coresight-etm.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329
  1. /* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved.
  2. *
  3. * This program is free software; you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License version 2 and
  5. * only version 2 as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU General Public License for more details.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/types.h>
  16. #include <linux/device.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/io.h>
  19. #include <linux/err.h>
  20. #include <linux/fs.h>
  21. #include <linux/slab.h>
  22. #include <linux/delay.h>
  23. #include <linux/smp.h>
  24. #include <linux/wakelock.h>
  25. #include <linux/sysfs.h>
  26. #include <linux/stat.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/clk.h>
  29. #include <linux/cpu.h>
  30. #include <linux/of_coresight.h>
  31. #include <linux/coresight.h>
  32. #include <asm/sections.h>
  33. #include <mach/socinfo.h>
  34. #include <mach/msm_memory_dump.h>
  35. #include "coresight-priv.h"
  36. #if defined(CONFIG_CORESIGHT_ETM_DEFAULT_ENABLE) || \
  37. defined(CONFIG_CORESIGHT_ETM_PCSAVE_DEFAULT_ENABLE)
  38. #ifdef CONFIG_SEC_DEBUG
  39. #include <mach/sec_debug.h>
  40. #endif
  41. #endif
  42. #define etm_writel_mm(drvdata, val, off) \
  43. __raw_writel((val), drvdata->base + off)
  44. #define etm_readl_mm(drvdata, off) \
  45. __raw_readl(drvdata->base + off)
  46. #define etm_writel(drvdata, val, off) \
  47. ({ \
  48. if (cpu_is_krait_v3()) \
  49. etm_writel_cp14(val, off); \
  50. else \
  51. etm_writel_mm(drvdata, val, off); \
  52. })
  53. #define etm_readl(drvdata, off) \
  54. ({ \
  55. uint32_t val; \
  56. if (cpu_is_krait_v3()) \
  57. val = etm_readl_cp14(off); \
  58. else \
  59. val = etm_readl_mm(drvdata, off); \
  60. val; \
  61. })
  62. #define ETM_LOCK(drvdata) \
  63. do { \
  64. /* recommended by spec to ensure ETM writes are committed prior
  65. * to resuming execution
  66. */ \
  67. mb(); \
  68. isb(); \
  69. etm_writel_mm(drvdata, 0x0, CORESIGHT_LAR); \
  70. } while (0)
  71. #define ETM_UNLOCK(drvdata) \
  72. do { \
  73. etm_writel_mm(drvdata, CORESIGHT_UNLOCK, CORESIGHT_LAR); \
  74. /* ensure unlock and any pending writes are committed prior to
  75. * programming ETM registers
  76. */ \
  77. mb(); \
  78. isb(); \
  79. } while (0)
  80. /*
  81. * Device registers:
  82. * 0x000 - 0x2FC: Trace registers
  83. * 0x300 - 0x314: Management registers
  84. * 0x318 - 0xEFC: Trace registers
  85. *
  86. * Coresight registers
  87. * 0xF00 - 0xF9C: Management registers
  88. * 0xFA0 - 0xFA4: Management registers in PFTv1.0
  89. * Trace registers in PFTv1.1
  90. * 0xFA8 - 0xFFC: Management registers
  91. */
  92. /* Trace registers (0x000-0x2FC) */
  93. #define ETMCR (0x000)
  94. #define ETMCCR (0x004)
  95. #define ETMTRIGGER (0x008)
  96. #define ETMASSICCTLR (0x00C)
  97. #define ETMSR (0x010)
  98. #define ETMSCR (0x014)
  99. #define ETMTSSCR (0x018)
  100. #define ETMTECR2 (0x01C)
  101. #define ETMTEEVR (0x020)
  102. #define ETMTECR1 (0x024)
  103. #define ETMFFLR (0x02C)
  104. #define ETMVDEVR (0x030)
  105. #define ETMVDCR1 (0x034)
  106. #define ETMVDCR3 (0x03C)
  107. #define ETMACVRn(n) (0x040 + (n * 4))
  108. #define ETMACTRn(n) (0x080 + (n * 4))
  109. #define ETMDCVRn(n) (0x0C0 + (n * 8))
  110. #define ETMDCMRn(n) (0x100 + (n * 8))
  111. #define ETMCNTRLDVRn(n) (0x140 + (n * 4))
  112. #define ETMCNTENRn(n) (0x150 + (n * 4))
  113. #define ETMCNTRLDEVRn(n) (0x160 + (n * 4))
  114. #define ETMCNTVRn(n) (0x170 + (n * 4))
  115. #define ETMSQ12EVR (0x180)
  116. #define ETMSQ21EVR (0x184)
  117. #define ETMSQ23EVR (0x188)
  118. #define ETMSQ31EVR (0x18C)
  119. #define ETMSQ32EVR (0x190)
  120. #define ETMSQ13EVR (0x194)
  121. #define ETMSQR (0x19C)
  122. #define ETMEXTOUTEVRn(n) (0x1A0 + (n * 4))
  123. #define ETMCIDCVRn(n) (0x1B0 + (n * 4))
  124. #define ETMCIDCMR (0x1BC)
  125. #define ETMIMPSPEC0 (0x1C0)
  126. #define ETMIMPSPEC1 (0x1C4)
  127. #define ETMIMPSPEC2 (0x1C8)
  128. #define ETMIMPSPEC3 (0x1CC)
  129. #define ETMIMPSPEC4 (0x1D0)
  130. #define ETMIMPSPEC5 (0x1D4)
  131. #define ETMIMPSPEC6 (0x1D8)
  132. #define ETMIMPSPEC7 (0x1DC)
  133. #define ETMSYNCFR (0x1E0)
  134. #define ETMIDR (0x1E4)
  135. #define ETMCCER (0x1E8)
  136. #define ETMEXTINSELR (0x1EC)
  137. #define ETMTESSEICR (0x1F0)
  138. #define ETMEIBCR (0x1F4)
  139. #define ETMTSEVR (0x1F8)
  140. #define ETMAUXCR (0x1FC)
  141. #define ETMTRACEIDR (0x200)
  142. #define ETMIDR2 (0x208)
  143. #define ETMVMIDCVR (0x240)
  144. /* Management registers (0x300-0x314) */
  145. #define ETMOSLAR (0x300)
  146. #define ETMOSLSR (0x304)
  147. #define ETMOSSRR (0x308)
  148. #define ETMPDCR (0x310)
  149. #define ETMPDSR (0x314)
  150. #define ETM_MAX_ADDR_CMP (16)
  151. #define ETM_MAX_CNTR (4)
  152. #define ETM_MAX_CTXID_CMP (3)
  153. #define ETM_MODE_EXCLUDE BIT(0)
  154. #define ETM_MODE_CYCACC BIT(1)
  155. #define ETM_MODE_STALL BIT(2)
  156. #define ETM_MODE_TIMESTAMP BIT(3)
  157. #define ETM_MODE_CTXID BIT(4)
  158. #define ETM_MODE_DATA_TRACE_VAL BIT(5)
  159. #define ETM_MODE_DATA_TRACE_ADDR BIT(6)
  160. #define ETM_MODE_ALL (0x7F)
  161. #define ETM_DATACMP_ENABLE (0x2)
  162. #define ETM_EVENT_MASK (0x1FFFF)
  163. #define ETM_SYNC_MASK (0xFFF)
  164. #define ETM_ALL_MASK (0xFFFFFFFF)
  165. #define ETM_SEQ_STATE_MAX_VAL (0x2)
  166. #define ETM_REG_DUMP_VER_OFF (4)
  167. #define ETM_REG_DUMP_VER (1)
  168. #define CPMR_ETMCLKEN (8)
  169. enum etm_addr_type {
  170. ETM_ADDR_TYPE_NONE,
  171. ETM_ADDR_TYPE_SINGLE,
  172. ETM_ADDR_TYPE_RANGE,
  173. ETM_ADDR_TYPE_START,
  174. ETM_ADDR_TYPE_STOP,
  175. };
  176. #ifdef CONFIG_CORESIGHT_ETM_DEFAULT_ENABLE
  177. static int boot_enable = 1;
  178. #else
  179. static int boot_enable;
  180. #endif
  181. module_param_named(
  182. boot_enable, boot_enable, int, S_IRUGO
  183. );
  184. #ifdef CONFIG_CORESIGHT_ETM_PCSAVE_DEFAULT_ENABLE
  185. static int boot_pcsave_enable = 1;
  186. #else
  187. static int boot_pcsave_enable;
  188. #endif
  189. module_param_named(
  190. boot_pcsave_enable, boot_pcsave_enable, int, S_IRUGO
  191. );
  192. struct etm_drvdata {
  193. void __iomem *base;
  194. struct device *dev;
  195. struct coresight_device *csdev;
  196. struct clk *clk;
  197. spinlock_t spinlock;
  198. struct wake_lock wake_lock;
  199. int cpu;
  200. uint8_t arch;
  201. bool enable;
  202. bool sticky_enable;
  203. bool boot_enable;
  204. bool os_unlock;
  205. uint8_t nr_addr_cmp;
  206. uint8_t nr_cntr;
  207. uint8_t nr_ext_inp;
  208. uint8_t nr_ext_out;
  209. uint8_t nr_ctxid_cmp;
  210. uint8_t nr_data_cmp;
  211. uint8_t reset;
  212. uint32_t mode;
  213. uint32_t ctrl;
  214. uint32_t trigger_event;
  215. uint32_t startstop_ctrl;
  216. uint32_t enable_event;
  217. uint32_t enable_ctrl1;
  218. uint32_t enable_ctrl2;
  219. uint32_t fifofull_level;
  220. uint8_t addr_idx;
  221. uint32_t addr_val[ETM_MAX_ADDR_CMP];
  222. uint32_t addr_acctype[ETM_MAX_ADDR_CMP];
  223. uint32_t addr_type[ETM_MAX_ADDR_CMP];
  224. bool data_trace_support;
  225. uint32_t data_val[ETM_MAX_ADDR_CMP];
  226. uint32_t data_mask[ETM_MAX_ADDR_CMP];
  227. uint32_t viewdata_event;
  228. uint32_t viewdata_ctrl1;
  229. uint32_t viewdata_ctrl3;
  230. uint8_t cntr_idx;
  231. uint32_t cntr_rld_val[ETM_MAX_CNTR];
  232. uint32_t cntr_event[ETM_MAX_CNTR];
  233. uint32_t cntr_rld_event[ETM_MAX_CNTR];
  234. uint32_t cntr_val[ETM_MAX_CNTR];
  235. uint32_t seq_12_event;
  236. uint32_t seq_21_event;
  237. uint32_t seq_23_event;
  238. uint32_t seq_31_event;
  239. uint32_t seq_32_event;
  240. uint32_t seq_13_event;
  241. uint32_t seq_curr_state;
  242. uint8_t ctxid_idx;
  243. uint32_t ctxid_val[ETM_MAX_CTXID_CMP];
  244. uint32_t ctxid_mask;
  245. uint32_t sync_freq;
  246. uint32_t timestamp_event;
  247. bool pcsave_impl;
  248. bool pcsave_enable;
  249. bool pcsave_sticky_enable;
  250. bool pcsave_boot_enable;
  251. bool round_robin;
  252. };
  253. static struct etm_drvdata *etmdrvdata[NR_CPUS];
  254. static bool etm_os_lock_present(struct etm_drvdata *drvdata)
  255. {
  256. uint32_t etmoslsr;
  257. etmoslsr = etm_readl(drvdata, ETMOSLSR);
  258. if (!BVAL(etmoslsr, 0) && !BVAL(etmoslsr, 3))
  259. return false;
  260. return true;
  261. }
  262. /*
  263. * Unlock OS lock to allow memory mapped access on Krait and in general
  264. * so that ETMSR[1] can be polled while clearing the ETMCR[10] prog bit
  265. * since ETMSR[1] is set when prog bit is set or OS lock is set.
