST_
  799. * be careful with this one. A peek leaves the buffer on the
  800. * list and someone else may run off with it. You must hold
  801. * the appropriate locks or have a private queue to do this.
  802. *
  803. * Returns %NULL for an empty list or a pointer to the head element.
  804. * The reference count is not incremented and the reference is therefore
  805. * volatile. Use with caution.
  806. */
  807. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  808. {
  809. struct sk_buff *list = ((const struct sk_buff *)list_)->next;
  810. if (list == (struct sk_buff *)list_)
  811. list = NULL;
  812. return list;
  813. }
  814. /**
  815. * skb_peek_next - peek skb following the given one from a queue
  816. * @skb: skb to start from
  817. * @list_: list to peek at
  818. *
  819. * Returns %NULL when the end of the list is met or a pointer to the
  820. * next element. The reference count is not incremented and the
  821. * reference is therefore volatile. Use with caution.
  822. */
  823. static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
  824. const struct sk_buff_head *list_)
  825. {
  826. struct sk_buff *next = skb->next;
  827. if (next == (struct sk_buff *)list_)
  828. next = NULL;
  829. return next;
  830. }
  831. /**
  832. * skb_peek_tail - peek at the tail of an &sk_buff_head
  833. * @list_: list to peek at
  834. *
  835. * Peek an &sk_buff. Unlike most other operations you _MUST_
  836. * be careful with this one. A peek leaves the buffer on the
  837. * list and someone else may run off with it. You must hold
  838. * the appropriate locks or have a private queue to do this.
  839. *
  840. * Returns %NULL for an empty list or a pointer to the tail element.
  841. * The reference count is not incremented and the reference is therefore
  842. * volatile. Use with caution.
  843. */
  844. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  845. {
  846. struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
  847. if (list == (struct sk_buff *)list_)
  848. list = NULL;
  849. return list;
  850. }
  851. /**
  852. * skb_queue_len - get queue length
  853. * @list_: list to measure
  854. *
  855. * Return the length of an &sk_buff queue.
  856. */
  857. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  858. {
  859. return list_->qlen;
  860. }
  861. /**
  862. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  863. * @list: queue to initialize
  864. *
  865. * This initializes only the list and queue length aspects of
  866. * an sk_buff_head object. This allows to initialize the list
  867. * aspects of an sk_buff_head without reinitializing things like
  868. * the spinlock. It can also be used for on-stack sk_buff_head
  869. * objects where the spinlock is known to not be used.
  870. */
  871. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  872. {
  873. list->prev = list->next = (struct sk_buff *)list;
  874. list->qlen = 0;
  875. }
  876. /*
  877. * This function creates a split out lock class for each invocation;
  878. * this is needed for now since a whole lot of users of the skb-queue
  879. * infrastructure in drivers have different locking usage (in hardirq)
  880. * than the networking core (in softirq only). In the long run either the
  881. * network layer or drivers should need annotation to consolidate the
  882. * main types of usage into 3 classes.
  883. */
  884. static inline void skb_queue_head_init(struct sk_buff_head *list)
  885. {
  886. spin_lock_init(&list->lock);
  887. __skb_queue_head_init(list);
  888. }
  889. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  890. struct lock_class_key *class)
  891. {
  892. skb_queue_head_init(list);
  893. lockdep_set_class(&list->lock, class);
  894. }
  895. /*
  896. * Insert an sk_buff on a list.
  897. *
  898. * The "__skb_xxxx()" functions are the non-atomic ones that
  899. * can only be called with interrupts disabled.
  900. */
  901. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  902. static inline void __skb_insert(struct sk_buff *newsk,
  903. struct sk_buff *prev, struct sk_buff *next,
  904. struct sk_buff_head *list)
  905. {
  906. newsk->next = next;
  907. newsk->prev = prev;
  908. next->prev = prev->next = newsk;
  909. list->qlen++;
  910. }
  911. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  912. struct sk_buff *prev,
  913. struct sk_buff *next)
  914. {
  915. struct sk_buff *first = list->next;
  916. struct sk_buff *last = list->prev;
  917. first->prev = prev;
  918. prev->next = first;
  919. last->next = next;
  920. next->prev = last;
  921. }
  922. /**
  923. * skb_queue_splice - join two skb lists, this is designed for stacks
  924. * @list: the new list to add
  925. * @head: the place to add it in the first list
  926. */
  927. static inline void skb_queue_splice(const struct sk_buff_head *list,
  928. struct sk_buff_head *head)
  929. {
  930. if (!skb_queue_empty(list)) {
  931. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  932. head->qlen += list->qlen;
  933. }
  934. }
  935. /**
  936. * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
  937. * @list: the new list to add
  938. * @head: the place to add it in the first list
  939. *
  940. * The list at @list is reinitialised
  941. */
  942. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  943. struct sk_buff_head *head)
  944. {
  945. if (!skb_queue_empty(list)) {
  946. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  947. head->qlen += list->qlen;
  948. __skb_queue_head_init(list);
  949. }
  950. }
  951. /**
  952. * skb_queue_splice_tail - join two skb lists, each list being a queue
  953. * @list: the new list to add
  954. * @head: the place to add it in the first list
  955. */
  956. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  957. struct sk_buff_head *head)
  958. {
  959. if (!skb_queue_empty(list)) {
  960. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  961. head->qlen += list->qlen;
  962. }
  963. }
  964. /**
  965. * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
  966. * @list: the new list to add
  967. * @head: the place to add it in the first list
  968. *
  969. * Each of the lists is a queue.
  970. * The list at @list is reinitialised
  971. */
  972. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  973. struct sk_buff_head *head)
  974. {
  975. if (!skb_queue_empty(list)) {
  976. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  977. head->qlen += list->qlen;
  978. __skb_queue_head_init(list);
  979. }
  980. }
  981. /**
  982. * __skb_queue_after - queue a buffer at the list head
  983. * @list: list to use
  984. * @prev: place after this buffer
  985. * @newsk: buffer to queue
  986. *
  987. * Queue a buffer int the middle of a list. This function takes no locks
  988. * and you must therefore hold required locks before calling it.
