spi-topcliff-pch.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815
  1. /*
  2. * SPI bus driver for the Topcliff PCH used by Intel SoCs
  3. *
  4. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/pci.h>
  21. #include <linux/wait.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/sched.h>
  25. #include <linux/spi/spidev.h>
  26. #include <linux/module.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/dmaengine.h>
  30. #include <linux/pch_dma.h>
  31. /* Register offsets */
  32. #define PCH_SPCR 0x00 /* SPI control register */
  33. #define PCH_SPBRR 0x04 /* SPI baud rate register */
  34. #define PCH_SPSR 0x08 /* SPI status register */
  35. #define PCH_SPDWR 0x0C /* SPI write data register */
  36. #define PCH_SPDRR 0x10 /* SPI read data register */
  37. #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
  38. #define PCH_SRST 0x1C /* SPI reset register */
  39. #define PCH_ADDRESS_SIZE 0x20
  40. #define PCH_SPSR_TFD 0x000007C0
  41. #define PCH_SPSR_RFD 0x0000F800
  42. #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
  43. #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
  44. #define PCH_RX_THOLD 7
  45. #define PCH_RX_THOLD_MAX 15
  46. #define PCH_TX_THOLD 2
  47. #define PCH_MAX_BAUDRATE 5000000
  48. #define PCH_MAX_FIFO_DEPTH 16
  49. #define STATUS_RUNNING 1
  50. #define STATUS_EXITING 2
  51. #define PCH_SLEEP_TIME 10
  52. #define SSN_LOW 0x02U
  53. #define SSN_HIGH 0x03U
  54. #define SSN_NO_CONTROL 0x00U
  55. #define PCH_MAX_CS 0xFF
  56. #define PCI_DEVICE_ID_GE_SPI 0x8816
  57. #define SPCR_SPE_BIT (1 << 0)
  58. #define SPCR_MSTR_BIT (1 << 1)
  59. #define SPCR_LSBF_BIT (1 << 4)
  60. #define SPCR_CPHA_BIT (1 << 5)
  61. #define SPCR_CPOL_BIT (1 << 6)
  62. #define SPCR_TFIE_BIT (1 << 8)
  63. #define SPCR_RFIE_BIT (1 << 9)
  64. #define SPCR_FIE_BIT (1 << 10)
  65. #define SPCR_ORIE_BIT (1 << 11)
  66. #define SPCR_MDFIE_BIT (1 << 12)
  67. #define SPCR_FICLR_BIT (1 << 24)
  68. #define SPSR_TFI_BIT (1 << 0)
  69. #define SPSR_RFI_BIT (1 << 1)
  70. #define SPSR_FI_BIT (1 << 2)
  71. #define SPSR_ORF_BIT (1 << 3)
  72. #define SPBRR_SIZE_BIT (1 << 10)
  73. #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74. SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75. #define SPCR_RFIC_FIELD 20
  76. #define SPCR_TFIC_FIELD 16
  77. #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
  78. #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
  79. #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
  80. #define PCH_CLOCK_HZ 50000000
  81. #define PCH_MAX_SPBR 1023
  82. /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  83. #define PCI_VENDOR_ID_ROHM 0x10DB
  84. #define PCI_DEVICE_ID_ML7213_SPI 0x802c
  85. #define PCI_DEVICE_ID_ML7223_SPI 0x800F
  86. #define PCI_DEVICE_ID_ML7831_SPI 0x8816
  87. /*
  88. * Set the number of SPI instance max
  89. * Intel EG20T PCH : 1ch
  90. * LAPIS Semiconductor ML7213 IOH : 2ch
  91. * LAPIS Semiconductor ML7223 IOH : 1ch
  92. * LAPIS Semiconductor ML7831 IOH : 1ch
  93. */
  94. #define PCH_SPI_MAX_DEV 2
  95. #define PCH_BUF_SIZE 4096
  96. #define PCH_DMA_TRANS_SIZE 12
  97. static int use_dma = 1;
  98. struct pch_spi_dma_ctrl {
  99. struct dma_async_tx_descriptor *desc_tx;
  100. struct dma_async_tx_descriptor *desc_rx;
  101. struct pch_dma_slave param_tx;
  102. struct pch_dma_slave param_rx;
  103. struct dma_chan *chan_tx;
  104. struct dma_chan *chan_rx;
  105. struct scatterlist *sg_tx_p;
  106. struct scatterlist *sg_rx_p;
  107. struct scatterlist sg_tx;
  108. struct scatterlist sg_rx;
  109. int nent;
  110. void *tx_buf_virt;
  111. void *rx_buf_virt;
  112. dma_addr_t tx_buf_dma;
  113. dma_addr_t rx_buf_dma;
  114. };
  115. /**
  116. * struct pch_spi_data - Holds the SPI channel specific details
  117. * @io_remap_addr: The remapped PCI base address
  118. * @master: Pointer to the SPI master structure
  119. * @work: Reference to work queue handler
  120. * @wk: Workqueue for carrying out execution of the
  121. * requests
  122. * @wait: Wait queue for waking up upon receiving an
  123. * interrupt.
