123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953 |
- /*
- * Read-Copy Update mechanism for mutual exclusion
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- *
- * Copyright IBM Corporation, 2001
- *
- * Author: Dipankar Sarma <dipankar@in.ibm.com>
- *
- * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
- * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
- * Papers:
- * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
- * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
- *
- * For detailed explanation of Read-Copy Update mechanism see -
- * http://lse.sourceforge.net/locking/rcupdate.html
- *
- */
- #ifndef __LINUX_RCUPDATE_H
- #define __LINUX_RCUPDATE_H
- #include <linux/types.h>
- #include <linux/cache.h>
- #include <linux/spinlock.h>
- #include <linux/threads.h>
- #include <linux/cpumask.h>
- #include <linux/seqlock.h>
- #include <linux/lockdep.h>
- #include <linux/completion.h>
- #include <linux/debugobjects.h>
- #include <linux/bug.h>
- #include <linux/compiler.h>
- #ifdef CONFIG_RCU_TORTURE_TEST
- extern int rcutorture_runnable; /* for sysctl */
- #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
- #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
- extern void rcutorture_record_test_transition(void);
- extern void rcutorture_record_progress(unsigned long vernum);
- extern void do_trace_rcu_torture_read(char *rcutorturename,
- struct rcu_head *rhp);
- #else
- static inline void rcutorture_record_test_transition(void)
- {
- }
- static inline void rcutorture_record_progress(unsigned long vernum)
- {
- }
- #ifdef CONFIG_RCU_TRACE
- extern void do_trace_rcu_torture_read(char *rcutorturename,
- struct rcu_head *rhp);
- #else
- #define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0)
- #endif
- #endif
- #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
- #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
- #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
- #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
- /* Exported common interfaces */
- #ifdef CONFIG_PREEMPT_RCU
- /**
- * call_rcu() - Queue an RCU callback for invocation after a grace period.
- * @head: structure to be used for queueing the RCU updates.
- * @func: actual callback function to be invoked after the grace period
- *
- * The callback function will be invoked some time after a full grace
- * period elapses, in other words after all pre-existing RCU read-side
- * critical sections have completed. However, the callback function
- * might well execute concurrently with RCU read-side critical sections
- * that started after call_rcu() was invoked. RCU read-side critical
- * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
- * and may be nested.
- */
- extern void call_rcu(struct rcu_head *head,
- void (*func)(struct rcu_head *head));
- #else /* #ifdef CONFIG_PREEMPT_RCU */
- /* In classic RCU, call_rcu() is just call_rcu_sched(). */
- #define call_rcu call_rcu_sched
- #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
- /**
- * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
- * @head: structure to be used for queueing the RCU updates.
- * @func: actual callback function to be invoked after the grace period
- *
- * The callback function will be invoked some time after a full grace
- * period elapses, in other words after all currently executing RCU
- * read-side critical sections have completed. call_rcu_bh() assumes
- * that the read-side critical sections end on completion of a softirq
- * handler. This means that read-side critical sections in process
- * context must not be interrupted by softirqs. This interface is to be
- * used when most of the read-side critical sections are in softirq context.
- * RCU read-side critical sections are delimited by :
- * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
- * OR
- * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
- * These may be nested.
- */
- extern void call_rcu_bh(struct rcu_head *head,
- void (*func)(struct rcu_head *head));
- /**
- * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
- * @head: structure to be used for queueing the RCU updates.
- * @func: actual callback function to be invoked after the grace period
- *
- * The callback function will be invoked some time after a full grace
- * period elapses, in other words after all currently executing RCU
- * read-side critical sections have completed. call_rcu_sched() assumes
- * that the read-side critical sections end on enabling of preemption
- * or on voluntary preemption.
- * RCU read-side critical sections are delimited by :
- * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
- * OR
- * anything that disables preemption.
- * These may be nested.
