vmalloc.c 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <linux/atomic.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/shmparam.h>
  32. /*** Page table manipulation functions ***/
  33. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  34. {
  35. pte_t *pte;
  36. #ifdef CONFIG_TIMA_RKP_LAZY_MMU
  37. unsigned long do_lazy_mmu = 0;
  38. #endif
  39. pte = pte_offset_kernel(pmd, addr);
  40. #ifdef CONFIG_TIMA_RKP_LAZY_MMU
  41. do_lazy_mmu = 1;
  42. if (do_lazy_mmu) {
  43. spin_lock(&init_mm.page_table_lock);
  44. tima_send_cmd2((unsigned int)pmd, TIMA_LAZY_MMU_START, TIMA_LAZY_MMU_CMDID);
  45. flush_tlb_l2_page(pmd);
  46. spin_unlock(&init_mm.page_table_lock);
  47. }
  48. #endif
  49. do {
  50. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  51. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  52. } while (pte++, addr += PAGE_SIZE, addr != end);
  53. #ifdef CONFIG_TIMA_RKP_LAZY_MMU
  54. if (do_lazy_mmu) {
  55. spin_lock(&init_mm.page_table_lock);
  56. tima_send_cmd2((unsigned int)pmd, TIMA_LAZY_MMU_STOP, TIMA_LAZY_MMU_CMDID);
  57. flush_tlb_l2_page(pmd);
  58. spin_unlock(&init_mm.page_table_lock);
  59. }
  60. #endif
  61. }
  62. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  63. {
  64. pmd_t *pmd;
  65. unsigned long next;
  66. pmd = pmd_offset(pud, addr);
  67. do {
  68. next = pmd_addr_end(addr, end);
  69. if (pmd_none_or_clear_bad(pmd))
  70. continue;
  71. vunmap_pte_range(pmd, addr, next);
  72. } while (pmd++, addr = next, addr != end);
  73. }
  74. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  75. {
  76. pud_t *pud;
  77. unsigned long next;
  78. pud = pud_offset(pgd, addr);
  79. do {
  80. next = pud_addr_end(addr, end);
  81. if (pud_none_or_clear_bad(pud))
  82. continue;
  83. vunmap_pmd_range(pud, addr, next);
  84. } while (pud++, addr = next, addr != end);
  85. }
  86. static void vunmap_page_range(unsigned long addr, unsigned long end)
  87. {
  88. pgd_t *pgd;
  89. unsigned long next;
  90. BUG_ON(addr >= end);
  91. pgd = pgd_offset_k(addr);
  92. do {
  93. next = pgd_addr_end(addr, end);
  94. if (pgd_none_or_clear_bad(pgd))
  95. continue;
  96. vunmap_pud_range(pgd, addr, next);
  97. } while (pgd++, addr = next, addr != end);
  98. }
  99. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  100. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  101. {
  102. pte_t *pte;
  103. #ifdef CONFIG_TIMA_RKP_LAZY_MMU
  104. unsigned long do_lazy_mmu = 0;
  105. #endif
  106. /*
  107. * nr is a running index into the array which helps higher level
  108. * callers keep track of where we're up to.
  109. */
  110. pte = pte_alloc_kernel(pmd, addr);
  111. if (!pte)
  112. return -ENOMEM;
  113. #ifdef CONFIG_TIMA_RKP_LAZY_MMU
  114. do_lazy_mmu = 1;
  115. if (do_lazy_mmu) {
  116. spin_lock(&init_mm.page_table_lock);
  117. tima_send_cmd2((unsigned int)pmd, TIMA_LAZY_MMU_START, TIMA_LAZY_MMU_CMDID);
  118. flush_tlb_l2_page(pmd);
  119. spin_unlock(&init_mm.page_table_lock);
  120. }
  121. #endif
  122. do {
  123. struct page *page = pages[*nr];
  124. if (WARN_ON(!pte_none(*pte)))
  125. return -EBUSY;
  126. if (WARN_ON(!page))
  127. return -ENOMEM;
  128. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  129. (*nr)++;
  130. } while (pte++, addr += PAGE_SIZE, addr != end);
  131. #ifdef CONFIG_TIMA_RKP_LAZY_MMU
  132. if (do_lazy_mmu) {
  133. spin_lock(&init_mm.page_table_lock);
  134. tima_send_cmd2((unsigned int)pmd, TIMA_LAZY_MMU_STOP, TIMA_LAZY_MMU_CMDID);
  135. flush_tlb_l2_page(pmd);
  136. spin_unlock(&init_mm.page_table_lock);
  137. }
  138. #endif
  139. return 0;
  140. }
  141. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  142. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  143. {
  144. pmd_t *pmd;
  145. unsigned long next;
  146. pmd = pmd_alloc(&init_mm, pud, addr);
  147. if (!pmd)
  148. return -ENOMEM;
  149. do {
  150. next = pmd_addr_end(addr, end);
  151. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  152. return -ENOMEM;
  153. } while (pmd++, addr = next, addr != end);
  154. return 0;
  155. }
  156. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  157. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  158. {
  159. pud_t *pud;
  160. unsigned long next;
  161. pud = pud_alloc(&init_mm, pgd, addr);
  162. if (!pud)
  163. return -ENOMEM;
  164. do {
  165. next = pud_addr_end(addr, end);
  166. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  167. return -ENOMEM;
  168. } while (pud++, addr = next, addr != end);
  169. return 0;
  170. }
  171. /*
  172. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  173. * will have pfns corresponding to the "pages" array.
  174. *
  175. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  176. */
  177. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  178. pgprot_t prot, struct page **pages)
  179. {
  180. pgd_t *pgd;
  181. unsigned long next;
  182. unsigned long addr = start;
  183. int err = 0;
  184. int nr = 0;
  185. BUG_ON(addr >= end);
  186. pgd = pgd_offset_k(addr);
  187. do {
  188. next = pgd_addr_end(addr, end);
  189. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  190. if (err)
  191. return err;
  192. } while (pgd++, addr = next, addr != end);
  193. return nr;
  194. }
  195. static int vmap_page_range(unsigned long start, unsigned long end,
  196. pgprot_t prot, struct page **pages)
  197. {
  198. int ret;
  199. ret = vmap_page_range_noflush(start, end, prot, pages);
  200. flush_cache_vmap(start, end);
  201. return ret;
  202. }
  203. int is_vmalloc_or_module_addr(const void *x)
  204. {
  205. /*
  206. * ARM, x86-64 and sparc64 put modules in a special place,
  207. * and fall back on vmalloc() if that fails. Others
  208. * just put it in the vmalloc space.
  209. */
  210. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  211. unsigned long addr = (unsigned long)x;
  212. if (addr >= MODULES_VADDR && addr < MODULES_END)
  213. return 1;
  214. #endif
  215. return is_vmalloc_addr(x);
  216. }
  217. /*
  218. * Walk a vmap address to the struct page it maps.
  219. */
  220. struct page *vmalloc_to_page(const void *vmalloc_addr)
  221. {
  222. unsigned long addr = (unsigned long) vmalloc_addr;
  223. struct page *page = NULL;
  224. pgd_t *pgd = pgd_offset_k(addr);
  225. /*
  226. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  227. * architectures that do not vmalloc module space
  228. */
  229. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  230. if (!pgd_none(*pgd)) {
  231. pud_t *pud = pud_offset(pgd, addr);
  232. if (!pud_none(*pud)) {
  233. pmd_t *pmd = pmd_offset(pud, addr);
  234. if (!pmd_none(*pmd)) {
  235. pte_t *ptep, pte;
  236. ptep = pte_offset_map(pmd, addr);
  237. pte = *ptep;
  238. if (pte_present(pte))
  239. page = pte_page(pte);
  240. pte_unmap(ptep);
  241. }
  242. }
  243. }
  244. return page;
  245. }
  246. EXPORT_SYMBOL(vmalloc_to_page);
  247. /*
  248. * Map a vmalloc()-space virtual address to the physical page frame number.
  249. */
  250. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  251. {
  252. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  253. }
  254. EXPORT_SYMBOL(vmalloc_to_pfn);
  255. /*** Global kva allocator ***/
  256. #define VM_LAZY_FREE 0x01
  257. #define VM_LAZY_FREEING 0x02
  258. #define VM_VM_AREA 0x04
  259. struct vmap_area {
  260. unsigned long va_start;
  261. unsigned long va_end;
  262. unsigned long flags;
  263. struct rb_node rb_node; /* address sorted rbtree */
  264. struct list_head list; /* address sorted list */
  265. struct list_head purge_list; /* "lazy purge" list */
  266. struct vm_struct *vm;
  267. struct rcu_head rcu_head;
  268. };
  269. static DEFINE_SPINLOCK(vmap_area_lock);
  270. static LIST_HEAD(vmap_area_list);
  271. static struct rb_root vmap_area_root = RB_ROOT;
  272. /* The vmap cache globals are protected by vmap_area_lock */
  273. static struct rb_node *free_vmap_cache;
  274. static unsigned long cached_hole_size;
  275. static unsigned long cached_vstart;
  276. static unsigned long cached_align;
  277. static unsigned long vmap_area_pcpu_hole;
  278. #ifdef CONFIG_ENABLE_VMALLOC_SAVING
  279. #define POSSIBLE_VMALLOC_START PAGE_OFFSET
  280. #define VMALLOC_BITMAP_SIZE ((VMALLOC_END - PAGE_OFFSET) >> \
  281. PAGE_SHIFT)
  282. #define VMALLOC_TO_BIT(addr) ((addr - PAGE_OFFSET) >> PAGE_SHIFT)
  283. #define BIT_TO_VMALLOC(i) (PAGE_OFFSET + i * PAGE_SIZE)
  284. DECLARE_BITMAP(possible_areas, VMALLOC_BITMAP_SIZE);
  285. void mark_vmalloc_reserved_area(void *x, unsigned long size)
  286. {
  287. unsigned long addr = (unsigned long)x;
  288. bitmap_set(possible_areas, VMALLOC_TO_BIT(addr), size >> PAGE_SHIFT);
  289. }
  290. int is_vmalloc_addr(const void *x)
  291. {
  292. unsigned long addr = (unsigned long)x;
  293. if (addr < POSSIBLE_VMALLOC_START || addr >= VMALLOC_END)
  294. return 0;
  295. if (test_bit(VMALLOC_TO_BIT(addr), possible_areas))
  296. return 0;
  297. return 1;
  298. }
  299. #else
  300. int is_vmalloc_addr(const void *x)
  301. {
  302. unsigned long addr = (unsigned long)x;
  303. return addr >= VMALLOC_START && addr < VMALLOC_END;
  304. }
  305. #endif
  306. EXPORT_SYMBOL(is_vmalloc_addr);
  307. static struct vmap_area *__find_vmap_area(unsigned long addr)
  308. {
  309. struct rb_node *n = vmap_area_root.rb_node;
  310. while (n) {
  311. struct vmap_area *va;
  312. va = rb_entry(n, struct vmap_area, rb_node);
  313. if (addr < va->va_start)
  314. n = n->rb_left;
  315. else if (addr > va->va_start)
  316. n = n->rb_right;
  317. else
  318. return va;
  319. }
  320. return NULL;
  321. }
  322. static void __insert_vmap_area(struct vmap_area *va)
  323. {
  324. struct rb_node **p = &vmap_area_root.rb_node;
  325. struct rb_node *parent = NULL;
  326. struct rb_node *tmp;
  327. while (*p) {
  328. struct vmap_area *tmp_va;
  329. parent = *p;
  330. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  331. if (va->va_start < tmp_va->va_end)
  332. p = &(*p)->rb_left;
  333. else if (va->va_end > tmp_va->va_start)
  334. p = &(*p)->rb_right;
  335. else
  336. BUG();
  337. }
  338. rb_link_node(&va->rb_node, parent, p);
  339. rb_insert_color(&va->rb_node, &vmap_area_root);
  340. /* address-sort this list so it is usable like the vmlist */
  341. tmp = rb_prev(&va->rb_node);
  342. if (tmp) {
  343. struct vmap_area *prev;
  344. prev = rb_entry(tmp, struct vmap_area, rb_node);
  345. list_add_rcu(&va->list, &prev->list);
  346. } else
  347. list_add_rcu(&va->list, &vmap_area_list);
  348. }
  349. static void purge_vmap_area_lazy(void);
  350. /*
  351. * Allocate a region of KVA of the specified size and alignment, within the
  352. * vstart and vend.