  266. */
  267. static void etm_os_unlock(void *info)
  268. {
  269. struct etm_drvdata *drvdata = (struct etm_drvdata *) info;
  270. /*
  271. * Memory mapped writes to clear os lock are not supported on Krait v1,
  272. * v2 and OS lock must be unlocked before any memory mapped access,
  273. * otherwise memory mapped reads/writes will be invalid.
  274. */
  275. if (cpu_is_krait()) {
  276. etm_writel_cp14(0x0, ETMOSLAR);
  277. /* ensure os lock is unlocked before we return */
  278. isb();
  279. } else {
  280. ETM_UNLOCK(drvdata);
  281. if (etm_os_lock_present(drvdata)) {
  282. etm_writel(drvdata, 0x0, ETMOSLAR);
  283. /* ensure os lock is unlocked before we return */
  284. mb();
  285. }
  286. ETM_LOCK(drvdata);
  287. }
  288. }
  289. /*
  290. * ETM clock is derived from the processor clock and gets enabled on a
  291. * logical OR of below items on Krait (v2 onwards):
  292. * 1.CPMR[ETMCLKEN] is 1
  293. * 2.ETMCR[PD] is 0
  294. * 3.ETMPDCR[PU] is 1
  295. * 4.Reset is asserted (core or debug)
  296. * 5.APB memory mapped requests (eg. EDAP access)
  297. *
  298. * 1., 2. and 3. above are permanent enables whereas 4. and 5. are temporary
  299. * enables
  300. *
  301. * We rely on 5. to be able to access ETMCR/ETMPDCR and then use 2./3. above
  302. * for ETM clock vote in the driver and the save-restore code uses 1. above
  303. * for its vote
  304. */
  305. static void etm_set_pwrdwn(struct etm_drvdata *drvdata)
  306. {
  307. uint32_t etmcr;
  308. /* ensure pending cp14 accesses complete before setting pwrdwn */
  309. mb();
  310. isb();
  311. etmcr = etm_readl(drvdata, ETMCR);
  312. etmcr |= BIT(0);
  313. etm_writel(drvdata, etmcr, ETMCR);
  314. }
  315. static void etm_clr_pwrdwn(struct etm_drvdata *drvdata)
  316. {
  317. uint32_t etmcr;
  318. etmcr = etm_readl(drvdata, ETMCR);
  319. etmcr &= ~BIT(0);
  320. etm_writel(drvdata, etmcr, ETMCR);
  321. /* ensure pwrup completes before subsequent cp14 accesses */
  322. mb();
  323. isb();
  324. }
  325. static void etm_set_pwrup(struct etm_drvdata *drvdata)
  326. {
  327. uint32_t cpmr;
  328. uint32_t etmpdcr;
  329. /* For Krait, use cp15 CPMR_ETMCLKEN instead of ETMPDCR since ETMPDCR
  330. * is not supported for this purpose on Krait v4.
  331. */
  332. if (cpu_is_krait()) {
  333. asm volatile("mrc p15, 7, %0, c15, c0, 5" : "=r" (cpmr));
  334. cpmr |= CPMR_ETMCLKEN;
  335. asm volatile("mcr p15, 7, %0, c15, c0, 5" : : "r" (cpmr));
  336. } else {
  337. etmpdcr = etm_readl_mm(drvdata, ETMPDCR);
  338. etmpdcr |= BIT(3);
  339. etm_writel_mm(drvdata, etmpdcr, ETMPDCR);
  340. }
  341. /* ensure pwrup completes before subsequent cp14 accesses */
  342. mb();
  343. isb();
  344. }
  345. static void etm_clr_pwrup(struct etm_drvdata *drvdata)
  346. {
  347. uint32_t cpmr;
  348. uint32_t etmpdcr;
  349. /* ensure pending cp14 accesses complete before clearing pwrup */
  350. mb();
  351. isb();
  352. /* For Krait, use cp15 CPMR_ETMCLKEN instead of ETMPDCR since ETMPDCR
  353. * is not supported for this purpose on Krait v4.
  354. */
  355. if (cpu_is_krait()) {
  356. asm volatile("mrc p15, 7, %0, c15, c0, 5" : "=r" (cpmr));
  357. cpmr &= ~CPMR_ETMCLKEN;
  358. asm volatile("mcr p15, 7, %0, c15, c0, 5" : : "r" (cpmr));
  359. } else {
  360. etmpdcr = etm_readl_mm(drvdata, ETMPDCR);
  361. etmpdcr &= ~BIT(3);
  362. etm_writel_mm(drvdata, etmpdcr, ETMPDCR);
  363. }
  364. }
  365. static void etm_set_prog(struct etm_drvdata *drvdata)
  366. {
  367. uint32_t etmcr;
  368. int count;
  369. etmcr = etm_readl(drvdata, ETMCR);
  370. etmcr |= BIT(10);
  371. etm_writel(drvdata, etmcr, ETMCR);
  372. /* recommended by spec for cp14 accesses to ensure etmcr write is
  373. * complete before polling etmsr
  374. */
  375. isb();
  376. for (count = TIMEOUT_US; BVAL(etm_readl(drvdata, ETMSR), 1) != 1
  377. && count > 0; count--)
  378. udelay(1);
  379. WARN(count == 0, "timeout while setting prog bit, ETMSR: %#x\n",
  380. etm_readl(drvdata, ETMSR));
  381. }
  382. static void etm_clr_prog(struct etm_drvdata *drvdata)
  383. {
  384. uint32_t etmcr;
  385. int count;
  386. etmcr = etm_readl(drvdata, ETMCR);
  387. etmcr &= ~BIT(10);
  388. etm_writel(drvdata, etmcr, ETMCR);
  389. /* recommended by spec for cp14 accesses to ensure etmcr write is
  390. * complete before polling etmsr
  391. */
  392. isb();
  393. for (count = TIMEOUT_US; BVAL(etm_readl(drvdata, ETMSR), 1) != 0
  394. && count > 0; count--)
  395. udelay(1);
  396. WARN(count == 0, "timeout while clearing prog bit, ETMSR: %#x\n",
  397. etm_readl(drvdata, ETMSR));
  398. }
  399. static void etm_enable_pcsave(void *info)
  400. {
  401. struct etm_drvdata *drvdata = info;
  402. ETM_UNLOCK(drvdata);
  403. /*
  404. * ETMPDCR is only accessible via memory mapped interface and so use
  405. * it first to enable power/clock to allow subsequent cp14 accesses.
  406. */
  407. etm_set_pwrup(drvdata);
  408. etm_clr_pwrdwn(drvdata);
  409. etm_clr_pwrup(drvdata);
  410. ETM_LOCK(drvdata);
  411. }
  412. static void etm_disable_pcsave(void *info)
  413. {
  414. struct etm_drvdata *drvdata = info;
  415. ETM_UNLOCK(drvdata);
  416. if (!drvdata->enable)
  417. etm_set_pwrdwn(drvdata);
  418. ETM_LOCK(drvdata);
  419. }
  420. static bool etm_version_gte(uint8_t arch, uint8_t base_arch)
  421. {
  422. if (arch >= base_arch && ((arch & PFT_ARCH_MAJOR) != PFT_ARCH_MAJOR))
  423. return true;
  424. else
  425. return false;
  426. }
  427. static void __etm_enable(void *info)
  428. {
  429. int i;
  430. uint32_t etmcr;
  431. struct etm_drvdata *drvdata = info;
  432. ETM_UNLOCK(drvdata);
  433. /*
  434. * Vote for ETM power/clock enable. ETMPDCR is only accessible via
  435. * memory mapped interface and so use it first to enable power/clock
  436. * to allow subsequent cp14 accesses.
  437. */
  438. etm_set_pwrup(drvdata);
  439. /*
  440. * Clear power down bit since when this bit is set writes to
  441. * certain registers might be ignored. This is also a pre-requisite
  442. * for trace enable.
  443. */
  444. etm_clr_pwrdwn(drvdata);
  445. etm_clr_pwrup(drvdata);
  446. etm_set_prog(drvdata);
  447. etmcr = etm_readl(drvdata, ETMCR);
  448. etmcr &= (BIT(10) | BIT(0));
  449. etm_writel(drvdata, drvdata->ctrl | etmcr, ETMCR);
  450. etm_writel(drvdata, drvdata->trigger_event, ETMTRIGGER);
  451. etm_writel(drvdata, drvdata->startstop_ctrl, ETMTSSCR);
  452. if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_2))
  453. etm_writel(drvdata, drvdata->enable_ctrl2, ETMTECR2);
  454. etm_writel(drvdata, drvdata->enable_event, ETMTEEVR);
  455. etm_writel(drvdata, drvdata->enable_ctrl1, ETMTECR1);
  456. etm_writel(drvdata, drvdata->fifofull_level, ETMFFLR);
  457. if (drvdata->data_trace_support == true) {
  458. etm_writel(drvdata, drvdata->viewdata_event, ETMVDEVR);
  459. etm_writel(drvdata, drvdata->viewdata_ctrl1, ETMVDCR1);
  460. etm_writel(drvdata, drvdata->viewdata_ctrl3, ETMVDCR3);
  461. }
  462. for (i = 0; i < drvdata->nr_addr_cmp; i++) {
  463. etm_writel(drvdata, drvdata->addr_val[i], ETMACVRn(i));
  464. etm_writel(drvdata, drvdata->addr_acctype[i], ETMACTRn(i));
  465. }
  466. for (i = 0; i < drvdata->nr_data_cmp; i++) {
  467. etm_writel(drvdata, drvdata->data_val[i], ETMDCVRn(i));
  468. etm_writel(drvdata, drvdata->data_mask[i], ETMDCMRn(i));
  469. }
  470. for (i = 0; i < drvdata->nr_cntr; i++) {
  471. etm_writel(drvdata, drvdata->cntr_rld_val[i], ETMCNTRLDVRn(i));
  472. etm_writel(drvdata, drvdata->cntr_event[i], ETMCNTENRn(i));
  473. etm_writel(drvdata, drvdata->cntr_rld_event[i],
  474. ETMCNTRLDEVRn(i));
  475. etm_writel(drvdata, drvdata->cntr_val[i], ETMCNTVRn(i));
  476. }
  477. etm_writel(drvdata, drvdata->seq_12_event, ETMSQ12EVR);
  478. etm_writel(drvdata, drvdata->seq_21_event, ETMSQ21EVR);
  479. etm_writel(drvdata, drvdata->seq_23_event, ETMSQ23EVR);
  480. etm_writel(drvdata, drvdata->seq_31_event, ETMSQ31EVR);
  481. etm_writel(drvdata, drvdata->seq_32_event, ETMSQ32EVR);
  482. etm_writel(drvdata, drvdata->seq_13_event, ETMSQ13EVR);
  483. etm_writel(drvdata, drvdata->seq_curr_state, ETMSQR);
  484. for (i = 0; i < drvdata->nr_ext_out; i++)
  485. etm_writel(drvdata, 0x0000406F, ETMEXTOUTEVRn(i));
  486. for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
  487. etm_writel(drvdata, drvdata->ctxid_val[i], ETMCIDCVRn(i));
  488. etm_writel(drvdata, drvdata->ctxid_mask, ETMCIDCMR);
  489. etm_writel(drvdata, drvdata->sync_freq, ETMSYNCFR);
  490. etm_writel(drvdata, 0x00000000, ETMEXTINSELR);
  491. etm_writel(drvdata, drvdata->timestamp_event, ETMTSEVR);
  492. etm_writel(drvdata, 0x00000000, ETMAUXCR);
  493. etm_writel(drvdata, drvdata->cpu + 1, ETMTRACEIDR);
  494. etm_writel(drvdata, 0x00000000, ETMVMIDCVR);
  495. etm_clr_prog(drvdata);
  496. ETM_LOCK(drvdata);
  497. dev_dbg(drvdata->dev, "cpu: %d enable smp call done\n", drvdata->cpu);
  498. }
  499. static int etm_enable(struct coresight_device *csdev)
  500. {
  501. struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
  502. int ret;
  503. wake_lock(&drvdata->wake_lock);
  504. ret = clk_prepare_enable(drvdata->clk);
  505. if (ret)
  506. goto err_clk;
  507. spin_lock(&drvdata->spinlock);
  508. /*
  509. * Executing __etm_enable on the cpu whose ETM is being enabled
  510. * ensures that register writes occur when cpu is powered.
