ste_dma40.c 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/pm.h>
  17. #include <linux/pm_runtime.h>
  18. #include <linux/err.h>
  19. #include <linux/amba/bus.h>
  20. #include <linux/regulator/consumer.h>
  21. #include <plat/ste_dma40.h>
  22. #include "dmaengine.h"
  23. #include "ste_dma40_ll.h"
  24. #define D40_NAME "dma40"
  25. #define D40_PHY_CHAN -1
  26. /* For masking out/in 2 bit channel positions */
  27. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  28. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  29. /* Maximum iterations taken before giving up suspending a channel */
  30. #define D40_SUSPEND_MAX_IT 500
  31. /* Milliseconds */
  32. #define DMA40_AUTOSUSPEND_DELAY 100
  33. /* Hardware requirement on LCLA alignment */
  34. #define LCLA_ALIGNMENT 0x40000
  35. /* Max number of links per event group */
  36. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  37. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  38. /* Attempts before giving up to trying to get pages that are aligned */
  39. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  40. /* Bit markings for allocation map */
  41. #define D40_ALLOC_FREE (1 << 31)
  42. #define D40_ALLOC_PHY (1 << 30)
  43. #define D40_ALLOC_LOG_FREE 0
  44. /**
  45. * enum 40_command - The different commands and/or statuses.
  46. *
  47. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  48. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  49. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  50. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  51. */
  52. enum d40_command {
  53. D40_DMA_STOP = 0,
  54. D40_DMA_RUN = 1,
  55. D40_DMA_SUSPEND_REQ = 2,
  56. D40_DMA_SUSPENDED = 3
  57. };
  58. /*
  59. * enum d40_events - The different Event Enables for the event lines.
  60. *
  61. * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
  62. * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
  63. * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
  64. * @D40_ROUND_EVENTLINE: Status check for event line.
  65. */
  66. enum d40_events {
  67. D40_DEACTIVATE_EVENTLINE = 0,
  68. D40_ACTIVATE_EVENTLINE = 1,
  69. D40_SUSPEND_REQ_EVENTLINE = 2,
  70. D40_ROUND_EVENTLINE = 3
  71. };
  72. /*
  73. * These are the registers that has to be saved and later restored
  74. * when the DMA hw is powered off.
  75. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  76. */
  77. static u32 d40_backup_regs[] = {
  78. D40_DREG_LCPA,
  79. D40_DREG_LCLA,
  80. D40_DREG_PRMSE,
  81. D40_DREG_PRMSO,
  82. D40_DREG_PRMOE,
  83. D40_DREG_PRMOO,
  84. };
  85. #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
  86. /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
  87. static u32 d40_backup_regs_v3[] = {
  88. D40_DREG_PSEG1,
  89. D40_DREG_PSEG2,
  90. D40_DREG_PSEG3,
  91. D40_DREG_PSEG4,
  92. D40_DREG_PCEG1,
  93. D40_DREG_PCEG2,
  94. D40_DREG_PCEG3,
  95. D40_DREG_PCEG4,
  96. D40_DREG_RSEG1,
  97. D40_DREG_RSEG2,
  98. D40_DREG_RSEG3,
  99. D40_DREG_RSEG4,
  100. D40_DREG_RCEG1,
  101. D40_DREG_RCEG2,
  102. D40_DREG_RCEG3,
  103. D40_DREG_RCEG4,
  104. };
  105. #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
  106. static u32 d40_backup_regs_chan[] = {
  107. D40_CHAN_REG_SSCFG,
  108. D40_CHAN_REG_SSELT,
  109. D40_CHAN_REG_SSPTR,
  110. D40_CHAN_REG_SSLNK,
  111. D40_CHAN_REG_SDCFG,
  112. D40_CHAN_REG_SDELT,
  113. D40_CHAN_REG_SDPTR,
  114. D40_CHAN_REG_SDLNK,
  115. };
  116. /**
  117. * struct d40_lli_pool - Structure for keeping LLIs in memory
  118. *
  119. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  120. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  121. * pre_alloc_lli is used.
  122. * @dma_addr: DMA address, if mapped
  123. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  124. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  125. * one buffer to one buffer.
  126. */
  127. struct d40_lli_pool {
  128. void *base;
  129. int size;
  130. dma_addr_t dma_addr;
  131. /* Space for dst and src, plus an extra for padding */
  132. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  133. };
  134. /**
  135. * struct d40_desc - A descriptor is one DMA job.
  136. *
  137. * @lli_phy: LLI settings for physical channel. Both src and dst=
  138. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  139. * lli_len equals one.
  140. * @lli_log: Same as above but for logical channels.
  141. * @lli_pool: The pool with two entries pre-allocated.
  142. * @lli_len: Number of llis of current descriptor.
  143. * @lli_current: Number of transferred llis.
  144. * @lcla_alloc: Number of LCLA entries allocated.
  145. * @txd: DMA engine struct. Used for among other things for communication
  146. * during a transfer.
  147. * @node: List entry.
  148. * @is_in_client_list: true if the client owns this descriptor.
  149. * @cyclic: true if this is a cyclic job
  150. *
  151. * This descriptor is used for both logical and physical transfers.
  152. */
  153. struct d40_desc {
  154. /* LLI physical */
  155. struct d40_phy_lli_bidir lli_phy;
  156. /* LLI logical */
  157. struct d40_log_lli_bidir lli_log;
  158. struct d40_lli_pool lli_pool;
  159. int lli_len;
  160. int lli_current;
  161. int lcla_alloc;
  162. struct dma_async_tx_descriptor txd;
  163. struct list_head node;
  164. bool is_in_client_list;
  165. bool cyclic;
  166. };
  167. /**
  168. * struct d40_lcla_pool - LCLA pool settings and data.
  169. *
  170. * @base: The virtual address of LCLA. 18 bit aligned.
  171. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  172. * This pointer is only there for clean-up on error.
  173. * @pages: The number of pages needed for all physical channels.
  174. * Only used later for clean-up on error
  175. * @lock: Lock to protect the content in this struct.
  176. * @alloc_map: big map over which LCLA entry is own by which job.
  177. */
  178. struct d40_lcla_pool {
  179. void *base;
  180. dma_addr_t dma_addr;
  181. void *base_unaligned;
  182. int pages;
  183. spinlock_t lock;
  184. struct d40_desc **alloc_map;
  185. };
  186. /**
  187. * struct d40_phy_res - struct for handling eventlines mapped to physical
  188. * channels.
  189. *
  190. * @lock: A lock protection this entity.
  191. * @reserved: True if used by secure world or otherwise.
  192. * @num: The physical channel number of this entity.
  193. * @allocated_src: Bit mapped to show which src event line's are mapped to
  194. * this physical channel. Can also be free or physically allocated.
  195. * @allocated_dst: Same as for src but is dst.
  196. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  197. * event line number.
  198. */
  199. struct d40_phy_res {
  200. spinlock_t lock;
  201. bool reserved;
  202. int num;
  203. u32 allocated_src;
  204. u32 allocated_dst;
  205. };
  206. struct d40_base;
  207. /**
  208. * struct d40_chan - Struct that describes a channel.
  209. *
  210. * @lock: A spinlock to protect this struct.
  211. * @log_num: The logical number, if any of this channel.
  212. * @pending_tx: The number of pending transfers. Used between interrupt handler
  213. * and tasklet.
  214. * @busy: Set to true when transfer is ongoing on this channel.
  215. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  216. * point is NULL, then the channel is not allocated.
  217. * @chan: DMA engine handle.
  218. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  219. * transfer and call client callback.
  220. * @client: Cliented owned descriptor list.
  221. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  222. * @active: Active descriptor.
  223. * @queue: Queued jobs.
  224. * @prepare_queue: Prepared jobs.
  225. * @dma_cfg: The client configuration of this dma channel.
  226. * @configured: whether the dma_cfg configuration is valid
  227. * @base: Pointer to the device instance struct.
  228. * @src_def_cfg: Default cfg register setting for src.
  229. * @dst_def_cfg: Default cfg register setting for dst.
  230. * @log_def: Default logical channel settings.
  231. * @lcpa: Pointer to dst and src lcpa settings.
  232. * @runtime_addr: runtime configured address.
  233. * @runtime_direction: runtime configured direction.
  234. *
  235. * This struct can either "be" a logical or a physical channel.
  236. */
  237. struct d40_chan {
  238. spinlock_t lock;
  239. int log_num;
  240. int pending_tx;
  241. bool busy;
  242. struct d40_phy_res *phy_chan;
  243. struct dma_chan chan;
  244. struct tasklet_struct tasklet;
  245. struct list_head client;
  246. struct list_head pending_queue;
  247. struct list_head active;
  248. struct list_head queue;
  249. struct list_head prepare_queue;
  250. struct stedma40_chan_cfg dma_cfg;
  251. bool configured;
  252. struct d40_base *base;
  253. /* Default register configurations */
  254. u32 src_def_cfg;
  255. u32 dst_def_cfg;
  256. struct d40_def_lcsp log_def;
  257. struct d40_log_lli_full *lcpa;
  258. /* Runtime reconfiguration */
  259. dma_addr_t runtime_addr;
  260. enum dma_transfer_direction runtime_direction;
  261. };
  262. /**
  263. * struct d40_base - The big global struct, one for each probe'd instance.
  264. *
  265. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  266. * @execmd_lock: Lock for execute command usage since several channels share
  267. * the same physical register.
  268. * @dev: The device structure.
  269. * @virtbase: The virtual base address of the DMA's register.
  270. * @rev: silicon revision detected.
  271. * @clk: Pointer to the DMA clock structure.
  272. * @phy_start: Physical memory start of the DMA registers.
  273. * @phy_size: Size of the DMA register map.
  274. * @irq: The IRQ number.
  275. * @num_phy_chans: The number of physical channels. Read from HW. This
  276. * is the number of available channels for this driver, not counting "Secure
  277. * mode" allocated physical channels.
  278. * @num_log_chans: The number of logical channels. Calculated from
  279. * num_phy_chans.
  280. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  281. * @dma_slave: dma_device channels that can do only do slave transfers.
  282. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  283. * @phy_chans: Room for all possible physical channels in system.
  284. * @log_chans: Room for all possible logical channels in system.
  285. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  286. * to log_chans entries.
  287. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  288. * to phy_chans entries.
  289. * @plat_data: Pointer to provided platform_data which is the driver
  290. * configuration.
  291. * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
  292. * @phy_res: Vector containing all physical channels.
  293. * @lcla_pool: lcla pool settings and data.
  294. * @lcpa_base: The virtual mapped address of LCPA.
  295. * @phy_lcpa: The physical address of the LCPA.
  296. * @lcpa_size: The size of the LCPA area.
  297. * @desc_slab: cache for descriptors.
  298. * @reg_val_backup: Here the values of some hardware registers are stored
  299. * before the DMA is powered off. They are restored when the power is back on.
  300. * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
  301. * later.
  302. * @reg_val_backup_chan: Backup data for standard channel parameter registers.
  303. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
  304. * @initialized: true if the dma has been initialized
  305. */
  306. struct d40_base {
  307. spinlock_t interrupt_lock;
  308. spinlock_t execmd_lock;
  309. struct device *dev;
  310. void __iomem *virtbase;
  311. u8 rev:4;
  312. struct clk *clk;
  313. phys_addr_t phy_start;
  314. resource_size_t phy_size;
  315. int irq;
  316. int num_phy_chans;
  317. int num_log_chans;
  318. struct dma_device dma_both;
  319. struct dma_device dma_slave;
  320. struct dma_device dma_memcpy;
  321. struct d40_chan *phy_chans;
  322. struct d40_chan *log_chans;
  323. struct d40_chan **lookup_log_chans;
  324. struct d40_chan **lookup_phy_chans;
  325. struct stedma40_platform_data *plat_data;
  326. struct regulator *lcpa_regulator;
  327. /* Physical half channels */
  328. struct d40_phy_res *phy_res;
  329. struct d40_lcla_pool lcla_pool;
  330. void *lcpa_base;
  331. dma_addr_t phy_lcpa;
  332. resource_size_t lcpa_size;
  333. struct kmem_cache *desc_slab;
  334. u32 reg_val_backup[BACKUP_REGS_SZ];
  335. u32 reg_val_backup_v3[BACKUP_REGS_SZ_V3];
  336. u32 *reg_val_backup_chan;
  337. u16 gcc_pwr_off_mask;
  338. bool initialized;
  339. };
  340. /**
  341. * struct d40_interrupt_lookup - lookup table for interrupt handler
  342. *
  343. * @src: Interrupt mask register.
