boot.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452
  1. /*P:010
  2. * A hypervisor allows multiple Operating Systems to run on a single machine.
  3. * To quote David Wheeler: "Any problem in computer science can be solved with
  4. * another layer of indirection."
  5. *
  6. * We keep things simple in two ways. First, we start with a normal Linux
  7. * kernel and insert a module (lg.ko) which allows us to run other Linux
  8. * kernels the same way we'd run processes. We call the first kernel the Host,
  9. * and the others the Guests. The program which sets up and configures Guests
  10. * (such as the example in Documentation/virtual/lguest/lguest.c) is called the
  11. * Launcher.
  12. *
  13. * Secondly, we only run specially modified Guests, not normal kernels: setting
  14. * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
  15. * how to be a Guest at boot time. This means that you can use the same kernel
  16. * you boot normally (ie. as a Host) as a Guest.
  17. *
  18. * These Guests know that they cannot do privileged operations, such as disable
  19. * interrupts, and that they have to ask the Host to do such things explicitly.
  20. * This file consists of all the replacements for such low-level native
  21. * hardware operations: these special Guest versions call the Host.
  22. *
  23. * So how does the kernel know it's a Guest? We'll see that later, but let's
  24. * just say that we end up here where we replace the native functions various
  25. * "paravirt" structures with our Guest versions, then boot like normal.
  26. :*/
  27. /*
  28. * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
  29. *
  30. * This program is free software; you can redistribute it and/or modify
  31. * it under the terms of the GNU General Public License as published by
  32. * the Free Software Foundation; either version 2 of the License, or
  33. * (at your option) any later version.
  34. *
  35. * This program is distributed in the hope that it will be useful, but
  36. * WITHOUT ANY WARRANTY; without even the implied warranty of
  37. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  38. * NON INFRINGEMENT. See the GNU General Public License for more
  39. * details.
  40. *
  41. * You should have received a copy of the GNU General Public License
  42. * along with this program; if not, write to the Free Software
  43. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  44. */
  45. #include <linux/kernel.h>
  46. #include <linux/start_kernel.h>
  47. #include <linux/string.h>
  48. #include <linux/console.h>
  49. #include <linux/screen_info.h>
  50. #include <linux/irq.h>
  51. #include <linux/interrupt.h>
  52. #include <linux/clocksource.h>
  53. #include <linux/clockchips.h>
  54. #include <linux/lguest.h>
  55. #include <linux/lguest_launcher.h>
  56. #include <linux/virtio_console.h>
  57. #include <linux/pm.h>
  58. #include <linux/export.h>
  59. #include <asm/apic.h>
  60. #include <asm/lguest.h>
  61. #include <asm/paravirt.h>
  62. #include <asm/param.h>
  63. #include <asm/page.h>
  64. #include <asm/pgtable.h>
  65. #include <asm/desc.h>
  66. #include <asm/setup.h>
  67. #include <asm/e820.h>
  68. #include <asm/mce.h>
  69. #include <asm/io.h>
  70. #include <asm/i387.h>
  71. #include <asm/stackprotector.h>
  72. #include <asm/reboot.h> /* for struct machine_ops */
  73. #include <asm/kvm_para.h>
  74. /*G:010
  75. * Welcome to the Guest!
  76. *
  77. * The Guest in our tale is a simple creature: identical to the Host but
  78. * behaving in simplified but equivalent ways. In particular, the Guest is the
  79. * same kernel as the Host (or at least, built from the same source code).
  80. :*/
  81. struct lguest_data lguest_data = {
  82. .hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
  83. .noirq_start = (u32)lguest_noirq_start,
  84. .noirq_end = (u32)lguest_noirq_end,
  85. .kernel_address = PAGE_OFFSET,
  86. .blocked_interrupts = { 1 }, /* Block timer interrupts */
  87. .syscall_vec = SYSCALL_VECTOR,
  88. };
  89. /*G:037
  90. * async_hcall() is pretty simple: I'm quite proud of it really. We have a
  91. * ring buffer of stored hypercalls which the Host will run though next time we
  92. * do a normal hypercall. Each entry in the ring has 5 slots for the hypercall
  93. * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
  94. * and 255 once the Host has finished with it.
  95. *
  96. * If we come around to a slot which hasn't been finished, then the table is
  97. * full and we just make the hypercall directly. This has the nice side
  98. * effect of causing the Host to run all the stored calls in the ring buffer
  99. * which empties it for next time!
  100. */
  101. static void async_hcall(unsigned long call, unsigned long arg1,
  102. unsigned long arg2, unsigned long arg3,
  103. unsigned long arg4)
  104. {
  105. /* Note: This code assumes we're uniprocessor. */
  106. static unsigned int next_call;
  107. unsigned long flags;
  108. /*
  109. * Disable interrupts if not already disabled: we don't want an
  110. * interrupt handler making a hypercall while we're already doing
  111. * one!
  112. */
  113. local_irq_save(flags);
  114. if (lguest_data.hcall_status[next_call] != 0xFF) {
  115. /* Table full, so do normal hcall which will flush table. */
  116. hcall(call, arg1, arg2, arg3, arg4);
  117. } else {
  118. lguest_data.hcalls[next_call].arg0 = call;
  119. lguest_data.hcalls[next_call].arg1 = arg1;
  120. lguest_data.hcalls[next_call].arg2 = arg2;
  121. lguest_data.hcalls[next_call].arg3 = arg3;
  122. lguest_data.hcalls[next_call].arg4 = arg4;
  123. /* Arguments must all be written before we mark it to go */
  124. wmb();
  125. lguest_data.hcall_status[next_call] = 0;
  126. if (++next_call == LHCALL_RING_SIZE)
  127. next_call = 0;
  128. }
  129. local_irq_restore(flags);
  130. }
  131. /*G:035
  132. * Notice the lazy_hcall() above, rather than hcall(). This is our first real
  133. * optimization trick!
  134. *
  135. * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
  136. * them as a batch when lazy_mode is eventually turned off. Because hypercalls
  137. * are reasonably expensive, batching them up makes sense. For example, a
  138. * large munmap might update dozens of page table entries: that code calls
  139. * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
  140. * lguest_leave_lazy_mode().
  141. *
  142. * So, when we're in lazy mode, we call async_hcall() to store the call for
  143. * future processing:
  144. */
  145. static void lazy_hcall1(unsigned long call, unsigned long arg1)
  146. {
  147. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  148. hcall(call, arg1, 0, 0, 0);
  149. else
  150. async_hcall(call, arg1, 0, 0, 0);
  151. }
  152. /* You can imagine what lazy_hcall2, 3 and 4 look like. :*/
  153. static void lazy_hcall2(unsigned long call,
  154. unsigned long arg1,
  155. unsigned long arg2)
  156. {
  157. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  158. hcall(call, arg1, arg2, 0, 0);
  159. else
  160. async_hcall(call, arg1, arg2, 0, 0);
  161. }
  162. static void lazy_hcall3(unsigned long call,
  163. unsigned long arg1,
  164. unsigned long arg2,
  165. unsigned long arg3)
  166. {
  167. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  168. hcall(call, arg1, arg2, arg3, 0);
  169. else
  170. async_hcall(call, arg1, arg2, arg3, 0);
  171. }
  172. #ifdef CONFIG_X86_PAE
  173. static void lazy_hcall4(unsigned long call,
  174. unsigned long arg1,
  175. unsigned long arg2,
  176. unsigned long arg3,
  177. unsigned long arg4)
  178. {
  179. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  180. hcall(call, arg1, arg2, arg3, arg4);
  181. else
  182. async_hcall(call, arg1, arg2, arg3, arg4);
  183. }
  184. #endif
  185. /*G:036
  186. * When lazy mode is turned off, we issue the do-nothing hypercall to
  187. * flush any stored calls, and call the generic helper to reset the
  188. * per-cpu lazy mode variable.