  353. */
  354. static struct vmap_area *alloc_vmap_area(unsigned long size,
  355. unsigned long align,
  356. unsigned long vstart, unsigned long vend,
  357. int node, gfp_t gfp_mask)
  358. {
  359. struct vmap_area *va;
  360. struct rb_node *n;
  361. unsigned long addr;
  362. int purged = 0;
  363. struct vmap_area *first;
  364. BUG_ON(!size);
  365. BUG_ON(size & ~PAGE_MASK);
  366. BUG_ON(!is_power_of_2(align));
  367. va = kmalloc_node(sizeof(struct vmap_area),
  368. gfp_mask & GFP_RECLAIM_MASK, node);
  369. if (unlikely(!va))
  370. return ERR_PTR(-ENOMEM);
  371. /*
  372. * Only scan the relevant parts containing pointers to other objects
  373. * to avoid false negatives.
  374. */
  375. kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
  376. retry:
  377. spin_lock(&vmap_area_lock);
  378. /*
  379. * Invalidate cache if we have more permissive parameters.
  380. * cached_hole_size notes the largest hole noticed _below_
  381. * the vmap_area cached in free_vmap_cache: if size fits
  382. * into that hole, we want to scan from vstart to reuse
  383. * the hole instead of allocating above free_vmap_cache.
  384. * Note that __free_vmap_area may update free_vmap_cache
  385. * without updating cached_hole_size or cached_align.
  386. */
  387. if (!free_vmap_cache ||
  388. size < cached_hole_size ||
  389. vstart < cached_vstart ||
  390. align < cached_align) {
  391. nocache:
  392. cached_hole_size = 0;
  393. free_vmap_cache = NULL;
  394. }
  395. /* record if we encounter less permissive parameters */
  396. cached_vstart = vstart;
  397. cached_align = align;
  398. /* find starting point for our search */
  399. if (free_vmap_cache) {
  400. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  401. addr = ALIGN(first->va_end, align);
  402. if (addr < vstart)
  403. goto nocache;
  404. if (addr + size < addr)
  405. goto overflow;
  406. } else {
  407. addr = ALIGN(vstart, align);
  408. if (addr + size < addr)
  409. goto overflow;
  410. n = vmap_area_root.rb_node;
  411. first = NULL;
  412. while (n) {
  413. struct vmap_area *tmp;
  414. tmp = rb_entry(n, struct vmap_area, rb_node);
  415. if (tmp->va_end >= addr) {
  416. first = tmp;
  417. if (tmp->va_start <= addr)
  418. break;
  419. n = n->rb_left;
  420. } else
  421. n = n->rb_right;
  422. }
  423. if (!first)
  424. goto found;
  425. }
  426. /* from the starting point, walk areas until a suitable hole is found */
  427. while (addr + size > first->va_start && addr + size <= vend) {
  428. if (addr + cached_hole_size < first->va_start)
  429. cached_hole_size = first->va_start - addr;
  430. addr = ALIGN(first->va_end, align);
  431. if (addr + size < addr)
  432. goto overflow;
  433. n = rb_next(&first->rb_node);
  434. if (n)
  435. first = rb_entry(n, struct vmap_area, rb_node);
  436. else
  437. goto found;
  438. }
  439. found:
  440. /*
  441. * Check also calculated address against the vstart,
  442. * because it can be 0 because of big align request.
  443. */
  444. if (addr + size > vend || addr < vstart)
  445. goto overflow;
  446. va->va_start = addr;
  447. va->va_end = addr + size;
  448. va->flags = 0;
  449. __insert_vmap_area(va);
  450. free_vmap_cache = &va->rb_node;
  451. spin_unlock(&vmap_area_lock);
  452. BUG_ON(va->va_start & (align-1));
  453. BUG_ON(va->va_start < vstart);
  454. BUG_ON(va->va_end > vend);
  455. return va;
  456. overflow:
  457. spin_unlock(&vmap_area_lock);
  458. if (!purged) {
  459. purge_vmap_area_lazy();
  460. purged = 1;
  461. goto retry;
  462. }
  463. if (printk_ratelimit())
  464. printk(KERN_WARNING
  465. "vmap allocation for size %lu failed: "
  466. "use vmalloc=<size> to increase size.\n", size);
  467. kfree(va);
  468. return ERR_PTR(-EBUSY);
  469. }
  470. static void __free_vmap_area(struct vmap_area *va)
  471. {
  472. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  473. if (free_vmap_cache) {
  474. if (va->va_end < cached_vstart) {
  475. free_vmap_cache = NULL;
  476. } else {
  477. struct vmap_area *cache;
  478. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  479. if (va->va_start <= cache->va_start) {
  480. free_vmap_cache = rb_prev(&va->rb_node);
  481. /*
  482. * We don't try to update cached_hole_size or
  483. * cached_align, but it won't go very wrong.
  484. */
  485. }
  486. }
  487. }
  488. rb_erase(&va->rb_node, &vmap_area_root);
  489. RB_CLEAR_NODE(&va->rb_node);
  490. list_del_rcu(&va->list);
  491. /*
  492. * Track the highest possible candidate for pcpu area
  493. * allocation. Areas outside of vmalloc area can be returned
  494. * here too, consider only end addresses which fall inside
  495. * vmalloc area proper.
  496. */
  497. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  498. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  499. kfree_rcu(va, rcu_head);
  500. }
  501. /*
  502. * Free a region of KVA allocated by alloc_vmap_area
  503. */
  504. static void free_vmap_area(struct vmap_area *va)
  505. {
  506. spin_lock(&vmap_area_lock);
  507. __free_vmap_area(va);
  508. spin_unlock(&vmap_area_lock);
  509. }
  510. /*
  511. * Clear the pagetable entries of a given vmap_area
  512. */
  513. static void unmap_vmap_area(struct vmap_area *va)
  514. {
  515. vunmap_page_range(va->va_start, va->va_end);
  516. }
  517. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  518. {
  519. /*
  520. * Unmap page tables and force a TLB flush immediately if
  521. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  522. * bugs similarly to those in linear kernel virtual address
  523. * space after a page has been freed.
  524. *
  525. * All the lazy freeing logic is still retained, in order to
  526. * minimise intrusiveness of this debugging feature.
  527. *
  528. * This is going to be *slow* (linear kernel virtual address
  529. * debugging doesn't do a broadcast TLB flush so it is a lot
  530. * faster).
  531. */
  532. #ifdef CONFIG_DEBUG_PAGEALLOC
  533. vunmap_page_range(start, end);
  534. flush_tlb_kernel_range(start, end);
  535. #endif
  536. }
  537. /*
  538. * lazy_max_pages is the maximum amount of virtual address space we gather up
  539. * before attempting to purge with a TLB flush.
  540. *
  541. * There is a tradeoff here: a larger number will cover more kernel page tables
  542. * and take slightly longer to purge, but it will linearly reduce the number of
  543. * global TLB flushes that must be performed. It would seem natural to scale
  544. * this number up linearly with the number of CPUs (because vmapping activity
  545. * could also scale linearly with the number of CPUs), however it is likely
  546. * that in practice, workloads might be constrained in other ways that mean
  547. * vmap activity will not scale linearly with CPUs. Also, I want to be
  548. * conservative and not introduce a big latency on huge systems, so go with
  549. * a less aggressive log scale. It will still be an improvement over the old
  550. * code, and it will be simple to change the scale factor if we find that it
  551. * becomes a problem on bigger systems.
  552. */
  553. static unsigned long lazy_max_pages(void)
  554. {
  555. unsigned int log;
  556. log = fls(num_online_cpus());
  557. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  558. }
  559. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  560. /* for per-CPU blocks */
  561. static void purge_fragmented_blocks_allcpus(void);
  562. /*
  563. * called before a call to iounmap() if the caller wants vm_area_struct's
  564. * immediately freed.
  565. */
  566. void set_iounmap_nonlazy(void)
  567. {
  568. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  569. }
  570. /*
  571. * Purges all lazily-freed vmap areas.
  572. *
  573. * If sync is 0 then don't purge if there is already a purge in progress.
  574. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  575. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  576. * their own TLB flushing).
  577. * Returns with *start = min(*start, lowest purged address)
  578. * *end = max(*end, highest purged address)
  579. */
  580. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  581. int sync, int force_flush)
  582. {
  583. static DEFINE_SPINLOCK(purge_lock);
  584. LIST_HEAD(valist);
  585. struct vmap_area *va;
  586. struct vmap_area *n_va;
  587. int nr = 0;
  588. /*
  589. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  590. * should not expect such behaviour. This just simplifies locking for
  591. * the case that isn't actually used at the moment anyway.