  344. * @clr: Interrupt clear register.
  345. * @is_error: true if this is an error interrupt.
  346. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  347. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  348. */
  349. struct d40_interrupt_lookup {
  350. u32 src;
  351. u32 clr;
  352. bool is_error;
  353. int offset;
  354. };
  355. /**
  356. * struct d40_reg_val - simple lookup struct
  357. *
  358. * @reg: The register.
  359. * @val: The value that belongs to the register in reg.
  360. */
  361. struct d40_reg_val {
  362. unsigned int reg;
  363. unsigned int val;
  364. };
  365. static struct device *chan2dev(struct d40_chan *d40c)
  366. {
  367. return &d40c->chan.dev->device;
  368. }
  369. static bool chan_is_physical(struct d40_chan *chan)
  370. {
  371. return chan->log_num == D40_PHY_CHAN;
  372. }
  373. static bool chan_is_logical(struct d40_chan *chan)
  374. {
  375. return !chan_is_physical(chan);
  376. }
  377. static void __iomem *chan_base(struct d40_chan *chan)
  378. {
  379. return chan->base->virtbase + D40_DREG_PCBASE +
  380. chan->phy_chan->num * D40_DREG_PCDELTA;
  381. }
  382. #define d40_err(dev, format, arg...) \
  383. dev_err(dev, "[%s] " format, __func__, ## arg)
  384. #define chan_err(d40c, format, arg...) \
  385. d40_err(chan2dev(d40c), format, ## arg)
  386. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  387. int lli_len)
  388. {
  389. bool is_log = chan_is_logical(d40c);
  390. u32 align;
  391. void *base;
  392. if (is_log)
  393. align = sizeof(struct d40_log_lli);
  394. else
  395. align = sizeof(struct d40_phy_lli);
  396. if (lli_len == 1) {
  397. base = d40d->lli_pool.pre_alloc_lli;
  398. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  399. d40d->lli_pool.base = NULL;
  400. } else {
  401. d40d->lli_pool.size = lli_len * 2 * align;
  402. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  403. d40d->lli_pool.base = base;
  404. if (d40d->lli_pool.base == NULL)
  405. return -ENOMEM;
  406. }
  407. if (is_log) {
  408. d40d->lli_log.src = PTR_ALIGN(base, align);
  409. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  410. d40d->lli_pool.dma_addr = 0;
  411. } else {
  412. d40d->lli_phy.src = PTR_ALIGN(base, align);
  413. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  414. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  415. d40d->lli_phy.src,
  416. d40d->lli_pool.size,
  417. DMA_TO_DEVICE);
  418. if (dma_mapping_error(d40c->base->dev,
  419. d40d->lli_pool.dma_addr)) {
  420. kfree(d40d->lli_pool.base);
  421. d40d->lli_pool.base = NULL;
  422. d40d->lli_pool.dma_addr = 0;
  423. return -ENOMEM;
  424. }
  425. }
  426. return 0;
  427. }
  428. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  429. {
  430. if (d40d->lli_pool.dma_addr)
  431. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  432. d40d->lli_pool.size, DMA_TO_DEVICE);
  433. kfree(d40d->lli_pool.base);
  434. d40d->lli_pool.base = NULL;
  435. d40d->lli_pool.size = 0;
  436. d40d->lli_log.src = NULL;
  437. d40d->lli_log.dst = NULL;
  438. d40d->lli_phy.src = NULL;
  439. d40d->lli_phy.dst = NULL;
  440. }
  441. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  442. struct d40_desc *d40d)
  443. {
  444. unsigned long flags;
  445. int i;
  446. int ret = -EINVAL;
  447. int p;
  448. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  449. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  450. /*
  451. * Allocate both src and dst at the same time, therefore the half
  452. * start on 1 since 0 can't be used since zero is used as end marker.
  453. */
  454. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  455. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  456. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  457. d40d->lcla_alloc++;
  458. ret = i;
  459. break;
  460. }
  461. }
  462. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  463. return ret;
  464. }
  465. static int d40_lcla_free_all(struct d40_chan *d40c,
  466. struct d40_desc *d40d)
  467. {
  468. unsigned long flags;
  469. int i;
  470. int ret = -EINVAL;
  471. if (chan_is_physical(d40c))
  472. return 0;
  473. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  474. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  475. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  476. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  477. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  478. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  479. d40d->lcla_alloc--;
  480. if (d40d->lcla_alloc == 0) {
  481. ret = 0;
  482. break;
  483. }
  484. }
  485. }
  486. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  487. return ret;
  488. }
  489. static void d40_desc_remove(struct d40_desc *d40d)
  490. {
  491. list_del(&d40d->node);
  492. }
  493. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  494. {
  495. struct d40_desc *desc = NULL;
  496. if (!list_empty(&d40c->client)) {
  497. struct d40_desc *d;
  498. struct d40_desc *_d;
  499. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  500. if (async_tx_test_ack(&d->txd)) {
  501. d40_desc_remove(d);
  502. desc = d;
  503. memset(desc, 0, sizeof(*desc));
  504. break;
  505. }
  506. }
  507. }
  508. if (!desc)
  509. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  510. if (desc)
  511. INIT_LIST_HEAD(&desc->node);
  512. return desc;
  513. }
  514. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  515. {
  516. d40_pool_lli_free(d40c, d40d);
  517. d40_lcla_free_all(d40c, d40d);
  518. kmem_cache_free(d40c->base->desc_slab, d40d);
  519. }
  520. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  521. {
  522. list_add_tail(&desc->node, &d40c->active);
  523. }
  524. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  525. {
  526. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  527. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  528. void __iomem *base = chan_base(chan);
  529. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  530. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  531. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  532. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  533. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  534. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  535. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  536. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  537. }
  538. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  539. {
  540. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  541. struct d40_log_lli_bidir *lli = &desc->lli_log;
  542. int lli_current = desc->lli_current;
  543. int lli_len = desc->lli_len;
  544. bool cyclic = desc->cyclic;
  545. int curr_lcla = -EINVAL;
  546. int first_lcla = 0;
  547. bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
  548. bool linkback;
  549. /*
  550. * We may have partially running cyclic transfers, in case we did't get
  551. * enough LCLA entries.
  552. */
  553. linkback = cyclic && lli_current == 0;
  554. /*
  555. * For linkback, we need one LCLA even with only one link, because we
  556. * can't link back to the one in LCPA space
  557. */
  558. if (linkback || (lli_len - lli_current > 1)) {
  559. curr_lcla = d40_lcla_alloc_one(chan, desc);
  560. first_lcla = curr_lcla;
  561. }
  562. /*
  563. * For linkback, we normally load the LCPA in the loop since we need to
  564. * link it to the second LCLA and not the first. However, if we
  565. * couldn't even get a first LCLA, then we have to run in LCPA and
  566. * reload manually.
  567. */
  568. if (!linkback || curr_lcla == -EINVAL) {
  569. unsigned int flags = 0;
  570. if (curr_lcla == -EINVAL)
  571. flags |= LLI_TERM_INT;
  572. d40_log_lli_lcpa_write(chan->lcpa,
  573. &lli->dst[lli_current],
  574. &lli->src[lli_current],
  575. curr_lcla,
  576. flags);
  577. lli_current++;
  578. }
  579. if (curr_lcla < 0)
  580. goto out;
  581. for (; lli_current < lli_len; lli_current++) {
  582. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  583. 8 * curr_lcla * 2;
  584. struct d40_log_lli *lcla = pool->base + lcla_offset;
  585. unsigned int flags = 0;
  586. int next_lcla;
  587. if (lli_current + 1 < lli_len)
  588. next_lcla = d40_lcla_alloc_one(chan, desc);
  589. else
  590. next_lcla = linkback ? first_lcla : -EINVAL;
  591. if (cyclic || next_lcla == -EINVAL)
  592. flags |= LLI_TERM_INT;
  593. if (linkback && curr_lcla == first_lcla) {
  594. /* First link goes in both LCPA and LCLA */
  595. d40_log_lli_lcpa_write(chan->lcpa,
  596. &lli->dst[lli_current],
  597. &lli->src[lli_current],
  598. next_lcla, flags);
  599. }
  600. /*
  601. * One unused LCLA in the cyclic case if the very first
  602. * next_lcla fails...
  603. */
  604. d40_log_lli_lcla_write(lcla,
  605. &lli->dst[lli_current],
  606. &lli->src[lli_current],
  607. next_lcla, flags);
  608. /*
  609. * Cache maintenance is not needed if lcla is
  610. * mapped in esram
  611. */
  612. if (!use_esram_lcla) {
  613. dma_sync_single_range_for_device(chan->base->dev,
  614. pool->dma_addr, lcla_offset,
  615. 2 * sizeof(struct d40_log_lli),
  616. DMA_TO_DEVICE);
  617. }
  618. curr_lcla = next_lcla;
  619. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  620. lli_current++;
  621. break;
  622. }
  623. }
  624. out:
  625. desc->lli_current = lli_current;
  626. }
  627. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  628. {
  629. if (chan_is_physical(d40c)) {
  630. d40_phy_lli_load(d40c, d40d);
  631. d40d->lli_current = d40d->lli_len;
  632. } else
  633. d40_log_lli_to_lcxa(d40c, d40d);
  634. }
  635. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  636. {
  637. struct d40_desc *d;
  638. if (list_empty(&d40c->active))
  639. return NULL;
  640. d = list_first_entry(&d40c->active,
  641. struct d40_desc,
  642. node);
  643. return d;
  644. }
  645. /* remove desc from current queue and add it to the pending_queue */
  646. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  647. {
  648. d40_desc_remove(desc);
  649. desc->is_in_client_list = false;
  650. list_add_tail(&desc->node, &d40c->pending_queue);
  651. }
  652. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  653. {
  654. struct d40_desc *d;
  655. if (list_empty(&d40c->pending_queue))
  656. return NULL;
  657. d = list_first_entry(&d40c->pending_queue,
  658. struct d40_desc,
  659. node);
  660. return d;
  661. }
  662. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  663. {
  664. struct d40_desc *d;
  665. if (list_empty(&d40c->queue))
  666. return NULL;
  667. d = list_first_entry(&d40c->queue,
  668. struct d40_desc,
  669. node);
  670. return d;
  671. }
  672. static int d40_psize_2_burst_size(bool is_log, int psize)
  673. {
  674. if (is_log) {
  675. if (psize == STEDMA40_PSIZE_LOG_1)
  676. return 1;
  677. } else {
  678. if (psize == STEDMA40_PSIZE_PHY_1)
  679. return 1;
  680. }
  681. return 2 << psize;
  682. }
  683. /*
  684. * The dma only supports transmitting packages up to
  685. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  686. * dma elements required to send the entire sg list
  687. */
  688. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  689. {
  690. int dmalen;
  691. u32 max_w = max(data_width1, data_width2);
  692. u32 min_w = min(data_width1, data_width2);
  693. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  694. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  695. seg_max -= (1 << max_w);
  696. if (!IS_ALIGNED(size, 1 << max_w))
  697. return -EINVAL;
  698. if (size <= seg_max)
  699. dmalen = 1;
  700. else {
  701. dmalen = size / seg_max;
  702. if (dmalen * seg_max < size)
  703. dmalen++;
  704. }
  705. return dmalen;
  706. }
  707. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  708. u32 data_width1, u32 data_width2)
  709. {
  710. struct scatterlist *sg;
  711. int i;
  712. int len = 0;
  713. int ret;
  714. for_each_sg(sgl, sg, sg_len, i) {
  715. ret = d40_size_2_dmalen(sg_dma_len(sg),
  716. data_width1, data_width2);
  717. if (ret < 0)
  718. return ret;
  719. len += ret;
  720. }
  721. return len;
  722. }
  723. #ifdef CONFIG_PM
  724. static void dma40_backup(void __iomem *baseaddr, u32 *backup,
  725. u32 *regaddr, int num, bool save)
  726. {
  727. int i;
  728. for (i = 0; i < num; i++) {
  729. void __iomem *addr = baseaddr + regaddr[i];
  730. if (save)
  731. backup[i] = readl_relaxed(addr);
  732. else
  733. writel_relaxed(backup[i], addr);
  734. }
  735. }
  736. static void d40_save_restore_registers(struct d40_base *base, bool save)
  737. {
  738. int i;
  739. /* Save/Restore channel specific registers */
  740. for (i = 0; i < base->num_phy_chans; i++) {
  741. void __iomem *addr;
  742. int idx;
  743. if (base->phy_res[i].reserved)
  744. continue;
  745. addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
  746. idx = i * ARRAY_SIZE(d40_backup_regs_chan);
  747. dma40_backup(addr, &base->reg_val_backup_chan[idx],
  748. d40_backup_regs_chan,
  749. ARRAY_SIZE(d40_backup_regs_chan),
  750. save);
  751. }
  752. /* Save/Restore global registers */
  753. dma40_backup(base->virtbase, base->reg_val_backup,
  754. d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
  755. save);
  756. /* Save/Restore registers only existing on dma40 v3 and later */
  757. if (base->rev >= 3)
  758. dma40_backup(base->virtbase, base->reg_val_backup_v3,
  759. d40_backup_regs_v3,
  760. ARRAY_SIZE(d40_backup_regs_v3),
  761. save);
  762. }
  763. #else
  764. static void d40_save_restore_registers(struct d40_base *base, bool save)
  765. {
  766. }
  767. #endif
  768. static int __d40_execute_command_phy(struct d40_chan *d40c,
  769. enum d40_command command)
  770. {
  771. u32 status;
  772. int i;
  773. void __iomem *active_reg;
  774. int ret = 0;
  775. unsigned long flags;
  776. u32 wmask;
  777. if (command == D40_DMA_STOP) {
  778. ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
  779. if (ret)
  780. return ret;
  781. }
  782. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  783. if (d40c->phy_chan->num % 2 == 0)
  784. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  785. else
  786. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  787. if (command == D40_DMA_SUSPEND_REQ) {
  788. status = (readl(active_reg) &
  789. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  790. D40_CHAN_POS(d40c->phy_chan->num);
  791. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  792. goto done;
  793. }
  794. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  795. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  796. active_reg);
  797. if (command == D40_DMA_SUSPEND_REQ) {
  798. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  799. status = (readl(active_reg) &
  800. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  801. D40_CHAN_POS(d40c->phy_chan->num);
  802. cpu_relax();
  803. /*
  804. * Reduce the number of bus accesses while
  805. * waiting for the DMA to suspend.