  124. * @transfer_complete: Status of SPI Transfer
  125. * @bcurrent_msg_processing: Status flag for message processing
  126. * @lock: Lock for protecting this structure
  127. * @queue: SPI Message queue
  128. * @status: Status of the SPI driver
  129. * @bpw_len: Length of data to be transferred in bits per
  130. * word
  131. * @transfer_active: Flag showing active transfer
  132. * @tx_index: Transmit data count; for bookkeeping during
  133. * transfer
  134. * @rx_index: Receive data count; for bookkeeping during
  135. * transfer
  136. * @tx_buff: Buffer for data to be transmitted
  137. * @rx_index: Buffer for Received data
  138. * @n_curnt_chip: The chip number that this SPI driver currently
  139. * operates on
  140. * @current_chip: Reference to the current chip that this SPI
  141. * driver currently operates on
  142. * @current_msg: The current message that this SPI driver is
  143. * handling
  144. * @cur_trans: The current transfer that this SPI driver is
  145. * handling
  146. * @board_dat: Reference to the SPI device data structure
  147. * @plat_dev: platform_device structure
  148. * @ch: SPI channel number
  149. * @irq_reg_sts: Status of IRQ registration
  150. */
  151. struct pch_spi_data {
  152. void __iomem *io_remap_addr;
  153. unsigned long io_base_addr;
  154. struct spi_master *master;
  155. struct work_struct work;
  156. struct workqueue_struct *wk;
  157. wait_queue_head_t wait;
  158. u8 transfer_complete;
  159. u8 bcurrent_msg_processing;
  160. spinlock_t lock;
  161. struct list_head queue;
  162. u8 status;
  163. u32 bpw_len;
  164. u8 transfer_active;
  165. u32 tx_index;
  166. u32 rx_index;
  167. u16 *pkt_tx_buff;
  168. u16 *pkt_rx_buff;
  169. u8 n_curnt_chip;
  170. struct spi_device *current_chip;
  171. struct spi_message *current_msg;
  172. struct spi_transfer *cur_trans;
  173. struct pch_spi_board_data *board_dat;
  174. struct platform_device *plat_dev;
  175. int ch;
  176. struct pch_spi_dma_ctrl dma;
  177. int use_dma;
  178. u8 irq_reg_sts;
  179. int save_total_len;
  180. };
  181. /**
  182. * struct pch_spi_board_data - Holds the SPI device specific details
  183. * @pdev: Pointer to the PCI device
  184. * @suspend_sts: Status of suspend
  185. * @num: The number of SPI device instance
  186. */
  187. struct pch_spi_board_data {
  188. struct pci_dev *pdev;
  189. u8 suspend_sts;
  190. int num;
  191. };
  192. struct pch_pd_dev_save {
  193. int num;
  194. struct platform_device *pd_save[PCH_SPI_MAX_DEV];
  195. struct pch_spi_board_data *board_dat;
  196. };
  197. static DEFINE_PCI_DEVICE_TABLE(pch_spi_pcidev_id) = {
  198. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
  199. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
  200. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
  201. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
  202. { }
  203. };
  204. /**
  205. * pch_spi_writereg() - Performs register writes
  206. * @master: Pointer to struct spi_master.
