123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 |
- /*
- * linux/mm/mempool.c
- *
- * memory buffer pool support. Such pools are mostly used
- * for guaranteed, deadlock-free memory allocations during
- * extreme VM load.
- *
- * started by Ingo Molnar, Copyright (C) 2001
- */
- #include <linux/mm.h>
- #include <linux/slab.h>
- #include <linux/export.h>
- #include <linux/mempool.h>
- #include <linux/blkdev.h>
- #include <linux/writeback.h>
- static void add_element(mempool_t *pool, void *element)
- {
- BUG_ON(pool->curr_nr >= pool->min_nr);
- pool->elements[pool->curr_nr++] = element;
- }
- static void *remove_element(mempool_t *pool)
- {
- BUG_ON(pool->curr_nr <= 0);
- return pool->elements[--pool->curr_nr];
- }
- /**
- * mempool_destroy - deallocate a memory pool
- * @pool: pointer to the memory pool which was allocated via
- * mempool_create().
- *
- * Free all reserved elements in @pool and @pool itself. This function
- * only sleeps if the free_fn() function sleeps.
- */
- void mempool_destroy(mempool_t *pool)
- {
- while (pool->curr_nr) {
- void *element = remove_element(pool);
- pool->free(element, pool->pool_data);
- }
- kfree(pool->elements);
- kfree(pool);
- }
- EXPORT_SYMBOL(mempool_destroy);
- /**
- * mempool_create - create a memory pool
- * @min_nr: the minimum number of elements guaranteed to be
- * allocated for this pool.
- * @alloc_fn: user-defined element-allocation function.
- * @free_fn: user-defined element-freeing function.
- * @pool_data: optional private data available to the user-defined functions.
- *
- * this function creates and allocates a guaranteed size, preallocated
- * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
- * functions. This function might sleep. Both the alloc_fn() and the free_fn()
- * functions might sleep - as long as the mempool_alloc() function is not called
- * from IRQ contexts.
- */
- mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
- mempool_free_t *free_fn, void *pool_data)
- {
- return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,-1);
- }
- EXPORT_SYMBOL(mempool_create);
- mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
- mempool_free_t *free_fn, void *pool_data, int node_id)
- {
- mempool_t *pool;
- pool = kmalloc_node(sizeof(*pool), GFP_KERNEL | __GFP_ZERO, node_id);
- if (!pool)
- return NULL;
- pool->elements = kmalloc_node(min_nr * sizeof(void *),
- GFP_KERNEL, node_id);
- if (!pool->elements) {
- kfree(pool);
- return NULL;
- }
- spin_lock_init(&pool->lock);
- pool->min_nr = min_nr;
- pool->pool_data = pool_data;
- init_waitqueue_head(&pool->wait);
- pool->alloc = alloc_fn;
- pool->free = free_fn;
- /*
- * First pre-allocate the guaranteed number of buffers.
- */
- while (pool->curr_nr < pool->min_nr) {
- void *element;
- element = pool->alloc(GFP_KERNEL, pool->pool_data);
- if (unlikely(!element)) {
- mempool_destroy(pool);
- return NULL;
- }
- add_element(pool, element);
- }
- return pool;
- }
- EXPORT_SYMBOL(mempool_create_node);
- /**
- * mempool_resize - resize an existing memory pool
- * @pool: pointer to the memory pool which was allocated via
- * mempool_create().
- * @new_min_nr: the new minimum number of elements guaranteed to be
- * allocated for this pool.
- * @gfp_mask: the usual allocation bitmask.
- *
- * This function shrinks/grows the pool. In the case of growing,
- * it cannot be guaranteed that the pool will be grown to the new
- * size immediately, but new mempool_free() calls will refill it.
- *
- * Note, the caller must guarantee that no mempool_destroy is called
- * while this function is running. mempool_alloc() & mempool_free()
- * might be called (eg. from IRQ contexts) while this function executes.