  806. */
  807. udelay(3);
  808. if (status == D40_DMA_STOP ||
  809. status == D40_DMA_SUSPENDED)
  810. break;
  811. }
  812. if (i == D40_SUSPEND_MAX_IT) {
  813. chan_err(d40c,
  814. "unable to suspend the chl %d (log: %d) status %x\n",
  815. d40c->phy_chan->num, d40c->log_num,
  816. status);
  817. dump_stack();
  818. ret = -EBUSY;
  819. }
  820. }
  821. done:
  822. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  823. return ret;
  824. }
  825. static void d40_term_all(struct d40_chan *d40c)
  826. {
  827. struct d40_desc *d40d;
  828. struct d40_desc *_d;
  829. /* Release active descriptors */
  830. while ((d40d = d40_first_active_get(d40c))) {
  831. d40_desc_remove(d40d);
  832. d40_desc_free(d40c, d40d);
  833. }
  834. /* Release queued descriptors waiting for transfer */
  835. while ((d40d = d40_first_queued(d40c))) {
  836. d40_desc_remove(d40d);
  837. d40_desc_free(d40c, d40d);
  838. }
  839. /* Release pending descriptors */
  840. while ((d40d = d40_first_pending(d40c))) {
  841. d40_desc_remove(d40d);
  842. d40_desc_free(d40c, d40d);
  843. }
  844. /* Release client owned descriptors */
  845. if (!list_empty(&d40c->client))
  846. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  847. d40_desc_remove(d40d);
  848. d40_desc_free(d40c, d40d);
  849. }
  850. /* Release descriptors in prepare queue */
  851. if (!list_empty(&d40c->prepare_queue))
  852. list_for_each_entry_safe(d40d, _d,
  853. &d40c->prepare_queue, node) {
  854. d40_desc_remove(d40d);
  855. d40_desc_free(d40c, d40d);
  856. }
  857. d40c->pending_tx = 0;
  858. }
  859. static void __d40_config_set_event(struct d40_chan *d40c,
  860. enum d40_events event_type, u32 event,
  861. int reg)
  862. {
  863. void __iomem *addr = chan_base(d40c) + reg;
  864. int tries;
  865. u32 status;
  866. switch (event_type) {
  867. case D40_DEACTIVATE_EVENTLINE:
  868. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  869. | ~D40_EVENTLINE_MASK(event), addr);
  870. break;
  871. case D40_SUSPEND_REQ_EVENTLINE:
  872. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  873. D40_EVENTLINE_POS(event);
  874. if (status == D40_DEACTIVATE_EVENTLINE ||
  875. status == D40_SUSPEND_REQ_EVENTLINE)
  876. break;
  877. writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
  878. | ~D40_EVENTLINE_MASK(event), addr);
  879. for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
  880. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  881. D40_EVENTLINE_POS(event);
  882. cpu_relax();
  883. /*
  884. * Reduce the number of bus accesses while
  885. * waiting for the DMA to suspend.
  886. */
  887. udelay(3);
  888. if (status == D40_DEACTIVATE_EVENTLINE)
  889. break;
  890. }
  891. if (tries == D40_SUSPEND_MAX_IT) {
  892. chan_err(d40c,
  893. "unable to stop the event_line chl %d (log: %d)"
  894. "status %x\n", d40c->phy_chan->num,
  895. d40c->log_num, status);
  896. }
  897. break;
  898. case D40_ACTIVATE_EVENTLINE:
  899. /*
  900. * The hardware sometimes doesn't register the enable when src and dst
  901. * event lines are active on the same logical channel. Retry to ensure
  902. * it does. Usually only one retry is sufficient.
  903. */
  904. tries = 100;
  905. while (--tries) {
  906. writel((D40_ACTIVATE_EVENTLINE <<
  907. D40_EVENTLINE_POS(event)) |
  908. ~D40_EVENTLINE_MASK(event), addr);
  909. if (readl(addr) & D40_EVENTLINE_MASK(event))
  910. break;
  911. }
  912. if (tries != 99)
  913. dev_dbg(chan2dev(d40c),
  914. "[%s] workaround enable S%cLNK (%d tries)\n",
  915. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  916. 100 - tries);
  917. WARN_ON(!tries);
  918. break;
  919. case D40_ROUND_EVENTLINE:
  920. BUG();
  921. break;
  922. }
  923. }
  924. static void d40_config_set_event(struct d40_chan *d40c,
  925. enum d40_events event_type)
  926. {
  927. /* Enable event line connected to device (or memcpy) */
  928. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  929. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  930. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  931. __d40_config_set_event(d40c, event_type, event,
  932. D40_CHAN_REG_SSLNK);
  933. }
  934. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  935. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  936. __d40_config_set_event(d40c, event_type, event,
  937. D40_CHAN_REG_SDLNK);
  938. }
  939. }
  940. static u32 d40_chan_has_events(struct d40_chan *d40c)
  941. {
  942. void __iomem *chanbase = chan_base(d40c);
  943. u32 val;
  944. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  945. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  946. return val;
  947. }
  948. static int
  949. __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
  950. {
  951. unsigned long flags;
  952. int ret = 0;
  953. u32 active_status;
  954. void __iomem *active_reg;
  955. if (d40c->phy_chan->num % 2 == 0)
  956. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  957. else
  958. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  959. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  960. switch (command) {
  961. case D40_DMA_STOP:
  962. case D40_DMA_SUSPEND_REQ:
  963. active_status = (readl(active_reg) &
  964. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  965. D40_CHAN_POS(d40c->phy_chan->num);
  966. if (active_status == D40_DMA_RUN)
  967. d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
  968. else
  969. d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
  970. if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
  971. ret = __d40_execute_command_phy(d40c, command);
  972. break;
  973. case D40_DMA_RUN:
  974. d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
  975. ret = __d40_execute_command_phy(d40c, command);
  976. break;
  977. case D40_DMA_SUSPENDED:
  978. BUG();
  979. break;
  980. }
  981. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  982. return ret;
  983. }
  984. static int d40_channel_execute_command(struct d40_chan *d40c,
  985. enum d40_command command)
  986. {
  987. if (chan_is_logical(d40c))
  988. return __d40_execute_command_log(d40c, command);
  989. else
  990. return __d40_execute_command_phy(d40c, command);
  991. }
  992. static u32 d40_get_prmo(struct d40_chan *d40c)
  993. {
  994. static const unsigned int phy_map[] = {
  995. [STEDMA40_PCHAN_BASIC_MODE]
  996. = D40_DREG_PRMO_PCHAN_BASIC,
  997. [STEDMA40_PCHAN_MODULO_MODE]
  998. = D40_DREG_PRMO_PCHAN_MODULO,
  999. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  1000. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  1001. };
  1002. static const unsigned int log_map[] = {
  1003. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  1004. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  1005. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  1006. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  1007. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  1008. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  1009. };
  1010. if (chan_is_physical(d40c))
  1011. return phy_map[d40c->dma_cfg.mode_opt];
  1012. else
  1013. return log_map[d40c->dma_cfg.mode_opt];
  1014. }
  1015. static void d40_config_write(struct d40_chan *d40c)
  1016. {
  1017. u32 addr_base;
  1018. u32 var;
  1019. /* Odd addresses are even addresses + 4 */
  1020. addr_base = (d40c->phy_chan->num % 2) * 4;
  1021. /* Setup channel mode to logical or physical */
  1022. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  1023. D40_CHAN_POS(d40c->phy_chan->num);
  1024. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  1025. /* Setup operational mode option register */
  1026. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  1027. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  1028. if (chan_is_logical(d40c)) {
  1029. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  1030. & D40_SREG_ELEM_LOG_LIDX_MASK;
  1031. void __iomem *chanbase = chan_base(d40c);
  1032. /* Set default config for CFG reg */
  1033. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  1034. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  1035. /* Set LIDX for lcla */
  1036. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  1037. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  1038. /* Clear LNK which will be used by d40_chan_has_events() */
  1039. writel(0, chanbase + D40_CHAN_REG_SSLNK);
  1040. writel(0, chanbase + D40_CHAN_REG_SDLNK);
  1041. }
  1042. }
  1043. static u32 d40_residue(struct d40_chan *d40c)
  1044. {
  1045. u32 num_elt;
  1046. if (chan_is_logical(d40c))
  1047. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  1048. >> D40_MEM_LCSP2_ECNT_POS;
  1049. else {
  1050. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  1051. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  1052. >> D40_SREG_ELEM_PHY_ECNT_POS;
  1053. }
  1054. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  1055. }
  1056. static bool d40_tx_is_linked(struct d40_chan *d40c)
  1057. {
  1058. bool is_link;
  1059. if (chan_is_logical(d40c))
  1060. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  1061. else
  1062. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  1063. & D40_SREG_LNK_PHYS_LNK_MASK;
  1064. return is_link;
  1065. }
  1066. static int d40_pause(struct d40_chan *d40c)
  1067. {
  1068. int res = 0;
  1069. unsigned long flags;
  1070. if (!d40c->busy)
  1071. return 0;
  1072. pm_runtime_get_sync(d40c->base->dev);
  1073. spin_lock_irqsave(&d40c->lock, flags);
  1074. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1075. pm_runtime_mark_last_busy(d40c->base->dev);
  1076. pm_runtime_put_autosuspend(d40c->base->dev);
  1077. spin_unlock_irqrestore(&d40c->lock, flags);
  1078. return res;
  1079. }
  1080. static int d40_resume(struct d40_chan *d40c)
  1081. {
  1082. int res = 0;
  1083. unsigned long flags;
  1084. if (!d40c->busy)
  1085. return 0;
  1086. spin_lock_irqsave(&d40c->lock, flags);
  1087. pm_runtime_get_sync(d40c->base->dev);
  1088. /* If bytes left to transfer or linked tx resume job */
  1089. if (d40_residue(d40c) || d40_tx_is_linked(d40c))
  1090. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1091. pm_runtime_mark_last_busy(d40c->base->dev);
  1092. pm_runtime_put_autosuspend(d40c->base->dev);
  1093. spin_unlock_irqrestore(&d40c->lock, flags);
  1094. return res;
  1095. }
  1096. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  1097. {
  1098. struct d40_chan *d40c = container_of(tx->chan,
  1099. struct d40_chan,
  1100. chan);
  1101. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  1102. unsigned long flags;
  1103. dma_cookie_t cookie;
  1104. spin_lock_irqsave(&d40c->lock, flags);
  1105. cookie = dma_cookie_assign(tx);
  1106. d40_desc_queue(d40c, d40d);
  1107. spin_unlock_irqrestore(&d40c->lock, flags);
  1108. return cookie;
  1109. }
  1110. static int d40_start(struct d40_chan *d40c)
  1111. {
  1112. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  1113. }
  1114. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  1115. {
  1116. struct d40_desc *d40d;
  1117. int err;
  1118. /* Start queued jobs, if any */
  1119. d40d = d40_first_queued(d40c);
  1120. if (d40d != NULL) {
  1121. if (!d40c->busy) {
  1122. d40c->busy = true;
  1123. pm_runtime_get_sync(d40c->base->dev);
  1124. }
  1125. /* Remove from queue */
  1126. d40_desc_remove(d40d);
  1127. /* Add to active queue */
  1128. d40_desc_submit(d40c, d40d);
  1129. /* Initiate DMA job */
  1130. d40_desc_load(d40c, d40d);
  1131. /* Start dma job */
  1132. err = d40_start(d40c);
  1133. if (err)
  1134. return NULL;
  1135. }
  1136. return d40d;
  1137. }
  1138. /* called from interrupt context */
  1139. static void dma_tc_handle(struct d40_chan *d40c)
  1140. {
  1141. struct d40_desc *d40d;
  1142. /* Get first active entry from list */
  1143. d40d = d40_first_active_get(d40c);
  1144. if (d40d == NULL)
  1145. return;
  1146. if (d40d->cyclic) {
  1147. /*
  1148. * If this was a paritially loaded list, we need to reloaded
  1149. * it, and only when the list is completed. We need to check
  1150. * for done because the interrupt will hit for every link, and
  1151. * not just the last one.