  592. */
  593. if (!sync && !force_flush) {
  594. if (!spin_trylock(&purge_lock))
  595. return;
  596. } else
  597. spin_lock(&purge_lock);
  598. if (sync)
  599. purge_fragmented_blocks_allcpus();
  600. rcu_read_lock();
  601. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  602. if (va->flags & VM_LAZY_FREE) {
  603. if (va->va_start < *start)
  604. *start = va->va_start;
  605. if (va->va_end > *end)
  606. *end = va->va_end;
  607. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  608. list_add_tail(&va->purge_list, &valist);
  609. va->flags |= VM_LAZY_FREEING;
  610. va->flags &= ~VM_LAZY_FREE;
  611. }
  612. }
  613. rcu_read_unlock();
  614. if (nr)
  615. atomic_sub(nr, &vmap_lazy_nr);
  616. if (nr || force_flush)
  617. flush_tlb_kernel_range(*start, *end);
  618. if (nr) {
  619. spin_lock(&vmap_area_lock);
  620. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  621. __free_vmap_area(va);
  622. spin_unlock(&vmap_area_lock);
  623. }
  624. spin_unlock(&purge_lock);
  625. }
  626. /*
  627. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  628. * is already purging.
  629. */
  630. static void try_purge_vmap_area_lazy(void)
  631. {
  632. unsigned long start = ULONG_MAX, end = 0;
  633. __purge_vmap_area_lazy(&start, &end, 0, 0);
  634. }
  635. /*
  636. * Kick off a purge of the outstanding lazy areas.
  637. */
  638. static void purge_vmap_area_lazy(void)
  639. {
  640. unsigned long start = ULONG_MAX, end = 0;
  641. __purge_vmap_area_lazy(&start, &end, 1, 0);
  642. }
  643. /*
  644. * Free a vmap area, caller ensuring that the area has been unmapped
  645. * and flush_cache_vunmap had been called for the correct range
  646. * previously.
  647. */
  648. static void free_vmap_area_noflush(struct vmap_area *va)
  649. {
  650. va->flags |= VM_LAZY_FREE;
  651. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  652. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  653. try_purge_vmap_area_lazy();
  654. }
  655. /*
  656. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  657. * called for the correct range previously.
  658. */
  659. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  660. {
  661. unmap_vmap_area(va);
  662. free_vmap_area_noflush(va);
  663. }
  664. /*
  665. * Free and unmap a vmap area
  666. */
  667. static void free_unmap_vmap_area(struct vmap_area *va)
  668. {
  669. flush_cache_vunmap(va->va_start, va->va_end);
  670. free_unmap_vmap_area_noflush(va);
  671. }
  672. static struct vmap_area *find_vmap_area(unsigned long addr)
  673. {
  674. struct vmap_area *va;
  675. spin_lock(&vmap_area_lock);
  676. va = __find_vmap_area(addr);
  677. spin_unlock(&vmap_area_lock);
  678. return va;
  679. }
  680. static void free_unmap_vmap_area_addr(unsigned long addr)
  681. {
  682. struct vmap_area *va;
  683. va = find_vmap_area(addr);
  684. BUG_ON(!va);
  685. free_unmap_vmap_area(va);
  686. }
  687. /*** Per cpu kva allocator ***/
  688. /*
  689. * vmap space is limited especially on 32 bit architectures. Ensure there is
  690. * room for at least 16 percpu vmap blocks per CPU.
  691. */
  692. /*
  693. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  694. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  695. * instead (we just need a rough idea)
  696. */
  697. #if BITS_PER_LONG == 32
  698. #define VMALLOC_SPACE (128UL*1024*1024)
  699. #else
  700. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  701. #endif
  702. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  703. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  704. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  705. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  706. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  707. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  708. #define VMAP_BBMAP_BITS \
  709. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  710. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  711. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  712. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  713. static bool vmap_initialized __read_mostly = false;
  714. struct vmap_block_queue {
  715. spinlock_t lock;
  716. struct list_head free;
  717. };
  718. struct vmap_block {
  719. spinlock_t lock;
  720. struct vmap_area *va;
  721. struct vmap_block_queue *vbq;
  722. unsigned long free, dirty;
  723. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  724. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  725. struct list_head free_list;
  726. struct rcu_head rcu_head;
  727. struct list_head purge;
  728. };
  729. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  730. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  731. /*
  732. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  733. * in the free path. Could get rid of this if we change the API to return a
  734. * "cookie" from alloc, to be passed to free. But no big deal yet.
  735. */
  736. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  737. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  738. /*
  739. * We should probably have a fallback mechanism to allocate virtual memory
  740. * out of partially filled vmap blocks. However vmap block sizing should be
  741. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  742. * big problem.
  743. */
  744. static unsigned long addr_to_vb_idx(unsigned long addr)
  745. {
  746. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  747. addr /= VMAP_BLOCK_SIZE;
  748. return addr;
  749. }
  750. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  751. {
  752. struct vmap_block_queue *vbq;
  753. struct vmap_block *vb;
  754. struct vmap_area *va;
  755. unsigned long vb_idx;
  756. int node, err;
  757. node = numa_node_id();
  758. vb = kmalloc_node(sizeof(struct vmap_block),
  759. gfp_mask & GFP_RECLAIM_MASK, node);
  760. if (unlikely(!vb))
  761. return ERR_PTR(-ENOMEM);
  762. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  763. VMALLOC_START, VMALLOC_END,
  764. node, gfp_mask);
  765. if (IS_ERR(va)) {
  766. kfree(vb);
  767. return ERR_CAST(va);
  768. }
  769. err = radix_tree_preload(gfp_mask);
  770. if (unlikely(err)) {
  771. kfree(vb);
  772. free_vmap_area(va);
  773. return ERR_PTR(err);
  774. }
  775. spin_lock_init(&vb->lock);
  776. vb->va = va;
  777. vb->free = VMAP_BBMAP_BITS;
  778. vb->dirty = 0;
  779. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  780. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  781. INIT_LIST_HEAD(&vb->free_list);
  782. vb_idx = addr_to_vb_idx(va->va_start);
  783. spin_lock(&vmap_block_tree_lock);
  784. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  785. spin_unlock(&vmap_block_tree_lock);
  786. BUG_ON(err);
  787. radix_tree_preload_end();
  788. vbq = &get_cpu_var(vmap_block_queue);
  789. vb->vbq = vbq;
  790. spin_lock(&vbq->lock);
  791. list_add_rcu(&vb->free_list, &vbq->free);
  792. spin_unlock(&vbq->lock);
  793. put_cpu_var(vmap_block_queue);
  794. return vb;
  795. }
  796. static void free_vmap_block(struct vmap_block *vb)
  797. {
  798. struct vmap_block *tmp;
  799. unsigned long vb_idx;
  800. vb_idx = addr_to_vb_idx(vb->va->va_start);
  801. spin_lock(&vmap_block_tree_lock);
  802. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  803. spin_unlock(&vmap_block_tree_lock);
  804. BUG_ON(tmp != vb);
  805. free_vmap_area_noflush(vb->va);
  806. kfree_rcu(vb, rcu_head);
  807. }
  808. static void purge_fragmented_blocks(int cpu)
  809. {
  810. LIST_HEAD(purge);
  811. struct vmap_block *vb;
  812. struct vmap_block *n_vb;
  813. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  814. rcu_read_lock();
  815. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  816. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  817. continue;
  818. spin_lock(&vb->lock);
  819. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  820. vb->free = 0; /* prevent further allocs after releasing lock */
  821. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  822. bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
  823. bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
  824. spin_lock(&vbq->lock);
  825. list_del_rcu(&vb->free_list);
  826. spin_unlock(&vbq->lock);
  827. spin_unlock(&vb->lock);
  828. list_add_tail(&vb->purge, &purge);
  829. } else
  830. spin_unlock(&vb->lock);
  831. }
  832. rcu_read_unlock();
  833. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  834. list_del(&vb->purge);
  835. free_vmap_block(vb);
  836. }
  837. }
  838. static void purge_fragmented_blocks_thiscpu(void)
  839. {
  840. purge_fragmented_blocks(smp_processor_id());
  841. }
  842. static void purge_fragmented_blocks_allcpus(void)
  843. {
  844. int cpu;
  845. for_each_possible_cpu(cpu)
  846. purge_fragmented_blocks(cpu);
  847. }
  848. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  849. {
  850. struct vmap_block_queue *vbq;
  851. struct vmap_block *vb;
  852. unsigned long addr = 0;
  853. unsigned int order;
  854. int purge = 0;
  855. BUG_ON(size & ~PAGE_MASK);
  856. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  857. order = get_order(size);
  858. again:
  859. rcu_read_lock();
  860. vbq = &get_cpu_var(vmap_block_queue);
  861. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  862. int i;
  863. spin_lock(&vb->lock);
  864. if (vb->free < 1UL << order)
  865. goto next;
  866. i = bitmap_find_free_region(vb->alloc_map,
  867. VMAP_BBMAP_BITS, order);
  868. if (i < 0) {
  869. if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
  870. /* fragmented and no outstanding allocations */
  871. BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
  872. purge = 1;
  873. }
  874. goto next;
  875. }
  876. addr = vb->va->va_start + (i << PAGE_SHIFT);
  877. BUG_ON(addr_to_vb_idx(addr) !=
  878. addr_to_vb_idx(vb->va->va_start));
  879. vb->free -= 1UL << order;
  880. if (vb->free == 0) {
  881. spin_lock(&vbq->lock);
  882. list_del_rcu(&vb->free_list);
  883. spin_unlock(&vbq->lock);
  884. }
  885. spin_unlock(&vb->lock);
  886. break;
  887. next:
  888. spin_unlock(&vb->lock);
  889. }
  890. if (purge)
  891. purge_fragmented_blocks_thiscpu();
  892. put_cpu_var(vmap_block_queue);
  893. rcu_read_unlock();
  894. if (!addr) {
  895. vb = new_vmap_block(gfp_mask);
  896. if (IS_ERR(vb))
  897. return vb;
  898. goto again;
  899. }
  900. return (void *)addr;
  901. }
  902. static void vb_free(const void *addr, unsigned long size)
  903. {
  904. unsigned long offset;
  905. unsigned long vb_idx;
  906. unsigned int order;
  907. struct vmap_block *vb;
  908. BUG_ON(size & ~PAGE_MASK);
  909. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  910. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  911. order = get_order(size);
  912. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  913. vb_idx = addr_to_vb_idx((unsigned long)addr);
  914. rcu_read_lock();
  915. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  916. rcu_read_unlock();
  917. BUG_ON(!vb);
  918. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  919. spin_lock(&vb->lock);
  920. BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
  921. vb->dirty += 1UL << order;
  922. if (vb->dirty == VMAP_BBMAP_BITS) {
  923. BUG_ON(vb->free);
  924. spin_unlock(&vb->lock);
  925. free_vmap_block(vb);
  926. } else
  927. spin_unlock(&vb->lock);
  928. }
  929. /**
  930. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  931. *
  932. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  933. * to amortize TLB flushing overheads. What this means is that any page you
  934. * have now, may, in a former life, have been mapped into kernel virtual
  935. * address by the vmap layer and so there might be some CPUs with TLB entries
  936. * still referencing that page (additional to the regular 1:1 kernel mapping).