  989. *
  990. * A buffer cannot be placed on two lists at the same time.
  991. */
  992. static inline void __skb_queue_after(struct sk_buff_head *list,
  993. struct sk_buff *prev,
  994. struct sk_buff *newsk)
  995. {
  996. __skb_insert(newsk, prev, prev->next, list);
  997. }
  998. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  999. struct sk_buff_head *list);
  1000. static inline void __skb_queue_before(struct sk_buff_head *list,
  1001. struct sk_buff *next,
  1002. struct sk_buff *newsk)
  1003. {
  1004. __skb_insert(newsk, next->prev, next, list);
  1005. }
  1006. /**
  1007. * __skb_queue_head - queue a buffer at the list head
  1008. * @list: list to use
  1009. * @newsk: buffer to queue
  1010. *
  1011. * Queue a buffer at the start of a list. This function takes no locks
  1012. * and you must therefore hold required locks before calling it.
  1013. *
  1014. * A buffer cannot be placed on two lists at the same time.
  1015. */
  1016. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  1017. static inline void __skb_queue_head(struct sk_buff_head *list,
  1018. struct sk_buff *newsk)
  1019. {
  1020. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  1021. }
  1022. /**
  1023. * __skb_queue_tail - queue a buffer at the list tail
  1024. * @list: list to use
  1025. * @newsk: buffer to queue
  1026. *
  1027. * Queue a buffer at the end of a list. This function takes no locks
  1028. * and you must therefore hold required locks before calling it.
  1029. *
  1030. * A buffer cannot be placed on two lists at the same time.
  1031. */
  1032. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  1033. static inline void __skb_queue_tail(struct sk_buff_head *list,
  1034. struct sk_buff *newsk)
  1035. {
  1036. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  1037. }
  1038. /*
  1039. * remove sk_buff from list. _Must_ be called atomically, and with
  1040. * the list known..
  1041. */
  1042. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  1043. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1044. {
  1045. struct sk_buff *next, *prev;
  1046. list->qlen--;
  1047. next = skb->next;
  1048. prev = skb->prev;
  1049. skb->next = skb->prev = NULL;
  1050. next->prev = prev;
  1051. prev->next = next;
  1052. }
  1053. /**
  1054. * __skb_dequeue - remove from the head of the queue
  1055. * @list: list to dequeue from
  1056. *
  1057. * Remove the head of the list. This function does not take any locks
  1058. * so must be used with appropriate locks held only. The head item is
  1059. * returned or %NULL if the list is empty.
  1060. */
  1061. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1062. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1063. {
  1064. struct sk_buff *skb = skb_peek(list);
  1065. if (skb)
  1066. __skb_unlink(skb, list);
  1067. return skb;
  1068. }
  1069. /**
  1070. * __skb_dequeue_tail - remove from the tail of the queue
  1071. * @list: list to dequeue from
  1072. *
  1073. * Remove the tail of the list. This function does not take any locks
  1074. * so must be used with appropriate locks held only. The tail item is
  1075. * returned or %NULL if the list is empty.
  1076. */
  1077. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1078. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1079. {
  1080. struct sk_buff *skb = skb_peek_tail(list);
  1081. if (skb)
  1082. __skb_unlink(skb, list);
  1083. return skb;
  1084. }
  1085. static inline bool skb_is_nonlinear(const struct sk_buff *skb)
  1086. {
  1087. return skb->data_len;
  1088. }
  1089. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1090. {
  1091. return skb->len - skb->data_len;
  1092. }
  1093. static inline int skb_pagelen(const struct sk_buff *skb)
  1094. {
  1095. int i, len = 0;
  1096. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1097. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1098. return len + skb_headlen(skb);
  1099. }
  1100. static inline bool skb_has_frags(const struct sk_buff *skb)
  1101. {
  1102. return skb_shinfo(skb)->nr_frags;
  1103. }
  1104. /**
  1105. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1106. * @skb: buffer containing fragment to be initialised
  1107. * @i: paged fragment index to initialise
  1108. * @page: the page to use for this fragment
  1109. * @off: the offset to the data with @page
  1110. * @size: the length of the data
  1111. *
  1112. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1113. * offset @off within @page.
  1114. *
  1115. * Does not take any additional reference on the fragment.
  1116. */
  1117. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1118. struct page *page, int off, int size)
  1119. {
  1120. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1121. frag->page.p = page;
  1122. frag->page_offset = off;
  1123. skb_frag_size_set(frag, size);
  1124. }
  1125. /**
  1126. * skb_fill_page_desc - initialise a paged fragment in an skb
  1127. * @skb: buffer containing fragment to be initialised
  1128. * @i: paged fragment index to initialise
  1129. * @page: the page to use for this fragment
  1130. * @off: the offset to the data with @page
  1131. * @size: the length of the data
  1132. *
  1133. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1134. * @skb to point to &size bytes at offset @off within @page. In
  1135. * addition updates @skb such that @i is the last fragment.
  1136. *
  1137. * Does not take any additional reference on the fragment.
