book3s_hv_rm_mmu.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <linux/hugetlb.h>
  13. #include <linux/module.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/kvm_ppc.h>
  16. #include <asm/kvm_book3s.h>
  17. #include <asm/mmu-hash64.h>
  18. #include <asm/hvcall.h>
  19. #include <asm/synch.h>
  20. #include <asm/ppc-opcode.h>
  21. /* Translate address of a vmalloc'd thing to a linear map address */
  22. static void *real_vmalloc_addr(void *x)
  23. {
  24. unsigned long addr = (unsigned long) x;
  25. pte_t *p;
  26. p = find_linux_pte(swapper_pg_dir, addr);
  27. if (!p || !pte_present(*p))
  28. return NULL;
  29. /* assume we don't have huge pages in vmalloc space... */
  30. addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
  31. return __va(addr);
  32. }
  33. /*
  34. * Add this HPTE into the chain for the real page.
  35. * Must be called with the chain locked; it unlocks the chain.
  36. */
  37. void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
  38. unsigned long *rmap, long pte_index, int realmode)
  39. {
  40. struct revmap_entry *head, *tail;
  41. unsigned long i;
  42. if (*rmap & KVMPPC_RMAP_PRESENT) {
  43. i = *rmap & KVMPPC_RMAP_INDEX;
  44. head = &kvm->arch.revmap[i];
  45. if (realmode)
  46. head = real_vmalloc_addr(head);
  47. tail = &kvm->arch.revmap[head->back];
  48. if (realmode)
  49. tail = real_vmalloc_addr(tail);
  50. rev->forw = i;
  51. rev->back = head->back;
  52. tail->forw = pte_index;
  53. head->back = pte_index;
  54. } else {
  55. rev->forw = rev->back = pte_index;
  56. i = pte_index;
  57. }
  58. smp_wmb();
  59. *rmap = i | KVMPPC_RMAP_REFERENCED | KVMPPC_RMAP_PRESENT; /* unlock */
  60. }
  61. EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
  62. /* Remove this HPTE from the chain for a real page */
  63. static void remove_revmap_chain(struct kvm *kvm, long pte_index,
  64. struct revmap_entry *rev,
  65. unsigned long hpte_v, unsigned long hpte_r)
  66. {
  67. struct revmap_entry *next, *prev;
  68. unsigned long gfn, ptel, head;
  69. struct kvm_memory_slot *memslot;
  70. unsigned long *rmap;
  71. unsigned long rcbits;
  72. rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
  73. ptel = rev->guest_rpte |= rcbits;
  74. gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
  75. memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
  76. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  77. return;
  78. rmap = real_vmalloc_addr(&memslot->rmap[gfn - memslot->base_gfn]);
  79. lock_rmap(rmap);
  80. head = *rmap & KVMPPC_RMAP_INDEX;
  81. next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
  82. prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
  83. next->back = rev->back;
  84. prev->forw = rev->forw;
  85. if (head == pte_index) {
  86. head = rev->forw;
  87. if (head == pte_index)
  88. *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  89. else
  90. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
  91. }
  92. *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
  93. unlock_rmap(rmap);
  94. }
  95. static pte_t lookup_linux_pte(struct kvm_vcpu *vcpu, unsigned long hva,
  96. int writing, unsigned long *pte_sizep)
  97. {
  98. pte_t *ptep;
  99. unsigned long ps = *pte_sizep;
  100. unsigned int shift;
  101. ptep = find_linux_pte_or_hugepte(vcpu->arch.pgdir, hva, &shift);
  102. if (!ptep)
  103. return __pte(0);
  104. if (shift)
  105. *pte_sizep = 1ul << shift;
  106. else
  107. *pte_sizep = PAGE_SIZE;
  108. if (ps > *pte_sizep)
  109. return __pte(0);