  1152. */
  1153. if (d40d->lli_current < d40d->lli_len
  1154. && !d40_tx_is_linked(d40c)
  1155. && !d40_residue(d40c)) {
  1156. d40_lcla_free_all(d40c, d40d);
  1157. d40_desc_load(d40c, d40d);
  1158. (void) d40_start(d40c);
  1159. if (d40d->lli_current == d40d->lli_len)
  1160. d40d->lli_current = 0;
  1161. }
  1162. } else {
  1163. d40_lcla_free_all(d40c, d40d);
  1164. if (d40d->lli_current < d40d->lli_len) {
  1165. d40_desc_load(d40c, d40d);
  1166. /* Start dma job */
  1167. (void) d40_start(d40c);
  1168. return;
  1169. }
  1170. if (d40_queue_start(d40c) == NULL)
  1171. d40c->busy = false;
  1172. pm_runtime_mark_last_busy(d40c->base->dev);
  1173. pm_runtime_put_autosuspend(d40c->base->dev);
  1174. }
  1175. d40c->pending_tx++;
  1176. tasklet_schedule(&d40c->tasklet);
  1177. }
  1178. static void dma_tasklet(unsigned long data)
  1179. {
  1180. struct d40_chan *d40c = (struct d40_chan *) data;
  1181. struct d40_desc *d40d;
  1182. unsigned long flags;
  1183. bool callback_active;
  1184. dma_async_tx_callback callback;
  1185. void *callback_param;
  1186. spin_lock_irqsave(&d40c->lock, flags);
  1187. /* Get first active entry from list */
  1188. d40d = d40_first_active_get(d40c);
  1189. if (d40d == NULL)
  1190. goto err;
  1191. if (!d40d->cyclic)
  1192. dma_cookie_complete(&d40d->txd);
  1193. /*
  1194. * If terminating a channel pending_tx is set to zero.
  1195. * This prevents any finished active jobs to return to the client.
  1196. */
  1197. if (d40c->pending_tx == 0) {
  1198. spin_unlock_irqrestore(&d40c->lock, flags);
  1199. return;
  1200. }
  1201. /* Callback to client */
  1202. callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
  1203. callback = d40d->txd.callback;
  1204. callback_param = d40d->txd.callback_param;
  1205. if (!d40d->cyclic) {
  1206. if (async_tx_test_ack(&d40d->txd)) {
  1207. d40_desc_remove(d40d);
  1208. d40_desc_free(d40c, d40d);
  1209. } else {
  1210. if (!d40d->is_in_client_list) {
  1211. d40_desc_remove(d40d);
  1212. d40_lcla_free_all(d40c, d40d);
  1213. list_add_tail(&d40d->node, &d40c->client);
  1214. d40d->is_in_client_list = true;
  1215. }
  1216. }
  1217. }
  1218. d40c->pending_tx--;
  1219. if (d40c->pending_tx)
  1220. tasklet_schedule(&d40c->tasklet);
  1221. spin_unlock_irqrestore(&d40c->lock, flags);
  1222. if (callback_active && callback)
  1223. callback(callback_param);
  1224. return;
  1225. err:
  1226. /* Rescue manouver if receiving double interrupts */
  1227. if (d40c->pending_tx > 0)
  1228. d40c->pending_tx--;
  1229. spin_unlock_irqrestore(&d40c->lock, flags);
  1230. }
  1231. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1232. {
  1233. static const struct d40_interrupt_lookup il[] = {
  1234. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  1235. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  1236. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  1237. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  1238. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  1239. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  1240. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  1241. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  1242. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  1243. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  1244. };
  1245. int i;
  1246. u32 regs[ARRAY_SIZE(il)];
  1247. u32 idx;
  1248. u32 row;
  1249. long chan = -1;
  1250. struct d40_chan *d40c;
  1251. unsigned long flags;
  1252. struct d40_base *base = data;
  1253. spin_lock_irqsave(&base->interrupt_lock, flags);
  1254. /* Read interrupt status of both logical and physical channels */
  1255. for (i = 0; i < ARRAY_SIZE(il); i++)
  1256. regs[i] = readl(base->virtbase + il[i].src);
  1257. for (;;) {
  1258. chan = find_next_bit((unsigned long *)regs,
  1259. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  1260. /* No more set bits found? */
  1261. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  1262. break;
  1263. row = chan / BITS_PER_LONG;
  1264. idx = chan & (BITS_PER_LONG - 1);
  1265. /* ACK interrupt */
  1266. writel(1 << idx, base->virtbase + il[row].clr);
  1267. if (il[row].offset == D40_PHY_CHAN)
  1268. d40c = base->lookup_phy_chans[idx];
  1269. else
  1270. d40c = base->lookup_log_chans[il[row].offset + idx];
  1271. spin_lock(&d40c->lock);
  1272. if (!il[row].is_error)
  1273. dma_tc_handle(d40c);
  1274. else
  1275. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1276. chan, il[row].offset, idx);
  1277. spin_unlock(&d40c->lock);
  1278. }
  1279. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1280. return IRQ_HANDLED;
  1281. }
  1282. static int d40_validate_conf(struct d40_chan *d40c,
  1283. struct stedma40_chan_cfg *conf)
  1284. {
  1285. int res = 0;
  1286. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1287. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1288. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1289. if (!conf->dir) {
  1290. chan_err(d40c, "Invalid direction.\n");
  1291. res = -EINVAL;
  1292. }
  1293. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1294. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1295. d40c->runtime_addr == 0) {
  1296. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1297. conf->dst_dev_type);
  1298. res = -EINVAL;
  1299. }
  1300. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1301. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1302. d40c->runtime_addr == 0) {
  1303. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1304. conf->src_dev_type);
  1305. res = -EINVAL;
  1306. }
  1307. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1308. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1309. chan_err(d40c, "Invalid dst\n");
  1310. res = -EINVAL;
  1311. }
  1312. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1313. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1314. chan_err(d40c, "Invalid src\n");
  1315. res = -EINVAL;
  1316. }
  1317. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1318. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1319. chan_err(d40c, "No event line\n");
  1320. res = -EINVAL;
  1321. }
  1322. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1323. (src_event_group != dst_event_group)) {
  1324. chan_err(d40c, "Invalid event group\n");
  1325. res = -EINVAL;
  1326. }
  1327. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1328. /*
  1329. * DMAC HW supports it. Will be added to this driver,
  1330. * in case any dma client requires it.
  1331. */
  1332. chan_err(d40c, "periph to periph not supported\n");
  1333. res = -EINVAL;
  1334. }
  1335. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1336. (1 << conf->src_info.data_width) !=
  1337. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1338. (1 << conf->dst_info.data_width)) {
  1339. /*
  1340. * The DMAC hardware only supports
  1341. * src (burst x width) == dst (burst x width)
  1342. */
  1343. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1344. res = -EINVAL;
  1345. }
  1346. return res;
  1347. }
  1348. static bool d40_alloc_mask_set(struct d40_phy_res *phy,
  1349. bool is_src, int log_event_line, bool is_log,
  1350. bool *first_user)
  1351. {
  1352. unsigned long flags;
  1353. spin_lock_irqsave(&phy->lock, flags);
  1354. *first_user = ((phy->allocated_src | phy->allocated_dst)
  1355. == D40_ALLOC_FREE);
  1356. if (!is_log) {
  1357. /* Physical interrupts are masked per physical full channel */
  1358. if (phy->allocated_src == D40_ALLOC_FREE &&
  1359. phy->allocated_dst == D40_ALLOC_FREE) {
  1360. phy->allocated_dst = D40_ALLOC_PHY;
  1361. phy->allocated_src = D40_ALLOC_PHY;
  1362. goto found;
  1363. } else
  1364. goto not_found;
  1365. }
  1366. /* Logical channel */
  1367. if (is_src) {
  1368. if (phy->allocated_src == D40_ALLOC_PHY)
  1369. goto not_found;
  1370. if (phy->allocated_src == D40_ALLOC_FREE)
  1371. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1372. if (!(phy->allocated_src & (1 << log_event_line))) {
  1373. phy->allocated_src |= 1 << log_event_line;
  1374. goto found;
  1375. } else
  1376. goto not_found;
  1377. } else {
  1378. if (phy->allocated_dst == D40_ALLOC_PHY)
  1379. goto not_found;
  1380. if (phy->allocated_dst == D40_ALLOC_FREE)
  1381. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1382. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1383. phy->allocated_dst |= 1 << log_event_line;
  1384. goto found;
  1385. } else
  1386. goto not_found;
  1387. }
  1388. not_found:
  1389. spin_unlock_irqrestore(&phy->lock, flags);
  1390. return false;
  1391. found:
  1392. spin_unlock_irqrestore(&phy->lock, flags);
  1393. return true;
  1394. }
  1395. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1396. int log_event_line)
  1397. {
  1398. unsigned long flags;
  1399. bool is_free = false;
  1400. spin_lock_irqsave(&phy->lock, flags);
  1401. if (!log_event_line) {
  1402. phy->allocated_dst = D40_ALLOC_FREE;
  1403. phy->allocated_src = D40_ALLOC_FREE;
  1404. is_free = true;
  1405. goto out;
  1406. }
  1407. /* Logical channel */
  1408. if (is_src) {
  1409. phy->allocated_src &= ~(1 << log_event_line);
  1410. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1411. phy->allocated_src = D40_ALLOC_FREE;
  1412. } else {
  1413. phy->allocated_dst &= ~(1 << log_event_line);
  1414. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1415. phy->allocated_dst = D40_ALLOC_FREE;
  1416. }
  1417. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1418. D40_ALLOC_FREE);
  1419. out:
  1420. spin_unlock_irqrestore(&phy->lock, flags);
  1421. return is_free;
  1422. }
  1423. static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
  1424. {
  1425. int dev_type;
  1426. int event_group;
  1427. int event_line;
  1428. struct d40_phy_res *phys;
  1429. int i;
  1430. int j;
  1431. int log_num;
  1432. bool is_src;
  1433. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1434. phys = d40c->base->phy_res;
  1435. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1436. dev_type = d40c->dma_cfg.src_dev_type;
  1437. log_num = 2 * dev_type;
  1438. is_src = true;
  1439. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1440. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1441. /* dst event lines are used for logical memcpy */
  1442. dev_type = d40c->dma_cfg.dst_dev_type;
  1443. log_num = 2 * dev_type + 1;
  1444. is_src = false;
  1445. } else
  1446. return -EINVAL;
  1447. event_group = D40_TYPE_TO_GROUP(dev_type);
  1448. event_line = D40_TYPE_TO_EVENT(dev_type);
  1449. if (!is_log) {
  1450. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1451. /* Find physical half channel */
  1452. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1453. if (d40_alloc_mask_set(&phys[i], is_src,
  1454. 0, is_log,
  1455. first_phy_user))
  1456. goto found_phy;
  1457. }
  1458. } else
  1459. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1460. int phy_num = j + event_group * 2;
  1461. for (i = phy_num; i < phy_num + 2; i++) {
  1462. if (d40_alloc_mask_set(&phys[i],
  1463. is_src,
  1464. 0,
  1465. is_log,
  1466. first_phy_user))
  1467. goto found_phy;
  1468. }
  1469. }
  1470. return -EINVAL;
  1471. found_phy:
  1472. d40c->phy_chan = &phys[i];
  1473. d40c->log_num = D40_PHY_CHAN;
  1474. goto out;
  1475. }
  1476. if (dev_type == -1)
  1477. return -EINVAL;
  1478. /* Find logical channel */
  1479. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1480. int phy_num = j + event_group * 2;
  1481. if (d40c->dma_cfg.use_fixed_channel) {
  1482. i = d40c->dma_cfg.phy_channel;
  1483. if ((i != phy_num) && (i != phy_num + 1)) {
  1484. dev_err(chan2dev(d40c),
  1485. "invalid fixed phy channel %d\n", i);
  1486. return -EINVAL;
  1487. }
  1488. if (d40_alloc_mask_set(&phys[i], is_src, event_line,
  1489. is_log, first_phy_user))
  1490. goto found_log;
  1491. dev_err(chan2dev(d40c),
  1492. "could not allocate fixed phy channel %d\n", i);
  1493. return -EINVAL;
  1494. }
  1495. /*
  1496. * Spread logical channels across all available physical rather
  1497. * than pack every logical channel at the first available phy
  1498. * channels.