  1138. */
  1139. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1140. struct page *page, int off, int size)
  1141. {
  1142. __skb_fill_page_desc(skb, i, page, off, size);
  1143. skb_shinfo(skb)->nr_frags = i + 1;
  1144. }
  1145. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  1146. int off, int size, unsigned int truesize);
  1147. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1148. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1149. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1150. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1151. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1152. {
  1153. return skb->head + skb->tail;
  1154. }
  1155. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1156. {
  1157. skb->tail = skb->data - skb->head;
  1158. }
  1159. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1160. {
  1161. skb_reset_tail_pointer(skb);
  1162. skb->tail += offset;
  1163. }
  1164. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1165. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1166. {
  1167. return skb->tail;
  1168. }
  1169. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1170. {
  1171. skb->tail = skb->data;
  1172. }
  1173. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1174. {
  1175. skb->tail = skb->data + offset;
  1176. }
  1177. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1178. /*
  1179. * Add data to an sk_buff
  1180. */
  1181. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1182. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1183. {
  1184. unsigned char *tmp = skb_tail_pointer(skb);
  1185. SKB_LINEAR_ASSERT(skb);
  1186. skb->tail += len;
  1187. skb->len += len;
  1188. return tmp;
  1189. }
  1190. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1191. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1192. {
  1193. skb->data -= len;
  1194. skb->len += len;
  1195. return skb->data;
  1196. }
  1197. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1198. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1199. {
  1200. skb->len -= len;
  1201. BUG_ON(skb->len < skb->data_len);
  1202. return skb->data += len;
  1203. }
  1204. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1205. {
  1206. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1207. }
  1208. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1209. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1210. {
  1211. if (len > skb_headlen(skb) &&
  1212. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1213. return NULL;
  1214. skb->len -= len;
  1215. return skb->data += len;
  1216. }
  1217. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1218. {
  1219. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1220. }
  1221. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1222. {
  1223. if (likely(len <= skb_headlen(skb)))
  1224. return 1;
  1225. if (unlikely(len > skb->len))
  1226. return 0;
  1227. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1228. }
  1229. /**
  1230. * skb_headroom - bytes at buffer head
  1231. * @skb: buffer to check
  1232. *
  1233. * Return the number of bytes of free space at the head of an &sk_buff.
  1234. */
  1235. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1236. {
  1237. return skb->data - skb->head;
  1238. }
  1239. /**
  1240. * skb_tailroom - bytes at buffer end
  1241. * @skb: buffer to check
  1242. *
  1243. * Return the number of bytes of free space at the tail of an sk_buff
  1244. */
  1245. static inline int skb_tailroom(const struct sk_buff *skb)
  1246. {
  1247. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1248. }
  1249. /**
  1250. * skb_availroom - bytes at buffer end
  1251. * @skb: buffer to check
  1252. *
  1253. * Return the number of bytes of free space at the tail of an sk_buff
  1254. * allocated by sk_stream_alloc()
  1255. */
  1256. static inline int skb_availroom(const struct sk_buff *skb)
  1257. {
  1258. if (skb_is_nonlinear(skb))
  1259. return 0;
  1260. return skb->end - skb->tail - skb->reserved_tailroom;
  1261. }
  1262. /**
  1263. * skb_reserve - adjust headroom
  1264. * @skb: buffer to alter
  1265. * @len: bytes to move
  1266. *
  1267. * Increase the headroom of an empty &sk_buff by reducing the tail
  1268. * room. This is only allowed for an empty buffer.
  1269. */
  1270. static inline void skb_reserve(struct sk_buff *skb, int len)
  1271. {
  1272. skb->data += len;
  1273. skb->tail += len;
  1274. }
  1275. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1276. {
  1277. skb->mac_len = skb->network_header - skb->mac_header;
  1278. }
  1279. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1280. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1281. {
  1282. return skb->head + skb->transport_header;
  1283. }
  1284. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1285. {
  1286. skb->transport_header = skb->data - skb->head;
  1287. }
  1288. static inline void skb_set_transport_header(struct sk_buff *skb,
  1289. const int offset)
  1290. {
  1291. skb_reset_transport_header(skb);
  1292. skb->transport_header += offset;
  1293. }
  1294. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1295. {
  1296. return skb->head + skb->network_header;
  1297. }
  1298. static inline void skb_reset_network_header(struct sk_buff *skb)
  1299. {
  1300. skb->network_header = skb->data - skb->head;
  1301. }
  1302. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1303. {
  1304. skb_reset_network_header(skb);
  1305. skb->network_header += offset;
  1306. }
  1307. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1308. {
  1309. return skb->head + skb->mac_header;
  1310. }
  1311. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1312. {
  1313. return skb->mac_header != ~0U;
  1314. }
  1315. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1316. {
  1317. skb->mac_header = skb->data - skb->head;
  1318. }
  1319. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1320. {
  1321. skb_reset_mac_header(skb);
  1322. skb->mac_header += offset;
  1323. }
  1324. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1325. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1326. {
  1327. return skb->transport_header;
  1328. }
  1329. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1330. {
  1331. skb->transport_header = skb->data;
  1332. }
  1333. static inline void skb_set_transport_header(struct sk_buff *skb,
  1334. const int offset)
  1335. {
  1336. skb->transport_header = skb->data + offset;
  1337. }
  1338. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1339. {
  1340. return skb->network_header;
  1341. }
  1342. static inline void skb_reset_network_header(struct sk_buff *skb)
  1343. {
  1344. skb->network_header = skb->data;
  1345. }
  1346. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1347. {
  1348. skb->network_header = skb->data + offset;
  1349. }
  1350. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1351. {
  1352. return skb->mac_header;
  1353. }
  1354. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1355. {
  1356. return skb->mac_header != NULL;
  1357. }
  1358. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1359. {
  1360. skb->mac_header = skb->data;
  1361. }
  1362. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1363. {
  1364. skb->mac_header = skb->data + offset;
  1365. }
  1366. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1367. static inline void skb_mac_header_rebuild(struct sk_buff *skb)
  1368. {
  1369. if (skb_mac_header_was_set(skb)) {
  1370. const unsigned char *old_mac = skb_mac_header(skb);
  1371. skb_set_mac_header(skb, -skb->mac_len);
  1372. memmove(skb_mac_header(skb), old_mac, skb->mac_len);
  1373. }
  1374. }
  1375. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1376. {
  1377. return skb->csum_start - skb_headroom(skb);
  1378. }
  1379. static inline int skb_transport_offset(const struct sk_buff *skb)
  1380. {
  1381. return skb_transport_header(skb) - skb->data;
  1382. }
  1383. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1384. {
  1385. return skb->transport_header - skb->network_header;
  1386. }
  1387. static inline int skb_network_offset(const struct sk_buff *skb)
  1388. {
  1389. return skb_network_header(skb) - skb->data;
  1390. }
  1391. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1392. {
  1393. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1394. }
  1395. /*
  1396. * CPUs often take a performance hit when accessing unaligned memory
  1397. * locations. The actual performance hit varies, it can be small if the
  1398. * hardware handles it or large if we have to take an exception and fix it
  1399. * in software.
