12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043 |
- /*
- * Procedures for maintaining information about logical memory blocks.
- *
- * Peter Bergner, IBM Corp. June 2001.
- * Copyright (C) 2001 Peter Bergner.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
- #include <linux/kernel.h>
- #include <linux/slab.h>
- #include <linux/init.h>
- #include <linux/bitops.h>
- #include <linux/poison.h>
- #include <linux/pfn.h>
- #include <linux/debugfs.h>
- #include <linux/seq_file.h>
- #include <linux/memblock.h>
- static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
- static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
- struct memblock memblock __initdata_memblock = {
- .memory.regions = memblock_memory_init_regions,
- .memory.cnt = 1, /* empty dummy entry */
- .memory.max = INIT_MEMBLOCK_REGIONS,
- .reserved.regions = memblock_reserved_init_regions,
- .reserved.cnt = 1, /* empty dummy entry */
- .reserved.max = INIT_MEMBLOCK_REGIONS,
- .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
- };
- int memblock_debug __initdata_memblock;
- static int memblock_can_resize __initdata_memblock;
- static int memblock_memory_in_slab __initdata_memblock = 0;
- static int memblock_reserved_in_slab __initdata_memblock = 0;
- /* inline so we don't get a warning when pr_debug is compiled out */
- static inline const char *memblock_type_name(struct memblock_type *type)
- {
- if (type == &memblock.memory)
- return "memory";
- else if (type == &memblock.reserved)
- return "reserved";
- else
- return "unknown";
- }
- /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
- static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
- {
- return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
- }
- /*
- * Address comparison utilities
- */
- static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
- phys_addr_t base2, phys_addr_t size2)
- {
- return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
- }
- static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
- phys_addr_t base, phys_addr_t size)
- {
- unsigned long i;
- for (i = 0; i < type->cnt; i++) {
- phys_addr_t rgnbase = type->regions[i].base;
- phys_addr_t rgnsize = type->regions[i].size;
- if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
- break;
- }
- return (i < type->cnt) ? i : -1;
- }
- /**
- * memblock_find_in_range_node - find free area in given range and node
- * @start: start of candidate range
- * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
- * @size: size of free area to find
- * @align: alignment of free area to find
- * @nid: nid of the free area to find, %MAX_NUMNODES for any node
- *
- * Find @size free area aligned to @align in the specified range and node.
- *
- * RETURNS:
- * Found address on success, %0 on failure.
- */
- phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
- phys_addr_t end, phys_addr_t size,
- phys_addr_t align, int nid)
- {
- phys_addr_t this_start, this_end, cand;
- u64 i;
- /* pump up @end */
- if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
- end = memblock.current_limit;
- /* avoid allocating the first page */
- start = max_t(phys_addr_t, start, PAGE_SIZE);
- end = max(start, end);
- for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
- this_start = clamp(this_start, start, end);
- this_end = clamp(this_end, start, end);
- if (this_end < size)
- continue;
- cand = round_down(this_end - size, align);
- if (cand >= this_start)
- return cand;
- }
- return 0;
- }
- /**
- * memblock_find_in_range - find free area in given range
- * @start: start of candidate range
- * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
- * @size: size of free area to find
- * @align: alignment of free area to find
- *
- * Find @size free area aligned to @align in the specified range.
- *
- * RETURNS:
- * Found address on success, %0 on failure.
