fault.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Derived from "arch/i386/mm/fault.c"
  6. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  7. *
  8. * Modified by Cort Dougan and Paul Mackerras.
  9. *
  10. * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. #include <linux/signal.h>
  18. #include <linux/sched.h>
  19. #include <linux/kernel.h>
  20. #include <linux/errno.h>
  21. #include <linux/string.h>
  22. #include <linux/types.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/mman.h>
  25. #include <linux/mm.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/kprobes.h>
  30. #include <linux/kdebug.h>
  31. #include <linux/perf_event.h>
  32. #include <linux/magic.h>
  33. #include <linux/ratelimit.h>
  34. #include <asm/firmware.h>
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/mmu.h>
  38. #include <asm/mmu_context.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/siginfo.h>
  42. #include <asm/debug.h>
  43. #include <mm/mmu_decl.h>
  44. #include "icswx.h"
  45. #ifdef CONFIG_KPROBES
  46. static inline int notify_page_fault(struct pt_regs *regs)
  47. {
  48. int ret = 0;
  49. /* kprobe_running() needs smp_processor_id() */
  50. if (!user_mode(regs)) {
  51. preempt_disable();
  52. if (kprobe_running() && kprobe_fault_handler(regs, 11))
  53. ret = 1;
  54. preempt_enable();
  55. }
  56. return ret;
  57. }
  58. #else
  59. static inline int notify_page_fault(struct pt_regs *regs)
  60. {
  61. return 0;
  62. }
  63. #endif
  64. /*
  65. * Check whether the instruction at regs->nip is a store using
  66. * an update addressing form which will update r1.
  67. */
  68. static int store_updates_sp(struct pt_regs *regs)
  69. {
  70. unsigned int inst;
  71. if (get_user(inst, (unsigned int __user *)regs->nip))
  72. return 0;
  73. /* check for 1 in the rA field */
  74. if (((inst >> 16) & 0x1f) != 1)
  75. return 0;
  76. /* check major opcode */
  77. switch (inst >> 26) {
  78. case 37: /* stwu */
  79. case 39: /* stbu */
  80. case 45: /* sthu */
  81. case 53: /* stfsu */
  82. case 55: /* stfdu */
  83. return 1;
  84. case 62: /* std or stdu */
  85. return (inst & 3) == 1;
  86. case 31:
  87. /* check minor opcode */
  88. switch ((inst >> 1) & 0x3ff) {
  89. case 181: /* stdux */
  90. case 183: /* stwux */
  91. case 247: /* stbux */
  92. case 439: /* sthux */
  93. case 695: /* stfsux */
  94. case 759: /* stfdux */
  95. return 1;
  96. }
  97. }
  98. return 0;
  99. }
  100. /*
  101. * do_page_fault error handling helpers
  102. */
  103. #define MM_FAULT_RETURN 0
  104. #define MM_FAULT_CONTINUE -1
  105. #define MM_FAULT_ERR(sig) (sig)
  106. static int out_of_memory(struct pt_regs *regs)
  107. {
  108. /*
  109. * We ran out of memory, or some other thing happened to us that made
  110. * us unable to handle the page fault gracefully.
  111. */
  112. up_read(&current->mm->mmap_sem);
  113. if (!user_mode(regs))
  114. return MM_FAULT_ERR(SIGKILL);
  115. pagefault_out_of_memory();
  116. return MM_FAULT_RETURN;
  117. }
  118. static int do_sigbus(struct pt_regs *regs, unsigned long address)
  119. {
  120. siginfo_t info;
  121. up_read(&current->mm->mmap_sem);
  122. if (user_mode(regs)) {
  123. info.si_signo = SIGBUS;
  124. info.si_errno = 0;
  125. info.si_code = BUS_ADRERR;
  126. info.si_addr = (void __user *)address;
  127. force_sig_info(SIGBUS, &info, current);
  128. return MM_FAULT_RETURN;
  129. }
  130. return MM_FAULT_ERR(SIGBUS);
  131. }
  132. static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
  133. {
  134. /*
  135. * Pagefault was interrupted by SIGKILL. We have no reason to
  136. * continue the pagefault.
  137. */
  138. if (fatal_signal_pending(current)) {
  139. /*
  140. * If we have retry set, the mmap semaphore will have
  141. * alrady been released in __lock_page_or_retry(). Else
  142. * we release it now.