  1400. *
  1401. * Since an ethernet header is 14 bytes network drivers often end up with
  1402. * the IP header at an unaligned offset. The IP header can be aligned by
  1403. * shifting the start of the packet by 2 bytes. Drivers should do this
  1404. * with:
  1405. *
  1406. * skb_reserve(skb, NET_IP_ALIGN);
  1407. *
  1408. * The downside to this alignment of the IP header is that the DMA is now
  1409. * unaligned. On some architectures the cost of an unaligned DMA is high
  1410. * and this cost outweighs the gains made by aligning the IP header.
  1411. *
  1412. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1413. * to be overridden.
  1414. */
  1415. #ifndef NET_IP_ALIGN
  1416. #define NET_IP_ALIGN 2
  1417. #endif
  1418. /*
  1419. * The networking layer reserves some headroom in skb data (via
  1420. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1421. * the header has to grow. In the default case, if the header has to grow
  1422. * 32 bytes or less we avoid the reallocation.
  1423. *
  1424. * Unfortunately this headroom changes the DMA alignment of the resulting
  1425. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1426. * on some architectures. An architecture can override this value,
  1427. * perhaps setting it to a cacheline in size (since that will maintain
  1428. * cacheline alignment of the DMA). It must be a power of 2.
  1429. *
  1430. * Various parts of the networking layer expect at least 32 bytes of
  1431. * headroom, you should not reduce this.
  1432. *
  1433. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1434. * to reduce average number of cache lines per packet.
  1435. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1436. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1437. */
  1438. #ifndef NET_SKB_PAD
  1439. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1440. #endif
  1441. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1442. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1443. {
  1444. if (unlikely(skb_is_nonlinear(skb))) {
  1445. WARN_ON(1);
  1446. return;
  1447. }
  1448. skb->len = len;
  1449. skb_set_tail_pointer(skb, len);
  1450. }
  1451. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1452. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1453. {
  1454. if (skb->data_len)
  1455. return ___pskb_trim(skb, len);
  1456. __skb_trim(skb, len);
  1457. return 0;
  1458. }
  1459. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1460. {
  1461. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1462. }
  1463. /**
  1464. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1465. * @skb: buffer to alter
  1466. * @len: new length
  1467. *
  1468. * This is identical to pskb_trim except that the caller knows that
  1469. * the skb is not cloned so we should never get an error due to out-
  1470. * of-memory.
  1471. */
  1472. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1473. {
  1474. int err = pskb_trim(skb, len);
  1475. BUG_ON(err);
  1476. }
  1477. /**
  1478. * skb_orphan - orphan a buffer
  1479. * @skb: buffer to orphan
  1480. *
  1481. * If a buffer currently has an owner then we call the owner's
  1482. * destructor function and make the @skb unowned. The buffer continues
  1483. * to exist but is no longer charged to its former owner.
  1484. */
  1485. static inline void skb_orphan(struct sk_buff *skb)
  1486. {
  1487. if (skb->destructor)
  1488. skb->destructor(skb);
  1489. skb->destructor = NULL;
  1490. skb->sk = NULL;
  1491. }
  1492. /**
  1493. * skb_orphan_frags - orphan the frags contained in a buffer
  1494. * @skb: buffer to orphan frags from
  1495. * @gfp_mask: allocation mask for replacement pages
  1496. *
  1497. * For each frag in the SKB which needs a destructor (i.e. has an
  1498. * owner) create a copy of that frag and release the original
  1499. * page by calling the destructor.
  1500. */
  1501. static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
  1502. {
  1503. if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
  1504. return 0;
  1505. return skb_copy_ubufs(skb, gfp_mask);
  1506. }
  1507. /**
  1508. * __skb_queue_purge - empty a list
  1509. * @list: list to empty
  1510. *
  1511. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1512. * the list and one reference dropped. This function does not take the
  1513. * list lock and the caller must hold the relevant locks to use it.
  1514. */
  1515. extern void skb_queue_purge(struct sk_buff_head *list);
  1516. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1517. {
  1518. struct sk_buff *skb;
  1519. while ((skb = __skb_dequeue(list)) != NULL)
  1520. kfree_skb(skb);
  1521. }
  1522. /**
  1523. * __dev_alloc_skb - allocate an skbuff for receiving
  1524. * @length: length to allocate
  1525. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1526. *
  1527. * Allocate a new &sk_buff and assign it a usage count of one. The
  1528. * buffer has unspecified headroom built in. Users should allocate
  1529. * the headroom they think they need without accounting for the
  1530. * built in space. The built in space is used for optimisations.
  1531. *
  1532. * %NULL is returned if there is no free memory.
  1533. */
  1534. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1535. gfp_t gfp_mask)
  1536. {
  1537. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1538. if (likely(skb))
  1539. skb_reserve(skb, NET_SKB_PAD);
  1540. return skb;
  1541. }
  1542. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1543. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1544. unsigned int length, gfp_t gfp_mask);
  1545. /**
  1546. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1547. * @dev: network device to receive on
  1548. * @length: length to allocate
  1549. *
  1550. * Allocate a new &sk_buff and assign it a usage count of one. The
  1551. * buffer has unspecified headroom built in. Users should allocate
  1552. * the headroom they think they need without accounting for the
  1553. * built in space. The built in space is used for optimisations.
  1554. *
  1555. * %NULL is returned if there is no free memory. Although this function
  1556. * allocates memory it can be called from an interrupt.