  189. */
  190. static void lguest_leave_lazy_mmu_mode(void)
  191. {
  192. hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
  193. paravirt_leave_lazy_mmu();
  194. }
  195. /*
  196. * We also catch the end of context switch; we enter lazy mode for much of
  197. * that too, so again we need to flush here.
  198. *
  199. * (Technically, this is lazy CPU mode, and normally we're in lazy MMU
  200. * mode, but unlike Xen, lguest doesn't care about the difference).
  201. */
  202. static void lguest_end_context_switch(struct task_struct *next)
  203. {
  204. hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
  205. paravirt_end_context_switch(next);
  206. }
  207. /*G:032
  208. * After that diversion we return to our first native-instruction
  209. * replacements: four functions for interrupt control.
  210. *
  211. * The simplest way of implementing these would be to have "turn interrupts
  212. * off" and "turn interrupts on" hypercalls. Unfortunately, this is too slow:
  213. * these are by far the most commonly called functions of those we override.
  214. *
  215. * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
  216. * which the Guest can update with a single instruction. The Host knows to
  217. * check there before it tries to deliver an interrupt.
  218. */
  219. /*
  220. * save_flags() is expected to return the processor state (ie. "flags"). The
  221. * flags word contains all kind of stuff, but in practice Linux only cares
  222. * about the interrupt flag. Our "save_flags()" just returns that.
  223. */
  224. static unsigned long save_fl(void)
  225. {
  226. return lguest_data.irq_enabled;
  227. }
  228. /* Interrupts go off... */
  229. static void irq_disable(void)
  230. {
  231. lguest_data.irq_enabled = 0;
  232. }
  233. /*
  234. * Let's pause a moment. Remember how I said these are called so often?
  235. * Jeremy Fitzhardinge optimized them so hard early in 2009 that he had to
  236. * break some rules. In particular, these functions are assumed to save their
  237. * own registers if they need to: normal C functions assume they can trash the
  238. * eax register. To use normal C functions, we use
  239. * PV_CALLEE_SAVE_REGS_THUNK(), which pushes %eax onto the stack, calls the
  240. * C function, then restores it.
  241. */
  242. PV_CALLEE_SAVE_REGS_THUNK(save_fl);
  243. PV_CALLEE_SAVE_REGS_THUNK(irq_disable);
  244. /*:*/
  245. /* These are in i386_head.S */
  246. extern void lg_irq_enable(void);
  247. extern void lg_restore_fl(unsigned long flags);
  248. /*M:003
  249. * We could be more efficient in our checking of outstanding interrupts, rather
  250. * than using a branch. One way would be to put the "irq_enabled" field in a
  251. * page by itself, and have the Host write-protect it when an interrupt comes
  252. * in when irqs are disabled. There will then be a page fault as soon as
  253. * interrupts are re-enabled.
  254. *
  255. * A better method is to implement soft interrupt disable generally for x86:
  256. * instead of disabling interrupts, we set a flag. If an interrupt does come
  257. * in, we then disable them for real. This is uncommon, so we could simply use
  258. * a hypercall for interrupt control and not worry about efficiency.
  259. :*/
  260. /*G:034
  261. * The Interrupt Descriptor Table (IDT).
  262. *
  263. * The IDT tells the processor what to do when an interrupt comes in. Each
  264. * entry in the table is a 64-bit descriptor: this holds the privilege level,
  265. * address of the handler, and... well, who cares? The Guest just asks the
  266. * Host to make the change anyway, because the Host controls the real IDT.
  267. */
  268. static void lguest_write_idt_entry(gate_desc *dt,
  269. int entrynum, const gate_desc *g)
  270. {
  271. /*
  272. * The gate_desc structure is 8 bytes long: we hand it to the Host in
  273. * two 32-bit chunks. The whole 32-bit kernel used to hand descriptors
  274. * around like this; typesafety wasn't a big concern in Linux's early
  275. * years.
  276. */
  277. u32 *desc = (u32 *)g;
  278. /* Keep the local copy up to date. */
  279. native_write_idt_entry(dt, entrynum, g);
  280. /* Tell Host about this new entry. */
  281. hcall(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1], 0);
  282. }
  283. /*
  284. * Changing to a different IDT is very rare: we keep the IDT up-to-date every
  285. * time it is written, so we can simply loop through all entries and tell the
  286. * Host about them.
  287. */
  288. static void lguest_load_idt(const struct desc_ptr *desc)
  289. {
  290. unsigned int i;
  291. struct desc_struct *idt = (void *)desc->address;
  292. for (i = 0; i < (desc->size+1)/8; i++)
  293. hcall(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b, 0);
  294. }
  295. /*
  296. * The Global Descriptor Table.
  297. *
  298. * The Intel architecture defines another table, called the Global Descriptor
  299. * Table (GDT). You tell the CPU where it is (and its size) using the "lgdt"
  300. * instruction, and then several other instructions refer to entries in the
  301. * table. There are three entries which the Switcher needs, so the Host simply
  302. * controls the entire thing and the Guest asks it to make changes using the
  303. * LOAD_GDT hypercall.
  304. *
  305. * This is the exactly like the IDT code.
  306. */
  307. static void lguest_load_gdt(const struct desc_ptr *desc)
  308. {
  309. unsigned int i;
  310. struct desc_struct *gdt = (void *)desc->address;
  311. for (i = 0; i < (desc->size+1)/8; i++)
  312. hcall(LHCALL_LOAD_GDT_ENTRY, i, gdt[i].a, gdt[i].b, 0);
  313. }
  314. /*
  315. * For a single GDT entry which changes, we simply change our copy and
  316. * then tell the host about it.
  317. */
  318. static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
  319. const void *desc, int type)
  320. {
  321. native_write_gdt_entry(dt, entrynum, desc, type);
  322. /* Tell Host about this new entry. */
  323. hcall(LHCALL_LOAD_GDT_ENTRY, entrynum,
  324. dt[entrynum].a, dt[entrynum].b, 0);
  325. }
  326. /*
  327. * There are three "thread local storage" GDT entries which change
  328. * on every context switch (these three entries are how glibc implements
  329. * __thread variables). As an optimization, we have a hypercall
  330. * specifically for this case.