  937. *
  938. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  939. * be sure that none of the pages we have control over will have any aliases
  940. * from the vmap layer.
  941. */
  942. void vm_unmap_aliases(void)
  943. {
  944. unsigned long start = ULONG_MAX, end = 0;
  945. int cpu;
  946. int flush = 0;
  947. if (unlikely(!vmap_initialized))
  948. return;
  949. for_each_possible_cpu(cpu) {
  950. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  951. struct vmap_block *vb;
  952. rcu_read_lock();
  953. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  954. int i, j;
  955. spin_lock(&vb->lock);
  956. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  957. if (i < VMAP_BBMAP_BITS) {
  958. unsigned long s, e;
  959. j = find_last_bit(vb->dirty_map,
  960. VMAP_BBMAP_BITS);
  961. j = j + 1; /* need exclusive index */
  962. s = vb->va->va_start + (i << PAGE_SHIFT);
  963. e = vb->va->va_start + (j << PAGE_SHIFT);
  964. flush = 1;
  965. if (s < start)
  966. start = s;
  967. if (e > end)
  968. end = e;
  969. }
  970. spin_unlock(&vb->lock);
  971. }
  972. rcu_read_unlock();
  973. }
  974. __purge_vmap_area_lazy(&start, &end, 1, flush);
  975. }
  976. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  977. /**
  978. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  979. * @mem: the pointer returned by vm_map_ram
  980. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  981. */
  982. void vm_unmap_ram(const void *mem, unsigned int count)
  983. {
  984. unsigned long size = count << PAGE_SHIFT;
  985. unsigned long addr = (unsigned long)mem;
  986. BUG_ON(!addr);
  987. BUG_ON(addr < VMALLOC_START);
  988. BUG_ON(addr > VMALLOC_END);
  989. BUG_ON(addr & (PAGE_SIZE-1));
  990. debug_check_no_locks_freed(mem, size);
  991. vmap_debug_free_range(addr, addr+size);
  992. if (likely(count <= VMAP_MAX_ALLOC))
  993. vb_free(mem, size);
  994. else
  995. free_unmap_vmap_area_addr(addr);
  996. }
  997. EXPORT_SYMBOL(vm_unmap_ram);
  998. /**
  999. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  1000. * @pages: an array of pointers to the pages to be mapped
  1001. * @count: number of pages
  1002. * @node: prefer to allocate data structures on this node
  1003. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  1004. *
  1005. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  1006. */
  1007. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  1008. {
  1009. unsigned long size = count << PAGE_SHIFT;
  1010. unsigned long addr;
  1011. void *mem;
  1012. if (likely(count <= VMAP_MAX_ALLOC)) {
  1013. mem = vb_alloc(size, GFP_KERNEL);
  1014. if (IS_ERR(mem))
  1015. return NULL;
  1016. addr = (unsigned long)mem;
  1017. } else {
  1018. struct vmap_area *va;
  1019. va = alloc_vmap_area(size, PAGE_SIZE,
  1020. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  1021. if (IS_ERR(va))
  1022. return NULL;
  1023. addr = va->va_start;
  1024. mem = (void *)addr;
  1025. }
  1026. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  1027. vm_unmap_ram(mem, count);
  1028. return NULL;
  1029. }
  1030. return mem;
  1031. }
  1032. EXPORT_SYMBOL(vm_map_ram);
  1033. /**
  1034. * vm_area_check_early - check if vmap area is already mapped
  1035. * @vm: vm_struct to be checked
  1036. *
  1037. * This function is used to check if the vmap area has been
  1038. * mapped already. @vm->addr, @vm->size and @vm->flags should
  1039. * contain proper values.
  1040. *
  1041. */
  1042. int __init vm_area_check_early(struct vm_struct *vm)
  1043. {
  1044. struct vm_struct *tmp, **p;
  1045. BUG_ON(vmap_initialized);
  1046. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1047. if (tmp->addr >= vm->addr) {
  1048. if (tmp->addr < vm->addr + vm->size)
  1049. return 1;
  1050. } else {
  1051. if (tmp->addr + tmp->size > vm->addr)
  1052. return 1;
  1053. }
  1054. }
  1055. return 0;
  1056. }
  1057. /**
  1058. * vm_area_add_early - add vmap area early during boot
  1059. * @vm: vm_struct to add
  1060. *
  1061. * This function is used to add fixed kernel vm area to vmlist before
  1062. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  1063. * should contain proper values and the other fields should be zero.
  1064. *
  1065. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1066. */
  1067. void __init vm_area_add_early(struct vm_struct *vm)
  1068. {
  1069. struct vm_struct *tmp, **p;
  1070. BUG_ON(vmap_initialized);
  1071. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1072. if (tmp->addr >= vm->addr) {
  1073. BUG_ON(tmp->addr < vm->addr + vm->size);
  1074. break;
  1075. } else
  1076. BUG_ON(tmp->addr + tmp->size > vm->addr);
  1077. }
  1078. vm->next = *p;
  1079. *p = vm;
  1080. }
  1081. /**
  1082. * vm_area_register_early - register vmap area early during boot
  1083. * @vm: vm_struct to register
  1084. * @align: requested alignment
  1085. *
  1086. * This function is used to register kernel vm area before
  1087. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  1088. * proper values on entry and other fields should be zero. On return,
  1089. * vm->addr contains the allocated address.
  1090. *
  1091. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1092. */
  1093. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  1094. {
  1095. static size_t vm_init_off __initdata;
  1096. unsigned long addr;
  1097. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  1098. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  1099. vm->addr = (void *)addr;
  1100. vm_area_add_early(vm);
  1101. }
  1102. void __init vmalloc_init(void)
  1103. {
  1104. struct vmap_area *va;
  1105. struct vm_struct *tmp;
  1106. int i;
  1107. for_each_possible_cpu(i) {
  1108. struct vmap_block_queue *vbq;
  1109. vbq = &per_cpu(vmap_block_queue, i);
  1110. spin_lock_init(&vbq->lock);
  1111. INIT_LIST_HEAD(&vbq->free);
  1112. }
  1113. /* Import existing vmlist entries. */
  1114. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1115. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1116. va->flags = VM_VM_AREA;
  1117. va->va_start = (unsigned long)tmp->addr;
  1118. va->va_end = va->va_start + tmp->size;
  1119. va->vm = tmp;
  1120. __insert_vmap_area(va);
  1121. }
  1122. vmap_area_pcpu_hole = VMALLOC_END;
  1123. vmap_initialized = true;
  1124. }
  1125. /**
  1126. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1127. * @addr: start of the VM area to map
  1128. * @size: size of the VM area to map
  1129. * @prot: page protection flags to use
  1130. * @pages: pages to map
  1131. *
  1132. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1133. * specify should have been allocated using get_vm_area() and its
  1134. * friends.
  1135. *
  1136. * NOTE:
  1137. * This function does NOT do any cache flushing. The caller is
  1138. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1139. * before calling this function.
  1140. *
  1141. * RETURNS:
  1142. * The number of pages mapped on success, -errno on failure.
  1143. */
  1144. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1145. pgprot_t prot, struct page **pages)
  1146. {
  1147. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1148. }
  1149. /**
  1150. * unmap_kernel_range_noflush - unmap kernel VM area
  1151. * @addr: start of the VM area to unmap
  1152. * @size: size of the VM area to unmap
  1153. *
  1154. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1155. * specify should have been allocated using get_vm_area() and its
  1156. * friends.
  1157. *
  1158. * NOTE:
  1159. * This function does NOT do any cache flushing. The caller is
  1160. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1161. * before calling this function and flush_tlb_kernel_range() after.
  1162. */
  1163. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1164. {
  1165. vunmap_page_range(addr, addr + size);
  1166. }
  1167. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1168. /**
  1169. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1170. * @addr: start of the VM area to unmap
  1171. * @size: size of the VM area to unmap
  1172. *
  1173. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1174. * the unmapping and tlb after.
  1175. */
  1176. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1177. {
  1178. unsigned long end = addr + size;
  1179. flush_cache_vunmap(addr, end);
  1180. vunmap_page_range(addr, end);
  1181. flush_tlb_kernel_range(addr, end);
  1182. }
  1183. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  1184. {
  1185. unsigned long addr = (unsigned long)area->addr;
  1186. unsigned long end = addr + area->size - PAGE_SIZE;
  1187. int err;
  1188. err = vmap_page_range(addr, end, prot, *pages);
  1189. if (err > 0) {
  1190. *pages += err;
  1191. err = 0;
  1192. }
  1193. return err;
  1194. }
  1195. EXPORT_SYMBOL_GPL(map_vm_area);
  1196. /*** Old vmalloc interfaces ***/
  1197. DEFINE_RWLOCK(vmlist_lock);
  1198. struct vm_struct *vmlist;
  1199. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1200. unsigned long flags, const void *caller)
  1201. {
  1202. vm->flags = flags;
  1203. vm->addr = (void *)va->va_start;
  1204. vm->size = va->va_end - va->va_start;
  1205. vm->caller = caller;
  1206. va->vm = vm;
  1207. va->flags |= VM_VM_AREA;
  1208. }
  1209. static void insert_vmalloc_vmlist(struct vm_struct *vm)
  1210. {
  1211. struct vm_struct *tmp, **p;
  1212. vm->flags &= ~VM_UNLIST;
  1213. write_lock(&vmlist_lock);
  1214. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1215. if (tmp->addr >= vm->addr)
  1216. break;
  1217. }
  1218. vm->next = *p;
  1219. *p = vm;
  1220. write_unlock(&vmlist_lock);
  1221. }
  1222. static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1223. unsigned long flags, const void *caller)
  1224. {
  1225. setup_vmalloc_vm(vm, va, flags, caller);
  1226. insert_vmalloc_vmlist(vm);
  1227. }
  1228. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1229. unsigned long align, unsigned long flags, unsigned long start,
  1230. unsigned long end, int node, gfp_t gfp_mask, const void *caller)
  1231. {
  1232. struct vmap_area *va;
  1233. struct vm_struct *area;
  1234. BUG_ON(in_interrupt());
  1235. if (flags & VM_IOREMAP)
  1236. align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
  1237. size = PAGE_ALIGN(size);
  1238. if (unlikely(!size))
  1239. return NULL;
  1240. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1241. if (unlikely(!area))
  1242. return NULL;
  1243. /*
  1244. * We always allocate a guard page.