  1557. */
  1558. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1559. unsigned int length)
  1560. {
  1561. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1562. }
  1563. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1564. unsigned int length, gfp_t gfp)
  1565. {
  1566. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1567. if (NET_IP_ALIGN && skb)
  1568. skb_reserve(skb, NET_IP_ALIGN);
  1569. return skb;
  1570. }
  1571. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1572. unsigned int length)
  1573. {
  1574. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1575. }
  1576. /**
  1577. * skb_frag_page - retrieve the page refered to by a paged fragment
  1578. * @frag: the paged fragment
  1579. *
  1580. * Returns the &struct page associated with @frag.
  1581. */
  1582. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1583. {
  1584. return frag->page.p;
  1585. }
  1586. /**
  1587. * __skb_frag_ref - take an addition reference on a paged fragment.
  1588. * @frag: the paged fragment
  1589. *
  1590. * Takes an additional reference on the paged fragment @frag.
  1591. */
  1592. static inline void __skb_frag_ref(skb_frag_t *frag)
  1593. {
  1594. get_page(skb_frag_page(frag));
  1595. }
  1596. /**
  1597. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1598. * @skb: the buffer
  1599. * @f: the fragment offset.
  1600. *
  1601. * Takes an additional reference on the @f'th paged fragment of @skb.
  1602. */
  1603. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1604. {
  1605. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1606. }
  1607. /**
  1608. * __skb_frag_unref - release a reference on a paged fragment.
  1609. * @frag: the paged fragment
  1610. *
  1611. * Releases a reference on the paged fragment @frag.
  1612. */
  1613. static inline void __skb_frag_unref(skb_frag_t *frag)
  1614. {
  1615. put_page(skb_frag_page(frag));
  1616. }
  1617. /**
  1618. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1619. * @skb: the buffer
  1620. * @f: the fragment offset
  1621. *
  1622. * Releases a reference on the @f'th paged fragment of @skb.
  1623. */
  1624. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1625. {
  1626. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1627. }
  1628. /**
  1629. * skb_frag_address - gets the address of the data contained in a paged fragment
  1630. * @frag: the paged fragment buffer
  1631. *
  1632. * Returns the address of the data within @frag. The page must already
  1633. * be mapped.
  1634. */
  1635. static inline void *skb_frag_address(const skb_frag_t *frag)
  1636. {
  1637. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1638. }
  1639. /**
  1640. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1641. * @frag: the paged fragment buffer
  1642. *
  1643. * Returns the address of the data within @frag. Checks that the page
  1644. * is mapped and returns %NULL otherwise.
  1645. */
  1646. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1647. {
  1648. void *ptr = page_address(skb_frag_page(frag));
  1649. if (unlikely(!ptr))
  1650. return NULL;
  1651. return ptr + frag->page_offset;
  1652. }
  1653. /**
  1654. * __skb_frag_set_page - sets the page contained in a paged fragment
  1655. * @frag: the paged fragment
  1656. * @page: the page to set
  1657. *
  1658. * Sets the fragment @frag to contain @page.
  1659. */
  1660. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1661. {
  1662. frag->page.p = page;
  1663. }
  1664. /**
  1665. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1666. * @skb: the buffer
  1667. * @f: the fragment offset
  1668. * @page: the page to set
  1669. *
  1670. * Sets the @f'th fragment of @skb to contain @page.
  1671. */
  1672. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1673. struct page *page)
  1674. {
  1675. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1676. }
  1677. /**
  1678. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1679. * @dev: the device to map the fragment to
  1680. * @frag: the paged fragment to map
  1681. * @offset: the offset within the fragment (starting at the
  1682. * fragment's own offset)
  1683. * @size: the number of bytes to map
  1684. * @dir: the direction of the mapping (%PCI_DMA_*)
  1685. *
  1686. * Maps the page associated with @frag to @device.
  1687. */
  1688. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1689. const skb_frag_t *frag,
  1690. size_t offset, size_t size,
  1691. enum dma_data_direction dir)
  1692. {
  1693. return dma_map_page(dev, skb_frag_page(frag),
  1694. frag->page_offset + offset, size, dir);
  1695. }
  1696. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  1697. gfp_t gfp_mask)
  1698. {
  1699. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  1700. }
  1701. /**
  1702. * skb_clone_writable - is the header of a clone writable
  1703. * @skb: buffer to check
  1704. * @len: length up to which to write
  1705. *
  1706. * Returns true if modifying the header part of the cloned buffer
  1707. * does not requires the data to be copied.
  1708. */
  1709. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1710. {
  1711. return !skb_header_cloned(skb) &&
  1712. skb_headroom(skb) + len <= skb->hdr_len;
  1713. }
  1714. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1715. int cloned)
  1716. {
  1717. int delta = 0;
  1718. if (headroom > skb_headroom(skb))
  1719. delta = headroom - skb_headroom(skb);
  1720. if (delta || cloned)
  1721. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1722. GFP_ATOMIC);
  1723. return 0;
  1724. }
  1725. /**
  1726. * skb_cow - copy header of skb when it is required
  1727. * @skb: buffer to cow
  1728. * @headroom: needed headroom
  1729. *
  1730. * If the skb passed lacks sufficient headroom or its data part
  1731. * is shared, data is reallocated. If reallocation fails, an error
  1732. * is returned and original skb is not changed.
  1733. *
  1734. * The result is skb with writable area skb->head...skb->tail
  1735. * and at least @headroom of space at head.
  1736. */
  1737. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1738. {
  1739. return __skb_cow(skb, headroom, skb_cloned(skb));
  1740. }
  1741. /**
  1742. * skb_cow_head - skb_cow but only making the head writable
  1743. * @skb: buffer to cow
  1744. * @headroom: needed headroom
  1745. *
  1746. * This function is identical to skb_cow except that we replace the
  1747. * skb_cloned check by skb_header_cloned. It should be used when
  1748. * you only need to push on some header and do not need to modify
  1749. * the data.