  331. *
  332. * Wouldn't it be nicer to have a general LOAD_GDT_ENTRIES hypercall
  333. * which took a range of entries?
  334. */
  335. static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
  336. {
  337. /*
  338. * There's one problem which normal hardware doesn't have: the Host
  339. * can't handle us removing entries we're currently using. So we clear
  340. * the GS register here: if it's needed it'll be reloaded anyway.
  341. */
  342. lazy_load_gs(0);
  343. lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
  344. }
  345. /*G:038
  346. * That's enough excitement for now, back to ploughing through each of the
  347. * different pv_ops structures (we're about 1/3 of the way through).
  348. *
  349. * This is the Local Descriptor Table, another weird Intel thingy. Linux only
  350. * uses this for some strange applications like Wine. We don't do anything
  351. * here, so they'll get an informative and friendly Segmentation Fault.
  352. */
  353. static void lguest_set_ldt(const void *addr, unsigned entries)
  354. {
  355. }
  356. /*
  357. * This loads a GDT entry into the "Task Register": that entry points to a
  358. * structure called the Task State Segment. Some comments scattered though the
  359. * kernel code indicate that this used for task switching in ages past, along
  360. * with blood sacrifice and astrology.
  361. *
  362. * Now there's nothing interesting in here that we don't get told elsewhere.
  363. * But the native version uses the "ltr" instruction, which makes the Host
  364. * complain to the Guest about a Segmentation Fault and it'll oops. So we
  365. * override the native version with a do-nothing version.
  366. */
  367. static void lguest_load_tr_desc(void)
  368. {
  369. }
  370. /*
  371. * The "cpuid" instruction is a way of querying both the CPU identity
  372. * (manufacturer, model, etc) and its features. It was introduced before the
  373. * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
  374. * As you might imagine, after a decade and a half this treatment, it is now a
  375. * giant ball of hair. Its entry in the current Intel manual runs to 28 pages.
  376. *
  377. * This instruction even it has its own Wikipedia entry. The Wikipedia entry
  378. * has been translated into 6 languages. I am not making this up!
  379. *
  380. * We could get funky here and identify ourselves as "GenuineLguest", but
  381. * instead we just use the real "cpuid" instruction. Then I pretty much turned
  382. * off feature bits until the Guest booted. (Don't say that: you'll damage
  383. * lguest sales!) Shut up, inner voice! (Hey, just pointing out that this is
  384. * hardly future proof.) No one's listening! They don't like you anyway,
  385. * parenthetic weirdo!
  386. *
  387. * Replacing the cpuid so we can turn features off is great for the kernel, but
  388. * anyone (including userspace) can just use the raw "cpuid" instruction and
  389. * the Host won't even notice since it isn't privileged. So we try not to get
  390. * too worked up about it.
  391. */
  392. static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
  393. unsigned int *cx, unsigned int *dx)
  394. {
  395. int function = *ax;
  396. native_cpuid(ax, bx, cx, dx);
  397. switch (function) {
  398. /*
  399. * CPUID 0 gives the highest legal CPUID number (and the ID string).
  400. * We futureproof our code a little by sticking to known CPUID values.
  401. */
  402. case 0:
  403. if (*ax > 5)
  404. *ax = 5;
  405. break;
  406. /*
  407. * CPUID 1 is a basic feature request.
  408. *
  409. * CX: we only allow kernel to see SSE3, CMPXCHG16B and SSSE3
  410. * DX: SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU and PAE.
  411. */
  412. case 1:
  413. *cx &= 0x00002201;
  414. *dx &= 0x07808151;
  415. /*
  416. * The Host can do a nice optimization if it knows that the
  417. * kernel mappings (addresses above 0xC0000000 or whatever
  418. * PAGE_OFFSET is set to) haven't changed. But Linux calls
  419. * flush_tlb_user() for both user and kernel mappings unless
  420. * the Page Global Enable (PGE) feature bit is set.
  421. */
  422. *dx |= 0x00002000;
  423. /*
  424. * We also lie, and say we're family id 5. 6 or greater
  425. * leads to a rdmsr in early_init_intel which we can't handle.
  426. * Family ID is returned as bits 8-12 in ax.
  427. */
  428. *ax &= 0xFFFFF0FF;
  429. *ax |= 0x00000500;
  430. break;
  431. /*
  432. * This is used to detect if we're running under KVM. We might be,
  433. * but that's a Host matter, not us. So say we're not.
  434. */
  435. case KVM_CPUID_SIGNATURE:
  436. *bx = *cx = *dx = 0;
  437. break;
  438. /*
  439. * 0x80000000 returns the highest Extended Function, so we futureproof
  440. * like we do above by limiting it to known fields.
  441. */
  442. case 0x80000000:
  443. if (*ax > 0x80000008)
  444. *ax = 0x80000008;
  445. break;
  446. /*
  447. * PAE systems can mark pages as non-executable. Linux calls this the
  448. * NX bit. Intel calls it XD (eXecute Disable), AMD EVP (Enhanced
  449. * Virus Protection). We just switch it off here, since we don't
  450. * support it.
  451. */
  452. case 0x80000001:
  453. *dx &= ~(1 << 20);
  454. break;
  455. }
  456. }
  457. /*
  458. * Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
  459. * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
  460. * it. The Host needs to know when the Guest wants to change them, so we have
  461. * a whole series of functions like read_cr0() and write_cr0().
  462. *
  463. * We start with cr0. cr0 allows you to turn on and off all kinds of basic
  464. * features, but Linux only really cares about one: the horrifically-named Task
  465. * Switched (TS) bit at bit 3 (ie. 8)
  466. *
  467. * What does the TS bit do? Well, it causes the CPU to trap (interrupt 7) if
  468. * the floating point unit is used. Which allows us to restore FPU state
  469. * lazily after a task switch, and Linux uses that gratefully, but wouldn't a
  470. * name like "FPUTRAP bit" be a little less cryptic?
  471. *
  472. * We store cr0 locally because the Host never changes it. The Guest sometimes
  473. * wants to read it and we'd prefer not to bother the Host unnecessarily.
  474. */
  475. static unsigned long current_cr0;
  476. static void lguest_write_cr0(unsigned long val)
  477. {
  478. lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
  479. current_cr0 = val;
  480. }
  481. static unsigned long lguest_read_cr0(void)
  482. {
  483. return current_cr0;
  484. }
  485. /*
  486. * Intel provided a special instruction to clear the TS bit for people too cool
  487. * to use write_cr0() to do it. This "clts" instruction is faster, because all
  488. * the vowels have been optimized out.
  489. */
  490. static void lguest_clts(void)
  491. {
  492. lazy_hcall1(LHCALL_TS, 0);
  493. current_cr0 &= ~X86_CR0_TS;
  494. }
  495. /*
  496. * cr2 is the virtual address of the last page fault, which the Guest only ever
  497. * reads. The Host kindly writes this into our "struct lguest_data", so we
  498. * just read it out of there.
