ixp4xx_crypto.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508
  1. /*
  2. * Intel IXP4xx NPE-C crypto driver
  3. *
  4. * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of version 2 of the GNU General Public License
  8. * as published by the Free Software Foundation.
  9. *
  10. */
  11. #include <linux/platform_device.h>
  12. #include <linux/dma-mapping.h>
  13. #include <linux/dmapool.h>
  14. #include <linux/crypto.h>
  15. #include <linux/kernel.h>
  16. #include <linux/rtnetlink.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/gfp.h>
  20. #include <linux/module.h>
  21. #include <crypto/ctr.h>
  22. #include <crypto/des.h>
  23. #include <crypto/aes.h>
  24. #include <crypto/sha.h>
  25. #include <crypto/algapi.h>
  26. #include <crypto/aead.h>
  27. #include <crypto/authenc.h>
  28. #include <crypto/scatterwalk.h>
  29. #include <mach/npe.h>
  30. #include <mach/qmgr.h>
  31. #define MAX_KEYLEN 32
  32. /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
  33. #define NPE_CTX_LEN 80
  34. #define AES_BLOCK128 16
  35. #define NPE_OP_HASH_VERIFY 0x01
  36. #define NPE_OP_CCM_ENABLE 0x04
  37. #define NPE_OP_CRYPT_ENABLE 0x08
  38. #define NPE_OP_HASH_ENABLE 0x10
  39. #define NPE_OP_NOT_IN_PLACE 0x20
  40. #define NPE_OP_HMAC_DISABLE 0x40
  41. #define NPE_OP_CRYPT_ENCRYPT 0x80
  42. #define NPE_OP_CCM_GEN_MIC 0xcc
  43. #define NPE_OP_HASH_GEN_ICV 0x50
  44. #define NPE_OP_ENC_GEN_KEY 0xc9
  45. #define MOD_ECB 0x0000
  46. #define MOD_CTR 0x1000
  47. #define MOD_CBC_ENC 0x2000
  48. #define MOD_CBC_DEC 0x3000
  49. #define MOD_CCM_ENC 0x4000
  50. #define MOD_CCM_DEC 0x5000
  51. #define KEYLEN_128 4
  52. #define KEYLEN_192 6
  53. #define KEYLEN_256 8
  54. #define CIPH_DECR 0x0000
  55. #define CIPH_ENCR 0x0400
  56. #define MOD_DES 0x0000
  57. #define MOD_TDEA2 0x0100
  58. #define MOD_3DES 0x0200
  59. #define MOD_AES 0x0800
  60. #define MOD_AES128 (0x0800 | KEYLEN_128)
  61. #define MOD_AES192 (0x0900 | KEYLEN_192)
  62. #define MOD_AES256 (0x0a00 | KEYLEN_256)
  63. #define MAX_IVLEN 16
  64. #define NPE_ID 2 /* NPE C */
  65. #define NPE_QLEN 16
  66. /* Space for registering when the first
  67. * NPE_QLEN crypt_ctl are busy */
  68. #define NPE_QLEN_TOTAL 64
  69. #define SEND_QID 29
  70. #define RECV_QID 30
  71. #define CTL_FLAG_UNUSED 0x0000
  72. #define CTL_FLAG_USED 0x1000
  73. #define CTL_FLAG_PERFORM_ABLK 0x0001
  74. #define CTL_FLAG_GEN_ICV 0x0002
  75. #define CTL_FLAG_GEN_REVAES 0x0004
  76. #define CTL_FLAG_PERFORM_AEAD 0x0008
  77. #define CTL_FLAG_MASK 0x000f
  78. #define HMAC_IPAD_VALUE 0x36
  79. #define HMAC_OPAD_VALUE 0x5C
  80. #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
  81. #define MD5_DIGEST_SIZE 16
  82. struct buffer_desc {
  83. u32 phys_next;
  84. #ifdef __ARMEB__
  85. u16 buf_len;
  86. u16 pkt_len;
  87. #else
  88. u16 pkt_len;
  89. u16 buf_len;
  90. #endif
  91. u32 phys_addr;
  92. u32 __reserved[4];
  93. struct buffer_desc *next;
  94. enum dma_data_direction dir;
  95. };
  96. struct crypt_ctl {
  97. #ifdef __ARMEB__
  98. u8 mode; /* NPE_OP_* operation mode */
  99. u8 init_len;
  100. u16 reserved;
  101. #else
  102. u16 reserved;
  103. u8 init_len;
  104. u8 mode; /* NPE_OP_* operation mode */
  105. #endif
  106. u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
  107. u32 icv_rev_aes; /* icv or rev aes */
  108. u32 src_buf;
  109. u32 dst_buf;
  110. #ifdef __ARMEB__
  111. u16 auth_offs; /* Authentication start offset */
  112. u16 auth_len; /* Authentication data length */
  113. u16 crypt_offs; /* Cryption start offset */
  114. u16 crypt_len; /* Cryption data length */
  115. #else
  116. u16 auth_len; /* Authentication data length */
  117. u16 auth_offs; /* Authentication start offset */
  118. u16 crypt_len; /* Cryption data length */
  119. u16 crypt_offs; /* Cryption start offset */
  120. #endif
  121. u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
  122. u32 crypto_ctx; /* NPE Crypto Param structure address */
  123. /* Used by Host: 4*4 bytes*/
  124. unsigned ctl_flags;
  125. union {
  126. struct ablkcipher_request *ablk_req;
  127. struct aead_request *aead_req;
  128. struct crypto_tfm *tfm;
  129. } data;
  130. struct buffer_desc *regist_buf;
  131. u8 *regist_ptr;
  132. };
  133. struct ablk_ctx {
  134. struct buffer_desc *src;
  135. struct buffer_desc *dst;
  136. };
  137. struct aead_ctx {
  138. struct buffer_desc *buffer;
  139. struct scatterlist ivlist;
  140. /* used when the hmac is not on one sg entry */
  141. u8 *hmac_virt;
  142. int encrypt;
  143. };
  144. struct ix_hash_algo {
  145. u32 cfgword;
  146. unsigned char *icv;
  147. };
  148. struct ix_sa_dir {
  149. unsigned char *npe_ctx;
  150. dma_addr_t npe_ctx_phys;
  151. int npe_ctx_idx;
  152. u8 npe_mode;
  153. };
  154. struct ixp_ctx {
  155. struct ix_sa_dir encrypt;
  156. struct ix_sa_dir decrypt;
  157. int authkey_len;
  158. u8 authkey[MAX_KEYLEN];
  159. int enckey_len;
  160. u8 enckey[MAX_KEYLEN];
  161. u8 salt[MAX_IVLEN];
  162. u8 nonce[CTR_RFC3686_NONCE_SIZE];
  163. unsigned salted;
  164. atomic_t configuring;
  165. struct completion completion;
  166. };
  167. struct ixp_alg {
  168. struct crypto_alg crypto;
  169. const struct ix_hash_algo *hash;
  170. u32 cfg_enc;
  171. u32 cfg_dec;
  172. int registered;
  173. };
  174. static const struct ix_hash_algo hash_alg_md5 = {
  175. .cfgword = 0xAA010004,
  176. .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
  177. "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
  178. };
  179. static const struct ix_hash_algo hash_alg_sha1 = {
  180. .cfgword = 0x00000005,