- */
- extern void call_rcu_sched(struct rcu_head *head,
- void (*func)(struct rcu_head *rcu));
- extern void synchronize_sched(void);
- #ifdef CONFIG_PREEMPT_RCU
- extern void __rcu_read_lock(void);
- extern void __rcu_read_unlock(void);
- void synchronize_rcu(void);
- /*
- * Defined as a macro as it is a very low level header included from
- * areas that don't even know about current. This gives the rcu_read_lock()
- * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
- * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
- */
- #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
- #else /* #ifdef CONFIG_PREEMPT_RCU */
- static inline void __rcu_read_lock(void)
- {
- preempt_disable();
- }
- static inline void __rcu_read_unlock(void)
- {
- preempt_enable();
- }
- static inline void synchronize_rcu(void)
- {
- synchronize_sched();
- }
- static inline int rcu_preempt_depth(void)
- {
- return 0;
- }
- #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
- /* Internal to kernel */
- extern void rcu_sched_qs(int cpu);
- extern void rcu_bh_qs(int cpu);
- extern void rcu_check_callbacks(int cpu, int user);
- struct notifier_block;
- extern void rcu_idle_enter(void);
- extern void rcu_idle_exit(void);
- extern void rcu_irq_enter(void);
- extern void rcu_irq_exit(void);
- extern void exit_rcu(void);
- /**
- * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
- * @a: Code that RCU needs to pay attention to.
- *
- * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
- * in the inner idle loop, that is, between the rcu_idle_enter() and
- * the rcu_idle_exit() -- RCU will happily ignore any such read-side
- * critical sections. However, things like powertop need tracepoints
- * in the inner idle loop.
- *
- * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
- * will tell RCU that it needs to pay attending, invoke its argument
- * (in this example, a call to the do_something_with_RCU() function),
- * and then tell RCU to go back to ignoring this CPU. It is permissible
- * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
- * quite limited. If deeper nesting is required, it will be necessary
- * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
- *
- * This macro may be used from process-level code only.
- */
- #define RCU_NONIDLE(a) \
- do { \
- rcu_idle_exit(); \
- do { a; } while (0); \
- rcu_idle_enter(); \
- } while (0)
- /*
- * Infrastructure to implement the synchronize_() primitives in
- * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
- */
- typedef void call_rcu_func_t(struct rcu_head *head,
- void (*func)(struct rcu_head *head));
- void wait_rcu_gp(call_rcu_func_t crf);
- #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
- #include <linux/rcutree.h>
- #elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
- #include <linux/rcutiny.h>
- #else
- #error "Unknown RCU implementation specified to kernel configuration"
- #endif
- /*
- * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
- * initialization and destruction of rcu_head on the stack. rcu_head structures
- * allocated dynamically in the heap or defined statically don't need any
- * initialization.
- */
- #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
- extern void init_rcu_head_on_stack(struct rcu_head *head);
- extern void destroy_rcu_head_on_stack(struct rcu_head *head);
- #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
- static inline void init_rcu_head_on_stack(struct rcu_head *head)
- {
- }
- static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
- {
- }
- #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
- #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
- bool rcu_lockdep_current_cpu_online(void);
- #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
- static inline bool rcu_lockdep_current_cpu_online(void)
- {
- return 1;
- }
- #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
- #ifdef CONFIG_DEBUG_LOCK_ALLOC
- #ifdef CONFIG_PROVE_RCU
- extern int rcu_is_cpu_idle(void);
- #else /* !CONFIG_PROVE_RCU */
- static inline int rcu_is_cpu_idle(void)
- {
- return 0;
- }
- #endif /* else !CONFIG_PROVE_RCU */
- static inline void rcu_lock_acquire(struct lockdep_map *map)
- {
- lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
- }
- static inline void rcu_lock_release(struct lockdep_map *map)
- {
- lock_release(map, 1, _THIS_IP_);
- }
- extern struct lockdep_map rcu_lock_map;
- extern struct lockdep_map rcu_bh_lock_map;
- extern struct lockdep_map rcu_sched_lock_map;
- extern int debug_lockdep_rcu_enabled(void);
- /**
- * rcu_read_lock_held() - might we be in RCU read-side critical section?
- *
- * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
- * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
- * this assumes we are in an RCU read-side critical section unless it can
- * prove otherwise. This is useful for debug checks in functions that
- * require that they be called within an RCU read-side critical section.
- *
- * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
- * and while lockdep is disabled.
- *
- * Note that rcu_read_lock() and the matching rcu_read_unlock() must
- * occur in the same context, for example, it is illegal to invoke
- * rcu_read_unlock() in process context if the matching rcu_read_lock()
- * was invoked from within an irq handler.