  110. if (!pte_present(*ptep))
  111. return __pte(0);
  112. return kvmppc_read_update_linux_pte(ptep, writing);
  113. }
  114. static inline void unlock_hpte(unsigned long *hpte, unsigned long hpte_v)
  115. {
  116. asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
  117. hpte[0] = hpte_v;
  118. }
  119. long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  120. long pte_index, unsigned long pteh, unsigned long ptel)
  121. {
  122. struct kvm *kvm = vcpu->kvm;
  123. unsigned long i, pa, gpa, gfn, psize;
  124. unsigned long slot_fn, hva;
  125. unsigned long *hpte;
  126. struct revmap_entry *rev;
  127. unsigned long g_ptel = ptel;
  128. struct kvm_memory_slot *memslot;
  129. unsigned long *physp, pte_size;
  130. unsigned long is_io;
  131. unsigned long *rmap;
  132. pte_t pte;
  133. unsigned int writing;
  134. unsigned long mmu_seq;
  135. unsigned long rcbits;
  136. bool realmode = vcpu->arch.vcore->vcore_state == VCORE_RUNNING;
  137. psize = hpte_page_size(pteh, ptel);
  138. if (!psize)
  139. return H_PARAMETER;
  140. writing = hpte_is_writable(ptel);
  141. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  142. /* used later to detect if we might have been invalidated */
  143. mmu_seq = kvm->mmu_notifier_seq;
  144. smp_rmb();
  145. /* Find the memslot (if any) for this address */
  146. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  147. gfn = gpa >> PAGE_SHIFT;
  148. memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
  149. pa = 0;
  150. is_io = ~0ul;
  151. rmap = NULL;
  152. if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
  153. /* PPC970 can't do emulated MMIO */
  154. if (!cpu_has_feature(CPU_FTR_ARCH_206))
  155. return H_PARAMETER;
  156. /* Emulated MMIO - mark this with key=31 */
  157. pteh |= HPTE_V_ABSENT;
  158. ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  159. goto do_insert;
  160. }
  161. /* Check if the requested page fits entirely in the memslot. */
  162. if (!slot_is_aligned(memslot, psize))
  163. return H_PARAMETER;
  164. slot_fn = gfn - memslot->base_gfn;
  165. rmap = &memslot->rmap[slot_fn];
  166. if (!kvm->arch.using_mmu_notifiers) {
  167. physp = kvm->arch.slot_phys[memslot->id];
  168. if (!physp)
  169. return H_PARAMETER;
  170. physp += slot_fn;
  171. if (realmode)
  172. physp = real_vmalloc_addr(physp);
  173. pa = *physp;
  174. if (!pa)
  175. return H_TOO_HARD;
  176. is_io = pa & (HPTE_R_I | HPTE_R_W);
  177. pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
  178. pa &= PAGE_MASK;
  179. } else {
  180. /* Translate to host virtual address */
  181. hva = gfn_to_hva_memslot(memslot, gfn);
  182. /* Look up the Linux PTE for the backing page */
  183. pte_size = psize;
  184. pte = lookup_linux_pte(vcpu, hva, writing, &pte_size);
  185. if (pte_present(pte)) {
  186. if (writing && !pte_write(pte))
  187. /* make the actual HPTE be read-only */
  188. ptel = hpte_make_readonly(ptel);
  189. is_io = hpte_cache_bits(pte_val(pte));
  190. pa = pte_pfn(pte) << PAGE_SHIFT;
  191. }
  192. }
  193. if (pte_size < psize)
  194. return H_PARAMETER;
  195. if (pa && pte_size > psize)
  196. pa |= gpa & (pte_size - 1);
  197. ptel &= ~(HPTE_R_PP0 - psize);
  198. ptel |= pa;
  199. if (pa)
  200. pteh |= HPTE_V_VALID;
  201. else
  202. pteh |= HPTE_V_ABSENT;
  203. /* Check WIMG */
  204. if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
  205. if (is_io)
  206. return H_PARAMETER;
  207. /*
  208. * Allow guest to map emulated device memory as
  209. * uncacheable, but actually make it cacheable.