  499. */
  500. static unsigned long lguest_read_cr2(void)
  501. {
  502. return lguest_data.cr2;
  503. }
  504. /* See lguest_set_pte() below. */
  505. static bool cr3_changed = false;
  506. static unsigned long current_cr3;
  507. /*
  508. * cr3 is the current toplevel pagetable page: the principle is the same as
  509. * cr0. Keep a local copy, and tell the Host when it changes.
  510. */
  511. static void lguest_write_cr3(unsigned long cr3)
  512. {
  513. lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
  514. current_cr3 = cr3;
  515. /* These two page tables are simple, linear, and used during boot */
  516. if (cr3 != __pa(swapper_pg_dir) && cr3 != __pa(initial_page_table))
  517. cr3_changed = true;
  518. }
  519. static unsigned long lguest_read_cr3(void)
  520. {
  521. return current_cr3;
  522. }
  523. /* cr4 is used to enable and disable PGE, but we don't care. */
  524. static unsigned long lguest_read_cr4(void)
  525. {
  526. return 0;
  527. }
  528. static void lguest_write_cr4(unsigned long val)
  529. {
  530. }
  531. /*
  532. * Page Table Handling.
  533. *
  534. * Now would be a good time to take a rest and grab a coffee or similarly
  535. * relaxing stimulant. The easy parts are behind us, and the trek gradually
  536. * winds uphill from here.
  537. *
  538. * Quick refresher: memory is divided into "pages" of 4096 bytes each. The CPU
  539. * maps virtual addresses to physical addresses using "page tables". We could
  540. * use one huge index of 1 million entries: each address is 4 bytes, so that's
  541. * 1024 pages just to hold the page tables. But since most virtual addresses
  542. * are unused, we use a two level index which saves space. The cr3 register
  543. * contains the physical address of the top level "page directory" page, which
  544. * contains physical addresses of up to 1024 second-level pages. Each of these
  545. * second level pages contains up to 1024 physical addresses of actual pages,
  546. * or Page Table Entries (PTEs).
  547. *
  548. * Here's a diagram, where arrows indicate physical addresses:
  549. *
  550. * cr3 ---> +---------+
  551. * | --------->+---------+
  552. * | | | PADDR1 |
  553. * Mid-level | | PADDR2 |
  554. * (PMD) page | | |
  555. * | | Lower-level |
  556. * | | (PTE) page |
  557. * | | | |
  558. * .... ....
  559. *
  560. * So to convert a virtual address to a physical address, we look up the top
  561. * level, which points us to the second level, which gives us the physical
  562. * address of that page. If the top level entry was not present, or the second
  563. * level entry was not present, then the virtual address is invalid (we
  564. * say "the page was not mapped").
  565. *
  566. * Put another way, a 32-bit virtual address is divided up like so:
  567. *
  568. * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  569. * |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
  570. * Index into top Index into second Offset within page
  571. * page directory page pagetable page
  572. *
  573. * Now, unfortunately, this isn't the whole story: Intel added Physical Address
  574. * Extension (PAE) to allow 32 bit systems to use 64GB of memory (ie. 36 bits).
  575. * These are held in 64-bit page table entries, so we can now only fit 512
  576. * entries in a page, and the neat three-level tree breaks down.
  577. *
  578. * The result is a four level page table:
  579. *
  580. * cr3 --> [ 4 Upper ]
  581. * [ Level ]
  582. * [ Entries ]
  583. * [(PUD Page)]---> +---------+
  584. * | --------->+---------+
  585. * | | | PADDR1 |
  586. * Mid-level | | PADDR2 |
  587. * (PMD) page | | |
  588. * | | Lower-level |
  589. * | | (PTE) page |
  590. * | | | |
  591. * .... ....
  592. *
  593. *
  594. * And the virtual address is decoded as:
  595. *
  596. * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  597. * |<-2->|<--- 9 bits ---->|<---- 9 bits --->|<------ 12 bits ------>|
  598. * Index into Index into mid Index into lower Offset within page
  599. * top entries directory page pagetable page
  600. *
  601. * It's too hard to switch between these two formats at runtime, so Linux only
  602. * supports one or the other depending on whether CONFIG_X86_PAE is set. Many
  603. * distributions turn it on, and not just for people with silly amounts of
  604. * memory: the larger PTE entries allow room for the NX bit, which lets the
  605. * kernel disable execution of pages and increase security.
  606. *
  607. * This was a problem for lguest, which couldn't run on these distributions;
  608. * then Matias Zabaljauregui figured it all out and implemented it, and only a
  609. * handful of puppies were crushed in the process!
  610. *
  611. * Back to our point: the kernel spends a lot of time changing both the
  612. * top-level page directory and lower-level pagetable pages. The Guest doesn't
  613. * know physical addresses, so while it maintains these page tables exactly
  614. * like normal, it also needs to keep the Host informed whenever it makes a
  615. * change: the Host will create the real page tables based on the Guests'.
  616. */
  617. /*
  618. * The Guest calls this after it has set a second-level entry (pte), ie. to map
  619. * a page into a process' address space. We tell the Host the toplevel and
  620. * address this corresponds to. The Guest uses one pagetable per process, so
  621. * we need to tell the Host which one we're changing (mm->pgd).
  622. */
  623. static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
  624. pte_t *ptep)
  625. {
  626. #ifdef CONFIG_X86_PAE
  627. /* PAE needs to hand a 64 bit page table entry, so it uses two args. */
  628. lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr,
  629. ptep->pte_low, ptep->pte_high);
  630. #else
  631. lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
  632. #endif
  633. }
  634. /* This is the "set and update" combo-meal-deal version. */
  635. static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
  636. pte_t *ptep, pte_t pteval)
  637. {
  638. native_set_pte(ptep, pteval);
  639. lguest_pte_update(mm, addr, ptep);
  640. }
  641. /*
  642. * The Guest calls lguest_set_pud to set a top-level entry and lguest_set_pmd
  643. * to set a middle-level entry when PAE is activated.
  644. *
  645. * Again, we set the entry then tell the Host which page we changed,
  646. * and the index of the entry we changed.
  647. */
  648. #ifdef CONFIG_X86_PAE
  649. static void lguest_set_pud(pud_t *pudp, pud_t pudval)
  650. {
  651. native_set_pud(pudp, pudval);
  652. /* 32 bytes aligned pdpt address and the index. */
  653. lazy_hcall2(LHCALL_SET_PGD, __pa(pudp) & 0xFFFFFFE0,
  654. (__pa(pudp) & 0x1F) / sizeof(pud_t));
  655. }
  656. static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
  657. {
  658. native_set_pmd(pmdp, pmdval);
  659. lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
  660. (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
  661. }
  662. #else
  663. /* The Guest calls lguest_set_pmd to set a top-level entry when !PAE. */
  664. static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
  665. {
  666. native_set_pmd(pmdp, pmdval);
  667. lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK,
  668. (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
  669. }
  670. #endif
  671. /*
  672. * There are a couple of legacy places where the kernel sets a PTE, but we
  673. * don't know the top level any more. This is useless for us, since we don't
  674. * know which pagetable is changing or what address, so we just tell the Host
  675. * to forget all of them. Fortunately, this is very rare.
