dma.c 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231
  1. /*
  2. * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corporation
  3. *
  4. * Provide default implementations of the DMA mapping callbacks for
  5. * directly mapped busses.
  6. */
  7. #include <linux/device.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/dma-debug.h>
  10. #include <linux/gfp.h>
  11. #include <linux/memblock.h>
  12. #include <linux/export.h>
  13. #include <asm/bug.h>
  14. #include <asm/abs_addr.h>
  15. #include <asm/machdep.h>
  16. /*
  17. * Generic direct DMA implementation
  18. *
  19. * This implementation supports a per-device offset that can be applied if
  20. * the address at which memory is visible to devices is not 0. Platform code
  21. * can set archdata.dma_data to an unsigned long holding the offset. By
  22. * default the offset is PCI_DRAM_OFFSET.
  23. */
  24. void *dma_direct_alloc_coherent(struct device *dev, size_t size,
  25. dma_addr_t *dma_handle, gfp_t flag,
  26. struct dma_attrs *attrs)
  27. {
  28. void *ret;
  29. #ifdef CONFIG_NOT_COHERENT_CACHE
  30. ret = __dma_alloc_coherent(dev, size, dma_handle, flag);
  31. if (ret == NULL)
  32. return NULL;
  33. *dma_handle += get_dma_offset(dev);
  34. return ret;
  35. #else
  36. struct page *page;
  37. int node = dev_to_node(dev);
  38. /* ignore region specifiers */
  39. flag &= ~(__GFP_HIGHMEM);
  40. page = alloc_pages_node(node, flag, get_order(size));
  41. if (page == NULL)
  42. return NULL;
  43. ret = page_address(page);
  44. memset(ret, 0, size);
  45. *dma_handle = virt_to_abs(ret) + get_dma_offset(dev);
  46. return ret;
  47. #endif
  48. }
  49. void dma_direct_free_coherent(struct device *dev, size_t size,
  50. void *vaddr, dma_addr_t dma_handle,
  51. struct dma_attrs *attrs)
  52. {
  53. #ifdef CONFIG_NOT_COHERENT_CACHE
  54. __dma_free_coherent(size, vaddr);
  55. #else
  56. free_pages((unsigned long)vaddr, get_order(size));
  57. #endif
  58. }
  59. static int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl,
  60. int nents, enum dma_data_direction direction,
  61. struct dma_attrs *attrs)
  62. {
  63. struct scatterlist *sg;
  64. int i;
  65. for_each_sg(sgl, sg, nents, i) {
  66. sg->dma_address = sg_phys(sg) + get_dma_offset(dev);
  67. sg->dma_length = sg->length;
  68. __dma_sync_page(sg_page(sg), sg->offset, sg->length, direction);
  69. }
  70. return nents;
  71. }
  72. static void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sg,
  73. int nents, enum dma_data_direction direction,
  74. struct dma_attrs *attrs)
  75. {
  76. }
  77. static int dma_direct_dma_supported(struct device *dev, u64 mask)
  78. {
  79. #ifdef CONFIG_PPC64
  80. /* Could be improved so platforms can set the limit in case
  81. * they have limited DMA windows
  82. */
  83. return mask >= get_dma_offset(dev) + (memblock_end_of_DRAM() - 1);
  84. #else
  85. return 1;
  86. #endif
  87. }
  88. static u64 dma_direct_get_required_mask(struct device *dev)
  89. {
  90. u64 end, mask;
  91. end = memblock_end_of_DRAM() + get_dma_offset(dev);
  92. mask = 1ULL << (fls64(end) - 1);
  93. mask += mask - 1;
  94. return mask;
  95. }
  96. static inline dma_addr_t dma_direct_map_page(struct device *dev,
  97. struct page *page,
  98. unsigned long offset,
  99. size_t size,
  100. enum dma_data_direction dir,
  101. struct dma_attrs *attrs)
  102. {
  103. BUG_ON(dir == DMA_NONE);