  143. */
  144. if (!(fault & VM_FAULT_RETRY))
  145. up_read(&current->mm->mmap_sem);
  146. /* Coming from kernel, we need to deal with uaccess fixups */
  147. if (user_mode(regs))
  148. return MM_FAULT_RETURN;
  149. return MM_FAULT_ERR(SIGKILL);
  150. }
  151. /* No fault: be happy */
  152. if (!(fault & VM_FAULT_ERROR))
  153. return MM_FAULT_CONTINUE;
  154. /* Out of memory */
  155. if (fault & VM_FAULT_OOM)
  156. return out_of_memory(regs);
  157. /* Bus error. x86 handles HWPOISON here, we'll add this if/when
  158. * we support the feature in HW
  159. */
  160. if (fault & VM_FAULT_SIGBUS)
  161. return do_sigbus(regs, addr);
  162. /* We don't understand the fault code, this is fatal */
  163. BUG();
  164. return MM_FAULT_CONTINUE;
  165. }
  166. /*
  167. * For 600- and 800-family processors, the error_code parameter is DSISR
  168. * for a data fault, SRR1 for an instruction fault. For 400-family processors
  169. * the error_code parameter is ESR for a data fault, 0 for an instruction
  170. * fault.
  171. * For 64-bit processors, the error_code parameter is
  172. * - DSISR for a non-SLB data access fault,
  173. * - SRR1 & 0x08000000 for a non-SLB instruction access fault
  174. * - 0 any SLB fault.
  175. *
  176. * The return value is 0 if the fault was handled, or the signal
  177. * number if this is a kernel fault that can't be handled here.
  178. */
  179. int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
  180. unsigned long error_code)
  181. {
  182. struct vm_area_struct * vma;
  183. struct mm_struct *mm = current->mm;
  184. unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
  185. int code = SEGV_MAPERR;
  186. int is_write = 0;
  187. int trap = TRAP(regs);
  188. int is_exec = trap == 0x400;
  189. int fault;
  190. #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
  191. /*
  192. * Fortunately the bit assignments in SRR1 for an instruction
  193. * fault and DSISR for a data fault are mostly the same for the
  194. * bits we are interested in. But there are some bits which
  195. * indicate errors in DSISR but can validly be set in SRR1.
  196. */
  197. if (trap == 0x400)
  198. error_code &= 0x48200000;
  199. else
  200. is_write = error_code & DSISR_ISSTORE;
  201. #else
  202. is_write = error_code & ESR_DST;
  203. #endif /* CONFIG_4xx || CONFIG_BOOKE */
  204. if (is_write)
  205. flags |= FAULT_FLAG_WRITE;
  206. #ifdef CONFIG_PPC_ICSWX
  207. /*
  208. * we need to do this early because this "data storage
  209. * interrupt" does not update the DAR/DEAR so we don't want to
  210. * look at it
  211. */
  212. if (error_code & ICSWX_DSI_UCT) {
  213. int rc = acop_handle_fault(regs, address, error_code);
  214. if (rc)
  215. return rc;
  216. }
  217. #endif /* CONFIG_PPC_ICSWX */
  218. if (notify_page_fault(regs))
  219. return 0;
  220. if (unlikely(debugger_fault_handler(regs)))
  221. return 0;
  222. /* On a kernel SLB miss we can only check for a valid exception entry */
  223. if (!user_mode(regs) && (address >= TASK_SIZE))
  224. return SIGSEGV;
  225. #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
  226. defined(CONFIG_PPC_BOOK3S_64))
  227. if (error_code & DSISR_DABRMATCH) {
  228. /* DABR match */
  229. do_dabr(regs, address, error_code);
  230. return 0;
  231. }
  232. #endif
  233. /* We restore the interrupt state now */
  234. if (!arch_irq_disabled_regs(regs))
  235. local_irq_enable();
  236. if (in_atomic() || mm == NULL) {
  237. if (!user_mode(regs))
  238. return SIGSEGV;
  239. /* in_atomic() in user mode is really bad,
  240. as is current->mm == NULL. */
  241. printk(KERN_EMERG "Page fault in user mode with "
  242. "in_atomic() = %d mm = %p\n", in_atomic(), mm);
  243. printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
  244. regs->nip, regs->msr);
  245. die("Weird page fault", regs, SIGSEGV);
  246. }
  247. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  248. /* When running in the kernel we expect faults to occur only to
  249. * addresses in user space. All other faults represent errors in the
  250. * kernel and should generate an OOPS. Unfortunately, in the case of an
  251. * erroneous fault occurring in a code path which already holds mmap_sem
  252. * we will deadlock attempting to validate the fault against the
  253. * address space. Luckily the kernel only validly references user
  254. * space from well defined areas of code, which are listed in the
  255. * exceptions table.