  181. .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
  182. "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
  183. };
  184. static struct npe *npe_c;
  185. static struct dma_pool *buffer_pool = NULL;
  186. static struct dma_pool *ctx_pool = NULL;
  187. static struct crypt_ctl *crypt_virt = NULL;
  188. static dma_addr_t crypt_phys;
  189. static int support_aes = 1;
  190. static void dev_release(struct device *dev)
  191. {
  192. return;
  193. }
  194. #define DRIVER_NAME "ixp4xx_crypto"
  195. static struct platform_device pseudo_dev = {
  196. .name = DRIVER_NAME,
  197. .id = 0,
  198. .num_resources = 0,
  199. .dev = {
  200. .coherent_dma_mask = DMA_BIT_MASK(32),
  201. .release = dev_release,
  202. }
  203. };
  204. static struct device *dev = &pseudo_dev.dev;
  205. static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
  206. {
  207. return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
  208. }
  209. static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
  210. {
  211. return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
  212. }
  213. static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
  214. {
  215. return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
  216. }
  217. static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
  218. {
  219. return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
  220. }
  221. static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
  222. {
  223. return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
  224. }
  225. static int setup_crypt_desc(void)
  226. {
  227. BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
  228. crypt_virt = dma_alloc_coherent(dev,
  229. NPE_QLEN * sizeof(struct crypt_ctl),
  230. &crypt_phys, GFP_ATOMIC);
  231. if (!crypt_virt)
  232. return -ENOMEM;
  233. memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
  234. return 0;
  235. }
  236. static spinlock_t desc_lock;
  237. static struct crypt_ctl *get_crypt_desc(void)
  238. {
  239. int i;
  240. static int idx = 0;
  241. unsigned long flags;
  242. spin_lock_irqsave(&desc_lock, flags);
  243. if (unlikely(!crypt_virt))
  244. setup_crypt_desc();
  245. if (unlikely(!crypt_virt)) {
  246. spin_unlock_irqrestore(&desc_lock, flags);
  247. return NULL;
  248. }
  249. i = idx;
  250. if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
  251. if (++idx >= NPE_QLEN)
  252. idx = 0;
  253. crypt_virt[i].ctl_flags = CTL_FLAG_USED;
  254. spin_unlock_irqrestore(&desc_lock, flags);
  255. return crypt_virt +i;
  256. } else {
  257. spin_unlock_irqrestore(&desc_lock, flags);
  258. return NULL;
  259. }
  260. }
  261. static spinlock_t emerg_lock;
  262. static struct crypt_ctl *get_crypt_desc_emerg(void)
  263. {
  264. int i;
  265. static int idx = NPE_QLEN;
  266. struct crypt_ctl *desc;
  267. unsigned long flags;
  268. desc = get_crypt_desc();
  269. if (desc)
  270. return desc;
  271. if (unlikely(!crypt_virt))
  272. return NULL;
  273. spin_lock_irqsave(&emerg_lock, flags);
  274. i = idx;
  275. if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
  276. if (++idx >= NPE_QLEN_TOTAL)
  277. idx = NPE_QLEN;
  278. crypt_virt[i].ctl_flags = CTL_FLAG_USED;
  279. spin_unlock_irqrestore(&emerg_lock, flags);
  280. return crypt_virt +i;
  281. } else {
  282. spin_unlock_irqrestore(&emerg_lock, flags);
  283. return NULL;
  284. }
  285. }
  286. static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
  287. {
  288. while (buf) {
  289. struct buffer_desc *buf1;
  290. u32 phys1;
  291. buf1 = buf->next;
  292. phys1 = buf->phys_next;
  293. dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
  294. dma_pool_free(buffer_pool, buf, phys);
  295. buf = buf1;
  296. phys = phys1;
  297. }
  298. }
  299. static struct tasklet_struct crypto_done_tasklet;
  300. static void finish_scattered_hmac(struct crypt_ctl *crypt)
  301. {
  302. struct aead_request *req = crypt->data.aead_req;
  303. struct aead_ctx *req_ctx = aead_request_ctx(req);
  304. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  305. int authsize = crypto_aead_authsize(tfm);
  306. int decryptlen = req->cryptlen - authsize;
  307. if (req_ctx->encrypt) {
  308. scatterwalk_map_and_copy(req_ctx->hmac_virt,
  309. req->src, decryptlen, authsize, 1);
  310. }
  311. dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
  312. }
  313. static void one_packet(dma_addr_t phys)
  314. {
  315. struct crypt_ctl *crypt;
  316. struct ixp_ctx *ctx;
  317. int failed;
  318. failed = phys & 0x1 ? -EBADMSG : 0;
  319. phys &= ~0x3;
  320. crypt = crypt_phys2virt(phys);
  321. switch (crypt->ctl_flags & CTL_FLAG_MASK) {
  322. case CTL_FLAG_PERFORM_AEAD: {
  323. struct aead_request *req = crypt->data.aead_req;
  324. struct aead_ctx *req_ctx = aead_request_ctx(req);
  325. free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
  326. if (req_ctx->hmac_virt) {
  327. finish_scattered_hmac(crypt);
  328. }
  329. req->base.complete(&req->base, failed);
  330. break;
  331. }
  332. case CTL_FLAG_PERFORM_ABLK: {
  333. struct ablkcipher_request *req = crypt->data.ablk_req;
  334. struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
  335. if (req_ctx->dst) {
  336. free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
  337. }
  338. free_buf_chain(dev, req_ctx->src, crypt->src_buf);
  339. req->base.complete(&req->base, failed);
  340. break;
  341. }
  342. case CTL_FLAG_GEN_ICV:
  343. ctx = crypto_tfm_ctx(crypt->data.tfm);
  344. dma_pool_free(ctx_pool, crypt->regist_ptr,
  345. crypt->regist_buf->phys_addr);
  346. dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
  347. if (atomic_dec_and_test(&ctx->configuring))