  1499. */
  1500. if (is_src) {
  1501. for (i = phy_num; i < phy_num + 2; i++) {
  1502. if (d40_alloc_mask_set(&phys[i], is_src,
  1503. event_line, is_log,
  1504. first_phy_user))
  1505. goto found_log;
  1506. }
  1507. } else {
  1508. for (i = phy_num + 1; i >= phy_num; i--) {
  1509. if (d40_alloc_mask_set(&phys[i], is_src,
  1510. event_line, is_log,
  1511. first_phy_user))
  1512. goto found_log;
  1513. }
  1514. }
  1515. }
  1516. return -EINVAL;
  1517. found_log:
  1518. d40c->phy_chan = &phys[i];
  1519. d40c->log_num = log_num;
  1520. out:
  1521. if (is_log)
  1522. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1523. else
  1524. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1525. return 0;
  1526. }
  1527. static int d40_config_memcpy(struct d40_chan *d40c)
  1528. {
  1529. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1530. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1531. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1532. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1533. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1534. memcpy[d40c->chan.chan_id];
  1535. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1536. dma_has_cap(DMA_SLAVE, cap)) {
  1537. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1538. } else {
  1539. chan_err(d40c, "No memcpy\n");
  1540. return -EINVAL;
  1541. }
  1542. return 0;
  1543. }
  1544. static int d40_free_dma(struct d40_chan *d40c)
  1545. {
  1546. int res = 0;
  1547. u32 event;
  1548. struct d40_phy_res *phy = d40c->phy_chan;
  1549. bool is_src;
  1550. /* Terminate all queued and active transfers */
  1551. d40_term_all(d40c);
  1552. if (phy == NULL) {
  1553. chan_err(d40c, "phy == null\n");
  1554. return -EINVAL;
  1555. }
  1556. if (phy->allocated_src == D40_ALLOC_FREE &&
  1557. phy->allocated_dst == D40_ALLOC_FREE) {
  1558. chan_err(d40c, "channel already free\n");
  1559. return -EINVAL;
  1560. }
  1561. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1562. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1563. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1564. is_src = false;
  1565. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1566. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1567. is_src = true;
  1568. } else {
  1569. chan_err(d40c, "Unknown direction\n");
  1570. return -EINVAL;
  1571. }
  1572. pm_runtime_get_sync(d40c->base->dev);
  1573. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1574. if (res) {
  1575. chan_err(d40c, "stop failed\n");
  1576. goto out;
  1577. }
  1578. d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
  1579. if (chan_is_logical(d40c))
  1580. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1581. else
  1582. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1583. if (d40c->busy) {
  1584. pm_runtime_mark_last_busy(d40c->base->dev);
  1585. pm_runtime_put_autosuspend(d40c->base->dev);
  1586. }
  1587. d40c->busy = false;
  1588. d40c->phy_chan = NULL;
  1589. d40c->configured = false;
  1590. out:
  1591. pm_runtime_mark_last_busy(d40c->base->dev);
  1592. pm_runtime_put_autosuspend(d40c->base->dev);
  1593. return res;
  1594. }
  1595. static bool d40_is_paused(struct d40_chan *d40c)
  1596. {
  1597. void __iomem *chanbase = chan_base(d40c);
  1598. bool is_paused = false;
  1599. unsigned long flags;
  1600. void __iomem *active_reg;
  1601. u32 status;
  1602. u32 event;
  1603. spin_lock_irqsave(&d40c->lock, flags);
  1604. if (chan_is_physical(d40c)) {
  1605. if (d40c->phy_chan->num % 2 == 0)
  1606. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1607. else
  1608. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1609. status = (readl(active_reg) &
  1610. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1611. D40_CHAN_POS(d40c->phy_chan->num);
  1612. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1613. is_paused = true;
  1614. goto _exit;
  1615. }
  1616. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1617. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1618. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1619. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1620. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1621. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1622. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1623. } else {
  1624. chan_err(d40c, "Unknown direction\n");
  1625. goto _exit;
  1626. }
  1627. status = (status & D40_EVENTLINE_MASK(event)) >>
  1628. D40_EVENTLINE_POS(event);
  1629. if (status != D40_DMA_RUN)
  1630. is_paused = true;
  1631. _exit:
  1632. spin_unlock_irqrestore(&d40c->lock, flags);
  1633. return is_paused;
  1634. }
  1635. static u32 stedma40_residue(struct dma_chan *chan)
  1636. {
  1637. struct d40_chan *d40c =
  1638. container_of(chan, struct d40_chan, chan);
  1639. u32 bytes_left;
  1640. unsigned long flags;
  1641. spin_lock_irqsave(&d40c->lock, flags);
  1642. bytes_left = d40_residue(d40c);
  1643. spin_unlock_irqrestore(&d40c->lock, flags);
  1644. return bytes_left;
  1645. }
  1646. static int
  1647. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1648. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1649. unsigned int sg_len, dma_addr_t src_dev_addr,
  1650. dma_addr_t dst_dev_addr)
  1651. {
  1652. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1653. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1654. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1655. int ret;
  1656. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1657. src_dev_addr,
  1658. desc->lli_log.src,
  1659. chan->log_def.lcsp1,
  1660. src_info->data_width,
  1661. dst_info->data_width);
  1662. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1663. dst_dev_addr,
  1664. desc->lli_log.dst,
  1665. chan->log_def.lcsp3,
  1666. dst_info->data_width,
  1667. src_info->data_width);
  1668. return ret < 0 ? ret : 0;
  1669. }
  1670. static int
  1671. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1672. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1673. unsigned int sg_len, dma_addr_t src_dev_addr,
  1674. dma_addr_t dst_dev_addr)
  1675. {
  1676. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1677. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1678. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1679. unsigned long flags = 0;
  1680. int ret;
  1681. if (desc->cyclic)
  1682. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1683. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1684. desc->lli_phy.src,
  1685. virt_to_phys(desc->lli_phy.src),
  1686. chan->src_def_cfg,
  1687. src_info, dst_info, flags);
  1688. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1689. desc->lli_phy.dst,
  1690. virt_to_phys(desc->lli_phy.dst),
  1691. chan->dst_def_cfg,
  1692. dst_info, src_info, flags);
  1693. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1694. desc->lli_pool.size, DMA_TO_DEVICE);
  1695. return ret < 0 ? ret : 0;
  1696. }
  1697. static struct d40_desc *
  1698. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1699. unsigned int sg_len, unsigned long dma_flags)
  1700. {
  1701. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1702. struct d40_desc *desc;
  1703. int ret;
  1704. desc = d40_desc_get(chan);
  1705. if (!desc)
  1706. return NULL;
  1707. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1708. cfg->dst_info.data_width);
  1709. if (desc->lli_len < 0) {
  1710. chan_err(chan, "Unaligned size\n");
  1711. goto err;
  1712. }
  1713. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1714. if (ret < 0) {
  1715. chan_err(chan, "Could not allocate lli\n");
  1716. goto err;
  1717. }
  1718. desc->lli_current = 0;
  1719. desc->txd.flags = dma_flags;
  1720. desc->txd.tx_submit = d40_tx_submit;
  1721. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1722. return desc;
  1723. err:
  1724. d40_desc_free(chan, desc);
  1725. return NULL;
  1726. }
  1727. static dma_addr_t
  1728. d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
  1729. {
  1730. struct stedma40_platform_data *plat = chan->base->plat_data;
  1731. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1732. dma_addr_t addr = 0;
  1733. if (chan->runtime_addr)
  1734. return chan->runtime_addr;
  1735. if (direction == DMA_DEV_TO_MEM)
  1736. addr = plat->dev_rx[cfg->src_dev_type];
  1737. else if (direction == DMA_MEM_TO_DEV)
  1738. addr = plat->dev_tx[cfg->dst_dev_type];
  1739. return addr;
  1740. }
  1741. static struct dma_async_tx_descriptor *
  1742. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1743. struct scatterlist *sg_dst, unsigned int sg_len,
  1744. enum dma_transfer_direction direction, unsigned long dma_flags)
  1745. {
  1746. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1747. dma_addr_t src_dev_addr = 0;
  1748. dma_addr_t dst_dev_addr = 0;
  1749. struct d40_desc *desc;
  1750. unsigned long flags;
  1751. int ret;
  1752. if (!chan->phy_chan) {
  1753. chan_err(chan, "Cannot prepare unallocated channel\n");
  1754. return NULL;
  1755. }
  1756. spin_lock_irqsave(&chan->lock, flags);
  1757. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1758. if (desc == NULL)
  1759. goto err;
  1760. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1761. desc->cyclic = true;
  1762. if (direction != DMA_TRANS_NONE) {
  1763. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1764. if (direction == DMA_DEV_TO_MEM)
  1765. src_dev_addr = dev_addr;
  1766. else if (direction == DMA_MEM_TO_DEV)
  1767. dst_dev_addr = dev_addr;
  1768. }
  1769. if (chan_is_logical(chan))
  1770. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1771. sg_len, src_dev_addr, dst_dev_addr);
  1772. else
  1773. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1774. sg_len, src_dev_addr, dst_dev_addr);
  1775. if (ret) {
  1776. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1777. chan_is_logical(chan) ? "log" : "phy", ret);
  1778. goto err;
  1779. }
  1780. /*
  1781. * add descriptor to the prepare queue in order to be able
  1782. * to free them later in terminate_all
  1783. */
  1784. list_add_tail(&desc->node, &chan->prepare_queue);
  1785. spin_unlock_irqrestore(&chan->lock, flags);
  1786. return &desc->txd;
  1787. err:
  1788. if (desc)
  1789. d40_desc_free(chan, desc);
  1790. spin_unlock_irqrestore(&chan->lock, flags);
  1791. return NULL;
  1792. }
  1793. bool stedma40_filter(struct dma_chan *chan, void *data)
  1794. {
  1795. struct stedma40_chan_cfg *info = data;
  1796. struct d40_chan *d40c =
  1797. container_of(chan, struct d40_chan, chan);
  1798. int err;
  1799. if (data) {
  1800. err = d40_validate_conf(d40c, info);
  1801. if (!err)
  1802. d40c->dma_cfg = *info;
  1803. } else
  1804. err = d40_config_memcpy(d40c);
  1805. if (!err)
  1806. d40c->configured = true;
  1807. return err == 0;
  1808. }
  1809. EXPORT_SYMBOL(stedma40_filter);
  1810. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1811. {
  1812. bool realtime = d40c->dma_cfg.realtime;
  1813. bool highprio = d40c->dma_cfg.high_priority;
  1814. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1815. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1816. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1817. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1818. u32 bit = 1 << event;
  1819. /* Destination event lines are stored in the upper halfword */
  1820. if (!src)
  1821. bit <<= 16;
  1822. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1823. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1824. }
  1825. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1826. {
  1827. if (d40c->base->rev < 3)
  1828. return;
  1829. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1830. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1831. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1832. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1833. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1834. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1835. }
  1836. /* DMA ENGINE functions */
  1837. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1838. {
  1839. int err;
  1840. unsigned long flags;
  1841. struct d40_chan *d40c =
  1842. container_of(chan, struct d40_chan, chan);
  1843. bool is_free_phy;
  1844. spin_lock_irqsave(&d40c->lock, flags);
  1845. dma_cookie_init(chan);
  1846. /* If no dma configuration is set use default configuration (memcpy) */
  1847. if (!d40c->configured) {
  1848. err = d40_config_memcpy(d40c);
  1849. if (err) {
  1850. chan_err(d40c, "Failed to configure memcpy channel\n");
  1851. goto fail;
  1852. }
  1853. }
  1854. err = d40_allocate_channel(d40c, &is_free_phy);
  1855. if (err) {
  1856. chan_err(d40c, "Failed to allocate channel\n");
  1857. d40c->configured = false;
  1858. goto fail;
  1859. }
  1860. pm_runtime_get_sync(d40c->base->dev);
  1861. /* Fill in basic CFG register values */
  1862. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1863. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1864. d40_set_prio_realtime(d40c);
  1865. if (chan_is_logical(d40c)) {
  1866. d40_log_cfg(&d40c->dma_cfg,
  1867. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1868. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1869. d40c->lcpa = d40c->base->lcpa_base +
  1870. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1871. else
  1872. d40c->lcpa = d40c->base->lcpa_base +
  1873. d40c->dma_cfg.dst_dev_type *
  1874. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1875. }
  1876. dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
  1877. chan_is_logical(d40c) ? "logical" : "physical",
  1878. d40c->phy_chan->num,
  1879. d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
  1880. /*
  1881. * Only write channel configuration to the DMA if the physical
  1882. * resource is free. In case of multiple logical channels
  1883. * on the same physical resource, only the first write is necessary.