  676. *
  677. * ... except in early boot when the kernel sets up the initial pagetables,
  678. * which makes booting astonishingly slow: 48 seconds! So we don't even tell
  679. * the Host anything changed until we've done the first real page table switch,
  680. * which brings boot back to 4.3 seconds.
  681. */
  682. static void lguest_set_pte(pte_t *ptep, pte_t pteval)
  683. {
  684. native_set_pte(ptep, pteval);
  685. if (cr3_changed)
  686. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  687. }
  688. #ifdef CONFIG_X86_PAE
  689. /*
  690. * With 64-bit PTE values, we need to be careful setting them: if we set 32
  691. * bits at a time, the hardware could see a weird half-set entry. These
  692. * versions ensure we update all 64 bits at once.
  693. */
  694. static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte)
  695. {
  696. native_set_pte_atomic(ptep, pte);
  697. if (cr3_changed)
  698. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  699. }
  700. static void lguest_pte_clear(struct mm_struct *mm, unsigned long addr,
  701. pte_t *ptep)
  702. {
  703. native_pte_clear(mm, addr, ptep);
  704. lguest_pte_update(mm, addr, ptep);
  705. }
  706. static void lguest_pmd_clear(pmd_t *pmdp)
  707. {
  708. lguest_set_pmd(pmdp, __pmd(0));
  709. }
  710. #endif
  711. /*
  712. * Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
  713. * native page table operations. On native hardware you can set a new page
  714. * table entry whenever you want, but if you want to remove one you have to do
  715. * a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
  716. *
  717. * So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
  718. * called when a valid entry is written, not when it's removed (ie. marked not
  719. * present). Instead, this is where we come when the Guest wants to remove a
  720. * page table entry: we tell the Host to set that entry to 0 (ie. the present
  721. * bit is zero).
  722. */
  723. static void lguest_flush_tlb_single(unsigned long addr)
  724. {
  725. /* Simply set it to zero: if it was not, it will fault back in. */
  726. lazy_hcall3(LHCALL_SET_PTE, current_cr3, addr, 0);
  727. }
  728. /*
  729. * This is what happens after the Guest has removed a large number of entries.
  730. * This tells the Host that any of the page table entries for userspace might
  731. * have changed, ie. virtual addresses below PAGE_OFFSET.
  732. */
  733. static void lguest_flush_tlb_user(void)
  734. {
  735. lazy_hcall1(LHCALL_FLUSH_TLB, 0);
  736. }
  737. /*
  738. * This is called when the kernel page tables have changed. That's not very
  739. * common (unless the Guest is using highmem, which makes the Guest extremely
  740. * slow), so it's worth separating this from the user flushing above.
  741. */
  742. static void lguest_flush_tlb_kernel(void)
  743. {
  744. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  745. }
  746. /*
  747. * The Unadvanced Programmable Interrupt Controller.
  748. *
  749. * This is an attempt to implement the simplest possible interrupt controller.
  750. * I spent some time looking though routines like set_irq_chip_and_handler,
  751. * set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
  752. * I *think* this is as simple as it gets.
  753. *
  754. * We can tell the Host what interrupts we want blocked ready for using the
  755. * lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
  756. * simple as setting a bit. We don't actually "ack" interrupts as such, we
  757. * just mask and unmask them. I wonder if we should be cleverer?
  758. */
  759. static void disable_lguest_irq(struct irq_data *data)
  760. {
  761. set_bit(data->irq, lguest_data.blocked_interrupts);
  762. }
  763. static void enable_lguest_irq(struct irq_data *data)
  764. {
  765. clear_bit(data->irq, lguest_data.blocked_interrupts);
  766. }
  767. /* This structure describes the lguest IRQ controller. */
  768. static struct irq_chip lguest_irq_controller = {
  769. .name = "lguest",
  770. .irq_mask = disable_lguest_irq,
  771. .irq_mask_ack = disable_lguest_irq,
  772. .irq_unmask = enable_lguest_irq,
  773. };
  774. /*
  775. * This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
  776. * interrupt (except 128, which is used for system calls), and then tells the
  777. * Linux infrastructure that each interrupt is controlled by our level-based
  778. * lguest interrupt controller.
  779. */
  780. static void __init lguest_init_IRQ(void)
  781. {
  782. unsigned int i;
  783. for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
  784. /* Some systems map "vectors" to interrupts weirdly. Not us! */
  785. __this_cpu_write(vector_irq[i], i - FIRST_EXTERNAL_VECTOR);
  786. if (i != SYSCALL_VECTOR)
  787. set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]);
  788. }
  789. /*
  790. * This call is required to set up for 4k stacks, where we have
  791. * separate stacks for hard and soft interrupts.
  792. */
  793. irq_ctx_init(smp_processor_id());
  794. }
  795. /*
  796. * Interrupt descriptors are allocated as-needed, but low-numbered ones are
  797. * reserved by the generic x86 code. So we ignore irq_alloc_desc_at if it
  798. * tells us the irq is already used: other errors (ie. ENOMEM) we take
  799. * seriously.
  800. */
  801. int lguest_setup_irq(unsigned int irq)
  802. {
  803. int err;
  804. /* Returns -ve error or vector number. */
  805. err = irq_alloc_desc_at(irq, 0);
  806. if (err < 0 && err != -EEXIST)
  807. return err;
  808. irq_set_chip_and_handler_name(irq, &lguest_irq_controller,
  809. handle_level_irq, "level");
  810. return 0;
  811. }
  812. /*
  813. * Time.
  814. *
  815. * It would be far better for everyone if the Guest had its own clock, but
  816. * until then the Host gives us the time on every interrupt.
  817. */
  818. static unsigned long lguest_get_wallclock(void)
  819. {
  820. return lguest_data.time.tv_sec;
  821. }
  822. /*
  823. * The TSC is an Intel thing called the Time Stamp Counter. The Host tells us
  824. * what speed it runs at, or 0 if it's unusable as a reliable clock source.
  825. * This matches what we want here: if we return 0 from this function, the x86
  826. * TSC clock will give up and not register itself.
  827. */
  828. static unsigned long lguest_tsc_khz(void)
  829. {
  830. return lguest_data.tsc_khz;
  831. }
  832. /*
  833. * If we can't use the TSC, the kernel falls back to our lower-priority
  834. * "lguest_clock", where we read the time value given to us by the Host.
  835. */
  836. static cycle_t lguest_clock_read(struct clocksource *cs)
  837. {
  838. unsigned long sec, nsec;
  839. /*
  840. * Since the time is in two parts (seconds and nanoseconds), we risk
  841. * reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
  842. * and getting 99 and 0. As Linux tends to come apart under the stress
  843. * of time travel, we must be careful:
  844. */
  845. do {
  846. /* First we read the seconds part. */
  847. sec = lguest_data.time.tv_sec;
  848. /*
  849. * This read memory barrier tells the compiler and the CPU that
  850. * this can't be reordered: we have to complete the above
  851. * before going on.