  348. complete(&ctx->completion);
  349. break;
  350. case CTL_FLAG_GEN_REVAES:
  351. ctx = crypto_tfm_ctx(crypt->data.tfm);
  352. *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
  353. if (atomic_dec_and_test(&ctx->configuring))
  354. complete(&ctx->completion);
  355. break;
  356. default:
  357. BUG();
  358. }
  359. crypt->ctl_flags = CTL_FLAG_UNUSED;
  360. }
  361. static void irqhandler(void *_unused)
  362. {
  363. tasklet_schedule(&crypto_done_tasklet);
  364. }
  365. static void crypto_done_action(unsigned long arg)
  366. {
  367. int i;
  368. for(i=0; i<4; i++) {
  369. dma_addr_t phys = qmgr_get_entry(RECV_QID);
  370. if (!phys)
  371. return;
  372. one_packet(phys);
  373. }
  374. tasklet_schedule(&crypto_done_tasklet);
  375. }
  376. static int init_ixp_crypto(void)
  377. {
  378. int ret = -ENODEV;
  379. u32 msg[2] = { 0, 0 };
  380. if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
  381. IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
  382. printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
  383. return ret;
  384. }
  385. npe_c = npe_request(NPE_ID);
  386. if (!npe_c)
  387. return ret;
  388. if (!npe_running(npe_c)) {
  389. ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
  390. if (ret) {
  391. return ret;
  392. }
  393. if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
  394. goto npe_error;
  395. } else {
  396. if (npe_send_message(npe_c, msg, "STATUS_MSG"))
  397. goto npe_error;
  398. if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
  399. goto npe_error;
  400. }
  401. switch ((msg[1]>>16) & 0xff) {
  402. case 3:
  403. printk(KERN_WARNING "Firmware of %s lacks AES support\n",
  404. npe_name(npe_c));
  405. support_aes = 0;
  406. break;
  407. case 4:
  408. case 5:
  409. support_aes = 1;
  410. break;
  411. default:
  412. printk(KERN_ERR "Firmware of %s lacks crypto support\n",
  413. npe_name(npe_c));
  414. return -ENODEV;
  415. }
  416. /* buffer_pool will also be used to sometimes store the hmac,
  417. * so assure it is large enough
  418. */
  419. BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
  420. buffer_pool = dma_pool_create("buffer", dev,
  421. sizeof(struct buffer_desc), 32, 0);
  422. ret = -ENOMEM;
  423. if (!buffer_pool) {
  424. goto err;
  425. }
  426. ctx_pool = dma_pool_create("context", dev,
  427. NPE_CTX_LEN, 16, 0);
  428. if (!ctx_pool) {
  429. goto err;
  430. }
  431. ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
  432. "ixp_crypto:out", NULL);
  433. if (ret)
  434. goto err;
  435. ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
  436. "ixp_crypto:in", NULL);
  437. if (ret) {
  438. qmgr_release_queue(SEND_QID);
  439. goto err;
  440. }
  441. qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
  442. tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
  443. qmgr_enable_irq(RECV_QID);
  444. return 0;
  445. npe_error:
  446. printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
  447. ret = -EIO;
  448. err:
  449. if (ctx_pool)
  450. dma_pool_destroy(ctx_pool);
  451. if (buffer_pool)
  452. dma_pool_destroy(buffer_pool);
  453. npe_release(npe_c);
  454. return ret;
  455. }
  456. static void release_ixp_crypto(void)
  457. {
  458. qmgr_disable_irq(RECV_QID);
  459. tasklet_kill(&crypto_done_tasklet);
  460. qmgr_release_queue(SEND_QID);
  461. qmgr_release_queue(RECV_QID);
  462. dma_pool_destroy(ctx_pool);
  463. dma_pool_destroy(buffer_pool);
  464. npe_release(npe_c);
  465. if (crypt_virt) {
  466. dma_free_coherent(dev,
  467. NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
  468. crypt_virt, crypt_phys);
  469. }
  470. return;
  471. }
  472. static void reset_sa_dir(struct ix_sa_dir *dir)
  473. {
  474. memset(dir->npe_ctx, 0, NPE_CTX_LEN);
  475. dir->npe_ctx_idx = 0;
  476. dir->npe_mode = 0;
  477. }
  478. static int init_sa_dir(struct ix_sa_dir *dir)
  479. {
  480. dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
  481. if (!dir->npe_ctx) {
  482. return -ENOMEM;
  483. }
  484. reset_sa_dir(dir);
  485. return 0;
  486. }
  487. static void free_sa_dir(struct ix_sa_dir *dir)
  488. {
  489. memset(dir->npe_ctx, 0, NPE_CTX_LEN);
  490. dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
  491. }
  492. static int init_tfm(struct crypto_tfm *tfm)
  493. {
  494. struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
  495. int ret;
  496. atomic_set(&ctx->configuring, 0);
  497. ret = init_sa_dir(&ctx->encrypt);
  498. if (ret)
  499. return ret;
  500. ret = init_sa_dir(&ctx->decrypt);
  501. if (ret) {
  502. free_sa_dir(&ctx->encrypt);
  503. }
  504. return ret;
  505. }
  506. static int init_tfm_ablk(struct crypto_tfm *tfm)
  507. {
  508. tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
  509. return init_tfm(tfm);
  510. }
  511. static int init_tfm_aead(struct crypto_tfm *tfm)
  512. {
  513. tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
  514. return init_tfm(tfm);
  515. }
  516. static void exit_tfm(struct crypto_tfm *tfm)
  517. {
  518. struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
  519. free_sa_dir(&ctx->encrypt);
  520. free_sa_dir(&ctx->decrypt);
  521. }
  522. static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
  523. int init_len, u32 ctx_addr, const u8 *key, int key_len)
  524. {
  525. struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
  526. struct crypt_ctl *crypt;
  527. struct buffer_desc *buf;
  528. int i;
  529. u8 *pad;
  530. u32 pad_phys, buf_phys;
  531. BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
  532. pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
  533. if (!pad)
  534. return -ENOMEM;