  511. */
  512. ret = smp_call_function_single(drvdata->cpu, __etm_enable, drvdata, 1);
  513. if (ret)
  514. goto err;
  515. drvdata->enable = true;
  516. drvdata->sticky_enable = true;
  517. spin_unlock(&drvdata->spinlock);
  518. wake_unlock(&drvdata->wake_lock);
  519. dev_info(drvdata->dev, "ETM tracing enabled\n");
  520. return 0;
  521. err:
  522. spin_unlock(&drvdata->spinlock);
  523. clk_disable_unprepare(drvdata->clk);
  524. err_clk:
  525. wake_unlock(&drvdata->wake_lock);
  526. return ret;
  527. }
  528. static void __etm_disable(void *info)
  529. {
  530. struct etm_drvdata *drvdata = info;
  531. ETM_UNLOCK(drvdata);
  532. etm_set_prog(drvdata);
  533. /* program trace enable to low by using always false event */
  534. etm_writel(drvdata, 0x6F | BIT(14), ETMTEEVR);
  535. if (!drvdata->pcsave_enable)
  536. etm_set_pwrdwn(drvdata);
  537. ETM_LOCK(drvdata);
  538. dev_dbg(drvdata->dev, "cpu: %d disable smp call done\n", drvdata->cpu);
  539. }
  540. static void etm_disable(struct coresight_device *csdev)
  541. {
  542. struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
  543. wake_lock(&drvdata->wake_lock);
  544. /*
  545. * Taking hotplug lock here protects from clocks getting disabled
  546. * with tracing being left on (crash scenario) if user disable occurs
  547. * after cpu online mask indicates the cpu is offline but before the
  548. * DYING hotplug callback is serviced by the ETM driver.
  549. */
  550. get_online_cpus();
  551. spin_lock(&drvdata->spinlock);
  552. /*
  553. * Executing __etm_disable on the cpu whose ETM is being disabled
  554. * ensures that register writes occur when cpu is powered.
  555. */
  556. smp_call_function_single(drvdata->cpu, __etm_disable, drvdata, 1);
  557. drvdata->enable = false;
  558. spin_unlock(&drvdata->spinlock);
  559. put_online_cpus();
  560. clk_disable_unprepare(drvdata->clk);
  561. wake_unlock(&drvdata->wake_lock);
  562. dev_info(drvdata->dev, "ETM tracing disabled\n");
  563. }
  564. static const struct coresight_ops_source etm_source_ops = {
  565. .enable = etm_enable,
  566. .disable = etm_disable,
  567. };
  568. static const struct coresight_ops etm_cs_ops = {
  569. .source_ops = &etm_source_ops,
  570. };
  571. static ssize_t etm_show_nr_addr_cmp(struct device *dev,
  572. struct device_attribute *attr, char *buf)
  573. {
  574. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  575. unsigned long val = drvdata->nr_addr_cmp;
  576. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  577. }
  578. static DEVICE_ATTR(nr_addr_cmp, S_IRUGO, etm_show_nr_addr_cmp, NULL);
  579. static ssize_t etm_show_nr_cntr(struct device *dev,
  580. struct device_attribute *attr, char *buf)
  581. {
  582. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  583. unsigned long val = drvdata->nr_cntr;
  584. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  585. }
  586. static DEVICE_ATTR(nr_cntr, S_IRUGO, etm_show_nr_cntr, NULL);
  587. static ssize_t etm_show_nr_ctxid_cmp(struct device *dev,
  588. struct device_attribute *attr, char *buf)
  589. {
  590. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  591. unsigned long val = drvdata->nr_ctxid_cmp;
  592. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  593. }
  594. static DEVICE_ATTR(nr_ctxid_cmp, S_IRUGO, etm_show_nr_ctxid_cmp, NULL);
  595. static ssize_t etm_show_reset(struct device *dev, struct device_attribute *attr,
  596. char *buf)
  597. {
  598. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  599. unsigned long val = drvdata->reset;
  600. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  601. }
  602. /* Reset to trace everything i.e. exclude nothing. */
  603. static ssize_t etm_store_reset(struct device *dev,
  604. struct device_attribute *attr, const char *buf,
  605. size_t size)
  606. {
  607. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  608. int i;
  609. unsigned long val;
  610. if (sscanf(buf, "%lx", &val) != 1)
  611. return -EINVAL;
  612. spin_lock(&drvdata->spinlock);
  613. if (val) {
  614. drvdata->mode = ETM_MODE_EXCLUDE;
  615. drvdata->ctrl = 0x0;
  616. if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0))
  617. drvdata->ctrl |= BIT(11);
  618. if (cpu_is_krait_v1()) {
  619. drvdata->mode |= ETM_MODE_CYCACC;
  620. drvdata->ctrl |= BIT(12);
  621. }
  622. drvdata->trigger_event = 0x406F;
  623. drvdata->startstop_ctrl = 0x0;
  624. if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_2))
  625. drvdata->enable_ctrl2 = 0x0;
  626. drvdata->enable_event = 0x6F;
  627. drvdata->enable_ctrl1 = 0x1000000;
  628. drvdata->fifofull_level = 0x28;
  629. if (drvdata->data_trace_support == true) {
  630. drvdata->mode |= (ETM_MODE_DATA_TRACE_VAL |
  631. ETM_MODE_DATA_TRACE_ADDR);
  632. drvdata->ctrl |= BIT(2) | BIT(3);
  633. drvdata->viewdata_event = 0x6F;
  634. drvdata->viewdata_ctrl1 = 0x0;
  635. drvdata->viewdata_ctrl3 = 0x10000;
  636. }
  637. drvdata->addr_idx = 0x0;
  638. for (i = 0; i < drvdata->nr_addr_cmp; i++) {
  639. drvdata->addr_val[i] = 0x0;
  640. drvdata->addr_acctype[i] = 0x0;
  641. drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE;
  642. }
  643. for (i = 0; i < drvdata->nr_data_cmp; i++) {
  644. drvdata->data_val[i] = 0;
  645. drvdata->data_mask[i] = ~(0);
  646. }
  647. drvdata->cntr_idx = 0x0;
  648. for (i = 0; i < drvdata->nr_cntr; i++) {
  649. drvdata->cntr_rld_val[i] = 0x0;
  650. drvdata->cntr_event[i] = 0x406F;
  651. drvdata->cntr_rld_event[i] = 0x406F;
  652. drvdata->cntr_val[i] = 0x0;
  653. }
  654. drvdata->seq_12_event = 0x406F;
  655. drvdata->seq_21_event = 0x406F;
  656. drvdata->seq_23_event = 0x406F;
  657. drvdata->seq_31_event = 0x406F;
  658. drvdata->seq_32_event = 0x406F;
  659. drvdata->seq_13_event = 0x406F;
  660. drvdata->seq_curr_state = 0x0;
  661. drvdata->ctxid_idx = 0x0;
  662. for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
  663. drvdata->ctxid_val[i] = 0x0;
  664. drvdata->ctxid_mask = 0x0;
  665. /* Bits[7:0] of ETMSYNCFR are reserved on Krait pass3 onwards */
  666. if (cpu_is_krait() && !cpu_is_krait_v1() && !cpu_is_krait_v2())
  667. drvdata->sync_freq = 0x100;
  668. else
  669. drvdata->sync_freq = 0x80;
  670. drvdata->timestamp_event = 0x406F;
  671. }
  672. spin_unlock(&drvdata->spinlock);
  673. return size;
  674. }
  675. static DEVICE_ATTR(reset, S_IRUGO | S_IWUSR, etm_show_reset, etm_store_reset);
  676. static ssize_t etm_show_mode(struct device *dev, struct device_attribute *attr,
  677. char *buf)
  678. {
  679. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  680. unsigned long val = drvdata->mode;
  681. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  682. }
  683. static ssize_t etm_store_mode(struct device *dev, struct device_attribute *attr,
  684. const char *buf, size_t size)
  685. {
  686. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  687. unsigned long val;
  688. if (sscanf(buf, "%lx", &val) != 1)
  689. return -EINVAL;
  690. spin_lock(&drvdata->spinlock);
  691. drvdata->mode = val & ETM_MODE_ALL;
  692. if (drvdata->mode & ETM_MODE_EXCLUDE)
  693. drvdata->enable_ctrl1 |= BIT(24);
  694. else
  695. drvdata->enable_ctrl1 &= ~BIT(24);
  696. if (drvdata->mode & ETM_MODE_CYCACC)
  697. drvdata->ctrl |= BIT(12);
  698. else
  699. drvdata->ctrl &= ~BIT(12);
  700. if (drvdata->mode & ETM_MODE_STALL)
  701. drvdata->ctrl |= BIT(7);
  702. else
  703. drvdata->ctrl &= ~BIT(7);
  704. if (drvdata->mode & ETM_MODE_TIMESTAMP)
  705. drvdata->ctrl |= BIT(28);
  706. else
  707. drvdata->ctrl &= ~BIT(28);
  708. if (drvdata->mode & ETM_MODE_CTXID)
  709. drvdata->ctrl |= (BIT(14) | BIT(15));
  710. else
  711. drvdata->ctrl &= ~(BIT(14) | BIT(15));
  712. if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0)) {
  713. if (drvdata->mode & ETM_MODE_DATA_TRACE_VAL)
  714. drvdata->ctrl |= BIT(2);
  715. else
  716. drvdata->ctrl &= ~(BIT(2));
  717. if (drvdata->mode & ETM_MODE_DATA_TRACE_ADDR)
  718. drvdata->ctrl |= (BIT(3));
  719. else
  720. drvdata->ctrl &= ~(BIT(3));
  721. }
  722. spin_unlock(&drvdata->spinlock);
  723. return size;
  724. }
  725. static DEVICE_ATTR(mode, S_IRUGO | S_IWUSR, etm_show_mode, etm_store_mode);
  726. static ssize_t etm_show_trigger_event(struct device *dev,
  727. struct device_attribute *attr, char *buf)
  728. {
  729. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  730. unsigned long val = drvdata->trigger_event;
  731. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  732. }
  733. static ssize_t etm_store_trigger_event(struct device *dev,
  734. struct device_attribute *attr,
  735. const char *buf, size_t size)
  736. {
  737. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  738. unsigned long val;
  739. if (sscanf(buf, "%lx", &val) != 1)
  740. return -EINVAL;
  741. drvdata->trigger_event = val & ETM_EVENT_MASK;
  742. return size;
  743. }
  744. static DEVICE_ATTR(trigger_event, S_IRUGO | S_IWUSR, etm_show_trigger_event,
  745. etm_store_trigger_event);
  746. static ssize_t etm_show_enable_event(struct device *dev,
  747. struct device_attribute *attr, char *buf)
  748. {
  749. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  750. unsigned long val = drvdata->enable_event;
  751. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  752. }
  753. static ssize_t etm_store_enable_event(struct device *dev,
  754. struct device_attribute *attr,