- *
- * Note that rcu_read_lock() is disallowed if the CPU is either idle or
- * offline from an RCU perspective, so check for those as well.
- */
- static inline int rcu_read_lock_held(void)
- {
- if (!debug_lockdep_rcu_enabled())
- return 1;
- if (rcu_is_cpu_idle())
- return 0;
- if (!rcu_lockdep_current_cpu_online())
- return 0;
- return lock_is_held(&rcu_lock_map);
- }
- /*
- * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
- * hell.
- */
- extern int rcu_read_lock_bh_held(void);
- /**
- * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
- *
- * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
- * RCU-sched read-side critical section. In absence of
- * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
- * critical section unless it can prove otherwise. Note that disabling
- * of preemption (including disabling irqs) counts as an RCU-sched
- * read-side critical section. This is useful for debug checks in functions
- * that required that they be called within an RCU-sched read-side
- * critical section.
- *
- * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
- * and while lockdep is disabled.
- *
- * Note that if the CPU is in the idle loop from an RCU point of
- * view (ie: that we are in the section between rcu_idle_enter() and
- * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
- * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
- * that are in such a section, considering these as in extended quiescent
- * state, so such a CPU is effectively never in an RCU read-side critical
- * section regardless of what RCU primitives it invokes. This state of
- * affairs is required --- we need to keep an RCU-free window in idle
- * where the CPU may possibly enter into low power mode. This way we can
- * notice an extended quiescent state to other CPUs that started a grace
- * period. Otherwise we would delay any grace period as long as we run in
- * the idle task.
- *
- * Similarly, we avoid claiming an SRCU read lock held if the current
- * CPU is offline.
- */
- #ifdef CONFIG_PREEMPT_COUNT
- static inline int rcu_read_lock_sched_held(void)
- {
- int lockdep_opinion = 0;
- if (!debug_lockdep_rcu_enabled())
- return 1;
- if (rcu_is_cpu_idle())
- return 0;
- if (!rcu_lockdep_current_cpu_online())
- return 0;
- if (debug_locks)
- lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
- return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
- }
- #else /* #ifdef CONFIG_PREEMPT_COUNT */
- static inline int rcu_read_lock_sched_held(void)
- {
- return 1;
- }
- #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
- #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
- # define rcu_lock_acquire(a) do { } while (0)
- # define rcu_lock_release(a) do { } while (0)
- static inline int rcu_read_lock_held(void)
- {
- return 1;
- }
- static inline int rcu_read_lock_bh_held(void)
- {
- return 1;
- }
- #ifdef CONFIG_PREEMPT_COUNT
- static inline int rcu_read_lock_sched_held(void)
- {
- return preempt_count() != 0 || irqs_disabled();
- }
- #else /* #ifdef CONFIG_PREEMPT_COUNT */
- static inline int rcu_read_lock_sched_held(void)
- {
- return 1;
- }
- #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
- #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
- #ifdef CONFIG_PROVE_RCU
- extern int rcu_my_thread_group_empty(void);
- /**
- * rcu_lockdep_assert - emit lockdep splat if specified condition not met
- * @c: condition to check
- * @s: informative message
- */
- #define rcu_lockdep_assert(c, s) \
- do { \
- static bool __section(.data.unlikely) __warned; \
- if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
- __warned = true; \
- lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
- } \
- } while (0)
- #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
- static inline void rcu_preempt_sleep_check(void)
- {
- rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
- "Illegal context switch in RCU read-side "
- "critical section");
- }
- #else /* #ifdef CONFIG_PROVE_RCU */
- static inline void rcu_preempt_sleep_check(void)
- {
- }
- #endif /* #else #ifdef CONFIG_PROVE_RCU */
- #define rcu_sleep_check() \
- do { \
- rcu_preempt_sleep_check(); \
- rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
- "Illegal context switch in RCU-bh" \
- " read-side critical section"); \
- rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
- "Illegal context switch in RCU-sched"\
- " read-side critical section"); \
- } while (0)
- #else /* #ifdef CONFIG_PROVE_RCU */
- #define rcu_lockdep_assert(c, s) do { } while (0)
- #define rcu_sleep_check() do { } while (0)
- #endif /* #else #ifdef CONFIG_PROVE_RCU */
- /*
- * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
- * and rcu_assign_pointer(). Some of these could be folded into their
- * callers, but they are left separate in order to ease introduction of
- * multiple flavors of pointers to match the multiple flavors of RCU
- * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
- * the future.