  1750. */
  1751. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1752. {
  1753. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1754. }
  1755. /**
  1756. * skb_padto - pad an skbuff up to a minimal size
  1757. * @skb: buffer to pad
  1758. * @len: minimal length
  1759. *
  1760. * Pads up a buffer to ensure the trailing bytes exist and are
  1761. * blanked. If the buffer already contains sufficient data it
  1762. * is untouched. Otherwise it is extended. Returns zero on
  1763. * success. The skb is freed on error.
  1764. */
  1765. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1766. {
  1767. unsigned int size = skb->len;
  1768. if (likely(size >= len))
  1769. return 0;
  1770. return skb_pad(skb, len - size);
  1771. }
  1772. static inline int skb_add_data(struct sk_buff *skb,
  1773. char __user *from, int copy)
  1774. {
  1775. const int off = skb->len;
  1776. if (skb->ip_summed == CHECKSUM_NONE) {
  1777. int err = 0;
  1778. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1779. copy, 0, &err);
  1780. if (!err) {
  1781. skb->csum = csum_block_add(skb->csum, csum, off);
  1782. return 0;
  1783. }
  1784. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1785. return 0;
  1786. __skb_trim(skb, off);
  1787. return -EFAULT;
  1788. }
  1789. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1790. const struct page *page, int off)
  1791. {
  1792. if (i) {
  1793. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1794. return page == skb_frag_page(frag) &&
  1795. off == frag->page_offset + skb_frag_size(frag);
  1796. }
  1797. return 0;
  1798. }
  1799. static inline int __skb_linearize(struct sk_buff *skb)
  1800. {
  1801. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1802. }
  1803. /**
  1804. * skb_linearize - convert paged skb to linear one
  1805. * @skb: buffer to linarize
  1806. *
  1807. * If there is no free memory -ENOMEM is returned, otherwise zero
  1808. * is returned and the old skb data released.
  1809. */
  1810. static inline int skb_linearize(struct sk_buff *skb)
  1811. {
  1812. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1813. }
  1814. /**
  1815. * skb_linearize_cow - make sure skb is linear and writable
  1816. * @skb: buffer to process
  1817. *
  1818. * If there is no free memory -ENOMEM is returned, otherwise zero
  1819. * is returned and the old skb data released.
  1820. */
  1821. static inline int skb_linearize_cow(struct sk_buff *skb)
  1822. {
  1823. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1824. __skb_linearize(skb) : 0;
  1825. }
  1826. /**
  1827. * skb_postpull_rcsum - update checksum for received skb after pull
  1828. * @skb: buffer to update
  1829. * @start: start of data before pull
  1830. * @len: length of data pulled
  1831. *
  1832. * After doing a pull on a received packet, you need to call this to
  1833. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1834. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1835. */
  1836. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1837. const void *start, unsigned int len)
  1838. {
  1839. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1840. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1841. }
  1842. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1843. /**
  1844. * pskb_trim_rcsum - trim received skb and update checksum
  1845. * @skb: buffer to trim
  1846. * @len: new length
  1847. *
  1848. * This is exactly the same as pskb_trim except that it ensures the
  1849. * checksum of received packets are still valid after the operation.
  1850. */
  1851. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1852. {
  1853. if (likely(len >= skb->len))
  1854. return 0;
  1855. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1856. skb->ip_summed = CHECKSUM_NONE;
  1857. return __pskb_trim(skb, len);
  1858. }
  1859. #define skb_queue_walk(queue, skb) \
  1860. for (skb = (queue)->next; \
  1861. skb != (struct sk_buff *)(queue); \
  1862. skb = skb->next)
  1863. #define skb_queue_walk_safe(queue, skb, tmp) \
  1864. for (skb = (queue)->next, tmp = skb->next; \
  1865. skb != (struct sk_buff *)(queue); \
  1866. skb = tmp, tmp = skb->next)
  1867. #define skb_queue_walk_from(queue, skb) \
  1868. for (; skb != (struct sk_buff *)(queue); \
  1869. skb = skb->next)
  1870. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1871. for (tmp = skb->next; \
  1872. skb != (struct sk_buff *)(queue); \
  1873. skb = tmp, tmp = skb->next)
  1874. #define skb_queue_reverse_walk(queue, skb) \
  1875. for (skb = (queue)->prev; \
  1876. skb != (struct sk_buff *)(queue); \
  1877. skb = skb->prev)
  1878. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  1879. for (skb = (queue)->prev, tmp = skb->prev; \
  1880. skb != (struct sk_buff *)(queue); \
  1881. skb = tmp, tmp = skb->prev)
  1882. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  1883. for (tmp = skb->prev; \
  1884. skb != (struct sk_buff *)(queue); \
  1885. skb = tmp, tmp = skb->prev)
  1886. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  1887. {
  1888. return skb_shinfo(skb)->frag_list != NULL;
  1889. }
  1890. static inline void skb_frag_list_init(struct sk_buff *skb)
  1891. {
  1892. skb_shinfo(skb)->frag_list = NULL;
  1893. }
  1894. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  1895. {
  1896. frag->next = skb_shinfo(skb)->frag_list;
  1897. skb_shinfo(skb)->frag_list = frag;
  1898. }
  1899. #define skb_walk_frags(skb, iter) \
  1900. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  1901. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1902. int *peeked, int *off, int *err);
  1903. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1904. int noblock, int *err);
  1905. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1906. struct poll_table_struct *wait);
  1907. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1908. int offset, struct iovec *to,
  1909. int size);
  1910. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1911. int hlen,
  1912. struct iovec *iov, int len);
  1913. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1914. int offset,
  1915. const struct iovec *from,
  1916. int from_offset,
  1917. int len);
  1918. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  1919. int offset,
  1920. const struct iovec *to,
  1921. int to_offset,
  1922. int size);
  1923. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1924. extern void skb_free_datagram_locked(struct sock *sk,
  1925. struct sk_buff *skb);
  1926. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1927. unsigned int flags);
  1928. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1929. int len, __wsum csum);
  1930. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1931. void *to, int len);