  535. buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
  536. if (!buf) {
  537. dma_pool_free(ctx_pool, pad, pad_phys);
  538. return -ENOMEM;
  539. }
  540. crypt = get_crypt_desc_emerg();
  541. if (!crypt) {
  542. dma_pool_free(ctx_pool, pad, pad_phys);
  543. dma_pool_free(buffer_pool, buf, buf_phys);
  544. return -EAGAIN;
  545. }
  546. memcpy(pad, key, key_len);
  547. memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
  548. for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
  549. pad[i] ^= xpad;
  550. }
  551. crypt->data.tfm = tfm;
  552. crypt->regist_ptr = pad;
  553. crypt->regist_buf = buf;
  554. crypt->auth_offs = 0;
  555. crypt->auth_len = HMAC_PAD_BLOCKLEN;
  556. crypt->crypto_ctx = ctx_addr;
  557. crypt->src_buf = buf_phys;
  558. crypt->icv_rev_aes = target;
  559. crypt->mode = NPE_OP_HASH_GEN_ICV;
  560. crypt->init_len = init_len;
  561. crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
  562. buf->next = 0;
  563. buf->buf_len = HMAC_PAD_BLOCKLEN;
  564. buf->pkt_len = 0;
  565. buf->phys_addr = pad_phys;
  566. atomic_inc(&ctx->configuring);
  567. qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
  568. BUG_ON(qmgr_stat_overflow(SEND_QID));
  569. return 0;
  570. }
  571. static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
  572. const u8 *key, int key_len, unsigned digest_len)
  573. {
  574. u32 itarget, otarget, npe_ctx_addr;
  575. unsigned char *cinfo;
  576. int init_len, ret = 0;
  577. u32 cfgword;
  578. struct ix_sa_dir *dir;
  579. struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
  580. const struct ix_hash_algo *algo;
  581. dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
  582. cinfo = dir->npe_ctx + dir->npe_ctx_idx;
  583. algo = ix_hash(tfm);
  584. /* write cfg word to cryptinfo */
  585. cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
  586. #ifndef __ARMEB__
  587. cfgword ^= 0xAA000000; /* change the "byte swap" flags */
  588. #endif
  589. *(u32*)cinfo = cpu_to_be32(cfgword);
  590. cinfo += sizeof(cfgword);
  591. /* write ICV to cryptinfo */
  592. memcpy(cinfo, algo->icv, digest_len);
  593. cinfo += digest_len;
  594. itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
  595. + sizeof(algo->cfgword);
  596. otarget = itarget + digest_len;
  597. init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
  598. npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
  599. dir->npe_ctx_idx += init_len;
  600. dir->npe_mode |= NPE_OP_HASH_ENABLE;
  601. if (!encrypt)
  602. dir->npe_mode |= NPE_OP_HASH_VERIFY;
  603. ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
  604. init_len, npe_ctx_addr, key, key_len);
  605. if (ret)
  606. return ret;
  607. return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
  608. init_len, npe_ctx_addr, key, key_len);
  609. }
  610. static int gen_rev_aes_key(struct crypto_tfm *tfm)
  611. {
  612. struct crypt_ctl *crypt;
  613. struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
  614. struct ix_sa_dir *dir = &ctx->decrypt;
  615. crypt = get_crypt_desc_emerg();
  616. if (!crypt) {
  617. return -EAGAIN;
  618. }
  619. *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
  620. crypt->data.tfm = tfm;
  621. crypt->crypt_offs = 0;
  622. crypt->crypt_len = AES_BLOCK128;
  623. crypt->src_buf = 0;
  624. crypt->crypto_ctx = dir->npe_ctx_phys;
  625. crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
  626. crypt->mode = NPE_OP_ENC_GEN_KEY;
  627. crypt->init_len = dir->npe_ctx_idx;
  628. crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
  629. atomic_inc(&ctx->configuring);
  630. qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
  631. BUG_ON(qmgr_stat_overflow(SEND_QID));
  632. return 0;
  633. }
  634. static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
  635. const u8 *key, int key_len)
  636. {
  637. u8 *cinfo;
  638. u32 cipher_cfg;
  639. u32 keylen_cfg = 0;
  640. struct ix_sa_dir *dir;
  641. struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
  642. u32 *flags = &tfm->crt_flags;
  643. dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
  644. cinfo = dir->npe_ctx;
  645. if (encrypt) {
  646. cipher_cfg = cipher_cfg_enc(tfm);
  647. dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
  648. } else {
  649. cipher_cfg = cipher_cfg_dec(tfm);
  650. }
  651. if (cipher_cfg & MOD_AES) {
  652. switch (key_len) {
  653. case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
  654. case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
  655. case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
  656. default:
  657. *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  658. return -EINVAL;
  659. }
  660. cipher_cfg |= keylen_cfg;
  661. } else if (cipher_cfg & MOD_3DES) {
  662. const u32 *K = (const u32 *)key;
  663. if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
  664. !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
  665. {
  666. *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
  667. return -EINVAL;
  668. }
  669. } else {
  670. u32 tmp[DES_EXPKEY_WORDS];
  671. if (des_ekey(tmp, key) == 0) {
  672. *flags |= CRYPTO_TFM_RES_WEAK_KEY;
  673. }
  674. }
  675. /* write cfg word to cryptinfo */
  676. *(u32*)cinfo = cpu_to_be32(cipher_cfg);
  677. cinfo += sizeof(cipher_cfg);
  678. /* write cipher key to cryptinfo */
  679. memcpy(cinfo, key, key_len);
  680. /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
  681. if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
  682. memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
  683. key_len = DES3_EDE_KEY_SIZE;
  684. }
  685. dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