- */
- phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
- phys_addr_t end, phys_addr_t size,
- phys_addr_t align)
- {
- return memblock_find_in_range_node(start, end, size, align,
- MAX_NUMNODES);
- }
- static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
- {
- type->total_size -= type->regions[r].size;
- memmove(&type->regions[r], &type->regions[r + 1],
- (type->cnt - (r + 1)) * sizeof(type->regions[r]));
- type->cnt--;
- /* Special case for empty arrays */
- if (type->cnt == 0) {
- WARN_ON(type->total_size != 0);
- type->cnt = 1;
- type->regions[0].base = 0;
- type->regions[0].size = 0;
- memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
- }
- }
- phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
- phys_addr_t *addr)
- {
- if (memblock.reserved.regions == memblock_reserved_init_regions)
- return 0;
- *addr = __pa(memblock.reserved.regions);
- return PAGE_ALIGN(sizeof(struct memblock_region) *
- memblock.reserved.max);
- }
- /**
- * memblock_double_array - double the size of the memblock regions array
- * @type: memblock type of the regions array being doubled
- * @new_area_start: starting address of memory range to avoid overlap with
- * @new_area_size: size of memory range to avoid overlap with
- *
- * Double the size of the @type regions array. If memblock is being used to
- * allocate memory for a new reserved regions array and there is a previously
- * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
- * waiting to be reserved, ensure the memory used by the new array does
- * not overlap.
- *
- * RETURNS:
- * 0 on success, -1 on failure.
- */
- static int __init_memblock memblock_double_array(struct memblock_type *type,
- phys_addr_t new_area_start,
- phys_addr_t new_area_size)
- {
- struct memblock_region *new_array, *old_array;
- phys_addr_t old_alloc_size, new_alloc_size;
- phys_addr_t old_size, new_size, addr;
- int use_slab = slab_is_available();
- int *in_slab;
- /* We don't allow resizing until we know about the reserved regions
- * of memory that aren't suitable for allocation
- */
- if (!memblock_can_resize)
- return -1;
- /* Calculate new doubled size */
- old_size = type->max * sizeof(struct memblock_region);
- new_size = old_size << 1;
- /*
- * We need to allocated new one align to PAGE_SIZE,
- * so we can free them completely later.
- */
- old_alloc_size = PAGE_ALIGN(old_size);
- new_alloc_size = PAGE_ALIGN(new_size);
- /* Retrieve the slab flag */
- if (type == &memblock.memory)
- in_slab = &memblock_memory_in_slab;
- else
- in_slab = &memblock_reserved_in_slab;
- /* Try to find some space for it.
- *
- * WARNING: We assume that either slab_is_available() and we use it or
- * we use MEMBLOCK for allocations. That means that this is unsafe to use
- * when bootmem is currently active (unless bootmem itself is implemented
- * on top of MEMBLOCK which isn't the case yet)
- *
- * This should however not be an issue for now, as we currently only
- * call into MEMBLOCK while it's still active, or much later when slab is
- * active for memory hotplug operations
- */
- if (use_slab) {
- new_array = kmalloc(new_size, GFP_KERNEL);
- addr = new_array ? __pa(new_array) : 0;
- } else {
- /* only exclude range when trying to double reserved.regions */
- if (type != &memblock.reserved)
- new_area_start = new_area_size = 0;
- addr = memblock_find_in_range(new_area_start + new_area_size,
- memblock.current_limit,
- new_alloc_size, PAGE_SIZE);
- if (!addr && new_area_size)
- addr = memblock_find_in_range(0,
- min(new_area_start, memblock.current_limit),
- new_alloc_size, PAGE_SIZE);
- new_array = addr ? __va(addr) : 0;
- }
- if (!addr) {
- pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
- memblock_type_name(type), type->max, type->max * 2);
- return -1;
- }
- memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
- memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
- /* Found space, we now need to move the array over before
- * we add the reserved region since it may be our reserved
- * array itself that is full.
- */
- memcpy(new_array, type->regions, old_size);
- memset(new_array + type->max, 0, old_size);
- old_array = type->regions;
- type->regions = new_array;
- type->max <<= 1;
- /* Free old array. We needn't free it if the array is the
- * static one
- */
- if (*in_slab)
- kfree(old_array);
- else if (old_array != memblock_memory_init_regions &&
- old_array != memblock_reserved_init_regions)
- memblock_free(__pa(old_array), old_alloc_size);
- /* Reserve the new array if that comes from the memblock.
