rmap.h 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275
  1. #ifndef _LINUX_RMAP_H
  2. #define _LINUX_RMAP_H
  3. /*
  4. * Declarations for Reverse Mapping functions in mm/rmap.c
  5. */
  6. #include <linux/list.h>
  7. #include <linux/slab.h>
  8. #include <linux/mm.h>
  9. #include <linux/mutex.h>
  10. #include <linux/memcontrol.h>
  11. /*
  12. * The anon_vma heads a list of private "related" vmas, to scan if
  13. * an anonymous page pointing to this anon_vma needs to be unmapped:
  14. * the vmas on the list will be related by forking, or by splitting.
  15. *
  16. * Since vmas come and go as they are split and merged (particularly
  17. * in mprotect), the mapping field of an anonymous page cannot point
  18. * directly to a vma: instead it points to an anon_vma, on whose list
  19. * the related vmas can be easily linked or unlinked.
  20. *
  21. * After unlinking the last vma on the list, we must garbage collect
  22. * the anon_vma object itself: we're guaranteed no page can be
  23. * pointing to this anon_vma once its vma list is empty.
  24. */
  25. struct anon_vma {
  26. struct anon_vma *root; /* Root of this anon_vma tree */
  27. struct mutex mutex; /* Serialize access to vma list */
  28. /*
  29. * The refcount is taken on an anon_vma when there is no
  30. * guarantee that the vma of page tables will exist for
  31. * the duration of the operation. A caller that takes
  32. * the reference is responsible for clearing up the
  33. * anon_vma if they are the last user on release
  34. */
  35. atomic_t refcount;
  36. /*
  37. * Count of child anon_vmas and VMAs which points to this anon_vma.
  38. *
  39. * This counter is used for making decision about reusing anon_vma
  40. * instead of forking new one. See comments in function anon_vma_clone.
  41. */
  42. unsigned degree;
  43. struct anon_vma *parent; /* Parent of this anon_vma */
  44. /*
  45. * NOTE: the LSB of the head.next is set by
  46. * mm_take_all_locks() _after_ taking the above lock. So the
  47. * head must only be read/written after taking the above lock
  48. * to be sure to see a valid next pointer. The LSB bit itself
  49. * is serialized by a system wide lock only visible to
  50. * mm_take_all_locks() (mm_all_locks_mutex).
  51. */
  52. struct list_head head; /* Chain of private "related" vmas */
  53. };
  54. /*
  55. * The copy-on-write semantics of fork mean that an anon_vma
  56. * can become associated with multiple processes. Furthermore,
  57. * each child process will have its own anon_vma, where new
  58. * pages for that process are instantiated.
  59. *
  60. * This structure allows us to find the anon_vmas associated
  61. * with a VMA, or the VMAs associated with an anon_vma.
  62. * The "same_vma" list contains the anon_vma_chains linking
  63. * all the anon_vmas associated with this VMA.
  64. * The "same_anon_vma" list contains the anon_vma_chains
  65. * which link all the VMAs associated with this anon_vma.
  66. */
  67. struct anon_vma_chain {
  68. struct vm_area_struct *vma;
  69. struct anon_vma *anon_vma;
  70. struct list_head same_vma; /* locked by mmap_sem & page_table_lock */
  71. struct list_head same_anon_vma; /* locked by anon_vma->mutex */
  72. };
  73. enum ttu_flags {
  74. TTU_UNMAP = 0, /* unmap mode */
  75. TTU_MIGRATION = 1, /* migration mode */
  76. TTU_MUNLOCK = 2, /* munlock mode */
  77. TTU_ACTION_MASK = 0xff,
  78. TTU_IGNORE_MLOCK = (1 << 8), /* ignore mlock */
  79. TTU_IGNORE_ACCESS = (1 << 9), /* don't age */
  80. TTU_IGNORE_HWPOISON = (1 << 10),/* corrupted page is recoverable */
  81. };
  82. #ifdef CONFIG_MMU
  83. static inline void get_anon_vma(struct anon_vma *anon_vma)
  84. {
  85. atomic_inc(&anon_vma->refcount);
  86. }
  87. void __put_anon_vma(struct anon_vma *anon_vma);
  88. static inline void put_anon_vma(struct anon_vma *anon_vma)
  89. {
  90. if (atomic_dec_and_test(&anon_vma->refcount))
  91. __put_anon_vma(anon_vma);
  92. }
  93. static inline struct anon_vma *page_anon_vma(struct page *page)
  94. {
  95. if (((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) !=
  96. PAGE_MAPPING_ANON)
  97. return NULL;
  98. return page_rmapping(page);
  99. }
  100. static inline void vma_lock_anon_vma(struct vm_area_struct *vma)
  101. {
  102. struct anon_vma *anon_vma = vma->anon_vma;
  103. if (anon_vma)
  104. mutex_lock(&anon_vma->root->mutex);
  105. }
  106. static inline void vma_unlock_anon_vma(struct vm_area_struct *vma)
  107. {
  108. struct anon_vma *anon_vma = vma->anon_vma;
  109. if (anon_vma)
  110. mutex_unlock(&anon_vma->root->mutex);
  111. }
  112. static inline void anon_vma_lock(struct anon_vma *anon_vma)
  113. {
  114. mutex_lock(&anon_vma->root->mutex);
  115. }
  116. static inline void anon_vma_unlock(struct anon_vma *anon_vma)
  117. {
  118. mutex_unlock(&anon_vma->root->mutex);
  119. }
  120. /*
  121. * anon_vma helper functions.