  207. * @idx: Register offset.
  208. * @val: Value to be written to register.
  209. */
  210. static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
  211. {
  212. struct pch_spi_data *data = spi_master_get_devdata(master);
  213. iowrite32(val, (data->io_remap_addr + idx));
  214. }
  215. /**
  216. * pch_spi_readreg() - Performs register reads
  217. * @master: Pointer to struct spi_master.
  218. * @idx: Register offset.
  219. */
  220. static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
  221. {
  222. struct pch_spi_data *data = spi_master_get_devdata(master);
  223. return ioread32(data->io_remap_addr + idx);
  224. }
  225. static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
  226. u32 set, u32 clr)
  227. {
  228. u32 tmp = pch_spi_readreg(master, idx);
  229. tmp = (tmp & ~clr) | set;
  230. pch_spi_writereg(master, idx, tmp);
  231. }
  232. static void pch_spi_set_master_mode(struct spi_master *master)
  233. {
  234. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
  235. }
  236. /**
  237. * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
  238. * @master: Pointer to struct spi_master.
  239. */
  240. static void pch_spi_clear_fifo(struct spi_master *master)
  241. {
  242. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
  243. pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
  244. }
  245. static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
  246. void __iomem *io_remap_addr)
  247. {
  248. u32 n_read, tx_index, rx_index, bpw_len;
  249. u16 *pkt_rx_buffer, *pkt_tx_buff;
  250. int read_cnt;
  251. u32 reg_spcr_val;
  252. void __iomem *spsr;
  253. void __iomem *spdrr;
  254. void __iomem *spdwr;
  255. spsr = io_remap_addr + PCH_SPSR;
  256. iowrite32(reg_spsr_val, spsr);
  257. if (data->transfer_active) {
  258. rx_index = data->rx_index;
  259. tx_index = data->tx_index;
  260. bpw_len = data->bpw_len;
  261. pkt_rx_buffer = data->pkt_rx_buff;
  262. pkt_tx_buff = data->pkt_tx_buff;
  263. spdrr = io_remap_addr + PCH_SPDRR;
  264. spdwr = io_remap_addr + PCH_SPDWR;
  265. n_read = PCH_READABLE(reg_spsr_val);
  266. for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
  267. pkt_rx_buffer[rx_index++] = ioread32(spdrr);
  268. if (tx_index < bpw_len)
  269. iowrite32(pkt_tx_buff[tx_index++], spdwr);
  270. }
  271. /* disable RFI if not needed */
  272. if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
  273. reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
  274. reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
  275. /* reset rx threshold */
  276. reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
  277. reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
  278. iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
  279. }
  280. /* update counts */
  281. data->tx_index = tx_index;
  282. data->rx_index = rx_index;
  283. /* if transfer complete interrupt */
  284. if (reg_spsr_val & SPSR_FI_BIT) {
  285. if ((tx_index == bpw_len) && (rx_index == tx_index)) {
  286. /* disable interrupts */
  287. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  288. PCH_ALL);
  289. /* transfer is completed;
  290. inform pch_spi_process_messages */
  291. data->transfer_complete = true;
  292. data->transfer_active = false;
  293. wake_up(&data->wait);
  294. } else {
  295. dev_err(&data->master->dev,
  296. "%s : Transfer is not completed",
  297. __func__);
  298. }
  299. }
  300. }
  301. }
  302. /**
  303. * pch_spi_handler() - Interrupt handler
  304. * @irq: The interrupt number.
  305. * @dev_id: Pointer to struct pch_spi_board_data.