  1932. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1933. const void *from, int len);
  1934. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1935. int offset, u8 *to, int len,
  1936. __wsum csum);
  1937. extern int skb_splice_bits(struct sk_buff *skb,
  1938. unsigned int offset,
  1939. struct pipe_inode_info *pipe,
  1940. unsigned int len,
  1941. unsigned int flags);
  1942. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1943. extern void skb_split(struct sk_buff *skb,
  1944. struct sk_buff *skb1, const u32 len);
  1945. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1946. int shiftlen);
  1947. extern struct sk_buff *skb_segment(struct sk_buff *skb,
  1948. netdev_features_t features);
  1949. unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
  1950. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1951. int len, void *buffer)
  1952. {
  1953. int hlen = skb_headlen(skb);
  1954. if (hlen - offset >= len)
  1955. return skb->data + offset;
  1956. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1957. return NULL;
  1958. return buffer;
  1959. }
  1960. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1961. void *to,
  1962. const unsigned int len)
  1963. {
  1964. memcpy(to, skb->data, len);
  1965. }
  1966. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1967. const int offset, void *to,
  1968. const unsigned int len)
  1969. {
  1970. memcpy(to, skb->data + offset, len);
  1971. }
  1972. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1973. const void *from,
  1974. const unsigned int len)
  1975. {
  1976. memcpy(skb->data, from, len);
  1977. }
  1978. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1979. const int offset,
  1980. const void *from,
  1981. const unsigned int len)
  1982. {
  1983. memcpy(skb->data + offset, from, len);
  1984. }
  1985. extern void skb_init(void);
  1986. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1987. {
  1988. return skb->tstamp;
  1989. }
  1990. /**
  1991. * skb_get_timestamp - get timestamp from a skb
  1992. * @skb: skb to get stamp from
  1993. * @stamp: pointer to struct timeval to store stamp in
  1994. *
  1995. * Timestamps are stored in the skb as offsets to a base timestamp.
  1996. * This function converts the offset back to a struct timeval and stores
  1997. * it in stamp.
  1998. */
  1999. static inline void skb_get_timestamp(const struct sk_buff *skb,
  2000. struct timeval *stamp)
  2001. {
  2002. *stamp = ktime_to_timeval(skb->tstamp);
  2003. }
  2004. static inline void skb_get_timestampns(const struct sk_buff *skb,
  2005. struct timespec *stamp)
  2006. {
  2007. *stamp = ktime_to_timespec(skb->tstamp);
  2008. }
  2009. static inline void __net_timestamp(struct sk_buff *skb)
  2010. {
  2011. skb->tstamp = ktime_get_real();
  2012. }
  2013. static inline ktime_t net_timedelta(ktime_t t)
  2014. {
  2015. return ktime_sub(ktime_get_real(), t);
  2016. }
  2017. static inline ktime_t net_invalid_timestamp(void)
  2018. {
  2019. return ktime_set(0, 0);
  2020. }
  2021. extern void skb_timestamping_init(void);
  2022. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  2023. extern void skb_clone_tx_timestamp(struct sk_buff *skb);
  2024. extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
  2025. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  2026. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  2027. {
  2028. }
  2029. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  2030. {
  2031. return false;
  2032. }
  2033. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  2034. /**
  2035. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  2036. *
  2037. * PHY drivers may accept clones of transmitted packets for
  2038. * timestamping via their phy_driver.txtstamp method. These drivers
  2039. * must call this function to return the skb back to the stack, with
  2040. * or without a timestamp.
  2041. *
  2042. * @skb: clone of the the original outgoing packet
  2043. * @hwtstamps: hardware time stamps, may be NULL if not available
  2044. *
  2045. */
  2046. void skb_complete_tx_timestamp(struct sk_buff *skb,
  2047. struct skb_shared_hwtstamps *hwtstamps);
  2048. /**
  2049. * skb_tstamp_tx - queue clone of skb with send time stamps
  2050. * @orig_skb: the original outgoing packet
  2051. * @hwtstamps: hardware time stamps, may be NULL if not available
  2052. *
  2053. * If the skb has a socket associated, then this function clones the
  2054. * skb (thus sharing the actual data and optional structures), stores
  2055. * the optional hardware time stamping information (if non NULL) or
  2056. * generates a software time stamp (otherwise), then queues the clone
  2057. * to the error queue of the socket. Errors are silently ignored.
  2058. */
  2059. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  2060. struct skb_shared_hwtstamps *hwtstamps);
  2061. static inline void sw_tx_timestamp(struct sk_buff *skb)
  2062. {
  2063. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  2064. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  2065. skb_tstamp_tx(skb, NULL);
  2066. }
  2067. /**
  2068. * skb_tx_timestamp() - Driver hook for transmit timestamping
  2069. *
  2070. * Ethernet MAC Drivers should call this function in their hard_xmit()
  2071. * function immediately before giving the sk_buff to the MAC hardware.
  2072. *
  2073. * @skb: A socket buffer.
  2074. */
  2075. static inline void skb_tx_timestamp(struct sk_buff *skb)
  2076. {
  2077. skb_clone_tx_timestamp(skb);
  2078. sw_tx_timestamp(skb);
  2079. }
  2080. /**
  2081. * skb_complete_wifi_ack - deliver skb with wifi status
  2082. *
  2083. * @skb: the original outgoing packet
  2084. * @acked: ack status
  2085. *
  2086. */
  2087. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  2088. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2089. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2090. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2091. {
  2092. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  2093. }
  2094. /**
  2095. * skb_checksum_complete - Calculate checksum of an entire packet
  2096. * @skb: packet to process
  2097. *
  2098. * This function calculates the checksum over the entire packet plus
  2099. * the value of skb->csum. The latter can be used to supply the
  2100. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2101. * checksum.
  2102. *
  2103. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2104. * this function can be used to verify that checksum on received
  2105. * packets. In that case the function should return zero if the
  2106. * checksum is correct. In particular, this function will return zero
  2107. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2108. * hardware has already verified the correctness of the checksum.