- * Otherwise, we needn't do it
- */
- if (!use_slab)
- BUG_ON(memblock_reserve(addr, new_alloc_size));
- /* Update slab flag */
- *in_slab = use_slab;
- return 0;
- }
- /**
- * memblock_merge_regions - merge neighboring compatible regions
- * @type: memblock type to scan
- *
- * Scan @type and merge neighboring compatible regions.
- */
- static void __init_memblock memblock_merge_regions(struct memblock_type *type)
- {
- int i = 0;
- /* cnt never goes below 1 */
- while (i < type->cnt - 1) {
- struct memblock_region *this = &type->regions[i];
- struct memblock_region *next = &type->regions[i + 1];
- if (this->base + this->size != next->base ||
- memblock_get_region_node(this) !=
- memblock_get_region_node(next)) {
- BUG_ON(this->base + this->size > next->base);
- i++;
- continue;
- }
- this->size += next->size;
- memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
- type->cnt--;
- }
- }
- /**
- * memblock_insert_region - insert new memblock region
- * @type: memblock type to insert into
- * @idx: index for the insertion point
- * @base: base address of the new region
- * @size: size of the new region
- *
- * Insert new memblock region [@base,@base+@size) into @type at @idx.
- * @type must already have extra room to accomodate the new region.
- */
- static void __init_memblock memblock_insert_region(struct memblock_type *type,
- int idx, phys_addr_t base,
- phys_addr_t size, int nid)
- {
- struct memblock_region *rgn = &type->regions[idx];
- BUG_ON(type->cnt >= type->max);
- memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
- rgn->base = base;
- rgn->size = size;
- memblock_set_region_node(rgn, nid);
- type->cnt++;
- type->total_size += size;
- }
- /**
- * memblock_add_region - add new memblock region
- * @type: memblock type to add new region into
- * @base: base address of the new region
- * @size: size of the new region
- * @nid: nid of the new region
- *
- * Add new memblock region [@base,@base+@size) into @type. The new region
- * is allowed to overlap with existing ones - overlaps don't affect already
- * existing regions. @type is guaranteed to be minimal (all neighbouring
- * compatible regions are merged) after the addition.
- *
- * RETURNS:
- * 0 on success, -errno on failure.
- */
- static int __init_memblock memblock_add_region(struct memblock_type *type,
- phys_addr_t base, phys_addr_t size, int nid)
- {
- bool insert = false;
- phys_addr_t obase = base;
- phys_addr_t end = base + memblock_cap_size(base, &size);
- int i, nr_new;
- if (!size)
- return 0;
- /* special case for empty array */
- if (type->regions[0].size == 0) {
- WARN_ON(type->cnt != 1 || type->total_size);
- type->regions[0].base = base;
- type->regions[0].size = size;
- memblock_set_region_node(&type->regions[0], nid);
- type->total_size = size;
- return 0;
- }
- repeat:
- /*
- * The following is executed twice. Once with %false @insert and
- * then with %true. The first counts the number of regions needed
- * to accomodate the new area. The second actually inserts them.
- */
- base = obase;
- nr_new = 0;
- for (i = 0; i < type->cnt; i++) {
- struct memblock_region *rgn = &type->regions[i];
- phys_addr_t rbase = rgn->base;
- phys_addr_t rend = rbase + rgn->size;
- if (rbase >= end)
- break;
- if (rend <= base)
- continue;
- /*
- * @rgn overlaps. If it separates the lower part of new
- * area, insert that portion.
- */
- if (rbase > base) {
- nr_new++;
- if (insert)
- memblock_insert_region(type, i++, base,
- rbase - base, nid);
- }
- /* area below @rend is dealt with, forget about it */
- base = min(rend, end);
- }
- /* insert the remaining portion */
- if (base < end) {
- nr_new++;
- if (insert)
- memblock_insert_region(type, i, base, end - base, nid);
- }
- /*
- * If this was the first round, resize array and repeat for actual
- * insertions; otherwise, merge and return.