  306. */
  307. static irqreturn_t pch_spi_handler(int irq, void *dev_id)
  308. {
  309. u32 reg_spsr_val;
  310. void __iomem *spsr;
  311. void __iomem *io_remap_addr;
  312. irqreturn_t ret = IRQ_NONE;
  313. struct pch_spi_data *data = dev_id;
  314. struct pch_spi_board_data *board_dat = data->board_dat;
  315. if (board_dat->suspend_sts) {
  316. dev_dbg(&board_dat->pdev->dev,
  317. "%s returning due to suspend\n", __func__);
  318. return IRQ_NONE;
  319. }
  320. io_remap_addr = data->io_remap_addr;
  321. spsr = io_remap_addr + PCH_SPSR;
  322. reg_spsr_val = ioread32(spsr);
  323. if (reg_spsr_val & SPSR_ORF_BIT) {
  324. dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
  325. if (data->current_msg->complete != 0) {
  326. data->transfer_complete = true;
  327. data->current_msg->status = -EIO;
  328. data->current_msg->complete(data->current_msg->context);
  329. data->bcurrent_msg_processing = false;
  330. data->current_msg = NULL;
  331. data->cur_trans = NULL;
  332. }
  333. }
  334. if (data->use_dma)
  335. return IRQ_NONE;
  336. /* Check if the interrupt is for SPI device */
  337. if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
  338. pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
  339. ret = IRQ_HANDLED;
  340. }
  341. dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
  342. __func__, ret);
  343. return ret;
  344. }
  345. /**
  346. * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
  347. * @master: Pointer to struct spi_master.
  348. * @speed_hz: Baud rate.
  349. */
  350. static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
  351. {
  352. u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
  353. /* if baud rate is less than we can support limit it */
  354. if (n_spbr > PCH_MAX_SPBR)
  355. n_spbr = PCH_MAX_SPBR;
  356. pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
  357. }
  358. /**
  359. * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
  360. * @master: Pointer to struct spi_master.
  361. * @bits_per_word: Bits per word for SPI transfer.
  362. */
  363. static void pch_spi_set_bits_per_word(struct spi_master *master,
  364. u8 bits_per_word)
  365. {
  366. if (bits_per_word == 8)
  367. pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
  368. else
  369. pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
  370. }
  371. /**
  372. * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
  373. * @spi: Pointer to struct spi_device.
  374. */
  375. static void pch_spi_setup_transfer(struct spi_device *spi)
  376. {
  377. u32 flags = 0;
  378. dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
  379. __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
  380. spi->max_speed_hz);
  381. pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
  382. /* set bits per word */
  383. pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
  384. if (!(spi->mode & SPI_LSB_FIRST))
  385. flags |= SPCR_LSBF_BIT;
  386. if (spi->mode & SPI_CPOL)
  387. flags |= SPCR_CPOL_BIT;
  388. if (spi->mode & SPI_CPHA)
  389. flags |= SPCR_CPHA_BIT;
  390. pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
  391. (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
  392. /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
  393. pch_spi_clear_fifo(spi->master);
  394. }
  395. /**
  396. * pch_spi_reset() - Clears SPI registers
  397. * @master: Pointer to struct spi_master.
  398. */
  399. static void pch_spi_reset(struct spi_master *master)
  400. {
  401. /* write 1 to reset SPI */
  402. pch_spi_writereg(master, PCH_SRST, 0x1);
  403. /* clear reset */
  404. pch_spi_writereg(master, PCH_SRST, 0x0);
  405. }
  406. static int pch_spi_setup(struct spi_device *pspi)
  407. {
  408. /* check bits per word */
  409. if (pspi->bits_per_word == 0) {
  410. pspi->bits_per_word = 8;
  411. dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
  412. }
  413. if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
  414. dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
  415. return -EINVAL;
  416. }
  417. /* Check baud rate setting */
  418. /* if baud rate of chip is greater than
  419. max we can support,return error */
  420. if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
  421. pspi->max_speed_hz = PCH_MAX_BAUDRATE;
  422. dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
  423. (pspi->mode) & (SPI_CPOL | SPI_CPHA));
  424. return 0;
  425. }
  426. static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
  427. {
  428. struct spi_transfer *transfer;
  429. struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
  430. int retval;
  431. unsigned long flags;
  432. /* validate spi message and baud rate */
  433. if (unlikely(list_empty(&pmsg->transfers) == 1)) {