  210. */
  211. ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
  212. ptel |= HPTE_R_M;
  213. }
  214. /* Find and lock the HPTEG slot to use */
  215. do_insert:
  216. if (pte_index >= HPT_NPTE)
  217. return H_PARAMETER;
  218. if (likely((flags & H_EXACT) == 0)) {
  219. pte_index &= ~7UL;
  220. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  221. for (i = 0; i < 8; ++i) {
  222. if ((*hpte & HPTE_V_VALID) == 0 &&
  223. try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  224. HPTE_V_ABSENT))
  225. break;
  226. hpte += 2;
  227. }
  228. if (i == 8) {
  229. /*
  230. * Since try_lock_hpte doesn't retry (not even stdcx.
  231. * failures), it could be that there is a free slot
  232. * but we transiently failed to lock it. Try again,
  233. * actually locking each slot and checking it.
  234. */
  235. hpte -= 16;
  236. for (i = 0; i < 8; ++i) {
  237. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  238. cpu_relax();
  239. if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
  240. break;
  241. *hpte &= ~HPTE_V_HVLOCK;
  242. hpte += 2;
  243. }
  244. if (i == 8)
  245. return H_PTEG_FULL;
  246. }
  247. pte_index += i;
  248. } else {
  249. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  250. if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  251. HPTE_V_ABSENT)) {
  252. /* Lock the slot and check again */
  253. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  254. cpu_relax();
  255. if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  256. *hpte &= ~HPTE_V_HVLOCK;
  257. return H_PTEG_FULL;
  258. }
  259. }
  260. }
  261. /* Save away the guest's idea of the second HPTE dword */
  262. rev = &kvm->arch.revmap[pte_index];
  263. if (realmode)
  264. rev = real_vmalloc_addr(rev);
  265. if (rev)
  266. rev->guest_rpte = g_ptel;
  267. /* Link HPTE into reverse-map chain */
  268. if (pteh & HPTE_V_VALID) {
  269. if (realmode)
  270. rmap = real_vmalloc_addr(rmap);
  271. lock_rmap(rmap);
  272. /* Check for pending invalidations under the rmap chain lock */
  273. if (kvm->arch.using_mmu_notifiers &&
  274. mmu_notifier_retry(vcpu, mmu_seq)) {
  275. /* inval in progress, write a non-present HPTE */
  276. pteh |= HPTE_V_ABSENT;
  277. pteh &= ~HPTE_V_VALID;
  278. unlock_rmap(rmap);
  279. } else {
  280. kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
  281. realmode);
  282. /* Only set R/C in real HPTE if already set in *rmap */
  283. rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
  284. ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
  285. }
  286. }
  287. hpte[1] = ptel;
  288. /* Write the first HPTE dword, unlocking the HPTE and making it valid */
  289. eieio();
  290. hpte[0] = pteh;
  291. asm volatile("ptesync" : : : "memory");
  292. vcpu->arch.gpr[4] = pte_index;
  293. return H_SUCCESS;
  294. }
  295. EXPORT_SYMBOL_GPL(kvmppc_h_enter);
  296. #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
  297. static inline int try_lock_tlbie(unsigned int *lock)
  298. {
  299. unsigned int tmp, old;
  300. unsigned int token = LOCK_TOKEN;
  301. asm volatile("1:lwarx %1,0,%2\n"
  302. " cmpwi cr0,%1,0\n"
  303. " bne 2f\n"
  304. " stwcx. %3,0,%2\n"
  305. " bne- 1b\n"
  306. " isync\n"
  307. "2:"
  308. : "=&r" (tmp), "=&r" (old)
  309. : "r" (lock), "r" (token)
  310. : "cc", "memory");
  311. return old == 0;
  312. }
  313. long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
  314. unsigned long pte_index, unsigned long avpn,
  315. unsigned long va)
  316. {
  317. struct kvm *kvm = vcpu->kvm;
  318. unsigned long *hpte;
  319. unsigned long v, r, rb;
  320. struct revmap_entry *rev;
  321. if (pte_index >= HPT_NPTE)
  322. return H_PARAMETER;
  323. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  324. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  325. cpu_relax();