- */
- if (!insert) {
- while (type->cnt + nr_new > type->max)
- if (memblock_double_array(type, obase, size) < 0)
- return -ENOMEM;
- insert = true;
- goto repeat;
- } else {
- memblock_merge_regions(type);
- return 0;
- }
- }
- int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
- int nid)
- {
- return memblock_add_region(&memblock.memory, base, size, nid);
- }
- int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
- {
- return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
- }
- /**
- * memblock_isolate_range - isolate given range into disjoint memblocks
- * @type: memblock type to isolate range for
- * @base: base of range to isolate
- * @size: size of range to isolate
- * @start_rgn: out parameter for the start of isolated region
- * @end_rgn: out parameter for the end of isolated region
- *
- * Walk @type and ensure that regions don't cross the boundaries defined by
- * [@base,@base+@size). Crossing regions are split at the boundaries,
- * which may create at most two more regions. The index of the first
- * region inside the range is returned in *@start_rgn and end in *@end_rgn.
- *
- * RETURNS:
- * 0 on success, -errno on failure.
- */
- static int __init_memblock memblock_isolate_range(struct memblock_type *type,
- phys_addr_t base, phys_addr_t size,
- int *start_rgn, int *end_rgn)
- {
- phys_addr_t end = base + memblock_cap_size(base, &size);
- int i;
- *start_rgn = *end_rgn = 0;
- if (!size)
- return 0;
- /* we'll create at most two more regions */
- while (type->cnt + 2 > type->max)
- if (memblock_double_array(type, base, size) < 0)
- return -ENOMEM;
- for (i = 0; i < type->cnt; i++) {
- struct memblock_region *rgn = &type->regions[i];
- phys_addr_t rbase = rgn->base;
- phys_addr_t rend = rbase + rgn->size;
- if (rbase >= end)
- break;
- if (rend <= base)
- continue;
- if (rbase < base) {
- /*
- * @rgn intersects from below. Split and continue
- * to process the next region - the new top half.
- */
- rgn->base = base;
- rgn->size -= base - rbase;
- type->total_size -= base - rbase;
- memblock_insert_region(type, i, rbase, base - rbase,
- memblock_get_region_node(rgn));
- } else if (rend > end) {
- /*
- * @rgn intersects from above. Split and redo the
- * current region - the new bottom half.
- */
- rgn->base = end;
- rgn->size -= end - rbase;
- type->total_size -= end - rbase;
- memblock_insert_region(type, i--, rbase, end - rbase,
- memblock_get_region_node(rgn));
- } else {
- /* @rgn is fully contained, record it */
- if (!*end_rgn)
- *start_rgn = i;
- *end_rgn = i + 1;
- }
- }
- return 0;
- }
- static int __init_memblock __memblock_remove(struct memblock_type *type,
- phys_addr_t base, phys_addr_t size)
- {
- int start_rgn, end_rgn;
- int i, ret;
- ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
- if (ret)
- return ret;
- for (i = end_rgn - 1; i >= start_rgn; i--)
- memblock_remove_region(type, i);
- return 0;
- }
- int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
- {
- return __memblock_remove(&memblock.memory, base, size);
- }
- int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
- {
- memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
- (unsigned long long)base,
- (unsigned long long)base + size,
- (void *)_RET_IP_);
- return __memblock_remove(&memblock.reserved, base, size);
- }
- int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
- {
- struct memblock_type *_rgn = &memblock.reserved;
- memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
- (unsigned long long)base,
- (unsigned long long)base + size,
- (void *)_RET_IP_);
- return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
- }
- /**
- * __next_free_mem_range - next function for for_each_free_mem_range()
- * @idx: pointer to u64 loop variable
- * @nid: nid: node selector, %MAX_NUMNODES for all nodes
- * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
- * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
- * @out_nid: ptr to int for nid of the range, can be %NULL
- *
- * Find the first free area from *@idx which matches @nid, fill the out
- * parameters, and update *@idx for the next iteration. The lower 32bit of
- * *@idx contains index into memory region and the upper 32bit indexes the
- * areas before each reserved region. For example, if reserved regions
- * look like the following,
- *
- * 0:[0-16), 1:[32-48), 2:[128-130)
- *
- * The upper 32bit indexes the following regions.