  1245. */
  1246. size += PAGE_SIZE;
  1247. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1248. if (IS_ERR(va)) {
  1249. kfree(area);
  1250. return NULL;
  1251. }
  1252. /*
  1253. * When this function is called from __vmalloc_node_range,
  1254. * we do not add vm_struct to vmlist here to avoid
  1255. * accessing uninitialized members of vm_struct such as
  1256. * pages and nr_pages fields. They will be set later.
  1257. * To distinguish it from others, we use a VM_UNLIST flag.
  1258. */
  1259. if (flags & VM_UNLIST)
  1260. setup_vmalloc_vm(area, va, flags, caller);
  1261. else
  1262. insert_vmalloc_vm(area, va, flags, caller);
  1263. return area;
  1264. }
  1265. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1266. unsigned long start, unsigned long end)
  1267. {
  1268. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1269. __builtin_return_address(0));
  1270. }
  1271. EXPORT_SYMBOL_GPL(__get_vm_area);
  1272. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1273. unsigned long start, unsigned long end,
  1274. const void *caller)
  1275. {
  1276. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1277. caller);
  1278. }
  1279. /**
  1280. * get_vm_area - reserve a contiguous kernel virtual area
  1281. * @size: size of the area
  1282. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1283. *
  1284. * Search an area of @size in the kernel virtual mapping area,
  1285. * and reserved it for out purposes. Returns the area descriptor
  1286. * on success or %NULL on failure.
  1287. */
  1288. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1289. {
  1290. #ifdef CONFIG_ENABLE_VMALLOC_SAVING
  1291. return __get_vm_area_node(size, 1, flags, PAGE_OFFSET, VMALLOC_END,
  1292. -1, GFP_KERNEL, __builtin_return_address(0));
  1293. #else
  1294. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1295. -1, GFP_KERNEL, __builtin_return_address(0));
  1296. #endif
  1297. }
  1298. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1299. const void *caller)
  1300. {
  1301. #ifdef CONFIG_ENABLE_VMALLOC_SAVING
  1302. return __get_vm_area_node(size, 1, flags, PAGE_OFFSET, VMALLOC_END,
  1303. -1, GFP_KERNEL, caller);
  1304. #else
  1305. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1306. -1, GFP_KERNEL, __builtin_return_address(0));
  1307. #endif
  1308. }
  1309. /**
  1310. * find_vm_area - find a continuous kernel virtual area
  1311. * @addr: base address
  1312. *
  1313. * Search for the kernel VM area starting at @addr, and return it.
  1314. * It is up to the caller to do all required locking to keep the returned
  1315. * pointer valid.
  1316. */
  1317. struct vm_struct *find_vm_area(const void *addr)
  1318. {
  1319. struct vmap_area *va;
  1320. va = find_vmap_area((unsigned long)addr);
  1321. if (va && va->flags & VM_VM_AREA)
  1322. return va->vm;
  1323. return NULL;
  1324. }
  1325. /**
  1326. * remove_vm_area - find and remove a continuous kernel virtual area
  1327. * @addr: base address
  1328. *
  1329. * Search for the kernel VM area starting at @addr, and remove it.
  1330. * This function returns the found VM area, but using it is NOT safe
  1331. * on SMP machines, except for its size or flags.
  1332. */
  1333. struct vm_struct *remove_vm_area(const void *addr)
  1334. {
  1335. struct vmap_area *va;
  1336. va = find_vmap_area((unsigned long)addr);
  1337. if (va && va->flags & VM_VM_AREA) {
  1338. struct vm_struct *vm = va->vm;
  1339. if (!(vm->flags & VM_UNLIST)) {
  1340. struct vm_struct *tmp, **p;
  1341. /*
  1342. * remove from list and disallow access to
  1343. * this vm_struct before unmap. (address range
  1344. * confliction is maintained by vmap.)
  1345. */
  1346. write_lock(&vmlist_lock);
  1347. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1348. ;
  1349. *p = tmp->next;
  1350. write_unlock(&vmlist_lock);
  1351. }
  1352. vmap_debug_free_range(va->va_start, va->va_end);
  1353. free_unmap_vmap_area(va);
  1354. vm->size -= PAGE_SIZE;
  1355. return vm;
  1356. }
  1357. return NULL;
  1358. }
  1359. static void __vunmap(const void *addr, int deallocate_pages)
  1360. {
  1361. struct vm_struct *area;
  1362. if (!addr)
  1363. return;
  1364. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1365. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1366. return;
  1367. }
  1368. area = remove_vm_area(addr);
  1369. if (unlikely(!area)) {
  1370. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1371. addr);
  1372. return;
  1373. }
  1374. debug_check_no_locks_freed(addr, area->size);
  1375. debug_check_no_obj_freed(addr, area->size);
  1376. if (deallocate_pages) {
  1377. int i;
  1378. for (i = 0; i < area->nr_pages; i++) {
  1379. struct page *page = area->pages[i];
  1380. BUG_ON(!page);
  1381. __free_page(page);
  1382. }
  1383. if (area->flags & VM_VPAGES)
  1384. vfree(area->pages);
  1385. else
  1386. kfree(area->pages);
  1387. }
  1388. kfree(area);
  1389. return;
  1390. }
  1391. /**
  1392. * vfree - release memory allocated by vmalloc()
  1393. * @addr: memory base address
  1394. *
  1395. * Free the virtually continuous memory area starting at @addr, as
  1396. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1397. * NULL, no operation is performed.
  1398. *
  1399. * Must not be called in interrupt context.
  1400. */
  1401. void vfree(const void *addr)
  1402. {
  1403. BUG_ON(in_interrupt());
  1404. kmemleak_free(addr);
  1405. __vunmap(addr, 1);
  1406. }
  1407. EXPORT_SYMBOL(vfree);
  1408. /**
  1409. * vunmap - release virtual mapping obtained by vmap()
  1410. * @addr: memory base address
  1411. *
  1412. * Free the virtually contiguous memory area starting at @addr,
  1413. * which was created from the page array passed to vmap().
  1414. *
  1415. * Must not be called in interrupt context.
  1416. */
  1417. void vunmap(const void *addr)
  1418. {
  1419. BUG_ON(in_interrupt());
  1420. might_sleep();
  1421. __vunmap(addr, 0);
  1422. }
  1423. EXPORT_SYMBOL(vunmap);
  1424. /**
  1425. * vmap - map an array of pages into virtually contiguous space
  1426. * @pages: array of page pointers
  1427. * @count: number of pages to map
  1428. * @flags: vm_area->flags
  1429. * @prot: page protection for the mapping
  1430. *
  1431. * Maps @count pages from @pages into contiguous kernel virtual
  1432. * space.
  1433. */
  1434. void *vmap(struct page **pages, unsigned int count,
  1435. unsigned long flags, pgprot_t prot)
  1436. {
  1437. struct vm_struct *area;
  1438. might_sleep();
  1439. if (count > totalram_pages)
  1440. return NULL;
  1441. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1442. __builtin_return_address(0));
  1443. if (!area)
  1444. return NULL;
  1445. if (map_vm_area(area, prot, &pages)) {
  1446. vunmap(area->addr);
  1447. return NULL;
  1448. }
  1449. return area->addr;
  1450. }
  1451. EXPORT_SYMBOL(vmap);
  1452. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1453. gfp_t gfp_mask, pgprot_t prot,
  1454. int node, const void *caller);
  1455. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1456. pgprot_t prot, int node, const void *caller)
  1457. {
  1458. const int order = 0;
  1459. struct page **pages;
  1460. unsigned int nr_pages, array_size, i;
  1461. gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1462. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1463. array_size = (nr_pages * sizeof(struct page *));
  1464. area->nr_pages = nr_pages;
  1465. /* Please note that the recursion is strictly bounded. */
  1466. if (array_size > PAGE_SIZE) {
  1467. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1468. PAGE_KERNEL, node, caller);
  1469. area->flags |= VM_VPAGES;
  1470. } else {
  1471. pages = kmalloc_node(array_size, nested_gfp, node);
  1472. }
  1473. area->pages = pages;
  1474. area->caller = caller;
  1475. if (!area->pages) {
  1476. remove_vm_area(area->addr);
  1477. kfree(area);
  1478. return NULL;
  1479. }
  1480. for (i = 0; i < area->nr_pages; i++) {
  1481. struct page *page;
  1482. gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
  1483. if (node < 0)
  1484. page = alloc_page(tmp_mask);
  1485. else
  1486. page = alloc_pages_node(node, tmp_mask, order);
  1487. if (unlikely(!page)) {
  1488. /* Successfully allocated i pages, free them in __vunmap() */
  1489. area->nr_pages = i;
  1490. goto fail;
  1491. }
  1492. area->pages[i] = page;
  1493. if (gfp_mask & __GFP_WAIT)
  1494. cond_resched();
  1495. }
  1496. if (map_vm_area(area, prot, &pages))
  1497. goto fail;
  1498. return area->addr;
  1499. fail:
  1500. warn_alloc_failed(gfp_mask, order,
  1501. "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
  1502. (area->nr_pages*PAGE_SIZE), area->size);
  1503. vfree(area->addr);
  1504. return NULL;
  1505. }
  1506. /**
  1507. * __vmalloc_node_range - allocate virtually contiguous memory
  1508. * @size: allocation size
  1509. * @align: desired alignment
  1510. * @start: vm area range start
  1511. * @end: vm area range end
  1512. * @gfp_mask: flags for the page level allocator
  1513. * @prot: protection mask for the allocated pages
  1514. * @node: node to use for allocation or -1
  1515. * @caller: caller's return address
  1516. *
  1517. * Allocate enough pages to cover @size from the page level
  1518. * allocator with @gfp_mask flags. Map them into contiguous
  1519. * kernel virtual space, using a pagetable protection of @prot.