  1884. */
  1885. if (is_free_phy)
  1886. d40_config_write(d40c);
  1887. fail:
  1888. pm_runtime_mark_last_busy(d40c->base->dev);
  1889. pm_runtime_put_autosuspend(d40c->base->dev);
  1890. spin_unlock_irqrestore(&d40c->lock, flags);
  1891. return err;
  1892. }
  1893. static void d40_free_chan_resources(struct dma_chan *chan)
  1894. {
  1895. struct d40_chan *d40c =
  1896. container_of(chan, struct d40_chan, chan);
  1897. int err;
  1898. unsigned long flags;
  1899. if (d40c->phy_chan == NULL) {
  1900. chan_err(d40c, "Cannot free unallocated channel\n");
  1901. return;
  1902. }
  1903. spin_lock_irqsave(&d40c->lock, flags);
  1904. err = d40_free_dma(d40c);
  1905. if (err)
  1906. chan_err(d40c, "Failed to free channel\n");
  1907. spin_unlock_irqrestore(&d40c->lock, flags);
  1908. }
  1909. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1910. dma_addr_t dst,
  1911. dma_addr_t src,
  1912. size_t size,
  1913. unsigned long dma_flags)
  1914. {
  1915. struct scatterlist dst_sg;
  1916. struct scatterlist src_sg;
  1917. sg_init_table(&dst_sg, 1);
  1918. sg_init_table(&src_sg, 1);
  1919. sg_dma_address(&dst_sg) = dst;
  1920. sg_dma_address(&src_sg) = src;
  1921. sg_dma_len(&dst_sg) = size;
  1922. sg_dma_len(&src_sg) = size;
  1923. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  1924. }
  1925. static struct dma_async_tx_descriptor *
  1926. d40_prep_memcpy_sg(struct dma_chan *chan,
  1927. struct scatterlist *dst_sg, unsigned int dst_nents,
  1928. struct scatterlist *src_sg, unsigned int src_nents,
  1929. unsigned long dma_flags)
  1930. {
  1931. if (dst_nents != src_nents)
  1932. return NULL;
  1933. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  1934. }
  1935. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1936. struct scatterlist *sgl,
  1937. unsigned int sg_len,
  1938. enum dma_transfer_direction direction,
  1939. unsigned long dma_flags,
  1940. void *context)
  1941. {
  1942. if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
  1943. return NULL;
  1944. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  1945. }
  1946. static struct dma_async_tx_descriptor *
  1947. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  1948. size_t buf_len, size_t period_len,
  1949. enum dma_transfer_direction direction, void *context)
  1950. {
  1951. unsigned int periods = buf_len / period_len;
  1952. struct dma_async_tx_descriptor *txd;
  1953. struct scatterlist *sg;
  1954. int i;
  1955. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  1956. for (i = 0; i < periods; i++) {
  1957. sg_dma_address(&sg[i]) = dma_addr;
  1958. sg_dma_len(&sg[i]) = period_len;
  1959. dma_addr += period_len;
  1960. }
  1961. sg[periods].offset = 0;
  1962. sg[periods].length = 0;
  1963. sg[periods].page_link =
  1964. ((unsigned long)sg | 0x01) & ~0x02;
  1965. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  1966. DMA_PREP_INTERRUPT);
  1967. kfree(sg);
  1968. return txd;
  1969. }
  1970. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1971. dma_cookie_t cookie,
  1972. struct dma_tx_state *txstate)
  1973. {
  1974. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1975. enum dma_status ret;
  1976. if (d40c->phy_chan == NULL) {
  1977. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1978. return -EINVAL;
  1979. }
  1980. ret = dma_cookie_status(chan, cookie, txstate);
  1981. if (ret != DMA_SUCCESS)
  1982. dma_set_residue(txstate, stedma40_residue(chan));
  1983. if (d40_is_paused(d40c))
  1984. ret = DMA_PAUSED;
  1985. return ret;
  1986. }
  1987. static void d40_issue_pending(struct dma_chan *chan)
  1988. {
  1989. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1990. unsigned long flags;
  1991. if (d40c->phy_chan == NULL) {
  1992. chan_err(d40c, "Channel is not allocated!\n");
  1993. return;
  1994. }
  1995. spin_lock_irqsave(&d40c->lock, flags);
  1996. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  1997. /* Busy means that queued jobs are already being processed */
  1998. if (!d40c->busy)
  1999. (void) d40_queue_start(d40c);
  2000. spin_unlock_irqrestore(&d40c->lock, flags);
  2001. }
  2002. static void d40_terminate_all(struct dma_chan *chan)
  2003. {
  2004. unsigned long flags;
  2005. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2006. int ret;
  2007. spin_lock_irqsave(&d40c->lock, flags);
  2008. pm_runtime_get_sync(d40c->base->dev);
  2009. ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
  2010. if (ret)
  2011. chan_err(d40c, "Failed to stop channel\n");
  2012. d40_term_all(d40c);
  2013. pm_runtime_mark_last_busy(d40c->base->dev);
  2014. pm_runtime_put_autosuspend(d40c->base->dev);
  2015. if (d40c->busy) {
  2016. pm_runtime_mark_last_busy(d40c->base->dev);
  2017. pm_runtime_put_autosuspend(d40c->base->dev);
  2018. }
  2019. d40c->busy = false;
  2020. spin_unlock_irqrestore(&d40c->lock, flags);
  2021. }
  2022. static int
  2023. dma40_config_to_halfchannel(struct d40_chan *d40c,
  2024. struct stedma40_half_channel_info *info,
  2025. enum dma_slave_buswidth width,
  2026. u32 maxburst)
  2027. {
  2028. enum stedma40_periph_data_width addr_width;
  2029. int psize;
  2030. switch (width) {
  2031. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  2032. addr_width = STEDMA40_BYTE_WIDTH;
  2033. break;
  2034. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  2035. addr_width = STEDMA40_HALFWORD_WIDTH;
  2036. break;
  2037. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  2038. addr_width = STEDMA40_WORD_WIDTH;
  2039. break;
  2040. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  2041. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  2042. break;
  2043. default:
  2044. dev_err(d40c->base->dev,
  2045. "illegal peripheral address width "
  2046. "requested (%d)\n",
  2047. width);
  2048. return -EINVAL;
  2049. }
  2050. if (chan_is_logical(d40c)) {
  2051. if (maxburst >= 16)
  2052. psize = STEDMA40_PSIZE_LOG_16;
  2053. else if (maxburst >= 8)
  2054. psize = STEDMA40_PSIZE_LOG_8;
  2055. else if (maxburst >= 4)
  2056. psize = STEDMA40_PSIZE_LOG_4;
  2057. else
  2058. psize = STEDMA40_PSIZE_LOG_1;
  2059. } else {
  2060. if (maxburst >= 16)
  2061. psize = STEDMA40_PSIZE_PHY_16;
  2062. else if (maxburst >= 8)
  2063. psize = STEDMA40_PSIZE_PHY_8;
  2064. else if (maxburst >= 4)
  2065. psize = STEDMA40_PSIZE_PHY_4;
  2066. else
  2067. psize = STEDMA40_PSIZE_PHY_1;
  2068. }
  2069. info->data_width = addr_width;
  2070. info->psize = psize;
  2071. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  2072. return 0;
  2073. }
  2074. /* Runtime reconfiguration extension */
  2075. static int d40_set_runtime_config(struct dma_chan *chan,
  2076. struct dma_slave_config *config)
  2077. {
  2078. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2079. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  2080. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  2081. dma_addr_t config_addr;
  2082. u32 src_maxburst, dst_maxburst;
  2083. int ret;
  2084. src_addr_width = config->src_addr_width;
  2085. src_maxburst = config->src_maxburst;
  2086. dst_addr_width = config->dst_addr_width;
  2087. dst_maxburst = config->dst_maxburst;
  2088. if (config->direction == DMA_DEV_TO_MEM) {
  2089. dma_addr_t dev_addr_rx =
  2090. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  2091. config_addr = config->src_addr;
  2092. if (dev_addr_rx)
  2093. dev_dbg(d40c->base->dev,
  2094. "channel has a pre-wired RX address %08x "
  2095. "overriding with %08x\n",
  2096. dev_addr_rx, config_addr);
  2097. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  2098. dev_dbg(d40c->base->dev,
  2099. "channel was not configured for peripheral "
  2100. "to memory transfer (%d) overriding\n",
  2101. cfg->dir);
  2102. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  2103. /* Configure the memory side */
  2104. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2105. dst_addr_width = src_addr_width;
  2106. if (dst_maxburst == 0)
  2107. dst_maxburst = src_maxburst;
  2108. } else if (config->direction == DMA_MEM_TO_DEV) {
  2109. dma_addr_t dev_addr_tx =
  2110. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  2111. config_addr = config->dst_addr;
  2112. if (dev_addr_tx)
  2113. dev_dbg(d40c->base->dev,
  2114. "channel has a pre-wired TX address %08x "
  2115. "overriding with %08x\n",
  2116. dev_addr_tx, config_addr);
  2117. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  2118. dev_dbg(d40c->base->dev,
  2119. "channel was not configured for memory "
  2120. "to peripheral transfer (%d) overriding\n",
  2121. cfg->dir);
  2122. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  2123. /* Configure the memory side */
  2124. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2125. src_addr_width = dst_addr_width;
  2126. if (src_maxburst == 0)
  2127. src_maxburst = dst_maxburst;
  2128. } else {
  2129. dev_err(d40c->base->dev,
  2130. "unrecognized channel direction %d\n",
  2131. config->direction);
  2132. return -EINVAL;
  2133. }
  2134. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  2135. dev_err(d40c->base->dev,
  2136. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  2137. src_maxburst,
  2138. src_addr_width,
  2139. dst_maxburst,
  2140. dst_addr_width);
  2141. return -EINVAL;
  2142. }
  2143. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  2144. src_addr_width,
  2145. src_maxburst);
  2146. if (ret)
  2147. return ret;
  2148. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  2149. dst_addr_width,
  2150. dst_maxburst);
  2151. if (ret)
  2152. return ret;
  2153. /* Fill in register values */
  2154. if (chan_is_logical(d40c))