  755. const char *buf, size_t size)
  756. {
  757. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  758. unsigned long val;
  759. if (sscanf(buf, "%lx", &val) != 1)
  760. return -EINVAL;
  761. drvdata->enable_event = val & ETM_EVENT_MASK;
  762. return size;
  763. }
  764. static DEVICE_ATTR(enable_event, S_IRUGO | S_IWUSR, etm_show_enable_event,
  765. etm_store_enable_event);
  766. static ssize_t etm_show_fifofull_level(struct device *dev,
  767. struct device_attribute *attr, char *buf)
  768. {
  769. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  770. unsigned long val = drvdata->fifofull_level;
  771. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  772. }
  773. static ssize_t etm_store_fifofull_level(struct device *dev,
  774. struct device_attribute *attr,
  775. const char *buf, size_t size)
  776. {
  777. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  778. unsigned long val;
  779. if (sscanf(buf, "%lx", &val) != 1)
  780. return -EINVAL;
  781. drvdata->fifofull_level = val;
  782. return size;
  783. }
  784. static DEVICE_ATTR(fifofull_level, S_IRUGO | S_IWUSR, etm_show_fifofull_level,
  785. etm_store_fifofull_level);
  786. static ssize_t etm_show_addr_idx(struct device *dev,
  787. struct device_attribute *attr, char *buf)
  788. {
  789. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  790. unsigned long val = drvdata->addr_idx;
  791. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  792. }
  793. static ssize_t etm_store_addr_idx(struct device *dev,
  794. struct device_attribute *attr,
  795. const char *buf, size_t size)
  796. {
  797. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  798. unsigned long val;
  799. if (sscanf(buf, "%lx", &val) != 1)
  800. return -EINVAL;
  801. if (val >= drvdata->nr_addr_cmp)
  802. return -EINVAL;
  803. /*
  804. * Use spinlock to ensure index doesn't change while it gets
  805. * dereferenced multiple times within a spinlock block elsewhere.
  806. */
  807. spin_lock(&drvdata->spinlock);
  808. drvdata->addr_idx = val;
  809. spin_unlock(&drvdata->spinlock);
  810. return size;
  811. }
  812. static DEVICE_ATTR(addr_idx, S_IRUGO | S_IWUSR, etm_show_addr_idx,
  813. etm_store_addr_idx);
  814. static ssize_t etm_show_addr_single(struct device *dev,
  815. struct device_attribute *attr, char *buf)
  816. {
  817. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  818. unsigned long val;
  819. uint8_t idx;
  820. spin_lock(&drvdata->spinlock);
  821. idx = drvdata->addr_idx;
  822. if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
  823. drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
  824. spin_unlock(&drvdata->spinlock);
  825. return -EPERM;
  826. }
  827. val = drvdata->addr_val[idx];
  828. spin_unlock(&drvdata->spinlock);
  829. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  830. }
  831. static ssize_t etm_store_addr_single(struct device *dev,
  832. struct device_attribute *attr,
  833. const char *buf, size_t size)
  834. {
  835. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  836. unsigned long val;
  837. uint8_t idx;
  838. if (sscanf(buf, "%lx", &val) != 1)
  839. return -EINVAL;
  840. spin_lock(&drvdata->spinlock);
  841. idx = drvdata->addr_idx;
  842. if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
  843. drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
  844. spin_unlock(&drvdata->spinlock);
  845. return -EPERM;
  846. }
  847. drvdata->addr_val[idx] = val;
  848. drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE;
  849. if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_2))
  850. drvdata->enable_ctrl2 |= (1 << idx);
  851. spin_unlock(&drvdata->spinlock);
  852. return size;
  853. }
  854. static DEVICE_ATTR(addr_single, S_IRUGO | S_IWUSR, etm_show_addr_single,
  855. etm_store_addr_single);
  856. static ssize_t etm_show_addr_range(struct device *dev,
  857. struct device_attribute *attr, char *buf)
  858. {
  859. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  860. unsigned long val1, val2;
  861. uint8_t idx;
  862. spin_lock(&drvdata->spinlock);
  863. idx = drvdata->addr_idx;
  864. if (idx % 2 != 0) {
  865. spin_unlock(&drvdata->spinlock);
  866. return -EPERM;
  867. }
  868. if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
  869. drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
  870. (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
  871. drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
  872. spin_unlock(&drvdata->spinlock);
  873. return -EPERM;
  874. }
  875. val1 = drvdata->addr_val[idx];
  876. val2 = drvdata->addr_val[idx + 1];
  877. spin_unlock(&drvdata->spinlock);
  878. return scnprintf(buf, PAGE_SIZE, "%#lx %#lx\n", val1, val2);
  879. }
  880. static ssize_t etm_store_addr_range(struct device *dev,
  881. struct device_attribute *attr,
  882. const char *buf, size_t size)
  883. {
  884. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  885. unsigned long val1, val2;
  886. uint8_t idx;
  887. if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
  888. return -EINVAL;
  889. /* lower address comparator cannot have a higher address value */
  890. if (val1 > val2)
  891. return -EINVAL;
  892. spin_lock(&drvdata->spinlock);
  893. idx = drvdata->addr_idx;
  894. if (idx % 2 != 0) {
  895. spin_unlock(&drvdata->spinlock);
  896. return -EPERM;
  897. }
  898. if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
  899. drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
  900. (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
  901. drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
  902. spin_unlock(&drvdata->spinlock);
  903. return -EPERM;
  904. }
  905. drvdata->addr_val[idx] = val1;
  906. drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE;
  907. drvdata->addr_val[idx + 1] = val2;
  908. drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE;
  909. drvdata->enable_ctrl1 |= (1 << (idx/2));
  910. spin_unlock(&drvdata->spinlock);
  911. return size;
  912. }
  913. static DEVICE_ATTR(addr_range, S_IRUGO | S_IWUSR, etm_show_addr_range,
  914. etm_store_addr_range);
  915. static ssize_t etm_show_addr_start(struct device *dev,
  916. struct device_attribute *attr, char *buf)
  917. {
  918. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  919. unsigned long val;
  920. uint8_t idx;
  921. spin_lock(&drvdata->spinlock);
  922. idx = drvdata->addr_idx;
  923. if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
  924. drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
  925. spin_unlock(&drvdata->spinlock);
  926. return -EPERM;
  927. }
  928. val = drvdata->addr_val[idx];
  929. spin_unlock(&drvdata->spinlock);
  930. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  931. }
  932. static ssize_t etm_store_addr_start(struct device *dev,
  933. struct device_attribute *attr,
  934. const char *buf, size_t size)
  935. {
  936. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  937. unsigned long val;
  938. uint8_t idx;
  939. if (sscanf(buf, "%lx", &val) != 1)
  940. return -EINVAL;
  941. spin_lock(&drvdata->spinlock);
  942. idx = drvdata->addr_idx;
  943. if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
  944. drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
  945. spin_unlock(&drvdata->spinlock);
  946. return -EPERM;
  947. }
  948. drvdata->addr_val[idx] = val;
  949. drvdata->addr_type[idx] = ETM_ADDR_TYPE_START;
  950. drvdata->startstop_ctrl |= (1 << idx);
  951. drvdata->enable_ctrl1 |= BIT(25);
  952. spin_unlock(&drvdata->spinlock);
  953. return size;
  954. }
  955. static DEVICE_ATTR(addr_start, S_IRUGO | S_IWUSR, etm_show_addr_start,
  956. etm_store_addr_start);
  957. static ssize_t etm_show_addr_stop(struct device *dev,
  958. struct device_attribute *attr, char *buf)
  959. {
  960. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  961. unsigned long val;
  962. uint8_t idx;
  963. spin_lock(&drvdata->spinlock);
  964. idx = drvdata->addr_idx;
  965. if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
  966. drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
  967. spin_unlock(&drvdata->spinlock);
  968. return -EPERM;
  969. }
  970. val = drvdata->addr_val[idx];
  971. spin_unlock(&drvdata->spinlock);
  972. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  973. }
  974. static ssize_t etm_store_addr_stop(struct device *dev,
  975. struct device_attribute *attr,
  976. const char *buf, size_t size)
  977. {
  978. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  979. unsigned long val;
  980. uint8_t idx;
  981. if (sscanf(buf, "%lx", &val) != 1)
  982. return -EINVAL;
  983. spin_lock(&drvdata->spinlock);
  984. idx = drvdata->addr_idx;
  985. if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
  986. drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
  987. spin_unlock(&drvdata->spinlock);
  988. return -EPERM;
  989. }
  990. drvdata->addr_val[idx] = val;
  991. drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP;
  992. drvdata->startstop_ctrl |= (1 << (idx + 16));
  993. drvdata->enable_ctrl1 |= BIT(25);
  994. spin_unlock(&drvdata->spinlock);
  995. return size;
  996. }
  997. static DEVICE_ATTR(addr_stop, S_IRUGO | S_IWUSR, etm_show_addr_stop,
  998. etm_store_addr_stop);
  999. static ssize_t etm_show_addr_acctype(struct device *dev,
  1000. struct device_attribute *attr, char *buf)