  686. dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
  687. if ((cipher_cfg & MOD_AES) && !encrypt) {
  688. return gen_rev_aes_key(tfm);
  689. }
  690. return 0;
  691. }
  692. static struct buffer_desc *chainup_buffers(struct device *dev,
  693. struct scatterlist *sg, unsigned nbytes,
  694. struct buffer_desc *buf, gfp_t flags,
  695. enum dma_data_direction dir)
  696. {
  697. for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
  698. unsigned len = min(nbytes, sg->length);
  699. struct buffer_desc *next_buf;
  700. u32 next_buf_phys;
  701. void *ptr;
  702. nbytes -= len;
  703. ptr = page_address(sg_page(sg)) + sg->offset;
  704. next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
  705. if (!next_buf) {
  706. buf = NULL;
  707. break;
  708. }
  709. sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
  710. buf->next = next_buf;
  711. buf->phys_next = next_buf_phys;
  712. buf = next_buf;
  713. buf->phys_addr = sg_dma_address(sg);
  714. buf->buf_len = len;
  715. buf->dir = dir;
  716. }
  717. buf->next = NULL;
  718. buf->phys_next = 0;
  719. return buf;
  720. }
  721. static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  722. unsigned int key_len)
  723. {
  724. struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  725. u32 *flags = &tfm->base.crt_flags;
  726. int ret;
  727. init_completion(&ctx->completion);
  728. atomic_inc(&ctx->configuring);
  729. reset_sa_dir(&ctx->encrypt);
  730. reset_sa_dir(&ctx->decrypt);
  731. ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
  732. ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
  733. ret = setup_cipher(&tfm->base, 0, key, key_len);
  734. if (ret)
  735. goto out;
  736. ret = setup_cipher(&tfm->base, 1, key, key_len);
  737. if (ret)
  738. goto out;
  739. if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
  740. if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
  741. ret = -EINVAL;
  742. } else {
  743. *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
  744. }
  745. }
  746. out:
  747. if (!atomic_dec_and_test(&ctx->configuring))
  748. wait_for_completion(&ctx->completion);
  749. return ret;
  750. }
  751. static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  752. unsigned int key_len)
  753. {
  754. struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  755. /* the nonce is stored in bytes at end of key */
  756. if (key_len < CTR_RFC3686_NONCE_SIZE)
  757. return -EINVAL;
  758. memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
  759. CTR_RFC3686_NONCE_SIZE);
  760. key_len -= CTR_RFC3686_NONCE_SIZE;
  761. return ablk_setkey(tfm, key, key_len);
  762. }
  763. static int ablk_perform(struct ablkcipher_request *req, int encrypt)
  764. {
  765. struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
  766. struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  767. unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
  768. struct ix_sa_dir *dir;
  769. struct crypt_ctl *crypt;
  770. unsigned int nbytes = req->nbytes;
  771. enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
  772. struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
  773. struct buffer_desc src_hook;
  774. gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
  775. GFP_KERNEL : GFP_ATOMIC;
  776. if (qmgr_stat_full(SEND_QID))
  777. return -EAGAIN;
  778. if (atomic_read(&ctx->configuring))
  779. return -EAGAIN;
  780. dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
  781. crypt = get_crypt_desc();
  782. if (!crypt)
  783. return -ENOMEM;
  784. crypt->data.ablk_req = req;
  785. crypt->crypto_ctx = dir->npe_ctx_phys;
  786. crypt->mode = dir->npe_mode;
  787. crypt->init_len = dir->npe_ctx_idx;
  788. crypt->crypt_offs = 0;
  789. crypt->crypt_len = nbytes;
  790. BUG_ON(ivsize && !req->info);
  791. memcpy(crypt->iv, req->info, ivsize);
  792. if (req->src != req->dst) {
  793. struct buffer_desc dst_hook;
  794. crypt->mode |= NPE_OP_NOT_IN_PLACE;
  795. /* This was never tested by Intel
  796. * for more than one dst buffer, I think. */
  797. req_ctx->dst = NULL;
  798. if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
  799. flags, DMA_FROM_DEVICE))
  800. goto free_buf_dest;
  801. src_direction = DMA_TO_DEVICE;
  802. req_ctx->dst = dst_hook.next;
  803. crypt->dst_buf = dst_hook.phys_next;
  804. } else {
  805. req_ctx->dst = NULL;
  806. }
  807. req_ctx->src = NULL;
  808. if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
  809. flags, src_direction))
  810. goto free_buf_src;
  811. req_ctx->src = src_hook.next;
  812. crypt->src_buf = src_hook.phys_next;
  813. crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
  814. qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
  815. BUG_ON(qmgr_stat_overflow(SEND_QID));
  816. return -EINPROGRESS;
  817. free_buf_src:
  818. free_buf_chain(dev, req_ctx->src, crypt->src_buf);
  819. free_buf_dest:
  820. if (req->src != req->dst) {
  821. free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
  822. }
  823. crypt->ctl_flags = CTL_FLAG_UNUSED;
  824. return -ENOMEM;
  825. }
  826. static int ablk_encrypt(struct ablkcipher_request *req)
  827. {
  828. return ablk_perform(req, 1);
  829. }
  830. static int ablk_decrypt(struct ablkcipher_request *req)
  831. {
  832. return ablk_perform(req, 0);
  833. }
  834. static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
  835. {
  836. struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
  837. struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  838. u8 iv[CTR_RFC3686_BLOCK_SIZE];
  839. u8 *info = req->info;
  840. int ret;
  841. /* set up counter block */