  256. *
  257. * As the vast majority of faults will be valid we will only perform
  258. * the source reference check when there is a possibility of a deadlock.
  259. * Attempt to lock the address space, if we cannot we then validate the
  260. * source. If this is invalid we can skip the address space check,
  261. * thus avoiding the deadlock.
  262. */
  263. if (!down_read_trylock(&mm->mmap_sem)) {
  264. if (!user_mode(regs) && !search_exception_tables(regs->nip))
  265. goto bad_area_nosemaphore;
  266. retry:
  267. down_read(&mm->mmap_sem);
  268. } else {
  269. /*
  270. * The above down_read_trylock() might have succeeded in
  271. * which case we'll have missed the might_sleep() from
  272. * down_read():
  273. */
  274. might_sleep();
  275. }
  276. vma = find_vma(mm, address);
  277. if (!vma)
  278. goto bad_area;
  279. if (vma->vm_start <= address)
  280. goto good_area;
  281. if (!(vma->vm_flags & VM_GROWSDOWN))
  282. goto bad_area;
  283. /*
  284. * N.B. The POWER/Open ABI allows programs to access up to
  285. * 288 bytes below the stack pointer.
  286. * The kernel signal delivery code writes up to about 1.5kB
  287. * below the stack pointer (r1) before decrementing it.
  288. * The exec code can write slightly over 640kB to the stack
  289. * before setting the user r1. Thus we allow the stack to
  290. * expand to 1MB without further checks.
  291. */
  292. if (address + 0x100000 < vma->vm_end) {
  293. /* get user regs even if this fault is in kernel mode */
  294. struct pt_regs *uregs = current->thread.regs;
  295. if (uregs == NULL)
  296. goto bad_area;
  297. /*
  298. * A user-mode access to an address a long way below
  299. * the stack pointer is only valid if the instruction
  300. * is one which would update the stack pointer to the
  301. * address accessed if the instruction completed,
  302. * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
  303. * (or the byte, halfword, float or double forms).
  304. *
  305. * If we don't check this then any write to the area
  306. * between the last mapped region and the stack will
  307. * expand the stack rather than segfaulting.
  308. */
  309. if (address + 2048 < uregs->gpr[1]
  310. && (!user_mode(regs) || !store_updates_sp(regs)))
  311. goto bad_area;
  312. }
  313. if (expand_stack(vma, address))
  314. goto bad_area;
  315. good_area:
  316. code = SEGV_ACCERR;
  317. #if defined(CONFIG_6xx)
  318. if (error_code & 0x95700000)
  319. /* an error such as lwarx to I/O controller space,
  320. address matching DABR, eciwx, etc. */
  321. goto bad_area;
  322. #endif /* CONFIG_6xx */
  323. #if defined(CONFIG_8xx)
  324. /* 8xx sometimes need to load a invalid/non-present TLBs.
  325. * These must be invalidated separately as linux mm don't.
  326. */
  327. if (error_code & 0x40000000) /* no translation? */
  328. _tlbil_va(address, 0, 0, 0);
  329. /* The MPC8xx seems to always set 0x80000000, which is
  330. * "undefined". Of those that can be set, this is the only
  331. * one which seems bad.
  332. */
  333. if (error_code & 0x10000000)
  334. /* Guarded storage error. */
  335. goto bad_area;
  336. #endif /* CONFIG_8xx */
  337. if (is_exec) {
  338. #ifdef CONFIG_PPC_STD_MMU
  339. /* Protection fault on exec go straight to failure on
  340. * Hash based MMUs as they either don't support per-page
  341. * execute permission, or if they do, it's handled already
  342. * at the hash level. This test would probably have to
  343. * be removed if we change the way this works to make hash
  344. * processors use the same I/D cache coherency mechanism
  345. * as embedded.
  346. */
  347. if (error_code & DSISR_PROTFAULT)
  348. goto bad_area;
  349. #endif /* CONFIG_PPC_STD_MMU */
  350. /*
  351. * Allow execution from readable areas if the MMU does not
  352. * provide separate controls over reading and executing.