  1001. {
  1002. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1003. unsigned long val;
  1004. spin_lock(&drvdata->spinlock);
  1005. val = drvdata->addr_acctype[drvdata->addr_idx];
  1006. spin_unlock(&drvdata->spinlock);
  1007. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1008. }
  1009. static ssize_t etm_store_addr_acctype(struct device *dev,
  1010. struct device_attribute *attr,
  1011. const char *buf, size_t size)
  1012. {
  1013. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1014. unsigned long val;
  1015. if (sscanf(buf, "%lx", &val) != 1)
  1016. return -EINVAL;
  1017. spin_lock(&drvdata->spinlock);
  1018. drvdata->addr_acctype[drvdata->addr_idx] = val;
  1019. spin_unlock(&drvdata->spinlock);
  1020. return size;
  1021. }
  1022. static DEVICE_ATTR(addr_acctype, S_IRUGO | S_IWUSR, etm_show_addr_acctype,
  1023. etm_store_addr_acctype);
  1024. static ssize_t etm_show_data_val(struct device *dev,
  1025. struct device_attribute *attr, char *buf)
  1026. {
  1027. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1028. unsigned long val;
  1029. uint8_t idx;
  1030. spin_lock(&drvdata->spinlock);
  1031. idx = drvdata->addr_idx;
  1032. if (idx % 2 != 0) {
  1033. spin_unlock(&drvdata->spinlock);
  1034. return -EPERM;
  1035. }
  1036. idx = idx >> 1;
  1037. if (idx >= drvdata->nr_data_cmp) {
  1038. spin_unlock(&drvdata->spinlock);
  1039. return -EPERM;
  1040. }
  1041. val = drvdata->data_val[idx];
  1042. spin_unlock(&drvdata->spinlock);
  1043. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1044. }
  1045. static ssize_t etm_store_data_val(struct device *dev,
  1046. struct device_attribute *attr,
  1047. const char *buf, size_t size)
  1048. {
  1049. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1050. unsigned long val;
  1051. uint8_t idx, data_idx;
  1052. if (sscanf(buf, "%lx", &val) != 1)
  1053. return -EINVAL;
  1054. spin_lock(&drvdata->spinlock);
  1055. idx = drvdata->addr_idx;
  1056. /* Adjust index to use the correct data comparator */
  1057. data_idx = idx >> 1;
  1058. /* Only idx = 0, 2, 4, 6... are valid */
  1059. if (idx % 2 != 0) {
  1060. spin_unlock(&drvdata->spinlock);
  1061. return -EPERM;
  1062. }
  1063. if (data_idx >= drvdata->nr_data_cmp) {
  1064. spin_unlock(&drvdata->spinlock);
  1065. return -EPERM;
  1066. }
  1067. if (!BVAL(drvdata->addr_acctype[idx], ETM_DATACMP_ENABLE)) {
  1068. spin_unlock(&drvdata->spinlock);
  1069. return -EPERM;
  1070. }
  1071. if (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE) {
  1072. if (!BVAL(drvdata->addr_acctype[idx + 1], ETM_DATACMP_ENABLE)) {
  1073. spin_unlock(&drvdata->spinlock);
  1074. return -EPERM;
  1075. }
  1076. }
  1077. drvdata->data_val[data_idx] = val;
  1078. spin_unlock(&drvdata->spinlock);
  1079. return size;
  1080. }
  1081. static DEVICE_ATTR(data_val, S_IRUGO | S_IWUSR, etm_show_data_val,
  1082. etm_store_data_val);
  1083. static ssize_t etm_show_data_mask(struct device *dev,
  1084. struct device_attribute *attr, char *buf)
  1085. {
  1086. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1087. unsigned long mask;
  1088. uint8_t idx;
  1089. spin_lock(&drvdata->spinlock);
  1090. idx = drvdata->addr_idx;
  1091. if (idx % 2 != 0) {
  1092. spin_unlock(&drvdata->spinlock);
  1093. return -EPERM;
  1094. }
  1095. idx = idx >> 1;
  1096. if (idx >= drvdata->nr_data_cmp) {
  1097. spin_unlock(&drvdata->spinlock);
  1098. return -EPERM;
  1099. }
  1100. mask = drvdata->data_mask[idx];
  1101. spin_unlock(&drvdata->spinlock);
  1102. return scnprintf(buf, PAGE_SIZE, "%#lx\n", mask);
  1103. }
  1104. static ssize_t etm_store_data_mask(struct device *dev,
  1105. struct device_attribute *attr,
  1106. const char *buf, size_t size)
  1107. {
  1108. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1109. unsigned long mask;
  1110. uint8_t idx, data_idx;
  1111. if (sscanf(buf, "%lx", &mask) != 1)
  1112. return -EINVAL;
  1113. spin_lock(&drvdata->spinlock);
  1114. idx = drvdata->addr_idx;
  1115. /* Adjust index to use the correct data comparator */
  1116. data_idx = idx >> 1;
  1117. /* Only idx = 0, 2, 4, 6... are valid */
  1118. if (idx % 2 != 0) {
  1119. spin_unlock(&drvdata->spinlock);
  1120. return -EPERM;
  1121. }
  1122. if (data_idx >= drvdata->nr_data_cmp) {
  1123. spin_unlock(&drvdata->spinlock);
  1124. return -EPERM;
  1125. }
  1126. if (!BVAL(drvdata->addr_acctype[idx], ETM_DATACMP_ENABLE)) {
  1127. spin_unlock(&drvdata->spinlock);
  1128. return -EPERM;
  1129. }
  1130. if (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE) {
  1131. if (!BVAL(drvdata->addr_acctype[idx + 1], ETM_DATACMP_ENABLE)) {
  1132. spin_unlock(&drvdata->spinlock);
  1133. return -EPERM;
  1134. }
  1135. }
  1136. drvdata->data_mask[data_idx] = mask;
  1137. spin_unlock(&drvdata->spinlock);
  1138. return size;
  1139. }
  1140. static DEVICE_ATTR(data_mask, S_IRUGO | S_IWUSR, etm_show_data_mask,
  1141. etm_store_data_mask);
  1142. static ssize_t etm_show_cntr_idx(struct device *dev,
  1143. struct device_attribute *attr, char *buf)
  1144. {
  1145. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1146. unsigned long val = drvdata->addr_idx;
  1147. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1148. }
  1149. static ssize_t etm_store_cntr_idx(struct device *dev,
  1150. struct device_attribute *attr,
  1151. const char *buf, size_t size)
  1152. {
  1153. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1154. unsigned long val;
  1155. if (sscanf(buf, "%lx", &val) != 1)
  1156. return -EINVAL;
  1157. if (val >= drvdata->nr_cntr)
  1158. return -EINVAL;
  1159. /*
  1160. * Use spinlock to ensure index doesn't change while it gets
  1161. * dereferenced multiple times within a spinlock block elsewhere.
  1162. */
  1163. spin_lock(&drvdata->spinlock);
  1164. drvdata->cntr_idx = val;
  1165. spin_unlock(&drvdata->spinlock);
  1166. return size;
  1167. }
  1168. static DEVICE_ATTR(cntr_idx, S_IRUGO | S_IWUSR, etm_show_cntr_idx,
  1169. etm_store_cntr_idx);
  1170. static ssize_t etm_show_cntr_rld_val(struct device *dev,
  1171. struct device_attribute *attr, char *buf)
  1172. {
  1173. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1174. unsigned long val;
  1175. spin_lock(&drvdata->spinlock);
  1176. val = drvdata->cntr_rld_val[drvdata->cntr_idx];
  1177. spin_unlock(&drvdata->spinlock);
  1178. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1179. }
  1180. static ssize_t etm_store_cntr_rld_val(struct device *dev,
  1181. struct device_attribute *attr,
  1182. const char *buf, size_t size)
  1183. {
  1184. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1185. unsigned long val;
  1186. if (sscanf(buf, "%lx", &val) != 1)
  1187. return -EINVAL;
  1188. spin_lock(&drvdata->spinlock);
  1189. drvdata->cntr_rld_val[drvdata->cntr_idx] = val;
  1190. spin_unlock(&drvdata->spinlock);
  1191. return size;
  1192. }
  1193. static DEVICE_ATTR(cntr_rld_val, S_IRUGO | S_IWUSR, etm_show_cntr_rld_val,
  1194. etm_store_cntr_rld_val);
  1195. static ssize_t etm_show_cntr_event(struct device *dev,
  1196. struct device_attribute *attr, char *buf)
  1197. {
  1198. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1199. unsigned long val;
  1200. spin_lock(&drvdata->spinlock);
  1201. val = drvdata->cntr_event[drvdata->cntr_idx];
  1202. spin_unlock(&drvdata->spinlock);
  1203. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1204. }
  1205. static ssize_t etm_store_cntr_event(struct device *dev,
  1206. struct device_attribute *attr,
  1207. const char *buf, size_t size)
  1208. {
  1209. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1210. unsigned long val;
  1211. if (sscanf(buf, "%lx", &val) != 1)
  1212. return -EINVAL;
  1213. spin_lock(&drvdata->spinlock);
  1214. drvdata->cntr_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
  1215. spin_unlock(&drvdata->spinlock);
  1216. return size;
  1217. }
  1218. static DEVICE_ATTR(cntr_event, S_IRUGO | S_IWUSR, etm_show_cntr_event,
  1219. etm_store_cntr_event);
  1220. static ssize_t etm_show_cntr_rld_event(struct device *dev,
  1221. struct device_attribute *attr, char *buf)
  1222. {
  1223. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1224. unsigned long val;
  1225. spin_lock(&drvdata->spinlock);
  1226. val = drvdata->cntr_rld_event[drvdata->cntr_idx];
  1227. spin_unlock(&drvdata->spinlock);
  1228. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1229. }
  1230. static ssize_t etm_store_cntr_rld_event(struct device *dev,
  1231. struct device_attribute *attr,
  1232. const char *buf, size_t size)
  1233. {
  1234. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1235. unsigned long val;
  1236. if (sscanf(buf, "%lx", &val) != 1)
  1237. return -EINVAL;
  1238. spin_lock(&drvdata->spinlock);
  1239. drvdata->cntr_rld_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
  1240. spin_unlock(&drvdata->spinlock);
  1241. return size;
  1242. }
  1243. static DEVICE_ATTR(cntr_rld_event, S_IRUGO | S_IWUSR, etm_show_cntr_rld_event,
  1244. etm_store_cntr_rld_event);
  1245. static ssize_t etm_show_cntr_val(struct device *dev,
  1246. struct device_attribute *attr, char *buf)
  1247. {
  1248. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1249. unsigned long val;
  1250. spin_lock(&drvdata->spinlock);
  1251. val = drvdata->cntr_val[drvdata->cntr_idx];
  1252. spin_unlock(&drvdata->spinlock);