  104. __dma_sync_page(page, offset, size, dir);
  105. return page_to_phys(page) + offset + get_dma_offset(dev);
  106. }
  107. static inline void dma_direct_unmap_page(struct device *dev,
  108. dma_addr_t dma_address,
  109. size_t size,
  110. enum dma_data_direction direction,
  111. struct dma_attrs *attrs)
  112. {
  113. }
  114. #ifdef CONFIG_NOT_COHERENT_CACHE
  115. static inline void dma_direct_sync_sg(struct device *dev,
  116. struct scatterlist *sgl, int nents,
  117. enum dma_data_direction direction)
  118. {
  119. struct scatterlist *sg;
  120. int i;
  121. for_each_sg(sgl, sg, nents, i)
  122. __dma_sync_page(sg_page(sg), sg->offset, sg->length, direction);
  123. }
  124. static inline void dma_direct_sync_single(struct device *dev,
  125. dma_addr_t dma_handle, size_t size,
  126. enum dma_data_direction direction)
  127. {
  128. __dma_sync(bus_to_virt(dma_handle), size, direction);
  129. }
  130. #endif
  131. struct dma_map_ops dma_direct_ops = {
  132. .alloc = dma_direct_alloc_coherent,
  133. .free = dma_direct_free_coherent,
  134. .map_sg = dma_direct_map_sg,
  135. .unmap_sg = dma_direct_unmap_sg,
  136. .dma_supported = dma_direct_dma_supported,
  137. .map_page = dma_direct_map_page,
  138. .unmap_page = dma_direct_unmap_page,
  139. .get_required_mask = dma_direct_get_required_mask,
  140. #ifdef CONFIG_NOT_COHERENT_CACHE
  141. .sync_single_for_cpu = dma_direct_sync_single,
  142. .sync_single_for_device = dma_direct_sync_single,
  143. .sync_sg_for_cpu = dma_direct_sync_sg,
  144. .sync_sg_for_device = dma_direct_sync_sg,
  145. #endif
  146. };
  147. EXPORT_SYMBOL(dma_direct_ops);
  148. #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
  149. int dma_set_mask(struct device *dev, u64 dma_mask)
  150. {
  151. struct dma_map_ops *dma_ops = get_dma_ops(dev);
  152. if (ppc_md.dma_set_mask)
  153. return ppc_md.dma_set_mask(dev, dma_mask);
  154. if ((dma_ops != NULL) && (dma_ops->set_dma_mask != NULL))
  155. return dma_ops->set_dma_mask(dev, dma_mask);
  156. if (!dev->dma_mask || !dma_supported(dev, dma_mask))
  157. return -EIO;
  158. *dev->dma_mask = dma_mask;
  159. return 0;
  160. }
  161. EXPORT_SYMBOL(dma_set_mask);
  162. u64 dma_get_required_mask(struct device *dev)
  163. {
  164. struct dma_map_ops *dma_ops = get_dma_ops(dev);
  165. if (ppc_md.dma_get_required_mask)
  166. return ppc_md.dma_get_required_mask(dev);
  167. if (unlikely(dma_ops == NULL))
  168. return 0;
  169. if (dma_ops->get_required_mask)
  170. return dma_ops->get_required_mask(dev);
  171. return DMA_BIT_MASK(8 * sizeof(dma_addr_t));
  172. }
  173. EXPORT_SYMBOL_GPL(dma_get_required_mask);
  174. static int __init dma_init(void)
  175. {
  176. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  177. return 0;
  178. }
  179. fs_initcall(dma_init);
  180. int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
  181. void *cpu_addr, dma_addr_t handle, size_t size)
  182. {
  183. unsigned long pfn;
  184. #ifdef CONFIG_NOT_COHERENT_CACHE
  185. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  186. pfn = __dma_get_coherent_pfn((unsigned long)cpu_addr);
  187. #else
  188. pfn = page_to_pfn(virt_to_page(cpu_addr));
  189. #endif
  190. return remap_pfn_range(vma, vma->vm_start,
  191. pfn + vma->vm_pgoff,
  192. vma->vm_end - vma->vm_start,
  193. vma->vm_page_prot);
  194. }
  195. EXPORT_SYMBOL_GPL(dma_mmap_coherent);