- */
- int mempool_resize(mempool_t *pool, int new_min_nr, gfp_t gfp_mask)
- {
- void *element;
- void **new_elements;
- unsigned long flags;
- BUG_ON(new_min_nr <= 0);
- spin_lock_irqsave(&pool->lock, flags);
- if (new_min_nr <= pool->min_nr) {
- while (new_min_nr < pool->curr_nr) {
- element = remove_element(pool);
- spin_unlock_irqrestore(&pool->lock, flags);
- pool->free(element, pool->pool_data);
- spin_lock_irqsave(&pool->lock, flags);
- }
- pool->min_nr = new_min_nr;
- goto out_unlock;
- }
- spin_unlock_irqrestore(&pool->lock, flags);
- /* Grow the pool */
- new_elements = kmalloc(new_min_nr * sizeof(*new_elements), gfp_mask);
- if (!new_elements)
- return -ENOMEM;
- spin_lock_irqsave(&pool->lock, flags);
- if (unlikely(new_min_nr <= pool->min_nr)) {
- /* Raced, other resize will do our work */
- spin_unlock_irqrestore(&pool->lock, flags);
- kfree(new_elements);
- goto out;
- }
- memcpy(new_elements, pool->elements,
- pool->curr_nr * sizeof(*new_elements));
- kfree(pool->elements);
- pool->elements = new_elements;
- pool->min_nr = new_min_nr;
- while (pool->curr_nr < pool->min_nr) {
- spin_unlock_irqrestore(&pool->lock, flags);
- element = pool->alloc(gfp_mask, pool->pool_data);
- if (!element)
- goto out;
- spin_lock_irqsave(&pool->lock, flags);
- if (pool->curr_nr < pool->min_nr) {
- add_element(pool, element);
- } else {
- spin_unlock_irqrestore(&pool->lock, flags);
- pool->free(element, pool->pool_data); /* Raced */
- goto out;
- }
- }
- out_unlock:
- spin_unlock_irqrestore(&pool->lock, flags);
- out:
- return 0;
- }
- EXPORT_SYMBOL(mempool_resize);
- /**
- * mempool_alloc - allocate an element from a specific memory pool
- * @pool: pointer to the memory pool which was allocated via
- * mempool_create().
- * @gfp_mask: the usual allocation bitmask.
- *
- * this function only sleeps if the alloc_fn() function sleeps or
- * returns NULL. Note that due to preallocation, this function
- * *never* fails when called from process contexts. (it might
- * fail if called from an IRQ context.)
- */
- void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
- {
- void *element;
- unsigned long flags;
- wait_queue_t wait;
- gfp_t gfp_temp;
- might_sleep_if(gfp_mask & __GFP_WAIT);
- gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */
- gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */
- gfp_mask |= __GFP_NOWARN; /* failures are OK */
- gfp_temp = gfp_mask & ~(__GFP_WAIT|__GFP_IO);
- repeat_alloc:
- element = pool->alloc(gfp_temp, pool->pool_data);
- if (likely(element != NULL))
- return element;
- spin_lock_irqsave(&pool->lock, flags);
- if (likely(pool->curr_nr)) {
- element = remove_element(pool);
- spin_unlock_irqrestore(&pool->lock, flags);
- /* paired with rmb in mempool_free(), read comment there */
- smp_wmb();
- return element;
- }
- /*
- * We use gfp mask w/o __GFP_WAIT or IO for the first round. If
- * alloc failed with that and @pool was empty, retry immediately.
- */
- if (gfp_temp != gfp_mask) {
- spin_unlock_irqrestore(&pool->lock, flags);
- gfp_temp = gfp_mask;
- goto repeat_alloc;
- }
- /* We must not sleep if !__GFP_WAIT */
- if (!(gfp_mask & __GFP_WAIT)) {
- spin_unlock_irqrestore(&pool->lock, flags);
- return NULL;
- }
- /* Let's wait for someone else to return an element to @pool */
- init_wait(&wait);
- prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
- spin_unlock_irqrestore(&pool->lock, flags);
- /*
- * FIXME: this should be io_schedule(). The timeout is there as a
- * workaround for some DM problems in 2.6.18.