  2109. */
  2110. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2111. {
  2112. return skb_csum_unnecessary(skb) ?
  2113. 0 : __skb_checksum_complete(skb);
  2114. }
  2115. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2116. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2117. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2118. {
  2119. if (nfct && atomic_dec_and_test(&nfct->use))
  2120. nf_conntrack_destroy(nfct);
  2121. }
  2122. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2123. {
  2124. if (nfct)
  2125. atomic_inc(&nfct->use);
  2126. }
  2127. #endif
  2128. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2129. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  2130. {
  2131. if (skb)
  2132. atomic_inc(&skb->users);
  2133. }
  2134. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  2135. {
  2136. if (skb)
  2137. kfree_skb(skb);
  2138. }
  2139. #endif
  2140. #ifdef CONFIG_BRIDGE_NETFILTER
  2141. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2142. {
  2143. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2144. kfree(nf_bridge);
  2145. }
  2146. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2147. {
  2148. if (nf_bridge)
  2149. atomic_inc(&nf_bridge->use);
  2150. }
  2151. #endif /* CONFIG_BRIDGE_NETFILTER */
  2152. static inline void nf_reset(struct sk_buff *skb)
  2153. {
  2154. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2155. nf_conntrack_put(skb->nfct);
  2156. skb->nfct = NULL;
  2157. #endif
  2158. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2159. nf_conntrack_put_reasm(skb->nfct_reasm);
  2160. skb->nfct_reasm = NULL;
  2161. #endif
  2162. #ifdef CONFIG_BRIDGE_NETFILTER
  2163. nf_bridge_put(skb->nf_bridge);
  2164. skb->nf_bridge = NULL;
  2165. #endif
  2166. }
  2167. static inline void nf_reset_trace(struct sk_buff *skb)
  2168. {
  2169. #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
  2170. skb->nf_trace = 0;
  2171. #endif
  2172. }
  2173. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2174. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2175. {
  2176. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2177. dst->nfct = src->nfct;
  2178. nf_conntrack_get(src->nfct);
  2179. dst->nfctinfo = src->nfctinfo;
  2180. #endif
  2181. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2182. dst->nfct_reasm = src->nfct_reasm;
  2183. nf_conntrack_get_reasm(src->nfct_reasm);
  2184. #endif
  2185. #ifdef CONFIG_BRIDGE_NETFILTER
  2186. dst->nf_bridge = src->nf_bridge;
  2187. nf_bridge_get(src->nf_bridge);
  2188. #endif
  2189. }
  2190. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2191. {
  2192. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2193. nf_conntrack_put(dst->nfct);
  2194. #endif
  2195. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2196. nf_conntrack_put_reasm(dst->nfct_reasm);
  2197. #endif
  2198. #ifdef CONFIG_BRIDGE_NETFILTER
  2199. nf_bridge_put(dst->nf_bridge);
  2200. #endif
  2201. __nf_copy(dst, src);
  2202. }
  2203. #ifdef CONFIG_NETWORK_SECMARK
  2204. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2205. {
  2206. to->secmark = from->secmark;
  2207. }
  2208. static inline void skb_init_secmark(struct sk_buff *skb)
  2209. {
  2210. skb->secmark = 0;
  2211. }
  2212. #else
  2213. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2214. { }
  2215. static inline void skb_init_secmark(struct sk_buff *skb)
  2216. { }
  2217. #endif
  2218. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2219. {
  2220. skb->queue_mapping = queue_mapping;
  2221. }
  2222. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2223. {
  2224. return skb->queue_mapping;
  2225. }
  2226. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2227. {
  2228. to->queue_mapping = from->queue_mapping;
  2229. }
  2230. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2231. {
  2232. skb->queue_mapping = rx_queue + 1;
  2233. }
  2234. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2235. {
  2236. return skb->queue_mapping - 1;
  2237. }
  2238. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2239. {
  2240. return skb->queue_mapping != 0;
  2241. }
  2242. extern u16 __skb_tx_hash(const struct net_device *dev,
  2243. const struct sk_buff *skb,
  2244. unsigned int num_tx_queues);
  2245. #ifdef CONFIG_XFRM
  2246. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2247. {
  2248. return skb->sp;
  2249. }
  2250. #else
  2251. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2252. {
  2253. return NULL;
  2254. }
  2255. #endif
  2256. static inline bool skb_is_gso(const struct sk_buff *skb)
  2257. {
  2258. return skb_shinfo(skb)->gso_size;
  2259. }
  2260. static inline bool skb_is_gso_v6(const struct sk_buff *skb)
  2261. {
  2262. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2263. }
  2264. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2265. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2266. {
  2267. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2268. * wanted then gso_type will be set. */
  2269. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2270. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2271. unlikely(shinfo->gso_type == 0)) {
  2272. __skb_warn_lro_forwarding(skb);
  2273. return true;
  2274. }
  2275. return false;
  2276. }
  2277. static inline void skb_forward_csum(struct sk_buff *skb)
  2278. {
  2279. /* Unfortunately we don't support this one. Any brave souls? */
  2280. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2281. skb->ip_summed = CHECKSUM_NONE;
  2282. }
  2283. /**
  2284. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2285. * @skb: skb to check
  2286. *
  2287. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2288. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2289. * use this helper, to document places where we make this assertion.
  2290. */
  2291. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2292. {
  2293. #ifdef DEBUG
  2294. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2295. #endif
  2296. }
  2297. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2298. static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
  2299. {
  2300. if (irqs_disabled())
  2301. return false;
  2302. if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
  2303. return false;
  2304. if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
  2305. return false;
  2306. skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
  2307. if (skb_end_offset(skb) < skb_size)
  2308. return false;
  2309. if (skb_shared(skb) || skb_cloned(skb))
  2310. return false;
  2311. return true;
  2312. }
  2313. #endif /* __KERNEL__ */
  2314. #endif /* _LINUX_SKBUFF_H */