- */
- #ifdef __CHECKER__
- #define rcu_dereference_sparse(p, space) \
- ((void)(((typeof(*p) space *)p) == p))
- #else /* #ifdef __CHECKER__ */
- #define rcu_dereference_sparse(p, space)
- #endif /* #else #ifdef __CHECKER__ */
- #define __rcu_access_pointer(p, space) \
- ({ \
- typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
- rcu_dereference_sparse(p, space); \
- ((typeof(*p) __force __kernel *)(_________p1)); \
- })
- #define __rcu_dereference_check(p, c, space) \
- ({ \
- typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
- rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
- " usage"); \
- rcu_dereference_sparse(p, space); \
- smp_read_barrier_depends(); \
- ((typeof(*p) __force __kernel *)(_________p1)); \
- })
- #define __rcu_dereference_protected(p, c, space) \
- ({ \
- rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
- " usage"); \
- rcu_dereference_sparse(p, space); \
- ((typeof(*p) __force __kernel *)(p)); \
- })
- #define __rcu_access_index(p, space) \
- ({ \
- typeof(p) _________p1 = ACCESS_ONCE(p); \
- rcu_dereference_sparse(p, space); \
- (_________p1); \
- })
- #define __rcu_dereference_index_check(p, c) \
- ({ \
- typeof(p) _________p1 = ACCESS_ONCE(p); \
- rcu_lockdep_assert(c, \
- "suspicious rcu_dereference_index_check()" \
- " usage"); \
- smp_read_barrier_depends(); \
- (_________p1); \
- })
- #define __rcu_assign_pointer(p, v, space) \
- ({ \
- smp_wmb(); \
- (p) = (typeof(*v) __force space *)(v); \
- })
- /**
- * rcu_access_pointer() - fetch RCU pointer with no dereferencing
- * @p: The pointer to read
- *
- * Return the value of the specified RCU-protected pointer, but omit the
- * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
- * when the value of this pointer is accessed, but the pointer is not
- * dereferenced, for example, when testing an RCU-protected pointer against
- * NULL. Although rcu_access_pointer() may also be used in cases where
- * update-side locks prevent the value of the pointer from changing, you
- * should instead use rcu_dereference_protected() for this use case.
- *
- * It is also permissible to use rcu_access_pointer() when read-side
- * access to the pointer was removed at least one grace period ago, as
- * is the case in the context of the RCU callback that is freeing up
- * the data, or after a synchronize_rcu() returns. This can be useful
- * when tearing down multi-linked structures after a grace period
- * has elapsed.
- */
- #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
- /**
- * rcu_dereference_check() - rcu_dereference with debug checking
- * @p: The pointer to read, prior to dereferencing
- * @c: The conditions under which the dereference will take place
- *
- * Do an rcu_dereference(), but check that the conditions under which the
- * dereference will take place are correct. Typically the conditions
- * indicate the various locking conditions that should be held at that
- * point. The check should return true if the conditions are satisfied.
- * An implicit check for being in an RCU read-side critical section
- * (rcu_read_lock()) is included.
- *
- * For example:
- *
- * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
- *
- * could be used to indicate to lockdep that foo->bar may only be dereferenced
- * if either rcu_read_lock() is held, or that the lock required to replace
- * the bar struct at foo->bar is held.
- *
- * Note that the list of conditions may also include indications of when a lock
- * need not be held, for example during initialisation or destruction of the
- * target struct:
- *
- * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
- * atomic_read(&foo->usage) == 0);
- *
- * Inserts memory barriers on architectures that require them
- * (currently only the Alpha), prevents the compiler from refetching
- * (and from merging fetches), and, more importantly, documents exactly
- * which pointers are protected by RCU and checks that the pointer is
- * annotated as __rcu.
- */
- #define rcu_dereference_check(p, c) \
- __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
- /**
- * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
- * @p: The pointer to read, prior to dereferencing
- * @c: The conditions under which the dereference will take place
- *
- * This is the RCU-bh counterpart to rcu_dereference_check().