  326. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  327. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
  328. ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
  329. hpte[0] &= ~HPTE_V_HVLOCK;
  330. return H_NOT_FOUND;
  331. }
  332. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  333. v = hpte[0] & ~HPTE_V_HVLOCK;
  334. if (v & HPTE_V_VALID) {
  335. hpte[0] &= ~HPTE_V_VALID;
  336. rb = compute_tlbie_rb(v, hpte[1], pte_index);
  337. if (!(flags & H_LOCAL) && atomic_read(&kvm->online_vcpus) > 1) {
  338. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  339. cpu_relax();
  340. asm volatile("ptesync" : : : "memory");
  341. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  342. : : "r" (rb), "r" (kvm->arch.lpid));
  343. asm volatile("ptesync" : : : "memory");
  344. kvm->arch.tlbie_lock = 0;
  345. } else {
  346. asm volatile("ptesync" : : : "memory");
  347. asm volatile("tlbiel %0" : : "r" (rb));
  348. asm volatile("ptesync" : : : "memory");
  349. }
  350. /* Read PTE low word after tlbie to get final R/C values */
  351. remove_revmap_chain(kvm, pte_index, rev, v, hpte[1]);
  352. }
  353. r = rev->guest_rpte;
  354. unlock_hpte(hpte, 0);
  355. vcpu->arch.gpr[4] = v;
  356. vcpu->arch.gpr[5] = r;
  357. return H_SUCCESS;
  358. }
  359. long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
  360. {
  361. struct kvm *kvm = vcpu->kvm;
  362. unsigned long *args = &vcpu->arch.gpr[4];
  363. unsigned long *hp, *hptes[4], tlbrb[4];
  364. long int i, j, k, n, found, indexes[4];
  365. unsigned long flags, req, pte_index, rcbits;
  366. long int local = 0;
  367. long int ret = H_SUCCESS;
  368. struct revmap_entry *rev, *revs[4];
  369. if (atomic_read(&kvm->online_vcpus) == 1)
  370. local = 1;
  371. for (i = 0; i < 4 && ret == H_SUCCESS; ) {
  372. n = 0;
  373. for (; i < 4; ++i) {
  374. j = i * 2;
  375. pte_index = args[j];
  376. flags = pte_index >> 56;
  377. pte_index &= ((1ul << 56) - 1);
  378. req = flags >> 6;
  379. flags &= 3;
  380. if (req == 3) { /* no more requests */
  381. i = 4;
  382. break;
  383. }
  384. if (req != 1 || flags == 3 || pte_index >= HPT_NPTE) {
  385. /* parameter error */
  386. args[j] = ((0xa0 | flags) << 56) + pte_index;
  387. ret = H_PARAMETER;
  388. break;
  389. }
  390. hp = (unsigned long *)
  391. (kvm->arch.hpt_virt + (pte_index << 4));
  392. /* to avoid deadlock, don't spin except for first */
  393. if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
  394. if (n)
  395. break;
  396. while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
  397. cpu_relax();
  398. }
  399. found = 0;
  400. if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
  401. switch (flags & 3) {
  402. case 0: /* absolute */
  403. found = 1;
  404. break;
  405. case 1: /* andcond */
  406. if (!(hp[0] & args[j + 1]))
  407. found = 1;
  408. break;
  409. case 2: /* AVPN */
  410. if ((hp[0] & ~0x7fUL) == args[j + 1])
  411. found = 1;
  412. break;
  413. }
  414. }
  415. if (!found) {
  416. hp[0] &= ~HPTE_V_HVLOCK;
  417. args[j] = ((0x90 | flags) << 56) + pte_index;
  418. continue;
  419. }
  420. args[j] = ((0x80 | flags) << 56) + pte_index;
  421. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  422. if (!(hp[0] & HPTE_V_VALID)) {
  423. /* insert R and C bits from PTE */
  424. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  425. args[j] |= rcbits << (56 - 5);
  426. hp[0] = 0;
  427. continue;
  428. }
  429. hp[0] &= ~HPTE_V_VALID; /* leave it locked */
  430. tlbrb[n] = compute_tlbie_rb(hp[0], hp[1], pte_index);
  431. indexes[n] = j;
  432. hptes[n] = hp;
  433. revs[n] = rev;
  434. ++n;
  435. }
  436. if (!n)
  437. break;
  438. /* Now that we've collected a batch, do the tlbies */