- */
- io_schedule_timeout(5*HZ);
- finish_wait(&pool->wait, &wait);
- goto repeat_alloc;
- }
- EXPORT_SYMBOL(mempool_alloc);
- /**
- * mempool_free - return an element to the pool.
- * @element: pool element pointer.
- * @pool: pointer to the memory pool which was allocated via
- * mempool_create().
- *
- * this function only sleeps if the free_fn() function sleeps.
- */
- void mempool_free(void *element, mempool_t *pool)
- {
- unsigned long flags;
- if (unlikely(element == NULL))
- return;
- /*
- * Paired with the wmb in mempool_alloc(). The preceding read is
- * for @element and the following @pool->curr_nr. This ensures
- * that the visible value of @pool->curr_nr is from after the
- * allocation of @element. This is necessary for fringe cases
- * where @element was passed to this task without going through
- * barriers.
- *
- * For example, assume @p is %NULL at the beginning and one task
- * performs "p = mempool_alloc(...);" while another task is doing
- * "while (!p) cpu_relax(); mempool_free(p, ...);". This function
- * may end up using curr_nr value which is from before allocation
- * of @p without the following rmb.
- */
- smp_rmb();
- /*
- * For correctness, we need a test which is guaranteed to trigger
- * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr
- * without locking achieves that and refilling as soon as possible
- * is desirable.
- *
- * Because curr_nr visible here is always a value after the
- * allocation of @element, any task which decremented curr_nr below
- * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
- * incremented to min_nr afterwards. If curr_nr gets incremented
- * to min_nr after the allocation of @element, the elements
- * allocated after that are subject to the same guarantee.
- *
- * Waiters happen iff curr_nr is 0 and the above guarantee also
- * ensures that there will be frees which return elements to the
- * pool waking up the waiters.
- */
- if (pool->curr_nr < pool->min_nr) {
- spin_lock_irqsave(&pool->lock, flags);
- if (pool->curr_nr < pool->min_nr) {
- add_element(pool, element);
- spin_unlock_irqrestore(&pool->lock, flags);
- wake_up(&pool->wait);
- return;
- }
- spin_unlock_irqrestore(&pool->lock, flags);
- }
- pool->free(element, pool->pool_data);
- }
- EXPORT_SYMBOL(mempool_free);
- /*
- * A commonly used alloc and free fn.
- */
- void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
- {
- struct kmem_cache *mem = pool_data;
- return kmem_cache_alloc(mem, gfp_mask);
- }
- EXPORT_SYMBOL(mempool_alloc_slab);
- void mempool_free_slab(void *element, void *pool_data)
- {
- struct kmem_cache *mem = pool_data;
- kmem_cache_free(mem, element);
- }
- EXPORT_SYMBOL(mempool_free_slab);
- /*
- * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
- * specified by pool_data
- */
- void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
- {
- size_t size = (size_t)pool_data;
- return kmalloc(size, gfp_mask);
- }
- EXPORT_SYMBOL(mempool_kmalloc);
- void mempool_kfree(void *element, void *pool_data)
- {
- kfree(element);
- }
- EXPORT_SYMBOL(mempool_kfree);
- /*
- * A simple mempool-backed page allocator that allocates pages
- * of the order specified by pool_data.
- */
- void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
- {
- int order = (int)(long)pool_data;
- return alloc_pages(gfp_mask, order);
- }
- EXPORT_SYMBOL(mempool_alloc_pages);
- void mempool_free_pages(void *element, void *pool_data)
- {
- int order = (int)(long)pool_data;
- __free_pages(element, order);
- }
- EXPORT_SYMBOL(mempool_free_pages);
|