- */
- #define rcu_dereference_bh_check(p, c) \
- __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
- /**
- * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
- * @p: The pointer to read, prior to dereferencing
- * @c: The conditions under which the dereference will take place
- *
- * This is the RCU-sched counterpart to rcu_dereference_check().
- */
- #define rcu_dereference_sched_check(p, c) \
- __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
- __rcu)
- #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
- /**
- * rcu_access_index() - fetch RCU index with no dereferencing
- * @p: The index to read
- *
- * Return the value of the specified RCU-protected index, but omit the
- * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
- * when the value of this index is accessed, but the index is not
- * dereferenced, for example, when testing an RCU-protected index against
- * -1. Although rcu_access_index() may also be used in cases where
- * update-side locks prevent the value of the index from changing, you
- * should instead use rcu_dereference_index_protected() for this use case.
- */
- #define rcu_access_index(p) __rcu_access_index((p), __rcu)
- /**
- * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
- * @p: The pointer to read, prior to dereferencing
- * @c: The conditions under which the dereference will take place
- *
- * Similar to rcu_dereference_check(), but omits the sparse checking.
- * This allows rcu_dereference_index_check() to be used on integers,
- * which can then be used as array indices. Attempting to use
- * rcu_dereference_check() on an integer will give compiler warnings
- * because the sparse address-space mechanism relies on dereferencing
- * the RCU-protected pointer. Dereferencing integers is not something
- * that even gcc will put up with.
- *
- * Note that this function does not implicitly check for RCU read-side
- * critical sections. If this function gains lots of uses, it might
- * make sense to provide versions for each flavor of RCU, but it does
- * not make sense as of early 2010.
- */
- #define rcu_dereference_index_check(p, c) \
- __rcu_dereference_index_check((p), (c))
- /**
- * rcu_dereference_protected() - fetch RCU pointer when updates prevented
- * @p: The pointer to read, prior to dereferencing
- * @c: The conditions under which the dereference will take place
- *
- * Return the value of the specified RCU-protected pointer, but omit
- * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
- * is useful in cases where update-side locks prevent the value of the
- * pointer from changing. Please note that this primitive does -not-
- * prevent the compiler from repeating this reference or combining it
- * with other references, so it should not be used without protection
- * of appropriate locks.
- *
- * This function is only for update-side use. Using this function
- * when protected only by rcu_read_lock() will result in infrequent
- * but very ugly failures.
- */
- #define rcu_dereference_protected(p, c) \
- __rcu_dereference_protected((p), (c), __rcu)
- /**
- * rcu_dereference() - fetch RCU-protected pointer for dereferencing
- * @p: The pointer to read, prior to dereferencing
- *
- * This is a simple wrapper around rcu_dereference_check().
- */
- #define rcu_dereference(p) rcu_dereference_check(p, 0)
- /**
- * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
- * @p: The pointer to read, prior to dereferencing
- *
- * Makes rcu_dereference_check() do the dirty work.
- */
- #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
- /**
- * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
- * @p: The pointer to read, prior to dereferencing
- *
- * Makes rcu_dereference_check() do the dirty work.
- */
- #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
- /**
- * rcu_read_lock() - mark the beginning of an RCU read-side critical section
- *
- * When synchronize_rcu() is invoked on one CPU while other CPUs
- * are within RCU read-side critical sections, then the
- * synchronize_rcu() is guaranteed to block until after all the other
- * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
- * on one CPU while other CPUs are within RCU read-side critical
- * sections, invocation of the corresponding RCU callback is deferred
- * until after the all the other CPUs exit their critical sections.
- *
- * Note, however, that RCU callbacks are permitted to run concurrently
- * with new RCU read-side critical sections. One way that this can happen
- * is via the following sequence of events: (1) CPU 0 enters an RCU
- * read-side critical section, (2) CPU 1 invokes call_rcu() to register
- * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
- * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
- * callback is invoked. This is legal, because the RCU read-side critical
- * section that was running concurrently with the call_rcu() (and which
- * therefore might be referencing something that the corresponding RCU
- * callback would free up) has completed before the corresponding
- * RCU callback is invoked.
- *
- * RCU read-side critical sections may be nested. Any deferred actions
- * will be deferred until the outermost RCU read-side critical section
- * completes.
- *
- * You can avoid reading and understanding the next paragraph by
- * following this rule: don't put anything in an rcu_read_lock() RCU
- * read-side critical section that would block in a !PREEMPT kernel.