  842. memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
  843. memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
  844. /* initialize counter portion of counter block */
  845. *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
  846. cpu_to_be32(1);
  847. req->info = iv;
  848. ret = ablk_perform(req, 1);
  849. req->info = info;
  850. return ret;
  851. }
  852. static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
  853. unsigned int nbytes)
  854. {
  855. int offset = 0;
  856. if (!nbytes)
  857. return 0;
  858. for (;;) {
  859. if (start < offset + sg->length)
  860. break;
  861. offset += sg->length;
  862. sg = scatterwalk_sg_next(sg);
  863. }
  864. return (start + nbytes > offset + sg->length);
  865. }
  866. static int aead_perform(struct aead_request *req, int encrypt,
  867. int cryptoffset, int eff_cryptlen, u8 *iv)
  868. {
  869. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  870. struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
  871. unsigned ivsize = crypto_aead_ivsize(tfm);
  872. unsigned authsize = crypto_aead_authsize(tfm);
  873. struct ix_sa_dir *dir;
  874. struct crypt_ctl *crypt;
  875. unsigned int cryptlen;
  876. struct buffer_desc *buf, src_hook;
  877. struct aead_ctx *req_ctx = aead_request_ctx(req);
  878. gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
  879. GFP_KERNEL : GFP_ATOMIC;
  880. if (qmgr_stat_full(SEND_QID))
  881. return -EAGAIN;
  882. if (atomic_read(&ctx->configuring))
  883. return -EAGAIN;
  884. if (encrypt) {
  885. dir = &ctx->encrypt;
  886. cryptlen = req->cryptlen;
  887. } else {
  888. dir = &ctx->decrypt;
  889. /* req->cryptlen includes the authsize when decrypting */
  890. cryptlen = req->cryptlen -authsize;
  891. eff_cryptlen -= authsize;
  892. }
  893. crypt = get_crypt_desc();
  894. if (!crypt)
  895. return -ENOMEM;
  896. crypt->data.aead_req = req;
  897. crypt->crypto_ctx = dir->npe_ctx_phys;
  898. crypt->mode = dir->npe_mode;
  899. crypt->init_len = dir->npe_ctx_idx;
  900. crypt->crypt_offs = cryptoffset;
  901. crypt->crypt_len = eff_cryptlen;
  902. crypt->auth_offs = 0;
  903. crypt->auth_len = req->assoclen + ivsize + cryptlen;
  904. BUG_ON(ivsize && !req->iv);
  905. memcpy(crypt->iv, req->iv, ivsize);
  906. if (req->src != req->dst) {
  907. BUG(); /* -ENOTSUP because of my laziness */
  908. }
  909. /* ASSOC data */
  910. buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
  911. flags, DMA_TO_DEVICE);
  912. req_ctx->buffer = src_hook.next;
  913. crypt->src_buf = src_hook.phys_next;
  914. if (!buf)
  915. goto out;
  916. /* IV */
  917. sg_init_table(&req_ctx->ivlist, 1);
  918. sg_set_buf(&req_ctx->ivlist, iv, ivsize);
  919. buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
  920. DMA_BIDIRECTIONAL);
  921. if (!buf)
  922. goto free_chain;
  923. if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
  924. /* The 12 hmac bytes are scattered,
  925. * we need to copy them into a safe buffer */
  926. req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
  927. &crypt->icv_rev_aes);
  928. if (unlikely(!req_ctx->hmac_virt))
  929. goto free_chain;
  930. if (!encrypt) {
  931. scatterwalk_map_and_copy(req_ctx->hmac_virt,
  932. req->src, cryptlen, authsize, 0);
  933. }
  934. req_ctx->encrypt = encrypt;
  935. } else {
  936. req_ctx->hmac_virt = NULL;
  937. }
  938. /* Crypt */
  939. buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
  940. DMA_BIDIRECTIONAL);
  941. if (!buf)
  942. goto free_hmac_virt;
  943. if (!req_ctx->hmac_virt) {
  944. crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
  945. }
  946. crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
  947. qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
  948. BUG_ON(qmgr_stat_overflow(SEND_QID));
  949. return -EINPROGRESS;
  950. free_hmac_virt:
  951. if (req_ctx->hmac_virt) {
  952. dma_pool_free(buffer_pool, req_ctx->hmac_virt,
  953. crypt->icv_rev_aes);
  954. }
  955. free_chain:
  956. free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
  957. out:
  958. crypt->ctl_flags = CTL_FLAG_UNUSED;
  959. return -ENOMEM;
  960. }
  961. static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
  962. {
  963. struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
  964. u32 *flags = &tfm->base.crt_flags;
  965. unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
  966. int ret;
  967. if (!ctx->enckey_len && !ctx->authkey_len)
  968. return 0;
  969. init_completion(&ctx->completion);
  970. atomic_inc(&ctx->configuring);
  971. reset_sa_dir(&ctx->encrypt);
  972. reset_sa_dir(&ctx->decrypt);
  973. ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
  974. if (ret)
  975. goto out;
  976. ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
  977. if (ret)
  978. goto out;
  979. ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
  980. ctx->authkey_len, digest_len);
  981. if (ret)
  982. goto out;
  983. ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
  984. ctx->authkey_len, digest_len);
  985. if (ret)
  986. goto out;
  987. if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
  988. if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
  989. ret = -EINVAL;
  990. goto out;
  991. } else {
  992. *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
  993. }
  994. }
  995. out:
  996. if (!atomic_dec_and_test(&ctx->configuring))
  997. wait_for_completion(&ctx->completion);
  998. return ret;
  999. }
  1000. static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
  1001. {
  1002. int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
  1003. if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
  1004. return -EINVAL;