  1520. */
  1521. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1522. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1523. pgprot_t prot, int node, const void *caller)
  1524. {
  1525. struct vm_struct *area;
  1526. void *addr;
  1527. unsigned long real_size = size;
  1528. #ifdef CONFIG_FIX_MOVABLE_ZONE
  1529. unsigned long total_pages = total_unmovable_pages;
  1530. #else
  1531. unsigned long total_pages = totalram_pages;
  1532. #endif
  1533. size = PAGE_ALIGN(size);
  1534. if (!size || (size >> PAGE_SHIFT) > total_pages)
  1535. goto fail;
  1536. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
  1537. start, end, node, gfp_mask, caller);
  1538. if (!area)
  1539. goto fail;
  1540. addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1541. if (!addr)
  1542. return NULL;
  1543. /*
  1544. * In this function, newly allocated vm_struct is not added
  1545. * to vmlist at __get_vm_area_node(). so, it is added here.
  1546. */
  1547. insert_vmalloc_vmlist(area);
  1548. /*
  1549. * A ref_count = 2 is needed because vm_struct allocated in
  1550. * __get_vm_area_node() contains a reference to the virtual address of
  1551. * the vmalloc'ed block.
  1552. */
  1553. kmemleak_alloc(addr, real_size, 2, gfp_mask);
  1554. return addr;
  1555. fail:
  1556. warn_alloc_failed(gfp_mask, 0,
  1557. "vmalloc: allocation failure: %lu bytes\n",
  1558. real_size);
  1559. return NULL;
  1560. }
  1561. /**
  1562. * __vmalloc_node - allocate virtually contiguous memory
  1563. * @size: allocation size
  1564. * @align: desired alignment
  1565. * @gfp_mask: flags for the page level allocator
  1566. * @prot: protection mask for the allocated pages
  1567. * @node: node to use for allocation or -1
  1568. * @caller: caller's return address
  1569. *
  1570. * Allocate enough pages to cover @size from the page level
  1571. * allocator with @gfp_mask flags. Map them into contiguous
  1572. * kernel virtual space, using a pagetable protection of @prot.
  1573. */
  1574. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1575. gfp_t gfp_mask, pgprot_t prot,
  1576. int node, const void *caller)
  1577. {
  1578. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1579. gfp_mask, prot, node, caller);
  1580. }
  1581. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1582. {
  1583. return __vmalloc_node(size, 1, gfp_mask, prot, -1,
  1584. __builtin_return_address(0));
  1585. }
  1586. EXPORT_SYMBOL(__vmalloc);
  1587. static inline void *__vmalloc_node_flags(unsigned long size,
  1588. int node, gfp_t flags)
  1589. {
  1590. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1591. node, __builtin_return_address(0));
  1592. }
  1593. /**
  1594. * vmalloc - allocate virtually contiguous memory
  1595. * @size: allocation size
  1596. * Allocate enough pages to cover @size from the page level
  1597. * allocator and map them into contiguous kernel virtual space.
  1598. *
  1599. * For tight control over page level allocator and protection flags
  1600. * use __vmalloc() instead.
  1601. */
  1602. void *vmalloc(unsigned long size)
  1603. {
  1604. return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
  1605. }
  1606. EXPORT_SYMBOL(vmalloc);
  1607. /**
  1608. * vzalloc - allocate virtually contiguous memory with zero fill
  1609. * @size: allocation size
  1610. * Allocate enough pages to cover @size from the page level
  1611. * allocator and map them into contiguous kernel virtual space.
  1612. * The memory allocated is set to zero.
  1613. *
  1614. * For tight control over page level allocator and protection flags
  1615. * use __vmalloc() instead.
  1616. */
  1617. void *vzalloc(unsigned long size)
  1618. {
  1619. return __vmalloc_node_flags(size, -1,
  1620. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1621. }
  1622. EXPORT_SYMBOL(vzalloc);
  1623. /**
  1624. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1625. * @size: allocation size
  1626. *
  1627. * The resulting memory area is zeroed so it can be mapped to userspace
  1628. * without leaking data.
  1629. */
  1630. void *vmalloc_user(unsigned long size)
  1631. {
  1632. struct vm_struct *area;
  1633. void *ret;
  1634. ret = __vmalloc_node(size, SHMLBA,
  1635. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1636. PAGE_KERNEL, -1, __builtin_return_address(0));
  1637. if (ret) {
  1638. area = find_vm_area(ret);
  1639. area->flags |= VM_USERMAP;
  1640. }
  1641. return ret;
  1642. }
  1643. EXPORT_SYMBOL(vmalloc_user);
  1644. /**
  1645. * vmalloc_node - allocate memory on a specific node
  1646. * @size: allocation size
  1647. * @node: numa node
  1648. *
  1649. * Allocate enough pages to cover @size from the page level
  1650. * allocator and map them into contiguous kernel virtual space.
  1651. *
  1652. * For tight control over page level allocator and protection flags
  1653. * use __vmalloc() instead.
  1654. */
  1655. void *vmalloc_node(unsigned long size, int node)
  1656. {
  1657. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1658. node, __builtin_return_address(0));
  1659. }
  1660. EXPORT_SYMBOL(vmalloc_node);
  1661. /**
  1662. * vzalloc_node - allocate memory on a specific node with zero fill
  1663. * @size: allocation size
  1664. * @node: numa node
  1665. *
  1666. * Allocate enough pages to cover @size from the page level
  1667. * allocator and map them into contiguous kernel virtual space.
  1668. * The memory allocated is set to zero.
  1669. *
  1670. * For tight control over page level allocator and protection flags
  1671. * use __vmalloc_node() instead.
  1672. */
  1673. void *vzalloc_node(unsigned long size, int node)
  1674. {
  1675. return __vmalloc_node_flags(size, node,
  1676. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1677. }
  1678. EXPORT_SYMBOL(vzalloc_node);
  1679. #ifndef PAGE_KERNEL_EXEC
  1680. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1681. #endif
  1682. /**
  1683. * vmalloc_exec - allocate virtually contiguous, executable memory
  1684. * @size: allocation size
  1685. *
  1686. * Kernel-internal function to allocate enough pages to cover @size
  1687. * the page level allocator and map them into contiguous and
  1688. * executable kernel virtual space.
  1689. *
  1690. * For tight control over page level allocator and protection flags
  1691. * use __vmalloc() instead.
  1692. */
  1693. void *vmalloc_exec(unsigned long size)
  1694. {
  1695. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1696. -1, __builtin_return_address(0));
  1697. }
  1698. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1699. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1700. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1701. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1702. #else
  1703. #define GFP_VMALLOC32 GFP_KERNEL
  1704. #endif
  1705. /**
  1706. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1707. * @size: allocation size
  1708. *
  1709. * Allocate enough 32bit PA addressable pages to cover @size from the
  1710. * page level allocator and map them into contiguous kernel virtual space.
  1711. */
  1712. void *vmalloc_32(unsigned long size)
  1713. {
  1714. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1715. -1, __builtin_return_address(0));
  1716. }
  1717. EXPORT_SYMBOL(vmalloc_32);
  1718. /**
  1719. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1720. * @size: allocation size
  1721. *
  1722. * The resulting memory area is 32bit addressable and zeroed so it can be
  1723. * mapped to userspace without leaking data.
  1724. */
  1725. void *vmalloc_32_user(unsigned long size)
  1726. {
  1727. struct vm_struct *area;
  1728. void *ret;
  1729. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1730. -1, __builtin_return_address(0));
  1731. if (ret) {
  1732. area = find_vm_area(ret);
  1733. area->flags |= VM_USERMAP;
  1734. }
  1735. return ret;
  1736. }
  1737. EXPORT_SYMBOL(vmalloc_32_user);
  1738. /*
  1739. * small helper routine , copy contents to buf from addr.
  1740. * If the page is not present, fill zero.
  1741. */
  1742. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1743. {
  1744. struct page *p;
  1745. int copied = 0;
  1746. while (count) {
  1747. unsigned long offset, length;
  1748. offset = (unsigned long)addr & ~PAGE_MASK;
  1749. length = PAGE_SIZE - offset;
  1750. if (length > count)
  1751. length = count;
  1752. p = vmalloc_to_page(addr);
  1753. /*
  1754. * To do safe access to this _mapped_ area, we need
  1755. * lock. But adding lock here means that we need to add
  1756. * overhead of vmalloc()/vfree() calles for this _debug_
  1757. * interface, rarely used. Instead of that, we'll use
  1758. * kmap() and get small overhead in this access function.
  1759. */
  1760. if (p) {
  1761. /*
  1762. * we can expect USER0 is not used (see vread/vwrite's
  1763. * function description)
  1764. */
  1765. void *map = kmap_atomic(p);
  1766. memcpy(buf, map + offset, length);
  1767. kunmap_atomic(map);
  1768. } else
  1769. memset(buf, 0, length);
  1770. addr += length;
  1771. buf += length;
  1772. copied += length;
  1773. count -= length;
  1774. }
  1775. return copied;
  1776. }
  1777. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1778. {
  1779. struct page *p;
  1780. int copied = 0;
  1781. while (count) {
  1782. unsigned long offset, length;
  1783. offset = (unsigned long)addr & ~PAGE_MASK;
  1784. length = PAGE_SIZE - offset;
  1785. if (length > count)
  1786. length = count;
  1787. p = vmalloc_to_page(addr);
  1788. /*
  1789. * To do safe access to this _mapped_ area, we need
  1790. * lock. But adding lock here means that we need to add
  1791. * overhead of vmalloc()/vfree() calles for this _debug_
  1792. * interface, rarely used. Instead of that, we'll use
  1793. * kmap() and get small overhead in this access function.
  1794. */
  1795. if (p) {
  1796. /*
  1797. * we can expect USER0 is not used (see vread/vwrite's
  1798. * function description)
  1799. */
  1800. void *map = kmap_atomic(p);
  1801. memcpy(map + offset, buf, length);
  1802. kunmap_atomic(map);
  1803. }
  1804. addr += length;
  1805. buf += length;
  1806. copied += length;
  1807. count -= length;
  1808. }
  1809. return copied;
  1810. }
  1811. /**
  1812. * vread() - read vmalloc area in a safe way.