- * But if you want the full story, read on!
- *
- * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
- * is illegal to block while in an RCU read-side critical section. In
- * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
- * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
- * be preempted, but explicit blocking is illegal. Finally, in preemptible
- * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
- * RCU read-side critical sections may be preempted and they may also
- * block, but only when acquiring spinlocks that are subject to priority
- * inheritance.
- */
- static inline void rcu_read_lock(void)
- {
- __rcu_read_lock();
- __acquire(RCU);
- rcu_lock_acquire(&rcu_lock_map);
- rcu_lockdep_assert(!rcu_is_cpu_idle(),
- "rcu_read_lock() used illegally while idle");
- }
- /*
- * So where is rcu_write_lock()? It does not exist, as there is no
- * way for writers to lock out RCU readers. This is a feature, not
- * a bug -- this property is what provides RCU's performance benefits.
- * Of course, writers must coordinate with each other. The normal
- * spinlock primitives work well for this, but any other technique may be
- * used as well. RCU does not care how the writers keep out of each
- * others' way, as long as they do so.
- */
- /**
- * rcu_read_unlock() - marks the end of an RCU read-side critical section.
- *
- * See rcu_read_lock() for more information.
- */
- static inline void rcu_read_unlock(void)
- {
- rcu_lockdep_assert(!rcu_is_cpu_idle(),
- "rcu_read_unlock() used illegally while idle");
- rcu_lock_release(&rcu_lock_map);
- __release(RCU);
- __rcu_read_unlock();
- }
- /**
- * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
- *
- * This is equivalent of rcu_read_lock(), but to be used when updates
- * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
- * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
- * softirq handler to be a quiescent state, a process in RCU read-side
- * critical section must be protected by disabling softirqs. Read-side
- * critical sections in interrupt context can use just rcu_read_lock(),
- * though this should at least be commented to avoid confusing people
- * reading the code.
- *
- * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
- * must occur in the same context, for example, it is illegal to invoke
- * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
- * was invoked from some other task.
- */
- static inline void rcu_read_lock_bh(void)
- {
- local_bh_disable();
- __acquire(RCU_BH);
- rcu_lock_acquire(&rcu_bh_lock_map);
- rcu_lockdep_assert(!rcu_is_cpu_idle(),
- "rcu_read_lock_bh() used illegally while idle");
- }
- /*
- * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
- *
- * See rcu_read_lock_bh() for more information.
- */
- static inline void rcu_read_unlock_bh(void)
- {
- rcu_lockdep_assert(!rcu_is_cpu_idle(),
- "rcu_read_unlock_bh() used illegally while idle");
- rcu_lock_release(&rcu_bh_lock_map);
- __release(RCU_BH);
- local_bh_enable();
- }
- /**
- * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
- *
- * This is equivalent of rcu_read_lock(), but to be used when updates
- * are being done using call_rcu_sched() or synchronize_rcu_sched().
- * Read-side critical sections can also be introduced by anything that
- * disables preemption, including local_irq_disable() and friends.
- *
- * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
- * must occur in the same context, for example, it is illegal to invoke
- * rcu_read_unlock_sched() from process context if the matching
- * rcu_read_lock_sched() was invoked from an NMI handler.
- */
- static inline void rcu_read_lock_sched(void)
- {
- preempt_disable();
- __acquire(RCU_SCHED);
- rcu_lock_acquire(&rcu_sched_lock_map);
- rcu_lockdep_assert(!rcu_is_cpu_idle(),
- "rcu_read_lock_sched() used illegally while idle");
- }
- /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
- static inline notrace void rcu_read_lock_sched_notrace(void)
- {
- preempt_disable_notrace();
- __acquire(RCU_SCHED);
- }
- /*
- * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
- *
- * See rcu_read_lock_sched for more information.
- */
- static inline void rcu_read_unlock_sched(void)
- {
- rcu_lockdep_assert(!rcu_is_cpu_idle(),
- "rcu_read_unlock_sched() used illegally while idle");
- rcu_lock_release(&rcu_sched_lock_map);
- __release(RCU_SCHED);
- preempt_enable();
- }
- /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
- static inline notrace void rcu_read_unlock_sched_notrace(void)
- {
- __release(RCU_SCHED);
- preempt_enable_notrace();
- }
- /**
- * rcu_assign_pointer() - assign to RCU-protected pointer
- * @p: pointer to assign to
- * @v: value to assign (publish)
- *
- * Assigns the specified value to the specified RCU-protected
- * pointer, ensuring that any concurrent RCU readers will see
- * any prior initialization. Returns the value assigned.