  1005. return aead_setup(tfm, authsize);
  1006. }
  1007. static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
  1008. unsigned int keylen)
  1009. {
  1010. struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
  1011. struct rtattr *rta = (struct rtattr *)key;
  1012. struct crypto_authenc_key_param *param;
  1013. if (!RTA_OK(rta, keylen))
  1014. goto badkey;
  1015. if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
  1016. goto badkey;
  1017. if (RTA_PAYLOAD(rta) < sizeof(*param))
  1018. goto badkey;
  1019. param = RTA_DATA(rta);
  1020. ctx->enckey_len = be32_to_cpu(param->enckeylen);
  1021. key += RTA_ALIGN(rta->rta_len);
  1022. keylen -= RTA_ALIGN(rta->rta_len);
  1023. if (keylen < ctx->enckey_len)
  1024. goto badkey;
  1025. ctx->authkey_len = keylen - ctx->enckey_len;
  1026. memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
  1027. memcpy(ctx->authkey, key, ctx->authkey_len);
  1028. return aead_setup(tfm, crypto_aead_authsize(tfm));
  1029. badkey:
  1030. ctx->enckey_len = 0;
  1031. crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  1032. return -EINVAL;
  1033. }
  1034. static int aead_encrypt(struct aead_request *req)
  1035. {
  1036. unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
  1037. return aead_perform(req, 1, req->assoclen + ivsize,
  1038. req->cryptlen, req->iv);
  1039. }
  1040. static int aead_decrypt(struct aead_request *req)
  1041. {
  1042. unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
  1043. return aead_perform(req, 0, req->assoclen + ivsize,
  1044. req->cryptlen, req->iv);
  1045. }
  1046. static int aead_givencrypt(struct aead_givcrypt_request *req)
  1047. {
  1048. struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
  1049. struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
  1050. unsigned len, ivsize = crypto_aead_ivsize(tfm);
  1051. __be64 seq;
  1052. /* copied from eseqiv.c */
  1053. if (!ctx->salted) {
  1054. get_random_bytes(ctx->salt, ivsize);
  1055. ctx->salted = 1;
  1056. }
  1057. memcpy(req->areq.iv, ctx->salt, ivsize);
  1058. len = ivsize;
  1059. if (ivsize > sizeof(u64)) {
  1060. memset(req->giv, 0, ivsize - sizeof(u64));
  1061. len = sizeof(u64);
  1062. }
  1063. seq = cpu_to_be64(req->seq);
  1064. memcpy(req->giv + ivsize - len, &seq, len);
  1065. return aead_perform(&req->areq, 1, req->areq.assoclen,
  1066. req->areq.cryptlen +ivsize, req->giv);
  1067. }
  1068. static struct ixp_alg ixp4xx_algos[] = {
  1069. {
  1070. .crypto = {
  1071. .cra_name = "cbc(des)",
  1072. .cra_blocksize = DES_BLOCK_SIZE,
  1073. .cra_u = { .ablkcipher = {
  1074. .min_keysize = DES_KEY_SIZE,
  1075. .max_keysize = DES_KEY_SIZE,
  1076. .ivsize = DES_BLOCK_SIZE,
  1077. .geniv = "eseqiv",
  1078. }
  1079. }
  1080. },
  1081. .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
  1082. .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
  1083. }, {
  1084. .crypto = {
  1085. .cra_name = "ecb(des)",
  1086. .cra_blocksize = DES_BLOCK_SIZE,
  1087. .cra_u = { .ablkcipher = {
  1088. .min_keysize = DES_KEY_SIZE,
  1089. .max_keysize = DES_KEY_SIZE,
  1090. }
  1091. }
  1092. },
  1093. .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
  1094. .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
  1095. }, {
  1096. .crypto = {
  1097. .cra_name = "cbc(des3_ede)",
  1098. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1099. .cra_u = { .ablkcipher = {
  1100. .min_keysize = DES3_EDE_KEY_SIZE,
  1101. .max_keysize = DES3_EDE_KEY_SIZE,
  1102. .ivsize = DES3_EDE_BLOCK_SIZE,
  1103. .geniv = "eseqiv",
  1104. }
  1105. }
  1106. },
  1107. .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
  1108. .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
  1109. }, {
  1110. .crypto = {
  1111. .cra_name = "ecb(des3_ede)",
  1112. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1113. .cra_u = { .ablkcipher = {
  1114. .min_keysize = DES3_EDE_KEY_SIZE,
  1115. .max_keysize = DES3_EDE_KEY_SIZE,
  1116. }
  1117. }
  1118. },
  1119. .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
  1120. .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
  1121. }, {
  1122. .crypto = {
  1123. .cra_name = "cbc(aes)",
  1124. .cra_blocksize = AES_BLOCK_SIZE,
  1125. .cra_u = { .ablkcipher = {
  1126. .min_keysize = AES_MIN_KEY_SIZE,
  1127. .max_keysize = AES_MAX_KEY_SIZE,
  1128. .ivsize = AES_BLOCK_SIZE,
  1129. .geniv = "eseqiv",
  1130. }
  1131. }
  1132. },
  1133. .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
  1134. .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
  1135. }, {
  1136. .crypto = {
  1137. .cra_name = "ecb(aes)",
  1138. .cra_blocksize = AES_BLOCK_SIZE,
  1139. .cra_u = { .ablkcipher = {
  1140. .min_keysize = AES_MIN_KEY_SIZE,
  1141. .max_keysize = AES_MAX_KEY_SIZE,
  1142. }
  1143. }
  1144. },
  1145. .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
  1146. .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
  1147. }, {
  1148. .crypto = {
  1149. .cra_name = "ctr(aes)",
  1150. .cra_blocksize = AES_BLOCK_SIZE,
  1151. .cra_u = { .ablkcipher = {
  1152. .min_keysize = AES_MIN_KEY_SIZE,
  1153. .max_keysize = AES_MAX_KEY_SIZE,
  1154. .ivsize = AES_BLOCK_SIZE,
  1155. .geniv = "eseqiv",
  1156. }
  1157. }
  1158. },
  1159. .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
  1160. .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
  1161. }, {
  1162. .crypto = {
  1163. .cra_name = "rfc3686(ctr(aes))",
  1164. .cra_blocksize = AES_BLOCK_SIZE,
  1165. .cra_u = { .ablkcipher = {
  1166. .min_keysize = AES_MIN_KEY_SIZE,
  1167. .max_keysize = AES_MAX_KEY_SIZE,
  1168. .ivsize = AES_BLOCK_SIZE,