  122. */
  123. void anon_vma_init(void); /* create anon_vma_cachep */
  124. int anon_vma_prepare(struct vm_area_struct *);
  125. void unlink_anon_vmas(struct vm_area_struct *);
  126. int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
  127. void anon_vma_moveto_tail(struct vm_area_struct *);
  128. int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
  129. static inline void anon_vma_merge(struct vm_area_struct *vma,
  130. struct vm_area_struct *next)
  131. {
  132. VM_BUG_ON(vma->anon_vma != next->anon_vma);
  133. unlink_anon_vmas(next);
  134. }
  135. struct anon_vma *page_get_anon_vma(struct page *page);
  136. /*
  137. * rmap interfaces called when adding or removing pte of page
  138. */
  139. void page_move_anon_rmap(struct page *, struct vm_area_struct *, unsigned long);
  140. void page_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long);
  141. void do_page_add_anon_rmap(struct page *, struct vm_area_struct *,
  142. unsigned long, int);
  143. void page_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long);
  144. void page_add_file_rmap(struct page *);
  145. void page_remove_rmap(struct page *);
  146. void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
  147. unsigned long);
  148. void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
  149. unsigned long);
  150. static inline void page_dup_rmap(struct page *page)
  151. {
  152. atomic_inc(&page->_mapcount);
  153. }
  154. /*
  155. * Called from mm/vmscan.c to handle paging out
  156. */
  157. int page_referenced(struct page *, int is_locked,
  158. struct mem_cgroup *memcg, unsigned long *vm_flags);
  159. int page_referenced_one(struct page *, struct vm_area_struct *,
  160. unsigned long address, unsigned int *mapcount, unsigned long *vm_flags);
  161. #define TTU_ACTION(x) ((x) & TTU_ACTION_MASK)
  162. bool is_vma_temporary_stack(struct vm_area_struct *vma);
  163. int try_to_unmap(struct page *, enum ttu_flags flags);
  164. int try_to_unmap_one(struct page *, struct vm_area_struct *,
  165. unsigned long address, enum ttu_flags flags);
  166. /*
  167. * Called from mm/filemap_xip.c to unmap empty zero page
  168. */
  169. pte_t *__page_check_address(struct page *, struct mm_struct *,
  170. unsigned long, spinlock_t **, int);
  171. static inline pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  172. unsigned long address,
  173. spinlock_t **ptlp, int sync)
  174. {
  175. pte_t *ptep;
  176. __cond_lock(*ptlp, ptep = __page_check_address(page, mm, address,
  177. ptlp, sync));
  178. return ptep;
  179. }
  180. /*
  181. * Used by swapoff to help locate where page is expected in vma.
  182. */
  183. unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
  184. /*
  185. * Cleans the PTEs of shared mappings.
  186. * (and since clean PTEs should also be readonly, write protects them too)
  187. *
  188. * returns the number of cleaned PTEs.
  189. */
  190. int page_mkclean(struct page *);
  191. /*
  192. * called in munlock()/munmap() path to check for other vmas holding
  193. * the page mlocked.
  194. */
  195. int try_to_munlock(struct page *);
  196. /*
  197. * Called by memory-failure.c to kill processes.
  198. */
  199. struct anon_vma *page_lock_anon_vma(struct page *page);
  200. void page_unlock_anon_vma(struct anon_vma *anon_vma);
  201. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
  202. /*
  203. * Called by migrate.c to remove migration ptes, but might be used more later.
  204. */
  205. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  206. struct vm_area_struct *, unsigned long, void *), void *arg);
  207. #else /* !CONFIG_MMU */
  208. #define anon_vma_init() do {} while (0)
  209. #define anon_vma_prepare(vma) (0)
  210. #define anon_vma_link(vma) do {} while (0)
  211. static inline int page_referenced(struct page *page, int is_locked,
  212. struct mem_cgroup *memcg,
  213. unsigned long *vm_flags)
  214. {
  215. *vm_flags = 0;
  216. return 0;
  217. }
  218. #define try_to_unmap(page, refs) SWAP_FAIL
  219. static inline int page_mkclean(struct page *page)
  220. {
  221. return 0;
  222. }
  223. #endif /* CONFIG_MMU */
  224. /*
  225. * Return values of try_to_unmap
  226. */
  227. #define SWAP_SUCCESS 0
  228. #define SWAP_AGAIN 1
  229. #define SWAP_FAIL 2
  230. #define SWAP_MLOCK 3
  231. #endif /* _LINUX_RMAP_H */