  2155. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2156. else
  2157. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  2158. &d40c->dst_def_cfg, false);
  2159. /* These settings will take precedence later */
  2160. d40c->runtime_addr = config_addr;
  2161. d40c->runtime_direction = config->direction;
  2162. dev_dbg(d40c->base->dev,
  2163. "configured channel %s for %s, data width %d/%d, "
  2164. "maxburst %d/%d elements, LE, no flow control\n",
  2165. dma_chan_name(chan),
  2166. (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
  2167. src_addr_width, dst_addr_width,
  2168. src_maxburst, dst_maxburst);
  2169. return 0;
  2170. }
  2171. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  2172. unsigned long arg)
  2173. {
  2174. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2175. if (d40c->phy_chan == NULL) {
  2176. chan_err(d40c, "Channel is not allocated!\n");
  2177. return -EINVAL;
  2178. }
  2179. switch (cmd) {
  2180. case DMA_TERMINATE_ALL:
  2181. d40_terminate_all(chan);
  2182. return 0;
  2183. case DMA_PAUSE:
  2184. return d40_pause(d40c);
  2185. case DMA_RESUME:
  2186. return d40_resume(d40c);
  2187. case DMA_SLAVE_CONFIG:
  2188. return d40_set_runtime_config(chan,
  2189. (struct dma_slave_config *) arg);
  2190. default:
  2191. break;
  2192. }
  2193. /* Other commands are unimplemented */
  2194. return -ENXIO;
  2195. }
  2196. /* Initialization functions */
  2197. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2198. struct d40_chan *chans, int offset,
  2199. int num_chans)
  2200. {
  2201. int i = 0;
  2202. struct d40_chan *d40c;
  2203. INIT_LIST_HEAD(&dma->channels);
  2204. for (i = offset; i < offset + num_chans; i++) {
  2205. d40c = &chans[i];
  2206. d40c->base = base;
  2207. d40c->chan.device = dma;
  2208. spin_lock_init(&d40c->lock);
  2209. d40c->log_num = D40_PHY_CHAN;
  2210. INIT_LIST_HEAD(&d40c->active);
  2211. INIT_LIST_HEAD(&d40c->queue);
  2212. INIT_LIST_HEAD(&d40c->pending_queue);
  2213. INIT_LIST_HEAD(&d40c->client);
  2214. INIT_LIST_HEAD(&d40c->prepare_queue);
  2215. tasklet_init(&d40c->tasklet, dma_tasklet,
  2216. (unsigned long) d40c);
  2217. list_add_tail(&d40c->chan.device_node,
  2218. &dma->channels);
  2219. }
  2220. }
  2221. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2222. {
  2223. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  2224. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2225. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2226. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2227. /*
  2228. * This controller can only access address at even
  2229. * 32bit boundaries, i.e. 2^2
  2230. */
  2231. dev->copy_align = 2;
  2232. }
  2233. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2234. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2235. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2236. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2237. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2238. dev->device_free_chan_resources = d40_free_chan_resources;
  2239. dev->device_issue_pending = d40_issue_pending;
  2240. dev->device_tx_status = d40_tx_status;
  2241. dev->device_control = d40_control;
  2242. dev->dev = base->dev;
  2243. }
  2244. static int __init d40_dmaengine_init(struct d40_base *base,
  2245. int num_reserved_chans)
  2246. {
  2247. int err ;
  2248. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2249. 0, base->num_log_chans);
  2250. dma_cap_zero(base->dma_slave.cap_mask);
  2251. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2252. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2253. d40_ops_init(base, &base->dma_slave);
  2254. err = dma_async_device_register(&base->dma_slave);
  2255. if (err) {
  2256. d40_err(base->dev, "Failed to register slave channels\n");
  2257. goto failure1;
  2258. }
  2259. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2260. base->num_log_chans, base->plat_data->memcpy_len);
  2261. dma_cap_zero(base->dma_memcpy.cap_mask);
  2262. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2263. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2264. d40_ops_init(base, &base->dma_memcpy);
  2265. err = dma_async_device_register(&base->dma_memcpy);
  2266. if (err) {
  2267. d40_err(base->dev,
  2268. "Failed to regsiter memcpy only channels\n");
  2269. goto failure2;
  2270. }
  2271. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2272. 0, num_reserved_chans);
  2273. dma_cap_zero(base->dma_both.cap_mask);
  2274. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2275. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2276. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2277. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2278. d40_ops_init(base, &base->dma_both);
  2279. err = dma_async_device_register(&base->dma_both);
  2280. if (err) {
  2281. d40_err(base->dev,
  2282. "Failed to register logical and physical capable channels\n");
  2283. goto failure3;
  2284. }
  2285. return 0;
  2286. failure3:
  2287. dma_async_device_unregister(&base->dma_memcpy);
  2288. failure2:
  2289. dma_async_device_unregister(&base->dma_slave);
  2290. failure1:
  2291. return err;
  2292. }
  2293. /* Suspend resume functionality */
  2294. #ifdef CONFIG_PM
  2295. static int dma40_pm_suspend(struct device *dev)
  2296. {
  2297. struct platform_device *pdev = to_platform_device(dev);
  2298. struct d40_base *base = platform_get_drvdata(pdev);
  2299. int ret = 0;
  2300. if (!pm_runtime_suspended(dev))
  2301. return -EBUSY;
  2302. if (base->lcpa_regulator)
  2303. ret = regulator_disable(base->lcpa_regulator);
  2304. return ret;
  2305. }
  2306. static int dma40_runtime_suspend(struct device *dev)
  2307. {
  2308. struct platform_device *pdev = to_platform_device(dev);
  2309. struct d40_base *base = platform_get_drvdata(pdev);
  2310. d40_save_restore_registers(base, true);
  2311. /* Don't disable/enable clocks for v1 due to HW bugs */
  2312. if (base->rev != 1)
  2313. writel_relaxed(base->gcc_pwr_off_mask,
  2314. base->virtbase + D40_DREG_GCC);
  2315. return 0;
  2316. }
  2317. static int dma40_runtime_resume(struct device *dev)
  2318. {
  2319. struct platform_device *pdev = to_platform_device(dev);
  2320. struct d40_base *base = platform_get_drvdata(pdev);
  2321. if (base->initialized)
  2322. d40_save_restore_registers(base, false);
  2323. writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
  2324. base->virtbase + D40_DREG_GCC);
  2325. return 0;
  2326. }
  2327. static int dma40_resume(struct device *dev)
  2328. {
  2329. struct platform_device *pdev = to_platform_device(dev);
  2330. struct d40_base *base = platform_get_drvdata(pdev);
  2331. int ret = 0;
  2332. if (base->lcpa_regulator)
  2333. ret = regulator_enable(base->lcpa_regulator);
  2334. return ret;
  2335. }
  2336. static const struct dev_pm_ops dma40_pm_ops = {
  2337. .suspend = dma40_pm_suspend,
  2338. .runtime_suspend = dma40_runtime_suspend,
  2339. .runtime_resume = dma40_runtime_resume,
  2340. .resume = dma40_resume,
  2341. };
  2342. #define DMA40_PM_OPS (&dma40_pm_ops)
  2343. #else
  2344. #define DMA40_PM_OPS NULL
  2345. #endif
  2346. /* Initialization functions. */
  2347. static int __init d40_phy_res_init(struct d40_base *base)
  2348. {
  2349. int i;
  2350. int num_phy_chans_avail = 0;
  2351. u32 val[2];
  2352. int odd_even_bit = -2;
  2353. int gcc = D40_DREG_GCC_ENA;
  2354. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2355. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2356. for (i = 0; i < base->num_phy_chans; i++) {
  2357. base->phy_res[i].num = i;
  2358. odd_even_bit += 2 * ((i % 2) == 0);
  2359. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2360. /* Mark security only channels as occupied */
  2361. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2362. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2363. base->phy_res[i].reserved = true;
  2364. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2365. D40_DREG_GCC_SRC);
  2366. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2367. D40_DREG_GCC_DST);
  2368. } else {
  2369. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2370. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2371. base->phy_res[i].reserved = false;
  2372. num_phy_chans_avail++;
  2373. }
  2374. spin_lock_init(&base->phy_res[i].lock);
  2375. }
  2376. /* Mark disabled channels as occupied */
  2377. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2378. int chan = base->plat_data->disabled_channels[i];
  2379. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2380. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2381. base->phy_res[chan].reserved = true;
  2382. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2383. D40_DREG_GCC_SRC);
  2384. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2385. D40_DREG_GCC_DST);
  2386. num_phy_chans_avail--;
  2387. }
  2388. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2389. num_phy_chans_avail, base->num_phy_chans);
  2390. /* Verify settings extended vs standard */
  2391. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2392. for (i = 0; i < base->num_phy_chans; i++) {
  2393. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2394. (val[0] & 0x3) != 1)
  2395. dev_info(base->dev,
  2396. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2397. __func__, i, val[0] & 0x3);
  2398. val[0] = val[0] >> 2;
  2399. }
  2400. /*
  2401. * To keep things simple, Enable all clocks initially.
  2402. * The clocks will get managed later post channel allocation.
  2403. * The clocks for the event lines on which reserved channels exists
  2404. * are not managed here.