  1169. .geniv = "eseqiv",
  1170. .setkey = ablk_rfc3686_setkey,
  1171. .encrypt = ablk_rfc3686_crypt,
  1172. .decrypt = ablk_rfc3686_crypt }
  1173. }
  1174. },
  1175. .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
  1176. .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
  1177. }, {
  1178. .crypto = {
  1179. .cra_name = "authenc(hmac(md5),cbc(des))",
  1180. .cra_blocksize = DES_BLOCK_SIZE,
  1181. .cra_u = { .aead = {
  1182. .ivsize = DES_BLOCK_SIZE,
  1183. .maxauthsize = MD5_DIGEST_SIZE,
  1184. }
  1185. }
  1186. },
  1187. .hash = &hash_alg_md5,
  1188. .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
  1189. .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
  1190. }, {
  1191. .crypto = {
  1192. .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
  1193. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1194. .cra_u = { .aead = {
  1195. .ivsize = DES3_EDE_BLOCK_SIZE,
  1196. .maxauthsize = MD5_DIGEST_SIZE,
  1197. }
  1198. }
  1199. },
  1200. .hash = &hash_alg_md5,
  1201. .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
  1202. .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
  1203. }, {
  1204. .crypto = {
  1205. .cra_name = "authenc(hmac(sha1),cbc(des))",
  1206. .cra_blocksize = DES_BLOCK_SIZE,
  1207. .cra_u = { .aead = {
  1208. .ivsize = DES_BLOCK_SIZE,
  1209. .maxauthsize = SHA1_DIGEST_SIZE,
  1210. }
  1211. }
  1212. },
  1213. .hash = &hash_alg_sha1,
  1214. .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
  1215. .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
  1216. }, {
  1217. .crypto = {
  1218. .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
  1219. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1220. .cra_u = { .aead = {
  1221. .ivsize = DES3_EDE_BLOCK_SIZE,
  1222. .maxauthsize = SHA1_DIGEST_SIZE,
  1223. }
  1224. }
  1225. },
  1226. .hash = &hash_alg_sha1,
  1227. .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
  1228. .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
  1229. }, {
  1230. .crypto = {
  1231. .cra_name = "authenc(hmac(md5),cbc(aes))",
  1232. .cra_blocksize = AES_BLOCK_SIZE,
  1233. .cra_u = { .aead = {
  1234. .ivsize = AES_BLOCK_SIZE,
  1235. .maxauthsize = MD5_DIGEST_SIZE,
  1236. }
  1237. }
  1238. },
  1239. .hash = &hash_alg_md5,
  1240. .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
  1241. .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
  1242. }, {
  1243. .crypto = {
  1244. .cra_name = "authenc(hmac(sha1),cbc(aes))",
  1245. .cra_blocksize = AES_BLOCK_SIZE,
  1246. .cra_u = { .aead = {
  1247. .ivsize = AES_BLOCK_SIZE,
  1248. .maxauthsize = SHA1_DIGEST_SIZE,
  1249. }
  1250. }
  1251. },
  1252. .hash = &hash_alg_sha1,
  1253. .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
  1254. .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
  1255. } };
  1256. #define IXP_POSTFIX "-ixp4xx"
  1257. static int __init ixp_module_init(void)
  1258. {
  1259. int num = ARRAY_SIZE(ixp4xx_algos);
  1260. int i,err ;
  1261. if (platform_device_register(&pseudo_dev))
  1262. return -ENODEV;
  1263. spin_lock_init(&desc_lock);
  1264. spin_lock_init(&emerg_lock);
  1265. err = init_ixp_crypto();
  1266. if (err) {
  1267. platform_device_unregister(&pseudo_dev);
  1268. return err;
  1269. }
  1270. for (i=0; i< num; i++) {
  1271. struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
  1272. if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
  1273. "%s"IXP_POSTFIX, cra->cra_name) >=
  1274. CRYPTO_MAX_ALG_NAME)
  1275. {
  1276. continue;
  1277. }
  1278. if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
  1279. continue;
  1280. }
  1281. if (!ixp4xx_algos[i].hash) {
  1282. /* block ciphers */
  1283. cra->cra_type = &crypto_ablkcipher_type;
  1284. cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  1285. CRYPTO_ALG_KERN_DRIVER_ONLY |
  1286. CRYPTO_ALG_ASYNC;
  1287. if (!cra->cra_ablkcipher.setkey)
  1288. cra->cra_ablkcipher.setkey = ablk_setkey;
  1289. if (!cra->cra_ablkcipher.encrypt)
  1290. cra->cra_ablkcipher.encrypt = ablk_encrypt;
  1291. if (!cra->cra_ablkcipher.decrypt)
  1292. cra->cra_ablkcipher.decrypt = ablk_decrypt;
  1293. cra->cra_init = init_tfm_ablk;
  1294. } else {
  1295. /* authenc */
  1296. cra->cra_type = &crypto_aead_type;
  1297. cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
  1298. CRYPTO_ALG_KERN_DRIVER_ONLY |
  1299. CRYPTO_ALG_ASYNC;
  1300. cra->cra_aead.setkey = aead_setkey;
  1301. cra->cra_aead.setauthsize = aead_setauthsize;
  1302. cra->cra_aead.encrypt = aead_encrypt;
  1303. cra->cra_aead.decrypt = aead_decrypt;
  1304. cra->cra_aead.givencrypt = aead_givencrypt;
  1305. cra->cra_init = init_tfm_aead;
  1306. }
  1307. cra->cra_ctxsize = sizeof(struct ixp_ctx);
  1308. cra->cra_module = THIS_MODULE;
  1309. cra->cra_alignmask = 3;
  1310. cra->cra_priority = 300;
  1311. cra->cra_exit = exit_tfm;
  1312. if (crypto_register_alg(cra))
  1313. printk(KERN_ERR "Failed to register '%s'\n",
  1314. cra->cra_name);
  1315. else
  1316. ixp4xx_algos[i].registered = 1;
  1317. }
  1318. return 0;
  1319. }
  1320. static void __exit ixp_module_exit(void)
  1321. {
  1322. int num = ARRAY_SIZE(ixp4xx_algos);
  1323. int i;
  1324. for (i=0; i< num; i++) {
  1325. if (ixp4xx_algos[i].registered)
  1326. crypto_unregister_alg(&ixp4xx_algos[i].crypto);
  1327. }
  1328. release_ixp_crypto();
  1329. platform_device_unregister(&pseudo_dev);
  1330. }
  1331. module_init(ixp_module_init);
  1332. module_exit(ixp_module_exit);
  1333. MODULE_LICENSE("GPL");
  1334. MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
  1335. MODULE_DESCRIPTION("IXP4xx hardware crypto");