  1253. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1254. }
  1255. static ssize_t etm_store_cntr_val(struct device *dev,
  1256. struct device_attribute *attr,
  1257. const char *buf, size_t size)
  1258. {
  1259. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1260. unsigned long val;
  1261. if (sscanf(buf, "%lx", &val) != 1)
  1262. return -EINVAL;
  1263. spin_lock(&drvdata->spinlock);
  1264. drvdata->cntr_val[drvdata->cntr_idx] = val;
  1265. spin_unlock(&drvdata->spinlock);
  1266. return size;
  1267. }
  1268. static DEVICE_ATTR(cntr_val, S_IRUGO | S_IWUSR, etm_show_cntr_val,
  1269. etm_store_cntr_val);
  1270. static ssize_t etm_show_seq_12_event(struct device *dev,
  1271. struct device_attribute *attr, char *buf)
  1272. {
  1273. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1274. unsigned long val = drvdata->seq_12_event;
  1275. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1276. }
  1277. static ssize_t etm_store_seq_12_event(struct device *dev,
  1278. struct device_attribute *attr,
  1279. const char *buf, size_t size)
  1280. {
  1281. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1282. unsigned long val;
  1283. if (sscanf(buf, "%lx", &val) != 1)
  1284. return -EINVAL;
  1285. drvdata->seq_12_event = val & ETM_EVENT_MASK;
  1286. return size;
  1287. }
  1288. static DEVICE_ATTR(seq_12_event, S_IRUGO | S_IWUSR, etm_show_seq_12_event,
  1289. etm_store_seq_12_event);
  1290. static ssize_t etm_show_seq_21_event(struct device *dev,
  1291. struct device_attribute *attr, char *buf)
  1292. {
  1293. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1294. unsigned long val = drvdata->seq_21_event;
  1295. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1296. }
  1297. static ssize_t etm_store_seq_21_event(struct device *dev,
  1298. struct device_attribute *attr,
  1299. const char *buf, size_t size)
  1300. {
  1301. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1302. unsigned long val;
  1303. if (sscanf(buf, "%lx", &val) != 1)
  1304. return -EINVAL;
  1305. drvdata->seq_21_event = val & ETM_EVENT_MASK;
  1306. return size;
  1307. }
  1308. static DEVICE_ATTR(seq_21_event, S_IRUGO | S_IWUSR, etm_show_seq_21_event,
  1309. etm_store_seq_21_event);
  1310. static ssize_t etm_show_seq_23_event(struct device *dev,
  1311. struct device_attribute *attr, char *buf)
  1312. {
  1313. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1314. unsigned long val = drvdata->seq_23_event;
  1315. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1316. }
  1317. static ssize_t etm_store_seq_23_event(struct device *dev,
  1318. struct device_attribute *attr,
  1319. const char *buf, size_t size)
  1320. {
  1321. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1322. unsigned long val;
  1323. if (sscanf(buf, "%lx", &val) != 1)
  1324. return -EINVAL;
  1325. drvdata->seq_23_event = val & ETM_EVENT_MASK;
  1326. return size;
  1327. }
  1328. static DEVICE_ATTR(seq_23_event, S_IRUGO | S_IWUSR, etm_show_seq_23_event,
  1329. etm_store_seq_23_event);
  1330. static ssize_t etm_show_seq_31_event(struct device *dev,
  1331. struct device_attribute *attr, char *buf)
  1332. {
  1333. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1334. unsigned long val = drvdata->seq_31_event;
  1335. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1336. }
  1337. static ssize_t etm_store_seq_31_event(struct device *dev,
  1338. struct device_attribute *attr,
  1339. const char *buf, size_t size)
  1340. {
  1341. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1342. unsigned long val;
  1343. if (sscanf(buf, "%lx", &val) != 1)
  1344. return -EINVAL;
  1345. drvdata->seq_31_event = val & ETM_EVENT_MASK;
  1346. return size;
  1347. }
  1348. static DEVICE_ATTR(seq_31_event, S_IRUGO | S_IWUSR, etm_show_seq_31_event,
  1349. etm_store_seq_31_event);
  1350. static ssize_t etm_show_seq_32_event(struct device *dev,
  1351. struct device_attribute *attr, char *buf)
  1352. {
  1353. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1354. unsigned long val = drvdata->seq_32_event;
  1355. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1356. }
  1357. static ssize_t etm_store_seq_32_event(struct device *dev,
  1358. struct device_attribute *attr,
  1359. const char *buf, size_t size)
  1360. {
  1361. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1362. unsigned long val;
  1363. if (sscanf(buf, "%lx", &val) != 1)
  1364. return -EINVAL;
  1365. drvdata->seq_32_event = val & ETM_EVENT_MASK;
  1366. return size;
  1367. }
  1368. static DEVICE_ATTR(seq_32_event, S_IRUGO | S_IWUSR, etm_show_seq_32_event,
  1369. etm_store_seq_32_event);
  1370. static ssize_t etm_show_seq_13_event(struct device *dev,
  1371. struct device_attribute *attr, char *buf)
  1372. {
  1373. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1374. unsigned long val = drvdata->seq_13_event;
  1375. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1376. }
  1377. static ssize_t etm_store_seq_13_event(struct device *dev,
  1378. struct device_attribute *attr,
  1379. const char *buf, size_t size)
  1380. {
  1381. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1382. unsigned long val;
  1383. if (sscanf(buf, "%lx", &val) != 1)
  1384. return -EINVAL;
  1385. drvdata->seq_13_event = val & ETM_EVENT_MASK;
  1386. return size;
  1387. }
  1388. static DEVICE_ATTR(seq_13_event, S_IRUGO | S_IWUSR, etm_show_seq_13_event,
  1389. etm_store_seq_13_event);
  1390. static ssize_t etm_show_seq_curr_state(struct device *dev,
  1391. struct device_attribute *attr, char *buf)
  1392. {
  1393. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1394. unsigned long val = drvdata->seq_curr_state;
  1395. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1396. }
  1397. static ssize_t etm_store_seq_curr_state(struct device *dev,
  1398. struct device_attribute *attr,
  1399. const char *buf, size_t size)
  1400. {
  1401. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1402. unsigned long val;
  1403. if (sscanf(buf, "%lx", &val) != 1)
  1404. return -EINVAL;
  1405. if (val > ETM_SEQ_STATE_MAX_VAL)
  1406. return -EINVAL;
  1407. drvdata->seq_curr_state = val;
  1408. return size;
  1409. }
  1410. static DEVICE_ATTR(seq_curr_state, S_IRUGO | S_IWUSR, etm_show_seq_curr_state,
  1411. etm_store_seq_curr_state);
  1412. static ssize_t etm_show_ctxid_idx(struct device *dev,
  1413. struct device_attribute *attr, char *buf)
  1414. {
  1415. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1416. unsigned long val = drvdata->ctxid_idx;
  1417. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1418. }
  1419. static ssize_t etm_store_ctxid_idx(struct device *dev,
  1420. struct device_attribute *attr,
  1421. const char *buf, size_t size)
  1422. {
  1423. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1424. unsigned long val;
  1425. if (sscanf(buf, "%lx", &val) != 1)
  1426. return -EINVAL;
  1427. if (val >= drvdata->nr_ctxid_cmp)
  1428. return -EINVAL;
  1429. /*
  1430. * Use spinlock to ensure index doesn't change while it gets
  1431. * dereferenced multiple times within a spinlock block elsewhere.
  1432. */
  1433. spin_lock(&drvdata->spinlock);
  1434. drvdata->ctxid_idx = val;
  1435. spin_unlock(&drvdata->spinlock);
  1436. return size;
  1437. }
  1438. static DEVICE_ATTR(ctxid_idx, S_IRUGO | S_IWUSR, etm_show_ctxid_idx,
  1439. etm_store_ctxid_idx);
  1440. static ssize_t etm_show_ctxid_val(struct device *dev,
  1441. struct device_attribute *attr, char *buf)
  1442. {
  1443. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1444. unsigned long val;
  1445. spin_lock(&drvdata->spinlock);
  1446. val = drvdata->ctxid_val[drvdata->ctxid_idx];
  1447. spin_unlock(&drvdata->spinlock);
  1448. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1449. }
  1450. static ssize_t etm_store_ctxid_val(struct device *dev,
  1451. struct device_attribute *attr,
  1452. const char *buf, size_t size)
  1453. {
  1454. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1455. unsigned long val;
  1456. if (sscanf(buf, "%lx", &val) != 1)
  1457. return -EINVAL;
  1458. spin_lock(&drvdata->spinlock);
  1459. drvdata->ctxid_val[drvdata->ctxid_idx] = val;
  1460. spin_unlock(&drvdata->spinlock);
  1461. return size;
  1462. }
  1463. static DEVICE_ATTR(ctxid_val, S_IRUGO | S_IWUSR, etm_show_ctxid_val,
  1464. etm_store_ctxid_val);
  1465. static ssize_t etm_show_ctxid_mask(struct device *dev,
  1466. struct device_attribute *attr, char *buf)
  1467. {
  1468. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1469. unsigned long val = drvdata->ctxid_mask;
  1470. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1471. }
  1472. static ssize_t etm_store_ctxid_mask(struct device *dev,
  1473. struct device_attribute *attr,
  1474. const char *buf, size_t size)
  1475. {
  1476. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1477. unsigned long val;
  1478. if (sscanf(buf, "%lx", &val) != 1)
  1479. return -EINVAL;
  1480. drvdata->ctxid_mask = val;
  1481. return size;
  1482. }
  1483. static DEVICE_ATTR(ctxid_mask, S_IRUGO | S_IWUSR, etm_show_ctxid_mask,
  1484. etm_store_ctxid_mask);
  1485. static ssize_t etm_show_sync_freq(struct device *dev,
  1486. struct device_attribute *attr, char *buf)
  1487. {
  1488. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1489. unsigned long val = drvdata->sync_freq;