- *
- * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
- *
- * As both region arrays are sorted, the function advances the two indices
- * in lockstep and returns each intersection.
- */
- void __init_memblock __next_free_mem_range(u64 *idx, int nid,
- phys_addr_t *out_start,
- phys_addr_t *out_end, int *out_nid)
- {
- struct memblock_type *mem = &memblock.memory;
- struct memblock_type *rsv = &memblock.reserved;
- int mi = *idx & 0xffffffff;
- int ri = *idx >> 32;
- for ( ; mi < mem->cnt; mi++) {
- struct memblock_region *m = &mem->regions[mi];
- phys_addr_t m_start = m->base;
- phys_addr_t m_end = m->base + m->size;
- /* only memory regions are associated with nodes, check it */
- if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
- continue;
- /* scan areas before each reservation for intersection */
- for ( ; ri < rsv->cnt + 1; ri++) {
- struct memblock_region *r = &rsv->regions[ri];
- phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
- phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
- /* if ri advanced past mi, break out to advance mi */
- if (r_start >= m_end)
- break;
- /* if the two regions intersect, we're done */
- if (m_start < r_end) {
- if (out_start)
- *out_start = max(m_start, r_start);
- if (out_end)
- *out_end = min(m_end, r_end);
- if (out_nid)
- *out_nid = memblock_get_region_node(m);
- /*
- * The region which ends first is advanced
- * for the next iteration.
- */
- if (m_end <= r_end)
- mi++;
- else
- ri++;
- *idx = (u32)mi | (u64)ri << 32;
- return;
- }
- }
- }
- /* signal end of iteration */
- *idx = ULLONG_MAX;
- }
- /**
- * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
- * @idx: pointer to u64 loop variable
- * @nid: nid: node selector, %MAX_NUMNODES for all nodes
- * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
- * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
- * @out_nid: ptr to int for nid of the range, can be %NULL
- *
- * Reverse of __next_free_mem_range().
- */
- void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
- phys_addr_t *out_start,
- phys_addr_t *out_end, int *out_nid)
- {
- struct memblock_type *mem = &memblock.memory;
- struct memblock_type *rsv = &memblock.reserved;
- int mi = *idx & 0xffffffff;
- int ri = *idx >> 32;
- if (*idx == (u64)ULLONG_MAX) {
- mi = mem->cnt - 1;
- ri = rsv->cnt;
- }
- for ( ; mi >= 0; mi--) {
- struct memblock_region *m = &mem->regions[mi];
- phys_addr_t m_start = m->base;
- phys_addr_t m_end = m->base + m->size;
- /* only memory regions are associated with nodes, check it */
- if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
- continue;
- /* scan areas before each reservation for intersection */
- for ( ; ri >= 0; ri--) {
- struct memblock_region *r = &rsv->regions[ri];
- phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
- phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
- /* if ri advanced past mi, break out to advance mi */
- if (r_end <= m_start)
- break;
- /* if the two regions intersect, we're done */
- if (m_end > r_start) {
- if (out_start)
- *out_start = max(m_start, r_start);
- if (out_end)
- *out_end = min(m_end, r_end);
- if (out_nid)
- *out_nid = memblock_get_region_node(m);
- if (m_start >= r_start)
- mi--;
- else
- ri--;
- *idx = (u32)mi | (u64)ri << 32;
- return;
- }
- }
- }
- *idx = ULLONG_MAX;
- }
- #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
- /*
- * Common iterator interface used to define for_each_mem_range().