  439. if (!local) {
  440. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  441. cpu_relax();
  442. asm volatile("ptesync" : : : "memory");
  443. for (k = 0; k < n; ++k)
  444. asm volatile(PPC_TLBIE(%1,%0) : :
  445. "r" (tlbrb[k]),
  446. "r" (kvm->arch.lpid));
  447. asm volatile("eieio; tlbsync; ptesync" : : : "memory");
  448. kvm->arch.tlbie_lock = 0;
  449. } else {
  450. asm volatile("ptesync" : : : "memory");
  451. for (k = 0; k < n; ++k)
  452. asm volatile("tlbiel %0" : : "r" (tlbrb[k]));
  453. asm volatile("ptesync" : : : "memory");
  454. }
  455. /* Read PTE low words after tlbie to get final R/C values */
  456. for (k = 0; k < n; ++k) {
  457. j = indexes[k];
  458. pte_index = args[j] & ((1ul << 56) - 1);
  459. hp = hptes[k];
  460. rev = revs[k];
  461. remove_revmap_chain(kvm, pte_index, rev, hp[0], hp[1]);
  462. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  463. args[j] |= rcbits << (56 - 5);
  464. hp[0] = 0;
  465. }
  466. }
  467. return ret;
  468. }
  469. long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
  470. unsigned long pte_index, unsigned long avpn,
  471. unsigned long va)
  472. {
  473. struct kvm *kvm = vcpu->kvm;
  474. unsigned long *hpte;
  475. struct revmap_entry *rev;
  476. unsigned long v, r, rb, mask, bits;
  477. if (pte_index >= HPT_NPTE)
  478. return H_PARAMETER;
  479. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  480. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  481. cpu_relax();
  482. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  483. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
  484. hpte[0] &= ~HPTE_V_HVLOCK;
  485. return H_NOT_FOUND;
  486. }
  487. if (atomic_read(&kvm->online_vcpus) == 1)
  488. flags |= H_LOCAL;
  489. v = hpte[0];
  490. bits = (flags << 55) & HPTE_R_PP0;
  491. bits |= (flags << 48) & HPTE_R_KEY_HI;
  492. bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
  493. /* Update guest view of 2nd HPTE dword */
  494. mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
  495. HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  496. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  497. if (rev) {
  498. r = (rev->guest_rpte & ~mask) | bits;
  499. rev->guest_rpte = r;
  500. }
  501. r = (hpte[1] & ~mask) | bits;
  502. /* Update HPTE */
  503. if (v & HPTE_V_VALID) {
  504. rb = compute_tlbie_rb(v, r, pte_index);
  505. hpte[0] = v & ~HPTE_V_VALID;
  506. if (!(flags & H_LOCAL)) {
  507. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  508. cpu_relax();
  509. asm volatile("ptesync" : : : "memory");
  510. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  511. : : "r" (rb), "r" (kvm->arch.lpid));
  512. asm volatile("ptesync" : : : "memory");
  513. kvm->arch.tlbie_lock = 0;
  514. } else {
  515. asm volatile("ptesync" : : : "memory");
  516. asm volatile("tlbiel %0" : : "r" (rb));
  517. asm volatile("ptesync" : : : "memory");
  518. }
  519. }
  520. hpte[1] = r;
  521. eieio();
  522. hpte[0] = v & ~HPTE_V_HVLOCK;
  523. asm volatile("ptesync" : : : "memory");
  524. return H_SUCCESS;
  525. }
  526. long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
  527. unsigned long pte_index)
  528. {
  529. struct kvm *kvm = vcpu->kvm;
  530. unsigned long *hpte, v, r;
  531. int i, n = 1;
  532. struct revmap_entry *rev = NULL;
  533. if (pte_index >= HPT_NPTE)
  534. return H_PARAMETER;
  535. if (flags & H_READ_4) {
  536. pte_index &= ~3;
  537. n = 4;
  538. }
  539. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  540. for (i = 0; i < n; ++i, ++pte_index) {
  541. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  542. v = hpte[0] & ~HPTE_V_HVLOCK;
  543. r = hpte[1];
  544. if (v & HPTE_V_ABSENT) {
  545. v &= ~HPTE_V_ABSENT;
  546. v |= HPTE_V_VALID;
  547. }