  1490. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1491. }
  1492. static ssize_t etm_store_sync_freq(struct device *dev,
  1493. struct device_attribute *attr,
  1494. const char *buf, size_t size)
  1495. {
  1496. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1497. unsigned long val;
  1498. if (sscanf(buf, "%lx", &val) != 1)
  1499. return -EINVAL;
  1500. drvdata->sync_freq = val & ETM_SYNC_MASK;
  1501. return size;
  1502. }
  1503. static DEVICE_ATTR(sync_freq, S_IRUGO | S_IWUSR, etm_show_sync_freq,
  1504. etm_store_sync_freq);
  1505. static ssize_t etm_show_timestamp_event(struct device *dev,
  1506. struct device_attribute *attr,
  1507. char *buf)
  1508. {
  1509. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1510. unsigned long val = drvdata->timestamp_event;
  1511. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1512. }
  1513. static ssize_t etm_store_timestamp_event(struct device *dev,
  1514. struct device_attribute *attr,
  1515. const char *buf, size_t size)
  1516. {
  1517. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1518. unsigned long val;
  1519. if (sscanf(buf, "%lx", &val) != 1)
  1520. return -EINVAL;
  1521. drvdata->timestamp_event = val & ETM_EVENT_MASK;
  1522. return size;
  1523. }
  1524. static DEVICE_ATTR(timestamp_event, S_IRUGO | S_IWUSR, etm_show_timestamp_event,
  1525. etm_store_timestamp_event);
  1526. static ssize_t etm_show_pcsave(struct device *dev,
  1527. struct device_attribute *attr, char *buf)
  1528. {
  1529. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1530. unsigned long val;
  1531. val = drvdata->pcsave_enable;
  1532. return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
  1533. }
  1534. static int __etm_store_pcsave(struct etm_drvdata *drvdata, unsigned long val)
  1535. {
  1536. int ret = 0;
  1537. ret = clk_prepare_enable(drvdata->clk);
  1538. if (ret)
  1539. return ret;
  1540. spin_lock(&drvdata->spinlock);
  1541. if (val) {
  1542. if (drvdata->pcsave_enable)
  1543. goto out;
  1544. ret = smp_call_function_single(drvdata->cpu, etm_enable_pcsave,
  1545. drvdata, 1);
  1546. if (ret)
  1547. goto out;
  1548. drvdata->pcsave_enable = true;
  1549. drvdata->pcsave_sticky_enable = true;
  1550. dev_info(drvdata->dev, "PC save enabled\n");
  1551. } else {
  1552. if (!drvdata->pcsave_enable)
  1553. goto out;
  1554. ret = smp_call_function_single(drvdata->cpu, etm_disable_pcsave,
  1555. drvdata, 1);
  1556. if (ret)
  1557. goto out;
  1558. drvdata->pcsave_enable = false;
  1559. dev_info(drvdata->dev, "PC save disabled\n");
  1560. }
  1561. out:
  1562. spin_unlock(&drvdata->spinlock);
  1563. clk_disable_unprepare(drvdata->clk);
  1564. return ret;
  1565. }
  1566. static ssize_t etm_store_pcsave(struct device *dev,
  1567. struct device_attribute *attr,
  1568. const char *buf, size_t size)
  1569. {
  1570. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1571. unsigned long val;
  1572. int ret;
  1573. if (sscanf(buf, "%lx", &val) != 1)
  1574. return -EINVAL;
  1575. ret = __etm_store_pcsave(drvdata, val);
  1576. if (ret)
  1577. return ret;
  1578. return size;
  1579. }
  1580. static DEVICE_ATTR(pcsave, S_IRUGO | S_IWUSR, etm_show_pcsave,
  1581. etm_store_pcsave);
  1582. static struct attribute *etm_attrs[] = {
  1583. &dev_attr_nr_addr_cmp.attr,
  1584. &dev_attr_nr_cntr.attr,
  1585. &dev_attr_nr_ctxid_cmp.attr,
  1586. &dev_attr_reset.attr,
  1587. &dev_attr_mode.attr,
  1588. &dev_attr_trigger_event.attr,
  1589. &dev_attr_enable_event.attr,
  1590. &dev_attr_fifofull_level.attr,
  1591. &dev_attr_addr_idx.attr,
  1592. &dev_attr_addr_single.attr,
  1593. &dev_attr_addr_range.attr,
  1594. &dev_attr_addr_start.attr,
  1595. &dev_attr_addr_stop.attr,
  1596. &dev_attr_addr_acctype.attr,
  1597. &dev_attr_data_val.attr,
  1598. &dev_attr_data_mask.attr,
  1599. &dev_attr_cntr_idx.attr,
  1600. &dev_attr_cntr_rld_val.attr,
  1601. &dev_attr_cntr_event.attr,
  1602. &dev_attr_cntr_rld_event.attr,
  1603. &dev_attr_cntr_val.attr,
  1604. &dev_attr_seq_12_event.attr,
  1605. &dev_attr_seq_21_event.attr,
  1606. &dev_attr_seq_23_event.attr,
  1607. &dev_attr_seq_31_event.attr,
  1608. &dev_attr_seq_32_event.attr,
  1609. &dev_attr_seq_13_event.attr,
  1610. &dev_attr_seq_curr_state.attr,
  1611. &dev_attr_ctxid_idx.attr,
  1612. &dev_attr_ctxid_val.attr,
  1613. &dev_attr_ctxid_mask.attr,
  1614. &dev_attr_sync_freq.attr,
  1615. &dev_attr_timestamp_event.attr,
  1616. NULL,
  1617. };
  1618. static struct attribute_group etm_attr_grp = {
  1619. .attrs = etm_attrs,
  1620. };
  1621. static const struct attribute_group *etm_attr_grps[] = {
  1622. &etm_attr_grp,
  1623. NULL,
  1624. };
  1625. static int etm_cpu_callback(struct notifier_block *nfb, unsigned long action,
  1626. void *hcpu)
  1627. {
  1628. unsigned int cpu = (unsigned long)hcpu;
  1629. static bool clk_disable[NR_CPUS];
  1630. int ret;
  1631. if (!etmdrvdata[cpu])
  1632. goto out;
  1633. switch (action & (~CPU_TASKS_FROZEN)) {
  1634. case CPU_UP_PREPARE:
  1635. if (!etmdrvdata[cpu]->os_unlock) {
  1636. ret = clk_prepare_enable(etmdrvdata[cpu]->clk);
  1637. if (ret) {
  1638. dev_err(etmdrvdata[cpu]->dev,
  1639. "ETM clk enable during hotplug failed"
  1640. "for cpu: %d, ret: %d\n", cpu, ret);
  1641. return notifier_from_errno(ret);
  1642. }
  1643. clk_disable[cpu] = true;
  1644. }
  1645. break;
  1646. case CPU_STARTING:
  1647. spin_lock(&etmdrvdata[cpu]->spinlock);
  1648. if (!etmdrvdata[cpu]->os_unlock) {
  1649. etm_os_unlock(etmdrvdata[cpu]);
  1650. etmdrvdata[cpu]->os_unlock = true;
  1651. }
  1652. if (etmdrvdata[cpu]->enable && etmdrvdata[cpu]->round_robin)
  1653. __etm_enable(etmdrvdata[cpu]);
  1654. spin_unlock(&etmdrvdata[cpu]->spinlock);
  1655. break;
  1656. case CPU_ONLINE:
  1657. if (clk_disable[cpu]) {
  1658. clk_disable_unprepare(etmdrvdata[cpu]->clk);
  1659. clk_disable[cpu] = false;
  1660. }
  1661. if (etmdrvdata[cpu]->boot_enable &&
  1662. !etmdrvdata[cpu]->sticky_enable)
  1663. coresight_enable(etmdrvdata[cpu]->csdev);
  1664. if (etmdrvdata[cpu]->pcsave_boot_enable &&
  1665. !etmdrvdata[cpu]->pcsave_sticky_enable)
  1666. __etm_store_pcsave(etmdrvdata[cpu], 1);
  1667. break;
  1668. case CPU_UP_CANCELED:
  1669. if (clk_disable[cpu]) {
  1670. clk_disable_unprepare(etmdrvdata[cpu]->clk);
  1671. clk_disable[cpu] = false;
  1672. }
  1673. break;
  1674. case CPU_DYING:
  1675. spin_lock(&etmdrvdata[cpu]->spinlock);
  1676. if (etmdrvdata[cpu]->enable && etmdrvdata[cpu]->round_robin)
  1677. __etm_disable(etmdrvdata[cpu]);
  1678. spin_unlock(&etmdrvdata[cpu]->spinlock);
  1679. break;
  1680. }
  1681. out:
  1682. return NOTIFY_OK;
  1683. }
  1684. static struct notifier_block etm_cpu_notifier = {
  1685. .notifier_call = etm_cpu_callback,
  1686. };
  1687. static bool __devinit etm_arch_supported(uint8_t arch)
  1688. {
  1689. switch (arch) {
  1690. case PFT_ARCH_V1_1:
  1691. break;
  1692. case ETM_ARCH_V3_5:
  1693. break;
  1694. default:
  1695. return false;
  1696. }
  1697. return true;
  1698. }
  1699. static void __devinit etm_init_arch_data(void *info)
  1700. {
  1701. uint32_t etmidr;
  1702. uint32_t etmccr;
  1703. uint32_t etmcr;
  1704. struct etm_drvdata *drvdata = info;
  1705. ETM_UNLOCK(drvdata);
  1706. /*
  1707. * Vote for ETM power/clock enable. ETMPDCR is only accessible via
  1708. * memory mapped interface and so use it first to enable power/clock
  1709. * to allow subsequent cp14 accesses.
  1710. */
  1711. etm_set_pwrup(drvdata);
  1712. /*
  1713. * Clear power down bit since when this bit is set writes to
  1714. * certain registers might be ignored.
  1715. */
  1716. etm_clr_pwrdwn(drvdata);
  1717. etm_clr_pwrup(drvdata);
  1718. /* Set prog bit. It will be set from reset but this is included to
  1719. * ensure it is set
  1720. */
  1721. etm_set_prog(drvdata);
  1722. /* find all capabilities */
  1723. etmidr = etm_readl(drvdata, ETMIDR);
  1724. drvdata->arch = BMVAL(etmidr, 4, 11);
  1725. etmccr = etm_readl(drvdata, ETMCCR);
  1726. drvdata->nr_addr_cmp = BMVAL(etmccr, 0, 3) * 2;
  1727. drvdata->nr_cntr = BMVAL(etmccr, 13, 15);
  1728. drvdata->nr_ext_inp = BMVAL(etmccr, 17, 19);
  1729. drvdata->nr_ext_out = BMVAL(etmccr, 20, 22);
  1730. drvdata->nr_ctxid_cmp = BMVAL(etmccr, 24, 25);
  1731. drvdata->nr_data_cmp = BMVAL(etmccr, 4, 7);
  1732. if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0)) {
  1733. etmcr = etm_readl(drvdata, ETMCR);
  1734. etmcr |= (BIT(2) | BIT(3));
  1735. etm_writel(drvdata, etmcr, ETMCR);
  1736. etmcr = etm_readl(drvdata, ETMCR);
  1737. if (BVAL(etmcr, 2) || BVAL(etmcr, 3))
  1738. drvdata->data_trace_support = true;
  1739. else
  1740. drvdata->data_trace_support = false;
  1741. } else
  1742. drvdata->data_trace_support = false;
  1743. etm_set_pwrdwn(drvdata);
  1744. ETM_LOCK(drvdata);
  1745. }
  1746. static void __devinit etm_copy_arch_data(struct etm_drvdata *drvdata)
  1747. {
  1748. drvdata->arch = etmdrvdata[0]->arch;
  1749. drvdata->nr_addr_cmp = etmdrvdata[0]->nr_addr_cmp;
  1750. drvdata->nr_cntr = etmdrvdata[0]->nr_cntr;
  1751. drvdata->nr_ext_inp = etmdrvdata[0]->nr_ext_inp;
  1752. drvdata->nr_ext_out = etmdrvdata[0]->nr_ext_out;
  1753. drvdata->nr_ctxid_cmp = etmdrvdata[0]->nr_ctxid_cmp;
  1754. drvdata->nr_data_cmp = etmdrvdata[0]->nr_data_cmp;
  1755. drvdata->data_trace_support = etmdrvdata[0]->data_trace_support;