  353. *
  354. * Note: That code used to not be enabled for 4xx/BookE.
  355. * It is now as I/D cache coherency for these is done at
  356. * set_pte_at() time and I see no reason why the test
  357. * below wouldn't be valid on those processors. This -may-
  358. * break programs compiled with a really old ABI though.
  359. */
  360. if (!(vma->vm_flags & VM_EXEC) &&
  361. (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
  362. !(vma->vm_flags & (VM_READ | VM_WRITE))))
  363. goto bad_area;
  364. /* a write */
  365. } else if (is_write) {
  366. if (!(vma->vm_flags & VM_WRITE))
  367. goto bad_area;
  368. /* a read */
  369. } else {
  370. /* protection fault */
  371. if (error_code & 0x08000000)
  372. goto bad_area;
  373. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  374. goto bad_area;
  375. }
  376. /*
  377. * If for any reason at all we couldn't handle the fault,
  378. * make sure we exit gracefully rather than endlessly redo
  379. * the fault.
  380. */
  381. fault = handle_mm_fault(mm, vma, address, flags);
  382. if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
  383. int rc;
  384. if (fault & VM_FAULT_SIGSEGV)
  385. goto bad_area;
  386. rc = mm_fault_error(regs, address, fault);
  387. if (rc >= MM_FAULT_RETURN)
  388. return rc;
  389. }
  390. /*
  391. * Major/minor page fault accounting is only done on the
  392. * initial attempt. If we go through a retry, it is extremely
  393. * likely that the page will be found in page cache at that point.
  394. */
  395. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  396. if (fault & VM_FAULT_MAJOR) {
  397. current->maj_flt++;
  398. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
  399. regs, address);
  400. #ifdef CONFIG_PPC_SMLPAR
  401. if (firmware_has_feature(FW_FEATURE_CMO)) {
  402. preempt_disable();
  403. get_lppaca()->page_ins += (1 << PAGE_FACTOR);
  404. preempt_enable();
  405. }
  406. #endif /* CONFIG_PPC_SMLPAR */
  407. } else {
  408. current->min_flt++;
  409. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
  410. regs, address);
  411. }
  412. if (fault & VM_FAULT_RETRY) {
  413. /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
  414. * of starvation. */
  415. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  416. goto retry;
  417. }
  418. }
  419. up_read(&mm->mmap_sem);
  420. return 0;
  421. bad_area:
  422. up_read(&mm->mmap_sem);
  423. bad_area_nosemaphore:
  424. /* User mode accesses cause a SIGSEGV */
  425. if (user_mode(regs)) {
  426. _exception(SIGSEGV, regs, code, address);
  427. return 0;
  428. }
  429. if (is_exec && (error_code & DSISR_PROTFAULT))
  430. printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
  431. " page (%lx) - exploit attempt? (uid: %d)\n",
  432. address, current_uid());
  433. return SIGSEGV;
  434. }
  435. /*
  436. * bad_page_fault is called when we have a bad access from the kernel.
  437. * It is called from the DSI and ISI handlers in head.S and from some
  438. * of the procedures in traps.c.
  439. */
  440. void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
  441. {
  442. const struct exception_table_entry *entry;
  443. unsigned long *stackend;
  444. /* Are we prepared to handle this fault? */
  445. if ((entry = search_exception_tables(regs->nip)) != NULL) {
  446. regs->nip = entry->fixup;
  447. return;
  448. }
  449. /* kernel has accessed a bad area */
  450. switch (regs->trap) {
  451. case 0x300:
  452. case 0x380:
  453. printk(KERN_ALERT "Unable to handle kernel paging request for "
  454. "data at address 0x%08lx\n", regs->dar);
  455. break;
  456. case 0x400:
  457. case 0x480:
  458. printk(KERN_ALERT "Unable to handle kernel paging request for "
  459. "instruction fetch\n");
  460. break;
  461. default:
  462. printk(KERN_ALERT "Unable to handle kernel paging request for "
  463. "unknown fault\n");
  464. break;
  465. }
  466. printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
  467. regs->nip);
  468. stackend = end_of_stack(current);
  469. if (current != &init_task && *stackend != STACK_END_MAGIC)
  470. printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
  471. die("Kernel access of bad area", regs, sig);
  472. }