- */
- void __init_memblock __next_mem_pfn_range(int *idx, int nid,
- unsigned long *out_start_pfn,
- unsigned long *out_end_pfn, int *out_nid)
- {
- struct memblock_type *type = &memblock.memory;
- struct memblock_region *r;
- while (++*idx < type->cnt) {
- r = &type->regions[*idx];
- if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
- continue;
- if (nid == MAX_NUMNODES || nid == r->nid)
- break;
- }
- if (*idx >= type->cnt) {
- *idx = -1;
- return;
- }
- if (out_start_pfn)
- *out_start_pfn = PFN_UP(r->base);
- if (out_end_pfn)
- *out_end_pfn = PFN_DOWN(r->base + r->size);
- if (out_nid)
- *out_nid = r->nid;
- }
- /**
- * memblock_set_node - set node ID on memblock regions
- * @base: base of area to set node ID for
- * @size: size of area to set node ID for
- * @nid: node ID to set
- *
- * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
- * Regions which cross the area boundaries are split as necessary.
- *
- * RETURNS:
- * 0 on success, -errno on failure.
- */
- int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
- int nid)
- {
- struct memblock_type *type = &memblock.memory;
- int start_rgn, end_rgn;
- int i, ret;
- ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
- if (ret)
- return ret;
- for (i = start_rgn; i < end_rgn; i++)
- type->regions[i].nid = nid;
- memblock_merge_regions(type);
- return 0;
- }
- #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
- static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
- phys_addr_t align, phys_addr_t max_addr,
- int nid)
- {
- phys_addr_t found;
- /* align @size to avoid excessive fragmentation on reserved array */
- size = round_up(size, align);
- found = memblock_find_in_range_node(0, max_addr, size, align, nid);
- if (found && !memblock_reserve(found, size))
- return found;
- return 0;
- }
- phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
- {
- return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
- }
- phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
- {
- return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
- }
- phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
- {
- phys_addr_t alloc;
- alloc = __memblock_alloc_base(size, align, max_addr);
- if (alloc == 0)
- panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
- (unsigned long long) size, (unsigned long long) max_addr);
- return alloc;
- }
- phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
- {
- return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
- }
- phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
- {
- phys_addr_t res = memblock_alloc_nid(size, align, nid);
- if (res)
- return res;
- return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
- }
- /*
- * Remaining API functions
- */
- phys_addr_t __init memblock_phys_mem_size(void)
- {
- return memblock.memory.total_size;
- }
- /* lowest address */
- phys_addr_t __init_memblock memblock_start_of_DRAM(void)
- {
- return memblock.memory.regions[0].base;
- }
- phys_addr_t __init_memblock memblock_end_of_DRAM(void)
- {
- int idx = memblock.memory.cnt - 1;
- return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
- }
- void __init memblock_enforce_memory_limit(phys_addr_t limit)
- {
- unsigned long i;
- phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
- if (!limit)
- return;
- /* find out max address */
- for (i = 0; i < memblock.memory.cnt; i++) {
- struct memblock_region *r = &memblock.memory.regions[i];
- if (limit <= r->size) {
- max_addr = r->base + limit;
- break;
- }
- limit -= r->size;
- }
- /* truncate both memory and reserved regions */
- __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
- __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
- }
- static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
- {
- unsigned int left = 0, right = type->cnt;
- do {
- unsigned int mid = (right + left) / 2;
- if (addr < type->regions[mid].base)
- right = mid;
- else if (addr >= (type->regions[mid].base +
- type->regions[mid].size))
- left = mid + 1;
- else
- return mid;
- } while (left < right);
- return -1;
- }
- int __init memblock_is_reserved(phys_addr_t addr)