  1756. }
  1757. static void __devinit etm_init_default_data(struct etm_drvdata *drvdata)
  1758. {
  1759. int i;
  1760. drvdata->trigger_event = 0x406F;
  1761. drvdata->enable_event = 0x6F;
  1762. drvdata->enable_ctrl1 = 0x1;
  1763. drvdata->fifofull_level = 0x28;
  1764. if (drvdata->nr_addr_cmp >= 2) {
  1765. drvdata->addr_val[0] = (uint32_t) _stext;
  1766. drvdata->addr_val[1] = (uint32_t) _etext;
  1767. drvdata->addr_type[0] = ETM_ADDR_TYPE_RANGE;
  1768. drvdata->addr_type[1] = ETM_ADDR_TYPE_RANGE;
  1769. if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0)) {
  1770. drvdata->addr_acctype[0] = 0x19;
  1771. drvdata->addr_acctype[1] = 0x19;
  1772. }
  1773. }
  1774. for (i = 0; i < drvdata->nr_cntr; i++) {
  1775. drvdata->cntr_event[i] = 0x406F;
  1776. drvdata->cntr_rld_event[i] = 0x406F;
  1777. }
  1778. drvdata->seq_12_event = 0x406F;
  1779. drvdata->seq_21_event = 0x406F;
  1780. drvdata->seq_23_event = 0x406F;
  1781. drvdata->seq_31_event = 0x406F;
  1782. drvdata->seq_32_event = 0x406F;
  1783. drvdata->seq_13_event = 0x406F;
  1784. /* Bits[7:0] of ETMSYNCFR are reserved on Krait pass3 onwards */
  1785. if (cpu_is_krait() && !cpu_is_krait_v1() && !cpu_is_krait_v2())
  1786. drvdata->sync_freq = 0x100;
  1787. else
  1788. drvdata->sync_freq = 0x80;
  1789. drvdata->timestamp_event = 0x406F;
  1790. /* Overrides for Krait pass1 */
  1791. if (cpu_is_krait_v1()) {
  1792. /* Krait pass1 doesn't support include filtering and non-cycle
  1793. * accurate tracing
  1794. */
  1795. drvdata->mode = (ETM_MODE_EXCLUDE | ETM_MODE_CYCACC);
  1796. drvdata->ctrl = 0x1000;
  1797. drvdata->enable_ctrl1 = 0x1000000;
  1798. for (i = 0; i < drvdata->nr_addr_cmp; i++) {
  1799. drvdata->addr_val[i] = 0x0;
  1800. drvdata->addr_acctype[i] = 0x0;
  1801. drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE;
  1802. }
  1803. }
  1804. if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0))
  1805. drvdata->ctrl |= BIT(11);
  1806. if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_2))
  1807. drvdata->enable_ctrl2 = 0x0;
  1808. if (drvdata->data_trace_support == true) {
  1809. drvdata->mode |= (ETM_MODE_DATA_TRACE_VAL |
  1810. ETM_MODE_DATA_TRACE_ADDR);
  1811. drvdata->ctrl |= BIT(2) | BIT(3);
  1812. drvdata->viewdata_ctrl1 = 0x0;
  1813. drvdata->viewdata_ctrl3 = 0x10000;
  1814. drvdata->viewdata_event = 0x6F;
  1815. }
  1816. for (i = 0; i < drvdata->nr_data_cmp; i++) {
  1817. drvdata->data_val[i] = 0;
  1818. drvdata->data_mask[i] = ~(0);
  1819. }
  1820. }
  1821. static int __devinit etm_probe(struct platform_device *pdev)
  1822. {
  1823. int ret;
  1824. struct device *dev = &pdev->dev;
  1825. struct coresight_platform_data *pdata;
  1826. struct etm_drvdata *drvdata;
  1827. struct resource *res;
  1828. uint32_t reg_size;
  1829. static int count;
  1830. void *baddr;
  1831. struct msm_client_dump dump;
  1832. struct coresight_desc *desc;
  1833. if (coresight_fuse_access_disabled() ||
  1834. coresight_fuse_apps_access_disabled())
  1835. return -EPERM;
  1836. if (pdev->dev.of_node) {
  1837. pdata = of_get_coresight_platform_data(dev, pdev->dev.of_node);
  1838. if (IS_ERR(pdata))
  1839. return PTR_ERR(pdata);
  1840. pdev->dev.platform_data = pdata;
  1841. }
  1842. drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
  1843. if (!drvdata)
  1844. return -ENOMEM;
  1845. drvdata->dev = &pdev->dev;
  1846. platform_set_drvdata(pdev, drvdata);
  1847. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "etm-base");
  1848. if (!res)
  1849. return -ENODEV;
  1850. reg_size = resource_size(res);
  1851. drvdata->base = devm_ioremap(dev, res->start, resource_size(res));
  1852. if (!drvdata->base)
  1853. return -ENOMEM;
  1854. spin_lock_init(&drvdata->spinlock);
  1855. wake_lock_init(&drvdata->wake_lock, WAKE_LOCK_SUSPEND, "coresight-etm");
  1856. drvdata->clk = devm_clk_get(dev, "core_clk");
  1857. if (IS_ERR(drvdata->clk)) {
  1858. ret = PTR_ERR(drvdata->clk);
  1859. goto err0;
  1860. }
  1861. ret = clk_set_rate(drvdata->clk, CORESIGHT_CLK_RATE_TRACE);
  1862. if (ret)
  1863. goto err0;
  1864. ret = clk_prepare_enable(drvdata->clk);
  1865. if (ret)
  1866. goto err0;
  1867. drvdata->cpu = count++;
  1868. etmdrvdata[drvdata->cpu] = drvdata;
  1869. /*
  1870. * This is safe wrt CPU_UP_PREPARE and CPU_STARTING hotplug callbacks
  1871. * on the secondary cores that may enable the clock and perform
  1872. * etm_os_unlock since they occur before the cpu online mask is updated
  1873. * for the cpu which is checked by this smp call.
  1874. */
  1875. if (!smp_call_function_single(drvdata->cpu, etm_os_unlock, drvdata, 1))
  1876. drvdata->os_unlock = true;
  1877. /*
  1878. * OS unlock must have happened on cpu0 so use it to populate read-only
  1879. * configuration data for ETM0. For other ETMs copy it over from ETM0.
  1880. */
  1881. if (drvdata->cpu == 0) {
  1882. register_hotcpu_notifier(&etm_cpu_notifier);
  1883. if (smp_call_function_single(drvdata->cpu, etm_init_arch_data,
  1884. drvdata, 1))
  1885. dev_err(dev, "ETM arch init failed\n");
  1886. } else {
  1887. etm_copy_arch_data(drvdata);
  1888. }
  1889. if (etm_arch_supported(drvdata->arch) == false) {
  1890. ret = -EINVAL;
  1891. goto err1;
  1892. }
  1893. etm_init_default_data(drvdata);
  1894. clk_disable_unprepare(drvdata->clk);
  1895. if (pdev->dev.of_node)
  1896. drvdata->round_robin = of_property_read_bool(pdev->dev.of_node,
  1897. "qcom,round-robin");
  1898. baddr = devm_kzalloc(dev, PAGE_SIZE + reg_size, GFP_KERNEL);
  1899. if (baddr) {
  1900. *(uint32_t *)(baddr + ETM_REG_DUMP_VER_OFF) = ETM_REG_DUMP_VER;
  1901. dump.id = MSM_ETM0_REG + drvdata->cpu;
  1902. dump.start_addr = virt_to_phys(baddr);
  1903. dump.end_addr = dump.start_addr + PAGE_SIZE + reg_size;
  1904. ret = msm_dump_table_register(&dump);
  1905. if (ret) {
  1906. devm_kfree(dev, baddr);
  1907. dev_err(dev, "ETM REG dump setup failed/unsupported\n");
  1908. }
  1909. } else {
  1910. dev_err(dev, "ETM REG dump space allocation failed\n");
  1911. }
  1912. desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL);
  1913. if (!desc) {
  1914. ret = -ENOMEM;
  1915. goto err2;
  1916. }
  1917. desc->type = CORESIGHT_DEV_TYPE_SOURCE;
  1918. desc->subtype.source_subtype = CORESIGHT_DEV_SUBTYPE_SOURCE_PROC;
  1919. desc->ops = &etm_cs_ops;
  1920. desc->pdata = pdev->dev.platform_data;
  1921. desc->dev = &pdev->dev;
  1922. desc->groups = etm_attr_grps;
  1923. desc->owner = THIS_MODULE;
  1924. drvdata->csdev = coresight_register(desc);
  1925. if (IS_ERR(drvdata->csdev)) {
  1926. ret = PTR_ERR(drvdata->csdev);
  1927. goto err2;
  1928. }
  1929. if (pdev->dev.of_node)
  1930. drvdata->pcsave_impl = of_property_read_bool(pdev->dev.of_node,
  1931. "qcom,pc-save");
  1932. if (drvdata->pcsave_impl) {
  1933. ret = device_create_file(&drvdata->csdev->dev,
  1934. &dev_attr_pcsave);
  1935. if (ret)
  1936. dev_err(dev, "ETM pcsave dev node creation failed\n");
  1937. }
  1938. dev_info(dev, "ETM initialized\n");
  1939. #if defined(CONFIG_CORESIGHT_ETM_DEFAULT_ENABLE) || \
  1940. defined(CONFIG_CORESIGHT_ETM_PCSAVE_DEFAULT_ENABLE)
  1941. #ifdef CONFIG_SEC_DEBUG
  1942. if (kernel_sec_get_debug_level() == KERNEL_SEC_DEBUG_LEVEL_LOW) {
  1943. #ifdef CONFIG_CORESIGHT_ETM_DEFAULT_ENABLE
  1944. boot_enable = 0;
  1945. #endif
  1946. #ifdef CONFIG_CORESIGHT_ETM_PCSAVE_DEFAULT_ENABLE
  1947. boot_pcsave_enable = 0;
  1948. #endif
  1949. }
  1950. #endif
  1951. #endif
  1952. if (boot_enable) {
  1953. coresight_enable(drvdata->csdev);
  1954. drvdata->boot_enable = true;
  1955. }
  1956. if (drvdata->pcsave_impl && boot_pcsave_enable) {
  1957. __etm_store_pcsave(drvdata, 1);
  1958. drvdata->pcsave_boot_enable = true;
  1959. }
  1960. return 0;
  1961. err2:
  1962. if (drvdata->cpu == 0)
  1963. unregister_hotcpu_notifier(&etm_cpu_notifier);
  1964. wake_lock_destroy(&drvdata->wake_lock);
  1965. return ret;
  1966. err1:
  1967. if (drvdata->cpu == 0)
  1968. unregister_hotcpu_notifier(&etm_cpu_notifier);
  1969. clk_disable_unprepare(drvdata->clk);
  1970. err0:
  1971. wake_lock_destroy(&drvdata->wake_lock);
  1972. return ret;
  1973. }
  1974. static int __devexit etm_remove(struct platform_device *pdev)
  1975. {
  1976. struct etm_drvdata *drvdata = platform_get_drvdata(pdev);
  1977. device_remove_file(&drvdata->csdev->dev, &dev_attr_pcsave);
  1978. coresight_unregister(drvdata->csdev);
  1979. if (drvdata->cpu == 0)
  1980. unregister_hotcpu_notifier(&etm_cpu_notifier);
  1981. wake_lock_destroy(&drvdata->wake_lock);
  1982. return 0;
  1983. }
  1984. static struct of_device_id etm_match[] = {
  1985. {.compatible = "arm,coresight-etm"},
  1986. {}
  1987. };
  1988. static struct platform_driver etm_driver = {
  1989. .probe = etm_probe,
  1990. .remove = __devexit_p(etm_remove),
  1991. .driver = {
  1992. .name = "coresight-etm",
  1993. .owner = THIS_MODULE,
  1994. .of_match_table = etm_match,
  1995. },
  1996. };
  1997. int __init etm_init(void)
  1998. {
  1999. return platform_driver_register(&etm_driver);
  2000. }
  2001. module_init(etm_init);
  2002. void __exit etm_exit(void)
  2003. {
  2004. platform_driver_unregister(&etm_driver);
  2005. }
  2006. module_exit(etm_exit);
  2007. MODULE_LICENSE("GPL v2");
  2008. MODULE_DESCRIPTION("CoreSight Program Flow Trace driver");