  1813. * @buf: buffer for reading data
  1814. * @addr: vm address.
  1815. * @count: number of bytes to be read.
  1816. *
  1817. * Returns # of bytes which addr and buf should be increased.
  1818. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1819. * includes any intersect with alive vmalloc area.
  1820. *
  1821. * This function checks that addr is a valid vmalloc'ed area, and
  1822. * copy data from that area to a given buffer. If the given memory range
  1823. * of [addr...addr+count) includes some valid address, data is copied to
  1824. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1825. * IOREMAP area is treated as memory hole and no copy is done.
  1826. *
  1827. * If [addr...addr+count) doesn't includes any intersects with alive
  1828. * vm_struct area, returns 0.
  1829. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1830. * the caller should guarantee KM_USER0 is not used.
  1831. *
  1832. * Note: In usual ops, vread() is never necessary because the caller
  1833. * should know vmalloc() area is valid and can use memcpy().
  1834. * This is for routines which have to access vmalloc area without
  1835. * any informaion, as /dev/kmem.
  1836. *
  1837. */
  1838. long vread(char *buf, char *addr, unsigned long count)
  1839. {
  1840. struct vm_struct *tmp;
  1841. char *vaddr, *buf_start = buf;
  1842. unsigned long buflen = count;
  1843. unsigned long n;
  1844. /* Don't allow overflow */
  1845. if ((unsigned long) addr + count < count)
  1846. count = -(unsigned long) addr;
  1847. read_lock(&vmlist_lock);
  1848. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1849. vaddr = (char *) tmp->addr;
  1850. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1851. continue;
  1852. while (addr < vaddr) {
  1853. if (count == 0)
  1854. goto finished;
  1855. *buf = '\0';
  1856. buf++;
  1857. addr++;
  1858. count--;
  1859. }
  1860. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1861. if (n > count)
  1862. n = count;
  1863. if (!(tmp->flags & VM_IOREMAP))
  1864. aligned_vread(buf, addr, n);
  1865. else /* IOREMAP area is treated as memory hole */
  1866. memset(buf, 0, n);
  1867. buf += n;
  1868. addr += n;
  1869. count -= n;
  1870. }
  1871. finished:
  1872. read_unlock(&vmlist_lock);
  1873. if (buf == buf_start)
  1874. return 0;
  1875. /* zero-fill memory holes */
  1876. if (buf != buf_start + buflen)
  1877. memset(buf, 0, buflen - (buf - buf_start));
  1878. return buflen;
  1879. }
  1880. /**
  1881. * vwrite() - write vmalloc area in a safe way.
  1882. * @buf: buffer for source data
  1883. * @addr: vm address.
  1884. * @count: number of bytes to be read.
  1885. *
  1886. * Returns # of bytes which addr and buf should be incresed.
  1887. * (same number to @count).
  1888. * If [addr...addr+count) doesn't includes any intersect with valid
  1889. * vmalloc area, returns 0.
  1890. *
  1891. * This function checks that addr is a valid vmalloc'ed area, and
  1892. * copy data from a buffer to the given addr. If specified range of
  1893. * [addr...addr+count) includes some valid address, data is copied from
  1894. * proper area of @buf. If there are memory holes, no copy to hole.
  1895. * IOREMAP area is treated as memory hole and no copy is done.
  1896. *
  1897. * If [addr...addr+count) doesn't includes any intersects with alive
  1898. * vm_struct area, returns 0.
  1899. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1900. * the caller should guarantee KM_USER0 is not used.
  1901. *
  1902. * Note: In usual ops, vwrite() is never necessary because the caller
  1903. * should know vmalloc() area is valid and can use memcpy().
  1904. * This is for routines which have to access vmalloc area without
  1905. * any informaion, as /dev/kmem.
  1906. */
  1907. long vwrite(char *buf, char *addr, unsigned long count)
  1908. {
  1909. struct vm_struct *tmp;
  1910. char *vaddr;
  1911. unsigned long n, buflen;
  1912. int copied = 0;
  1913. /* Don't allow overflow */
  1914. if ((unsigned long) addr + count < count)
  1915. count = -(unsigned long) addr;
  1916. buflen = count;
  1917. read_lock(&vmlist_lock);
  1918. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1919. vaddr = (char *) tmp->addr;
  1920. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1921. continue;
  1922. while (addr < vaddr) {
  1923. if (count == 0)
  1924. goto finished;
  1925. buf++;
  1926. addr++;
  1927. count--;
  1928. }
  1929. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1930. if (n > count)
  1931. n = count;
  1932. if (!(tmp->flags & VM_IOREMAP)) {
  1933. aligned_vwrite(buf, addr, n);
  1934. copied++;
  1935. }
  1936. buf += n;
  1937. addr += n;
  1938. count -= n;
  1939. }
  1940. finished:
  1941. read_unlock(&vmlist_lock);
  1942. if (!copied)
  1943. return 0;
  1944. return buflen;
  1945. }
  1946. /**
  1947. * remap_vmalloc_range - map vmalloc pages to userspace
  1948. * @vma: vma to cover (map full range of vma)
  1949. * @addr: vmalloc memory
  1950. * @pgoff: number of pages into addr before first page to map
  1951. *
  1952. * Returns: 0 for success, -Exxx on failure
  1953. *
  1954. * This function checks that addr is a valid vmalloc'ed area, and
  1955. * that it is big enough to cover the vma. Will return failure if
  1956. * that criteria isn't met.
  1957. *
  1958. * Similar to remap_pfn_range() (see mm/memory.c)
  1959. */
  1960. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1961. unsigned long pgoff)
  1962. {
  1963. struct vm_struct *area;
  1964. unsigned long uaddr = vma->vm_start;
  1965. unsigned long usize = vma->vm_end - vma->vm_start;
  1966. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1967. return -EINVAL;
  1968. area = find_vm_area(addr);
  1969. if (!area)
  1970. return -EINVAL;
  1971. if (!(area->flags & VM_USERMAP))
  1972. return -EINVAL;
  1973. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1974. return -EINVAL;
  1975. addr += pgoff << PAGE_SHIFT;
  1976. do {
  1977. struct page *page = vmalloc_to_page(addr);
  1978. int ret;
  1979. ret = vm_insert_page(vma, uaddr, page);
  1980. if (ret)
  1981. return ret;
  1982. uaddr += PAGE_SIZE;
  1983. addr += PAGE_SIZE;
  1984. usize -= PAGE_SIZE;
  1985. } while (usize > 0);
  1986. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1987. vma->vm_flags |= VM_RESERVED;
  1988. return 0;
  1989. }
  1990. EXPORT_SYMBOL(remap_vmalloc_range);
  1991. /*
  1992. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1993. * have one.
  1994. */
  1995. void __attribute__((weak)) vmalloc_sync_all(void)
  1996. {
  1997. }
  1998. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1999. {
  2000. pte_t ***p = data;
  2001. if (p) {
  2002. *(*p) = pte;
  2003. (*p)++;
  2004. }
  2005. return 0;
  2006. }
  2007. /**
  2008. * alloc_vm_area - allocate a range of kernel address space
  2009. * @size: size of the area
  2010. * @ptes: returns the PTEs for the address space
  2011. *
  2012. * Returns: NULL on failure, vm_struct on success
  2013. *
  2014. * This function reserves a range of kernel address space, and
  2015. * allocates pagetables to map that range. No actual mappings
  2016. * are created.
  2017. *
  2018. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  2019. * allocated for the VM area are returned.
  2020. */
  2021. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  2022. {
  2023. struct vm_struct *area;
  2024. area = get_vm_area_caller(size, VM_IOREMAP,
  2025. __builtin_return_address(0));
  2026. if (area == NULL)
  2027. return NULL;
  2028. /*
  2029. * This ensures that page tables are constructed for this region
  2030. * of kernel virtual address space and mapped into init_mm.
  2031. */
  2032. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  2033. size, f, ptes ? &ptes : NULL)) {
  2034. free_vm_area(area);
  2035. return NULL;
  2036. }
  2037. /*
  2038. * If the allocated address space is passed to a hypercall
  2039. * before being used then we cannot rely on a page fault to
  2040. * trigger an update of the page tables. So sync all the page
  2041. * tables here.
  2042. */
  2043. vmalloc_sync_all();
  2044. return area;
  2045. }
  2046. EXPORT_SYMBOL_GPL(alloc_vm_area);
  2047. void free_vm_area(struct vm_struct *area)
  2048. {
  2049. struct vm_struct *ret;
  2050. ret = remove_vm_area(area->addr);
  2051. BUG_ON(ret != area);
  2052. kfree(area);
  2053. }
  2054. EXPORT_SYMBOL_GPL(free_vm_area);
  2055. #ifdef CONFIG_SMP
  2056. static struct vmap_area *node_to_va(struct rb_node *n)
  2057. {
  2058. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  2059. }
  2060. /**
  2061. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  2062. * @end: target address
  2063. * @pnext: out arg for the next vmap_area
  2064. * @pprev: out arg for the previous vmap_area
  2065. *
  2066. * Returns: %true if either or both of next and prev are found,
  2067. * %false if no vmap_area exists
  2068. *
  2069. * Find vmap_areas end addresses of which enclose @end. ie. if not
  2070. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  2071. */
  2072. static bool pvm_find_next_prev(unsigned long end,
  2073. struct vmap_area **pnext,
  2074. struct vmap_area **pprev)
  2075. {
  2076. struct rb_node *n = vmap_area_root.rb_node;
  2077. struct vmap_area *va = NULL;
  2078. while (n) {
  2079. va = rb_entry(n, struct vmap_area, rb_node);
  2080. if (end < va->va_end)
  2081. n = n->rb_left;
  2082. else if (end > va->va_end)
  2083. n = n->rb_right;
  2084. else
  2085. break;
  2086. }
  2087. if (!va)
  2088. return false;
  2089. if (va->va_end > end) {
  2090. *pnext = va;
  2091. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2092. } else {
  2093. *pprev = va;
  2094. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  2095. }
  2096. return true;
  2097. }
  2098. /**
  2099. * pvm_determine_end - find the highest aligned address between two vmap_areas
  2100. * @pnext: in/out arg for the next vmap_area
  2101. * @pprev: in/out arg for the previous vmap_area
  2102. * @align: alignment
  2103. *
  2104. * Returns: determined end address
  2105. *
  2106. * Find the highest aligned address between *@pnext and *@pprev below
  2107. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  2108. * down address is between the end addresses of the two vmap_areas.