  852. */
  853. rmb();
  854. /* Now we read the nanoseconds part. */
  855. nsec = lguest_data.time.tv_nsec;
  856. /* Make sure we've done that. */
  857. rmb();
  858. /* Now if the seconds part has changed, try again. */
  859. } while (unlikely(lguest_data.time.tv_sec != sec));
  860. /* Our lguest clock is in real nanoseconds. */
  861. return sec*1000000000ULL + nsec;
  862. }
  863. /* This is the fallback clocksource: lower priority than the TSC clocksource. */
  864. static struct clocksource lguest_clock = {
  865. .name = "lguest",
  866. .rating = 200,
  867. .read = lguest_clock_read,
  868. .mask = CLOCKSOURCE_MASK(64),
  869. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  870. };
  871. /*
  872. * We also need a "struct clock_event_device": Linux asks us to set it to go
  873. * off some time in the future. Actually, James Morris figured all this out, I
  874. * just applied the patch.
  875. */
  876. static int lguest_clockevent_set_next_event(unsigned long delta,
  877. struct clock_event_device *evt)
  878. {
  879. /* FIXME: I don't think this can ever happen, but James tells me he had
  880. * to put this code in. Maybe we should remove it now. Anyone? */
  881. if (delta < LG_CLOCK_MIN_DELTA) {
  882. if (printk_ratelimit())
  883. printk(KERN_DEBUG "%s: small delta %lu ns\n",
  884. __func__, delta);
  885. return -ETIME;
  886. }
  887. /* Please wake us this far in the future. */
  888. hcall(LHCALL_SET_CLOCKEVENT, delta, 0, 0, 0);
  889. return 0;
  890. }
  891. static void lguest_clockevent_set_mode(enum clock_event_mode mode,
  892. struct clock_event_device *evt)
  893. {
  894. switch (mode) {
  895. case CLOCK_EVT_MODE_UNUSED:
  896. case CLOCK_EVT_MODE_SHUTDOWN:
  897. /* A 0 argument shuts the clock down. */
  898. hcall(LHCALL_SET_CLOCKEVENT, 0, 0, 0, 0);
  899. break;
  900. case CLOCK_EVT_MODE_ONESHOT:
  901. /* This is what we expect. */
  902. break;
  903. case CLOCK_EVT_MODE_PERIODIC:
  904. BUG();
  905. case CLOCK_EVT_MODE_RESUME:
  906. break;
  907. }
  908. }
  909. /* This describes our primitive timer chip. */
  910. static struct clock_event_device lguest_clockevent = {
  911. .name = "lguest",
  912. .features = CLOCK_EVT_FEAT_ONESHOT,
  913. .set_next_event = lguest_clockevent_set_next_event,
  914. .set_mode = lguest_clockevent_set_mode,
  915. .rating = INT_MAX,
  916. .mult = 1,
  917. .shift = 0,
  918. .min_delta_ns = LG_CLOCK_MIN_DELTA,
  919. .max_delta_ns = LG_CLOCK_MAX_DELTA,
  920. };
  921. /*
  922. * This is the Guest timer interrupt handler (hardware interrupt 0). We just
  923. * call the clockevent infrastructure and it does whatever needs doing.
  924. */
  925. static void lguest_time_irq(unsigned int irq, struct irq_desc *desc)
  926. {
  927. unsigned long flags;
  928. /* Don't interrupt us while this is running. */
  929. local_irq_save(flags);
  930. lguest_clockevent.event_handler(&lguest_clockevent);
  931. local_irq_restore(flags);
  932. }
  933. /*
  934. * At some point in the boot process, we get asked to set up our timing
  935. * infrastructure. The kernel doesn't expect timer interrupts before this, but
  936. * we cleverly initialized the "blocked_interrupts" field of "struct
  937. * lguest_data" so that timer interrupts were blocked until now.
  938. */
  939. static void lguest_time_init(void)
  940. {
  941. /* Set up the timer interrupt (0) to go to our simple timer routine */
  942. lguest_setup_irq(0);
  943. irq_set_handler(0, lguest_time_irq);
  944. clocksource_register_hz(&lguest_clock, NSEC_PER_SEC);
  945. /* We can't set cpumask in the initializer: damn C limitations! Set it
  946. * here and register our timer device. */
  947. lguest_clockevent.cpumask = cpumask_of(0);
  948. clockevents_register_device(&lguest_clockevent);
  949. /* Finally, we unblock the timer interrupt. */
  950. clear_bit(0, lguest_data.blocked_interrupts);
  951. }
  952. /*
  953. * Miscellaneous bits and pieces.
  954. *
  955. * Here is an oddball collection of functions which the Guest needs for things
  956. * to work. They're pretty simple.
  957. */
  958. /*
  959. * The Guest needs to tell the Host what stack it expects traps to use. For
  960. * native hardware, this is part of the Task State Segment mentioned above in
  961. * lguest_load_tr_desc(), but to help hypervisors there's this special call.
  962. *
  963. * We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
  964. * segment), the privilege level (we're privilege level 1, the Host is 0 and
  965. * will not tolerate us trying to use that), the stack pointer, and the number
  966. * of pages in the stack.
  967. */
  968. static void lguest_load_sp0(struct tss_struct *tss,
  969. struct thread_struct *thread)
  970. {
  971. lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
  972. THREAD_SIZE / PAGE_SIZE);
  973. }
  974. /* Let's just say, I wouldn't do debugging under a Guest. */
  975. static void lguest_set_debugreg(int regno, unsigned long value)
  976. {
  977. /* FIXME: Implement */
  978. }
  979. /*
  980. * There are times when the kernel wants to make sure that no memory writes are
  981. * caught in the cache (that they've all reached real hardware devices). This
  982. * doesn't matter for the Guest which has virtual hardware.
  983. *
  984. * On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
  985. * (clflush) instruction is available and the kernel uses that. Otherwise, it
  986. * uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
  987. * Unlike clflush, wbinvd can only be run at privilege level 0. So we can
  988. * ignore clflush, but replace wbinvd.
  989. */
  990. static void lguest_wbinvd(void)
  991. {
  992. }
  993. /*
  994. * If the Guest expects to have an Advanced Programmable Interrupt Controller,
  995. * we play dumb by ignoring writes and returning 0 for reads. So it's no
  996. * longer Programmable nor Controlling anything, and I don't think 8 lines of
  997. * code qualifies for Advanced. It will also never interrupt anything. It
  998. * does, however, allow us to get through the Linux boot code.