  2405. */
  2406. writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  2407. base->gcc_pwr_off_mask = gcc;
  2408. return num_phy_chans_avail;
  2409. }
  2410. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2411. {
  2412. struct stedma40_platform_data *plat_data;
  2413. struct clk *clk = NULL;
  2414. void __iomem *virtbase = NULL;
  2415. struct resource *res = NULL;
  2416. struct d40_base *base = NULL;
  2417. int num_log_chans = 0;
  2418. int num_phy_chans;
  2419. int i;
  2420. u32 pid;
  2421. u32 cid;
  2422. u8 rev;
  2423. clk = clk_get(&pdev->dev, NULL);
  2424. if (IS_ERR(clk)) {
  2425. d40_err(&pdev->dev, "No matching clock found\n");
  2426. goto failure;
  2427. }
  2428. clk_enable(clk);
  2429. /* Get IO for DMAC base address */
  2430. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2431. if (!res)
  2432. goto failure;
  2433. if (request_mem_region(res->start, resource_size(res),
  2434. D40_NAME " I/O base") == NULL)
  2435. goto failure;
  2436. virtbase = ioremap(res->start, resource_size(res));
  2437. if (!virtbase)
  2438. goto failure;
  2439. /* This is just a regular AMBA PrimeCell ID actually */
  2440. for (pid = 0, i = 0; i < 4; i++)
  2441. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2442. & 255) << (i * 8);
  2443. for (cid = 0, i = 0; i < 4; i++)
  2444. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2445. & 255) << (i * 8);
  2446. if (cid != AMBA_CID) {
  2447. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2448. goto failure;
  2449. }
  2450. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2451. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2452. AMBA_MANF_BITS(pid),
  2453. AMBA_VENDOR_ST);
  2454. goto failure;
  2455. }
  2456. /*
  2457. * HW revision:
  2458. * DB8500ed has revision 0
  2459. * ? has revision 1
  2460. * DB8500v1 has revision 2
  2461. * DB8500v2 has revision 3
  2462. */
  2463. rev = AMBA_REV_BITS(pid);
  2464. /* The number of physical channels on this HW */
  2465. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2466. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2467. rev, res->start);
  2468. if (rev < 2) {
  2469. d40_err(&pdev->dev, "hardware revision: %d is not supported",
  2470. rev);
  2471. goto failure;
  2472. }
  2473. plat_data = pdev->dev.platform_data;
  2474. /* Count the number of logical channels in use */
  2475. for (i = 0; i < plat_data->dev_len; i++)
  2476. if (plat_data->dev_rx[i] != 0)
  2477. num_log_chans++;
  2478. for (i = 0; i < plat_data->dev_len; i++)
  2479. if (plat_data->dev_tx[i] != 0)
  2480. num_log_chans++;
  2481. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2482. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2483. sizeof(struct d40_chan), GFP_KERNEL);
  2484. if (base == NULL) {
  2485. d40_err(&pdev->dev, "Out of memory\n");
  2486. goto failure;
  2487. }
  2488. base->rev = rev;
  2489. base->clk = clk;
  2490. base->num_phy_chans = num_phy_chans;
  2491. base->num_log_chans = num_log_chans;
  2492. base->phy_start = res->start;
  2493. base->phy_size = resource_size(res);
  2494. base->virtbase = virtbase;
  2495. base->plat_data = plat_data;
  2496. base->dev = &pdev->dev;
  2497. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2498. base->log_chans = &base->phy_chans[num_phy_chans];
  2499. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2500. GFP_KERNEL);
  2501. if (!base->phy_res)
  2502. goto failure;
  2503. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2504. sizeof(struct d40_chan *),
  2505. GFP_KERNEL);
  2506. if (!base->lookup_phy_chans)
  2507. goto failure;
  2508. if (num_log_chans + plat_data->memcpy_len) {
  2509. /*
  2510. * The max number of logical channels are event lines for all
  2511. * src devices and dst devices
  2512. */
  2513. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2514. sizeof(struct d40_chan *),
  2515. GFP_KERNEL);
  2516. if (!base->lookup_log_chans)
  2517. goto failure;
  2518. }
  2519. base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
  2520. sizeof(d40_backup_regs_chan),
  2521. GFP_KERNEL);
  2522. if (!base->reg_val_backup_chan)
  2523. goto failure;
  2524. base->lcla_pool.alloc_map =
  2525. kzalloc(num_phy_chans * sizeof(struct d40_desc *)
  2526. * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
  2527. if (!base->lcla_pool.alloc_map)
  2528. goto failure;
  2529. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2530. 0, SLAB_HWCACHE_ALIGN,
  2531. NULL);
  2532. if (base->desc_slab == NULL)
  2533. goto failure;
  2534. return base;
  2535. failure:
  2536. if (!IS_ERR(clk)) {
  2537. clk_disable(clk);
  2538. clk_put(clk);
  2539. }
  2540. if (virtbase)
  2541. iounmap(virtbase);
  2542. if (res)
  2543. release_mem_region(res->start,
  2544. resource_size(res));
  2545. if (virtbase)
  2546. iounmap(virtbase);
  2547. if (base) {
  2548. kfree(base->lcla_pool.alloc_map);
  2549. kfree(base->reg_val_backup_chan);
  2550. kfree(base->lookup_log_chans);
  2551. kfree(base->lookup_phy_chans);
  2552. kfree(base->phy_res);
  2553. kfree(base);
  2554. }
  2555. return NULL;
  2556. }
  2557. static void __init d40_hw_init(struct d40_base *base)
  2558. {
  2559. static struct d40_reg_val dma_init_reg[] = {
  2560. /* Clock every part of the DMA block from start */
  2561. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  2562. /* Interrupts on all logical channels */
  2563. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2564. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2565. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2566. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2567. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2568. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2569. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2570. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2571. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2572. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2573. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2574. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2575. };
  2576. int i;
  2577. u32 prmseo[2] = {0, 0};
  2578. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2579. u32 pcmis = 0;
  2580. u32 pcicr = 0;
  2581. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2582. writel(dma_init_reg[i].val,
  2583. base->virtbase + dma_init_reg[i].reg);
  2584. /* Configure all our dma channels to default settings */
  2585. for (i = 0; i < base->num_phy_chans; i++) {
  2586. activeo[i % 2] = activeo[i % 2] << 2;
  2587. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2588. == D40_ALLOC_PHY) {
  2589. activeo[i % 2] |= 3;
  2590. continue;
  2591. }
  2592. /* Enable interrupt # */
  2593. pcmis = (pcmis << 1) | 1;
  2594. /* Clear interrupt # */
  2595. pcicr = (pcicr << 1) | 1;
  2596. /* Set channel to physical mode */
  2597. prmseo[i % 2] = prmseo[i % 2] << 2;
  2598. prmseo[i % 2] |= 1;
  2599. }
  2600. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2601. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2602. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2603. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2604. /* Write which interrupt to enable */
  2605. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2606. /* Write which interrupt to clear */
  2607. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2608. }
  2609. static int __init d40_lcla_allocate(struct d40_base *base)
  2610. {
  2611. struct d40_lcla_pool *pool = &base->lcla_pool;
  2612. unsigned long *page_list;
  2613. int i, j;
  2614. int ret = 0;
  2615. /*
  2616. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2617. * To full fill this hardware requirement without wasting 256 kb
  2618. * we allocate pages until we get an aligned one.
  2619. */
  2620. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2621. GFP_KERNEL);
  2622. if (!page_list) {
  2623. ret = -ENOMEM;
  2624. goto failure;
  2625. }
  2626. /* Calculating how many pages that are required */
  2627. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2628. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2629. page_list[i] = __get_free_pages(GFP_KERNEL,
  2630. base->lcla_pool.pages);
  2631. if (!page_list[i]) {
  2632. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2633. base->lcla_pool.pages);
  2634. for (j = 0; j < i; j++)
  2635. free_pages(page_list[j], base->lcla_pool.pages);
  2636. goto failure;
  2637. }
  2638. if ((virt_to_phys((void *)page_list[i]) &
  2639. (LCLA_ALIGNMENT - 1)) == 0)
  2640. break;
  2641. }
  2642. for (j = 0; j < i; j++)
  2643. free_pages(page_list[j], base->lcla_pool.pages);
  2644. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2645. base->lcla_pool.base = (void *)page_list[i];
  2646. } else {
  2647. /*
  2648. * After many attempts and no succees with finding the correct
  2649. * alignment, try with allocating a big buffer.
  2650. */
  2651. dev_warn(base->dev,
  2652. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2653. __func__, base->lcla_pool.pages);
  2654. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2655. base->num_phy_chans +
  2656. LCLA_ALIGNMENT,
  2657. GFP_KERNEL);
  2658. if (!base->lcla_pool.base_unaligned) {
  2659. ret = -ENOMEM;
  2660. goto failure;
  2661. }
  2662. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2663. LCLA_ALIGNMENT);
  2664. }
  2665. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2666. SZ_1K * base->num_phy_chans,
  2667. DMA_TO_DEVICE);
  2668. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2669. pool->dma_addr = 0;
  2670. ret = -ENOMEM;
  2671. goto failure;
  2672. }
  2673. writel(virt_to_phys(base->lcla_pool.base),
  2674. base->virtbase + D40_DREG_LCLA);
  2675. failure:
  2676. kfree(page_list);
  2677. return ret;
  2678. }
  2679. static int __init d40_probe(struct platform_device *pdev)
  2680. {
  2681. int err;
  2682. int ret = -ENOENT;
  2683. struct d40_base *base;
  2684. struct resource *res = NULL;
  2685. int num_reserved_chans;
  2686. u32 val;
  2687. base = d40_hw_detect_init(pdev);
  2688. if (!base)
  2689. goto failure;
  2690. num_reserved_chans = d40_phy_res_init(base);
  2691. platform_set_drvdata(pdev, base);
  2692. spin_lock_init(&base->interrupt_lock);
  2693. spin_lock_init(&base->execmd_lock);
  2694. /* Get IO for logical channel parameter address */
  2695. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2696. if (!res) {
  2697. ret = -ENOENT;
  2698. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2699. goto failure;
  2700. }
  2701. base->lcpa_size = resource_size(res);
  2702. base->phy_lcpa = res->start;
  2703. if (request_mem_region(res->start, resource_size(res),
  2704. D40_NAME " I/O lcpa") == NULL) {
  2705. ret = -EBUSY;
  2706. d40_err(&pdev->dev,
  2707. "Failed to request LCPA region 0x%x-0x%x\n",
  2708. res->start, res->end);
  2709. goto failure;
  2710. }
  2711. /* We make use of ESRAM memory for this. */
  2712. val = readl(base->virtbase + D40_DREG_LCPA);
  2713. if (res->start != val && val != 0) {
  2714. dev_warn(&pdev->dev,
  2715. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2716. __func__, val, res->start);
  2717. } else
  2718. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2719. base->lcpa_base = ioremap(res->start, resource_size(res));
  2720. if (!base->lcpa_base) {
  2721. ret = -ENOMEM;
  2722. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2723. goto failure;
  2724. }
  2725. /* If lcla has to be located in ESRAM we don't need to allocate */
  2726. if (base->plat_data->use_esram_lcla) {
  2727. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2728. "lcla_esram");
  2729. if (!res) {
  2730. ret = -ENOENT;
  2731. d40_err(&pdev->dev,
  2732. "No \"lcla_esram\" memory resource\n");
  2733. goto failure;
  2734. }
  2735. base->lcla_pool.base = ioremap(res->start,
  2736. resource_size(res));
  2737. if (!base->lcla_pool.base) {
  2738. ret = -ENOMEM;
  2739. d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
  2740. goto failure;
  2741. }
  2742. writel(res->start, base->virtbase + D40_DREG_LCLA);
  2743. } else {
  2744. ret = d40_lcla_allocate(base);
  2745. if (ret) {
  2746. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2747. goto failure;
  2748. }
  2749. }
  2750. spin_lock_init(&base->lcla_pool.lock);
  2751. base->irq = platform_get_irq(pdev, 0);
  2752. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2753. if (ret) {
  2754. d40_err(&pdev->dev, "No IRQ defined\n");
  2755. goto failure;
  2756. }
  2757. pm_runtime_irq_safe(base->dev);
  2758. pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
  2759. pm_runtime_use_autosuspend(base->dev);
  2760. pm_runtime_enable(base->dev);
  2761. pm_runtime_resume(base->dev);
  2762. if (base->plat_data->use_esram_lcla) {
  2763. base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
  2764. if (IS_ERR(base->lcpa_regulator)) {
  2765. d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
  2766. base->lcpa_regulator = NULL;
  2767. goto failure;
  2768. }
  2769. ret = regulator_enable(base->lcpa_regulator);
  2770. if (ret) {
  2771. d40_err(&pdev->dev,
  2772. "Failed to enable lcpa_regulator\n");
  2773. regulator_put(base->lcpa_regulator);
  2774. base->lcpa_regulator = NULL;
  2775. goto failure;
  2776. }
  2777. }
  2778. base->initialized = true;
  2779. err = d40_dmaengine_init(base, num_reserved_chans);
  2780. if (err)
  2781. goto failure;
  2782. d40_hw_init(base);
  2783. dev_info(base->dev, "initialized\n");
  2784. return 0;
  2785. failure:
  2786. if (base) {
  2787. if (base->desc_slab)
  2788. kmem_cache_destroy(base->desc_slab);
  2789. if (base->virtbase)
  2790. iounmap(base->virtbase);
  2791. if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
  2792. iounmap(base->lcla_pool.base);
  2793. base->lcla_pool.base = NULL;
  2794. }
  2795. if (base->lcla_pool.dma_addr)
  2796. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  2797. SZ_1K * base->num_phy_chans,
  2798. DMA_TO_DEVICE);
  2799. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2800. free_pages((unsigned long)base->lcla_pool.base,
  2801. base->lcla_pool.pages);
  2802. kfree(base->lcla_pool.base_unaligned);
  2803. if (base->phy_lcpa)
  2804. release_mem_region(base->phy_lcpa,
  2805. base->lcpa_size);
  2806. if (base->phy_start)
  2807. release_mem_region(base->phy_start,
  2808. base->phy_size);
  2809. if (base->clk) {
  2810. clk_disable(base->clk);
  2811. clk_put(base->clk);
  2812. }
  2813. if (base->lcpa_regulator) {
  2814. regulator_disable(base->lcpa_regulator);
  2815. regulator_put(base->lcpa_regulator);
  2816. }
  2817. kfree(base->lcla_pool.alloc_map);
  2818. kfree(base->lookup_log_chans);
  2819. kfree(base->lookup_phy_chans);
  2820. kfree(base->phy_res);
  2821. kfree(base);
  2822. }
  2823. d40_err(&pdev->dev, "probe failed\n");
  2824. return ret;
  2825. }
  2826. static struct platform_driver d40_driver = {
  2827. .driver = {
  2828. .owner = THIS_MODULE,
  2829. .name = D40_NAME,
  2830. .pm = DMA40_PM_OPS,
  2831. },
  2832. };
  2833. static int __init stedma40_init(void)
  2834. {
  2835. return platform_driver_probe(&d40_driver, d40_probe);
  2836. }
  2837. subsys_initcall(stedma40_init);