  2109. *
  2110. * Please note that the address returned by this function may fall
  2111. * inside *@pnext vmap_area. The caller is responsible for checking
  2112. * that.
  2113. */
  2114. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  2115. struct vmap_area **pprev,
  2116. unsigned long align)
  2117. {
  2118. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2119. unsigned long addr;
  2120. if (*pnext)
  2121. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  2122. else
  2123. addr = vmalloc_end;
  2124. while (*pprev && (*pprev)->va_end > addr) {
  2125. *pnext = *pprev;
  2126. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2127. }
  2128. return addr;
  2129. }
  2130. /**
  2131. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2132. * @offsets: array containing offset of each area
  2133. * @sizes: array containing size of each area
  2134. * @nr_vms: the number of areas to allocate
  2135. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2136. *
  2137. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2138. * vm_structs on success, %NULL on failure
  2139. *
  2140. * Percpu allocator wants to use congruent vm areas so that it can
  2141. * maintain the offsets among percpu areas. This function allocates
  2142. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2143. * be scattered pretty far, distance between two areas easily going up
  2144. * to gigabytes. To avoid interacting with regular vmallocs, these
  2145. * areas are allocated from top.
  2146. *
  2147. * Despite its complicated look, this allocator is rather simple. It
  2148. * does everything top-down and scans areas from the end looking for
  2149. * matching slot. While scanning, if any of the areas overlaps with
  2150. * existing vmap_area, the base address is pulled down to fit the
  2151. * area. Scanning is repeated till all the areas fit and then all
  2152. * necessary data structres are inserted and the result is returned.
  2153. */
  2154. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2155. const size_t *sizes, int nr_vms,
  2156. size_t align)
  2157. {
  2158. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2159. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2160. struct vmap_area **vas, *prev, *next;
  2161. struct vm_struct **vms;
  2162. int area, area2, last_area, term_area;
  2163. unsigned long base, start, end, last_end;
  2164. bool purged = false;
  2165. /* verify parameters and allocate data structures */
  2166. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  2167. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2168. start = offsets[area];
  2169. end = start + sizes[area];
  2170. /* is everything aligned properly? */
  2171. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2172. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2173. /* detect the area with the highest address */
  2174. if (start > offsets[last_area])
  2175. last_area = area;
  2176. for (area2 = 0; area2 < nr_vms; area2++) {
  2177. unsigned long start2 = offsets[area2];
  2178. unsigned long end2 = start2 + sizes[area2];
  2179. if (area2 == area)
  2180. continue;
  2181. BUG_ON(start2 >= start && start2 < end);
  2182. BUG_ON(end2 <= end && end2 > start);
  2183. }
  2184. }
  2185. last_end = offsets[last_area] + sizes[last_area];
  2186. if (vmalloc_end - vmalloc_start < last_end) {
  2187. WARN_ON(true);
  2188. return NULL;
  2189. }
  2190. vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
  2191. vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
  2192. if (!vas || !vms)
  2193. goto err_free2;
  2194. for (area = 0; area < nr_vms; area++) {
  2195. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2196. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2197. if (!vas[area] || !vms[area])
  2198. goto err_free;
  2199. }
  2200. retry:
  2201. spin_lock(&vmap_area_lock);
  2202. /* start scanning - we scan from the top, begin with the last area */
  2203. area = term_area = last_area;
  2204. start = offsets[area];
  2205. end = start + sizes[area];
  2206. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2207. base = vmalloc_end - last_end;
  2208. goto found;
  2209. }
  2210. base = pvm_determine_end(&next, &prev, align) - end;
  2211. while (true) {
  2212. BUG_ON(next && next->va_end <= base + end);
  2213. BUG_ON(prev && prev->va_end > base + end);
  2214. /*
  2215. * base might have underflowed, add last_end before
  2216. * comparing.
  2217. */
  2218. if (base + last_end < vmalloc_start + last_end) {
  2219. spin_unlock(&vmap_area_lock);
  2220. if (!purged) {
  2221. purge_vmap_area_lazy();
  2222. purged = true;
  2223. goto retry;
  2224. }
  2225. goto err_free;
  2226. }
  2227. /*
  2228. * If next overlaps, move base downwards so that it's
  2229. * right below next and then recheck.
  2230. */
  2231. if (next && next->va_start < base + end) {
  2232. base = pvm_determine_end(&next, &prev, align) - end;
  2233. term_area = area;
  2234. continue;
  2235. }
  2236. /*
  2237. * If prev overlaps, shift down next and prev and move
  2238. * base so that it's right below new next and then
  2239. * recheck.
  2240. */
  2241. if (prev && prev->va_end > base + start) {
  2242. next = prev;
  2243. prev = node_to_va(rb_prev(&next->rb_node));
  2244. base = pvm_determine_end(&next, &prev, align) - end;
  2245. term_area = area;
  2246. continue;
  2247. }
  2248. /*
  2249. * This area fits, move on to the previous one. If
  2250. * the previous one is the terminal one, we're done.
  2251. */
  2252. area = (area + nr_vms - 1) % nr_vms;
  2253. if (area == term_area)
  2254. break;
  2255. start = offsets[area];
  2256. end = start + sizes[area];
  2257. pvm_find_next_prev(base + end, &next, &prev);
  2258. }
  2259. found:
  2260. /* we've found a fitting base, insert all va's */
  2261. for (area = 0; area < nr_vms; area++) {
  2262. struct vmap_area *va = vas[area];
  2263. va->va_start = base + offsets[area];
  2264. va->va_end = va->va_start + sizes[area];
  2265. __insert_vmap_area(va);
  2266. }
  2267. vmap_area_pcpu_hole = base + offsets[last_area];
  2268. spin_unlock(&vmap_area_lock);
  2269. /* insert all vm's */
  2270. for (area = 0; area < nr_vms; area++)
  2271. insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2272. pcpu_get_vm_areas);
  2273. kfree(vas);
  2274. return vms;
  2275. err_free:
  2276. for (area = 0; area < nr_vms; area++) {
  2277. kfree(vas[area]);
  2278. kfree(vms[area]);
  2279. }
  2280. err_free2:
  2281. kfree(vas);
  2282. kfree(vms);
  2283. return NULL;
  2284. }
  2285. /**
  2286. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2287. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2288. * @nr_vms: the number of allocated areas
  2289. *
  2290. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2291. */
  2292. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2293. {
  2294. int i;
  2295. for (i = 0; i < nr_vms; i++)
  2296. free_vm_area(vms[i]);
  2297. kfree(vms);
  2298. }
  2299. #endif /* CONFIG_SMP */
  2300. #ifdef CONFIG_PROC_FS
  2301. static void *s_start(struct seq_file *m, loff_t *pos)
  2302. __acquires(&vmlist_lock)
  2303. {
  2304. loff_t n = *pos;
  2305. struct vm_struct *v;
  2306. read_lock(&vmlist_lock);
  2307. v = vmlist;
  2308. while (n > 0 && v) {
  2309. n--;
  2310. v = v->next;
  2311. }
  2312. if (!n)
  2313. return v;
  2314. return NULL;
  2315. }
  2316. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2317. {
  2318. struct vm_struct *v = p;
  2319. ++*pos;
  2320. return v->next;
  2321. }
  2322. static void s_stop(struct seq_file *m, void *p)
  2323. __releases(&vmlist_lock)
  2324. {
  2325. read_unlock(&vmlist_lock);
  2326. }
  2327. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2328. {
  2329. if (NUMA_BUILD) {
  2330. unsigned int nr, *counters = m->private;
  2331. if (!counters)
  2332. return;
  2333. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2334. for (nr = 0; nr < v->nr_pages; nr++)
  2335. counters[page_to_nid(v->pages[nr])]++;
  2336. for_each_node_state(nr, N_HIGH_MEMORY)
  2337. if (counters[nr])
  2338. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2339. }
  2340. }
  2341. static int s_show(struct seq_file *m, void *p)
  2342. {
  2343. struct vm_struct *v = p;
  2344. seq_printf(m, "0x%p-0x%p %7ld",
  2345. v->addr, v->addr + v->size, v->size);
  2346. if (v->caller)
  2347. seq_printf(m, " %pS", v->caller);
  2348. if (v->nr_pages)
  2349. seq_printf(m, " pages=%d", v->nr_pages);
  2350. if (v->phys_addr)
  2351. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2352. if (v->flags & VM_IOREMAP)
  2353. seq_printf(m, " ioremap");
  2354. if (v->flags & VM_ALLOC)
  2355. seq_printf(m, " vmalloc");
  2356. if (v->flags & VM_MAP)
  2357. seq_printf(m, " vmap");
  2358. if (v->flags & VM_USERMAP)
  2359. seq_printf(m, " user");
  2360. if (v->flags & VM_VPAGES)
  2361. seq_printf(m, " vpages");
  2362. if (v->flags & VM_LOWMEM)
  2363. seq_printf(m, " lowmem");
  2364. show_numa_info(m, v);
  2365. seq_putc(m, '\n');
  2366. return 0;
  2367. }
  2368. static const struct seq_operations vmalloc_op = {
  2369. .start = s_start,
  2370. .next = s_next,
  2371. .stop = s_stop,
  2372. .show = s_show,
  2373. };
  2374. static int vmalloc_open(struct inode *inode, struct file *file)
  2375. {
  2376. unsigned int *ptr = NULL;
  2377. int ret;
  2378. if (NUMA_BUILD) {
  2379. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  2380. if (ptr == NULL)
  2381. return -ENOMEM;
  2382. }
  2383. ret = seq_open(file, &vmalloc_op);
  2384. if (!ret) {
  2385. struct seq_file *m = file->private_data;
  2386. m->private = ptr;
  2387. } else
  2388. kfree(ptr);
  2389. return ret;
  2390. }
  2391. static const struct file_operations proc_vmalloc_operations = {
  2392. .open = vmalloc_open,
  2393. .read = seq_read,
  2394. .llseek = seq_lseek,
  2395. .release = seq_release_private,
  2396. };
  2397. static int __init proc_vmalloc_init(void)
  2398. {
  2399. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2400. return 0;
  2401. }
  2402. module_init(proc_vmalloc_init);
  2403. #endif