  548. if (v & HPTE_V_VALID)
  549. r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
  550. vcpu->arch.gpr[4 + i * 2] = v;
  551. vcpu->arch.gpr[5 + i * 2] = r;
  552. }
  553. return H_SUCCESS;
  554. }
  555. void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
  556. unsigned long pte_index)
  557. {
  558. unsigned long rb;
  559. hptep[0] &= ~HPTE_V_VALID;
  560. rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
  561. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  562. cpu_relax();
  563. asm volatile("ptesync" : : : "memory");
  564. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  565. : : "r" (rb), "r" (kvm->arch.lpid));
  566. asm volatile("ptesync" : : : "memory");
  567. kvm->arch.tlbie_lock = 0;
  568. }
  569. EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
  570. void kvmppc_clear_ref_hpte(struct kvm *kvm, unsigned long *hptep,
  571. unsigned long pte_index)
  572. {
  573. unsigned long rb;
  574. unsigned char rbyte;
  575. rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
  576. rbyte = (hptep[1] & ~HPTE_R_R) >> 8;
  577. /* modify only the second-last byte, which contains the ref bit */
  578. *((char *)hptep + 14) = rbyte;
  579. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  580. cpu_relax();
  581. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  582. : : "r" (rb), "r" (kvm->arch.lpid));
  583. asm volatile("ptesync" : : : "memory");
  584. kvm->arch.tlbie_lock = 0;
  585. }
  586. EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
  587. static int slb_base_page_shift[4] = {
  588. 24, /* 16M */
  589. 16, /* 64k */
  590. 34, /* 16G */
  591. 20, /* 1M, unsupported */
  592. };
  593. /* When called from virtmode, this func should be protected by
  594. * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
  595. * can trigger deadlock issue.
  596. */
  597. long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
  598. unsigned long valid)
  599. {
  600. unsigned int i;
  601. unsigned int pshift;
  602. unsigned long somask;
  603. unsigned long vsid, hash;
  604. unsigned long avpn;
  605. unsigned long *hpte;
  606. unsigned long mask, val;
  607. unsigned long v, r;
  608. /* Get page shift, work out hash and AVPN etc. */
  609. mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
  610. val = 0;
  611. pshift = 12;
  612. if (slb_v & SLB_VSID_L) {
  613. mask |= HPTE_V_LARGE;
  614. val |= HPTE_V_LARGE;
  615. pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
  616. }
  617. if (slb_v & SLB_VSID_B_1T) {
  618. somask = (1UL << 40) - 1;
  619. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
  620. vsid ^= vsid << 25;
  621. } else {
  622. somask = (1UL << 28) - 1;
  623. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
  624. }
  625. hash = (vsid ^ ((eaddr & somask) >> pshift)) & HPT_HASH_MASK;
  626. avpn = slb_v & ~(somask >> 16); /* also includes B */
  627. avpn |= (eaddr & somask) >> 16;
  628. if (pshift >= 24)
  629. avpn &= ~((1UL << (pshift - 16)) - 1);
  630. else
  631. avpn &= ~0x7fUL;
  632. val |= avpn;
  633. for (;;) {
  634. hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));
  635. for (i = 0; i < 16; i += 2) {
  636. /* Read the PTE racily */
  637. v = hpte[i] & ~HPTE_V_HVLOCK;
  638. /* Check valid/absent, hash, segment size and AVPN */
  639. if (!(v & valid) || (v & mask) != val)
  640. continue;
  641. /* Lock the PTE and read it under the lock */
  642. while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
  643. cpu_relax();
  644. v = hpte[i] & ~HPTE_V_HVLOCK;
  645. r = hpte[i+1];
  646. /*
  647. * Check the HPTE again, including large page size
  648. * Since we don't currently allow any MPSS (mixed
  649. * page-size segment) page sizes, it is sufficient
  650. * to check against the actual page size.