- {
- return memblock_search(&memblock.reserved, addr) != -1;
- }
- int __init_memblock memblock_is_memory(phys_addr_t addr)
- {
- return memblock_search(&memblock.memory, addr) != -1;
- }
- int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
- {
- int idx = memblock_search(&memblock.memory, base);
- phys_addr_t end = base + memblock_cap_size(base, &size);
- if (idx == -1)
- return 0;
- return memblock.memory.regions[idx].base <= base &&
- (memblock.memory.regions[idx].base +
- memblock.memory.regions[idx].size) >= end;
- }
- int __init_memblock memblock_overlaps_memory(phys_addr_t base, phys_addr_t size)
- {
- memblock_cap_size(base, &size);
- return memblock_overlaps_region(&memblock.memory, base, size) >= 0;
- }
- int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
- {
- memblock_cap_size(base, &size);
- return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
- }
- void __init_memblock memblock_trim_memory(phys_addr_t align)
- {
- int i;
- phys_addr_t start, end, orig_start, orig_end;
- struct memblock_type *mem = &memblock.memory;
- for (i = 0; i < mem->cnt; i++) {
- orig_start = mem->regions[i].base;
- orig_end = mem->regions[i].base + mem->regions[i].size;
- start = round_up(orig_start, align);
- end = round_down(orig_end, align);
- if (start == orig_start && end == orig_end)
- continue;
- if (start < end) {
- mem->regions[i].base = start;
- mem->regions[i].size = end - start;
- } else {
- memblock_remove_region(mem, i);
- i--;
- }
- }
- }
- void __init_memblock memblock_set_current_limit(phys_addr_t limit)
- {
- memblock.current_limit = limit;
- }
- static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
- {
- unsigned long long base, size;
- int i;
- pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
- for (i = 0; i < type->cnt; i++) {
- struct memblock_region *rgn = &type->regions[i];
- char nid_buf[32] = "";
- base = rgn->base;
- size = rgn->size;
- #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
- if (memblock_get_region_node(rgn) != MAX_NUMNODES)
- snprintf(nid_buf, sizeof(nid_buf), " on node %d",
- memblock_get_region_node(rgn));
- #endif
- pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
- name, i, base, base + size - 1, size, nid_buf);
- }
- }
- void __init_memblock __memblock_dump_all(void)
- {
- pr_info("MEMBLOCK configuration:\n");
- pr_info(" memory size = %#llx reserved size = %#llx\n",
- (unsigned long long)memblock.memory.total_size,
- (unsigned long long)memblock.reserved.total_size);
- memblock_dump(&memblock.memory, "memory");
- memblock_dump(&memblock.reserved, "reserved");
- }
- void __init memblock_allow_resize(void)
- {
- memblock_can_resize = 1;
- }
- static int __init early_memblock(char *p)
- {
- if (p && strstr(p, "debug"))
- memblock_debug = 1;
- return 0;
- }
- early_param("memblock", early_memblock);
- #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
- static int memblock_debug_show(struct seq_file *m, void *private)
- {
- struct memblock_type *type = m->private;
- struct memblock_region *reg;
- int i;
- for (i = 0; i < type->cnt; i++) {
- reg = &type->regions[i];
- seq_printf(m, "%4d: ", i);
- if (sizeof(phys_addr_t) == 4)
- seq_printf(m, "0x%08lx..0x%08lx\n",
- (unsigned long)reg->base,
- (unsigned long)(reg->base + reg->size - 1));
- else
- seq_printf(m, "0x%016llx..0x%016llx\n",
- (unsigned long long)reg->base,
- (unsigned long long)(reg->base + reg->size - 1));
- }
- return 0;
- }
- static int memblock_debug_open(struct inode *inode, struct file *file)
- {
- return single_open(file, memblock_debug_show, inode->i_private);
- }
- static const struct file_operations memblock_debug_fops = {
- .open = memblock_debug_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = single_release,
- };
- static int __init memblock_init_debugfs(void)
- {
- struct dentry *root = debugfs_create_dir("memblock", NULL);
- if (!root)
- return -ENXIO;
- debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
- debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
- return 0;
- }
- __initcall(memblock_init_debugfs);
- #endif /* CONFIG_DEBUG_FS */
|