- *
- * Inserts memory barriers on architectures that require them
- * (which is most of them), and also prevents the compiler from
- * reordering the code that initializes the structure after the pointer
- * assignment. More importantly, this call documents which pointers
- * will be dereferenced by RCU read-side code.
- *
- * In some special cases, you may use RCU_INIT_POINTER() instead
- * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
- * to the fact that it does not constrain either the CPU or the compiler.
- * That said, using RCU_INIT_POINTER() when you should have used
- * rcu_assign_pointer() is a very bad thing that results in
- * impossible-to-diagnose memory corruption. So please be careful.
- * See the RCU_INIT_POINTER() comment header for details.
- */
- #define rcu_assign_pointer(p, v) \
- __rcu_assign_pointer((p), (v), __rcu)
- /**
- * RCU_INIT_POINTER() - initialize an RCU protected pointer
- *
- * Initialize an RCU-protected pointer in special cases where readers
- * do not need ordering constraints on the CPU or the compiler. These
- * special cases are:
- *
- * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
- * 2. The caller has taken whatever steps are required to prevent
- * RCU readers from concurrently accessing this pointer -or-
- * 3. The referenced data structure has already been exposed to
- * readers either at compile time or via rcu_assign_pointer() -and-
- * a. You have not made -any- reader-visible changes to
- * this structure since then -or-
- * b. It is OK for readers accessing this structure from its
- * new location to see the old state of the structure. (For
- * example, the changes were to statistical counters or to
- * other state where exact synchronization is not required.)
- *
- * Failure to follow these rules governing use of RCU_INIT_POINTER() will
- * result in impossible-to-diagnose memory corruption. As in the structures
- * will look OK in crash dumps, but any concurrent RCU readers might
- * see pre-initialized values of the referenced data structure. So
- * please be very careful how you use RCU_INIT_POINTER()!!!
- *
- * If you are creating an RCU-protected linked structure that is accessed
- * by a single external-to-structure RCU-protected pointer, then you may
- * use RCU_INIT_POINTER() to initialize the internal RCU-protected
- * pointers, but you must use rcu_assign_pointer() to initialize the
- * external-to-structure pointer -after- you have completely initialized
- * the reader-accessible portions of the linked structure.
- */
- #define RCU_INIT_POINTER(p, v) \
- p = (typeof(*v) __force __rcu *)(v)
- /*
- * Does the specified offset indicate that the corresponding rcu_head
- * structure can be handled by kfree_rcu()?
- */
- #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
- /*
- * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
- */
- #define __kfree_rcu(head, offset) \
- do { \
- BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
- call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
- } while (0)
- /**
- * kfree_rcu() - kfree an object after a grace period.
- * @ptr: pointer to kfree
- * @rcu_head: the name of the struct rcu_head within the type of @ptr.
- *
- * Many rcu callbacks functions just call kfree() on the base structure.
- * These functions are trivial, but their size adds up, and furthermore
- * when they are used in a kernel module, that module must invoke the
- * high-latency rcu_barrier() function at module-unload time.
- *
- * The kfree_rcu() function handles this issue. Rather than encoding a
- * function address in the embedded rcu_head structure, kfree_rcu() instead
- * encodes the offset of the rcu_head structure within the base structure.
- * Because the functions are not allowed in the low-order 4096 bytes of
- * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
- * If the offset is larger than 4095 bytes, a compile-time error will
- * be generated in __kfree_rcu(). If this error is triggered, you can
- * either fall back to use of call_rcu() or rearrange the structure to
- * position the rcu_head structure into the first 4096 bytes.
- *
- * Note that the allowable offset might decrease in the future, for example,
- * to allow something like kmem_cache_free_rcu().
- *
- * The BUILD_BUG_ON check must not involve any function calls, hence the
- * checks are done in macros here.
- */
- #define kfree_rcu(ptr, rcu_head) \
- __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
- #endif /* __LINUX_RCUPDATE_H */
|