  651. */
  652. if ((v & valid) && (v & mask) == val &&
  653. hpte_page_size(v, r) == (1ul << pshift))
  654. /* Return with the HPTE still locked */
  655. return (hash << 3) + (i >> 1);
  656. /* Unlock and move on */
  657. hpte[i] = v;
  658. }
  659. if (val & HPTE_V_SECONDARY)
  660. break;
  661. val |= HPTE_V_SECONDARY;
  662. hash = hash ^ HPT_HASH_MASK;
  663. }
  664. return -1;
  665. }
  666. EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
  667. /*
  668. * Called in real mode to check whether an HPTE not found fault
  669. * is due to accessing a paged-out page or an emulated MMIO page,
  670. * or if a protection fault is due to accessing a page that the
  671. * guest wanted read/write access to but which we made read-only.
  672. * Returns a possibly modified status (DSISR) value if not
  673. * (i.e. pass the interrupt to the guest),
  674. * -1 to pass the fault up to host kernel mode code, -2 to do that
  675. * and also load the instruction word (for MMIO emulation),
  676. * or 0 if we should make the guest retry the access.
  677. */
  678. long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  679. unsigned long slb_v, unsigned int status, bool data)
  680. {
  681. struct kvm *kvm = vcpu->kvm;
  682. long int index;
  683. unsigned long v, r, gr;
  684. unsigned long *hpte;
  685. unsigned long valid;
  686. struct revmap_entry *rev;
  687. unsigned long pp, key;
  688. /* For protection fault, expect to find a valid HPTE */
  689. valid = HPTE_V_VALID;
  690. if (status & DSISR_NOHPTE)
  691. valid |= HPTE_V_ABSENT;
  692. index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
  693. if (index < 0) {
  694. if (status & DSISR_NOHPTE)
  695. return status; /* there really was no HPTE */
  696. return 0; /* for prot fault, HPTE disappeared */
  697. }
  698. hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  699. v = hpte[0] & ~HPTE_V_HVLOCK;
  700. r = hpte[1];
  701. rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
  702. gr = rev->guest_rpte;
  703. unlock_hpte(hpte, v);
  704. /* For not found, if the HPTE is valid by now, retry the instruction */
  705. if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
  706. return 0;
  707. /* Check access permissions to the page */
  708. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  709. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  710. status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
  711. if (!data) {
  712. if (gr & (HPTE_R_N | HPTE_R_G))
  713. return status | SRR1_ISI_N_OR_G;
  714. if (!hpte_read_permission(pp, slb_v & key))
  715. return status | SRR1_ISI_PROT;
  716. } else if (status & DSISR_ISSTORE) {
  717. /* check write permission */
  718. if (!hpte_write_permission(pp, slb_v & key))
  719. return status | DSISR_PROTFAULT;
  720. } else {
  721. if (!hpte_read_permission(pp, slb_v & key))
  722. return status | DSISR_PROTFAULT;
  723. }
  724. /* Check storage key, if applicable */
  725. if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
  726. unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
  727. if (status & DSISR_ISSTORE)
  728. perm >>= 1;
  729. if (perm & 1)
  730. return status | DSISR_KEYFAULT;
  731. }
  732. /* Save HPTE info for virtual-mode handler */
  733. vcpu->arch.pgfault_addr = addr;
  734. vcpu->arch.pgfault_index = index;
  735. vcpu->arch.pgfault_hpte[0] = v;
  736. vcpu->arch.pgfault_hpte[1] = r;
  737. /* Check the storage key to see if it is possibly emulated MMIO */
  738. if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
  739. (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
  740. (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
  741. return -2; /* MMIO emulation - load instr word */
  742. return -1; /* send fault up to host kernel mode */
  743. }