  999. */
  1000. #ifdef CONFIG_X86_LOCAL_APIC
  1001. static void lguest_apic_write(u32 reg, u32 v)
  1002. {
  1003. }
  1004. static u32 lguest_apic_read(u32 reg)
  1005. {
  1006. return 0;
  1007. }
  1008. static u64 lguest_apic_icr_read(void)
  1009. {
  1010. return 0;
  1011. }
  1012. static void lguest_apic_icr_write(u32 low, u32 id)
  1013. {
  1014. /* Warn to see if there's any stray references */
  1015. WARN_ON(1);
  1016. }
  1017. static void lguest_apic_wait_icr_idle(void)
  1018. {
  1019. return;
  1020. }
  1021. static u32 lguest_apic_safe_wait_icr_idle(void)
  1022. {
  1023. return 0;
  1024. }
  1025. static void set_lguest_basic_apic_ops(void)
  1026. {
  1027. apic->read = lguest_apic_read;
  1028. apic->write = lguest_apic_write;
  1029. apic->icr_read = lguest_apic_icr_read;
  1030. apic->icr_write = lguest_apic_icr_write;
  1031. apic->wait_icr_idle = lguest_apic_wait_icr_idle;
  1032. apic->safe_wait_icr_idle = lguest_apic_safe_wait_icr_idle;
  1033. };
  1034. #endif
  1035. /* STOP! Until an interrupt comes in. */
  1036. static void lguest_safe_halt(void)
  1037. {
  1038. hcall(LHCALL_HALT, 0, 0, 0, 0);
  1039. }
  1040. /*
  1041. * The SHUTDOWN hypercall takes a string to describe what's happening, and
  1042. * an argument which says whether this to restart (reboot) the Guest or not.
  1043. *
  1044. * Note that the Host always prefers that the Guest speak in physical addresses
  1045. * rather than virtual addresses, so we use __pa() here.
  1046. */
  1047. static void lguest_power_off(void)
  1048. {
  1049. hcall(LHCALL_SHUTDOWN, __pa("Power down"),
  1050. LGUEST_SHUTDOWN_POWEROFF, 0, 0);
  1051. }
  1052. /*
  1053. * Panicing.
  1054. *
  1055. * Don't. But if you did, this is what happens.
  1056. */
  1057. static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
  1058. {
  1059. hcall(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF, 0, 0);
  1060. /* The hcall won't return, but to keep gcc happy, we're "done". */
  1061. return NOTIFY_DONE;
  1062. }
  1063. static struct notifier_block paniced = {
  1064. .notifier_call = lguest_panic
  1065. };
  1066. /* Setting up memory is fairly easy. */
  1067. static __init char *lguest_memory_setup(void)
  1068. {
  1069. /*
  1070. * The Linux bootloader header contains an "e820" memory map: the
  1071. * Launcher populated the first entry with our memory limit.
  1072. */
  1073. e820_add_region(boot_params.e820_map[0].addr,
  1074. boot_params.e820_map[0].size,
  1075. boot_params.e820_map[0].type);
  1076. /* This string is for the boot messages. */
  1077. return "LGUEST";
  1078. }
  1079. /*
  1080. * We will eventually use the virtio console device to produce console output,
  1081. * but before that is set up we use LHCALL_NOTIFY on normal memory to produce
  1082. * console output.
  1083. */
  1084. static __init int early_put_chars(u32 vtermno, const char *buf, int count)
  1085. {
  1086. char scratch[17];
  1087. unsigned int len = count;
  1088. /* We use a nul-terminated string, so we make a copy. Icky, huh? */
  1089. if (len > sizeof(scratch) - 1)
  1090. len = sizeof(scratch) - 1;
  1091. scratch[len] = '\0';
  1092. memcpy(scratch, buf, len);
  1093. hcall(LHCALL_NOTIFY, __pa(scratch), 0, 0, 0);
  1094. /* This routine returns the number of bytes actually written. */
  1095. return len;
  1096. }
  1097. /*
  1098. * Rebooting also tells the Host we're finished, but the RESTART flag tells the
  1099. * Launcher to reboot us.
  1100. */
  1101. static void lguest_restart(char *reason)
  1102. {
  1103. hcall(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART, 0, 0);
  1104. }
  1105. /*G:050
  1106. * Patching (Powerfully Placating Performance Pedants)
  1107. *
  1108. * We have already seen that pv_ops structures let us replace simple native
  1109. * instructions with calls to the appropriate back end all throughout the
  1110. * kernel. This allows the same kernel to run as a Guest and as a native
  1111. * kernel, but it's slow because of all the indirect branches.
  1112. *
  1113. * Remember that David Wheeler quote about "Any problem in computer science can
  1114. * be solved with another layer of indirection"? The rest of that quote is
  1115. * "... But that usually will create another problem." This is the first of
  1116. * those problems.
  1117. *
  1118. * Our current solution is to allow the paravirt back end to optionally patch
  1119. * over the indirect calls to replace them with something more efficient. We
  1120. * patch two of the simplest of the most commonly called functions: disable
  1121. * interrupts and save interrupts. We usually have 6 or 10 bytes to patch
  1122. * into: the Guest versions of these operations are small enough that we can
  1123. * fit comfortably.
  1124. *
  1125. * First we need assembly templates of each of the patchable Guest operations,
  1126. * and these are in i386_head.S.
  1127. */
  1128. /*G:060 We construct a table from the assembler templates: */
  1129. static const struct lguest_insns
  1130. {
  1131. const char *start, *end;
  1132. } lguest_insns[] = {
  1133. [PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
  1134. [PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
  1135. };
  1136. /*
  1137. * Now our patch routine is fairly simple (based on the native one in
  1138. * paravirt.c). If we have a replacement, we copy it in and return how much of
  1139. * the available space we used.
  1140. */
  1141. static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
  1142. unsigned long addr, unsigned len)
  1143. {
  1144. unsigned int insn_len;
  1145. /* Don't do anything special if we don't have a replacement */
  1146. if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
  1147. return paravirt_patch_default(type, clobber, ibuf, addr, len);
  1148. insn_len = lguest_insns[type].end - lguest_insns[type].start;
  1149. /* Similarly if it can't fit (doesn't happen, but let's be thorough). */
  1150. if (len < insn_len)
  1151. return paravirt_patch_default(type, clobber, ibuf, addr, len);
  1152. /* Copy in our instructions. */
  1153. memcpy(ibuf, lguest_insns[type].start, insn_len);
  1154. return insn_len;
  1155. }
  1156. /*G:029
  1157. * Once we get to lguest_init(), we know we're a Guest. The various
  1158. * pv_ops structures in the kernel provide points for (almost) every routine we
  1159. * have to override to avoid privileged instructions.
  1160. */
  1161. __init void lguest_init(void)
  1162. {
  1163. /* We're under lguest. */
  1164. pv_info.name = "lguest";
  1165. /* Paravirt is enabled. */
  1166. pv_info.paravirt_enabled = 1;
  1167. /* We're running at privilege level 1, not 0 as normal. */
  1168. pv_info.kernel_rpl = 1;
  1169. /* Everyone except Xen runs with this set. */
  1170. pv_info.shared_kernel_pmd = 1;
  1171. /*
  1172. * We set up all the lguest overrides for sensitive operations. These
  1173. * are detailed with the operations themselves.
  1174. */
  1175. /* Interrupt-related operations */
  1176. pv_irq_ops.save_fl = PV_CALLEE_SAVE(save_fl);
  1177. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(lg_restore_fl);
  1178. pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable);
  1179. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(lg_irq_enable);
  1180. pv_irq_ops.safe_halt = lguest_safe_halt;
  1181. /* Setup operations */
  1182. pv_init_ops.patch = lguest_patch;
  1183. /* Intercepts of various CPU instructions */
  1184. pv_cpu_ops.load_gdt = lguest_load_gdt;
  1185. pv_cpu_ops.cpuid = lguest_cpuid;
  1186. pv_cpu_ops.load_idt = lguest_load_idt;
  1187. pv_cpu_ops.iret = lguest_iret;
  1188. pv_cpu_ops.load_sp0 = lguest_load_sp0;
  1189. pv_cpu_ops.load_tr_desc = lguest_load_tr_desc;
  1190. pv_cpu_ops.set_ldt = lguest_set_ldt;
  1191. pv_cpu_ops.load_tls = lguest_load_tls;
  1192. pv_cpu_ops.set_debugreg = lguest_set_debugreg;
  1193. pv_cpu_ops.clts = lguest_clts;
  1194. pv_cpu_ops.read_cr0 = lguest_read_cr0;
  1195. pv_cpu_ops.write_cr0 = lguest_write_cr0;
  1196. pv_cpu_ops.read_cr4 = lguest_read_cr4;
  1197. pv_cpu_ops.write_cr4 = lguest_write_cr4;
  1198. pv_cpu_ops.write_gdt_entry = lguest_write_gdt_entry;
  1199. pv_cpu_ops.write_idt_entry = lguest_write_idt_entry;
  1200. pv_cpu_ops.wbinvd = lguest_wbinvd;
  1201. pv_cpu_ops.start_context_switch = paravirt_start_context_switch;
  1202. pv_cpu_ops.end_context_switch = lguest_end_context_switch;
  1203. /* Pagetable management */
  1204. pv_mmu_ops.write_cr3 = lguest_write_cr3;
  1205. pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
  1206. pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
  1207. pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
  1208. pv_mmu_ops.set_pte = lguest_set_pte;
  1209. pv_mmu_ops.set_pte_at = lguest_set_pte_at;
  1210. pv_mmu_ops.set_pmd = lguest_set_pmd;
  1211. #ifdef CONFIG_X86_PAE
  1212. pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic;
  1213. pv_mmu_ops.pte_clear = lguest_pte_clear;
  1214. pv_mmu_ops.pmd_clear = lguest_pmd_clear;
  1215. pv_mmu_ops.set_pud = lguest_set_pud;
  1216. #endif
  1217. pv_mmu_ops.read_cr2 = lguest_read_cr2;
  1218. pv_mmu_ops.read_cr3 = lguest_read_cr3;
  1219. pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
  1220. pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mmu_mode;
  1221. pv_mmu_ops.lazy_mode.flush = paravirt_flush_lazy_mmu;
  1222. pv_mmu_ops.pte_update = lguest_pte_update;
  1223. pv_mmu_ops.pte_update_defer = lguest_pte_update;
  1224. #ifdef CONFIG_X86_LOCAL_APIC
  1225. /* APIC read/write intercepts */
  1226. set_lguest_basic_apic_ops();
  1227. #endif
  1228. x86_init.resources.memory_setup = lguest_memory_setup;
  1229. x86_init.irqs.intr_init = lguest_init_IRQ;
  1230. x86_init.timers.timer_init = lguest_time_init;
  1231. x86_platform.calibrate_tsc = lguest_tsc_khz;
  1232. x86_platform.get_wallclock = lguest_get_wallclock;
  1233. /*
  1234. * Now is a good time to look at the implementations of these functions
  1235. * before returning to the rest of lguest_init().
  1236. */
  1237. /*G:070
  1238. * Now we've seen all the paravirt_ops, we return to
  1239. * lguest_init() where the rest of the fairly chaotic boot setup
  1240. * occurs.
  1241. */
  1242. /*
  1243. * The stack protector is a weird thing where gcc places a canary
  1244. * value on the stack and then checks it on return. This file is
  1245. * compiled with -fno-stack-protector it, so we got this far without
  1246. * problems. The value of the canary is kept at offset 20 from the
  1247. * %gs register, so we need to set that up before calling C functions
  1248. * in other files.
  1249. */
  1250. setup_stack_canary_segment(0);
  1251. /*
  1252. * We could just call load_stack_canary_segment(), but we might as well
  1253. * call switch_to_new_gdt() which loads the whole table and sets up the
  1254. * per-cpu segment descriptor register %fs as well.
  1255. */
  1256. switch_to_new_gdt(0);
  1257. /*
  1258. * The Host<->Guest Switcher lives at the top of our address space, and
  1259. * the Host told us how big it is when we made LGUEST_INIT hypercall:
  1260. * it put the answer in lguest_data.reserve_mem
  1261. */
  1262. reserve_top_address(lguest_data.reserve_mem);
  1263. /*
  1264. * If we don't initialize the lock dependency checker now, it crashes
  1265. * atomic_notifier_chain_register, then paravirt_disable_iospace.
  1266. */
  1267. lockdep_init();
  1268. /* Hook in our special panic hypercall code. */
  1269. atomic_notifier_chain_register(&panic_notifier_list, &paniced);
  1270. /*
  1271. * The IDE code spends about 3 seconds probing for disks: if we reserve
  1272. * all the I/O ports up front it can't get them and so doesn't probe.
  1273. * Other device drivers are similar (but less severe). This cuts the
  1274. * kernel boot time on my machine from 4.1 seconds to 0.45 seconds.
  1275. */
  1276. paravirt_disable_iospace();
  1277. /*
  1278. * This is messy CPU setup stuff which the native boot code does before
  1279. * start_kernel, so we have to do, too:
  1280. */
  1281. cpu_detect(&new_cpu_data);
  1282. /* head.S usually sets up the first capability word, so do it here. */
  1283. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1284. /* Math is always hard! */
  1285. new_cpu_data.hard_math = 1;
  1286. /* We don't have features. We have puppies! Puppies! */
  1287. #ifdef CONFIG_X86_MCE
  1288. mce_disabled = 1;
  1289. #endif
  1290. #ifdef CONFIG_ACPI
  1291. acpi_disabled = 1;
  1292. #endif
  1293. /*
  1294. * We set the preferred console to "hvc". This is the "hypervisor
  1295. * virtual console" driver written by the PowerPC people, which we also
  1296. * adapted for lguest's use.
  1297. */
  1298. add_preferred_console("hvc", 0, NULL);
  1299. /* Register our very early console. */
  1300. virtio_cons_early_init(early_put_chars);
  1301. /*
  1302. * Last of all, we set the power management poweroff hook to point to
  1303. * the Guest routine to power off, and the reboot hook to our restart
  1304. * routine.
  1305. */
  1306. pm_power_off = lguest_power_off;
  1307. machine_ops.restart = lguest_restart;
  1308. /*
  1309. * Now we're set up, call i386_start_kernel() in head32.c and we proceed
  1310. * to boot as normal. It never returns.
  1311. */
  1312. i386_start_kernel();
  1313. }
  1314. /*
  1315. * This marks the end of stage II of our journey, The Guest.
  1316. *
  1317. * It is now time for us to explore the layer of virtual drivers and complete
  1318. * our understanding of the Guest in "make Drivers".
  1319. */