  434. dev_err(&pspi->dev, "%s list empty\n", __func__);
  435. retval = -EINVAL;
  436. goto err_out;
  437. }
  438. if (unlikely(pspi->max_speed_hz == 0)) {
  439. dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
  440. __func__, pspi->max_speed_hz);
  441. retval = -EINVAL;
  442. goto err_out;
  443. }
  444. dev_dbg(&pspi->dev, "%s Transfer List not empty. "
  445. "Transfer Speed is set.\n", __func__);
  446. spin_lock_irqsave(&data->lock, flags);
  447. /* validate Tx/Rx buffers and Transfer length */
  448. list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
  449. if (!transfer->tx_buf && !transfer->rx_buf) {
  450. dev_err(&pspi->dev,
  451. "%s Tx and Rx buffer NULL\n", __func__);
  452. retval = -EINVAL;
  453. goto err_return_spinlock;
  454. }
  455. if (!transfer->len) {
  456. dev_err(&pspi->dev, "%s Transfer length invalid\n",
  457. __func__);
  458. retval = -EINVAL;
  459. goto err_return_spinlock;
  460. }
  461. dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
  462. " valid\n", __func__);
  463. /* if baud rate has been specified validate the same */
  464. if (transfer->speed_hz > PCH_MAX_BAUDRATE)
  465. transfer->speed_hz = PCH_MAX_BAUDRATE;
  466. /* if bits per word has been specified validate the same */
  467. if (transfer->bits_per_word) {
  468. if ((transfer->bits_per_word != 8)
  469. && (transfer->bits_per_word != 16)) {
  470. retval = -EINVAL;
  471. dev_err(&pspi->dev,
  472. "%s Invalid bits per word\n", __func__);
  473. goto err_return_spinlock;
  474. }
  475. }
  476. }
  477. spin_unlock_irqrestore(&data->lock, flags);
  478. /* We won't process any messages if we have been asked to terminate */
  479. if (data->status == STATUS_EXITING) {
  480. dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
  481. retval = -ESHUTDOWN;
  482. goto err_out;
  483. }
  484. /* If suspended ,return -EINVAL */
  485. if (data->board_dat->suspend_sts) {
  486. dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
  487. retval = -EINVAL;
  488. goto err_out;
  489. }
  490. /* set status of message */
  491. pmsg->actual_length = 0;
  492. dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
  493. pmsg->status = -EINPROGRESS;
  494. spin_lock_irqsave(&data->lock, flags);
  495. /* add message to queue */
  496. list_add_tail(&pmsg->queue, &data->queue);
  497. spin_unlock_irqrestore(&data->lock, flags);
  498. dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
  499. /* schedule work queue to run */
  500. queue_work(data->wk, &data->work);
  501. dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
  502. retval = 0;
  503. err_out:
  504. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  505. return retval;
  506. err_return_spinlock:
  507. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  508. spin_unlock_irqrestore(&data->lock, flags);
  509. return retval;
  510. }
  511. static inline void pch_spi_select_chip(struct pch_spi_data *data,
  512. struct spi_device *pspi)
  513. {
  514. if (data->current_chip != NULL) {
  515. if (pspi->chip_select != data->n_curnt_chip) {
  516. dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
  517. data->current_chip = NULL;
  518. }
  519. }
  520. data->current_chip = pspi;
  521. data->n_curnt_chip = data->current_chip->chip_select;
  522. dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
  523. pch_spi_setup_transfer(pspi);
  524. }
  525. static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
  526. {
  527. int size;
  528. u32 n_writes;
  529. int j;
  530. struct spi_message *pmsg;
  531. const u8 *tx_buf;
  532. const u16 *tx_sbuf;
  533. /* set baud rate if needed */
  534. if (data->cur_trans->speed_hz) {
  535. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  536. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  537. }
  538. /* set bits per word if needed */
  539. if (data->cur_trans->bits_per_word &&
  540. (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
  541. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  542. pch_spi_set_bits_per_word(data->master,
  543. data->cur_trans->bits_per_word);
  544. *bpw = data->cur_trans->bits_per_word;
  545. } else {
  546. *bpw = data->current_msg->spi->bits_per_word;
  547. }
  548. /* reset Tx/Rx index */
  549. data->tx_index = 0;
  550. data->rx_index = 0;
  551. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  552. /* find alloc size */
  553. size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
  554. /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
  555. data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
  556. if (data->pkt_tx_buff != NULL) {
  557. data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
  558. if (!data->pkt_rx_buff)
  559. kfree(data->pkt_tx_buff);
  560. }
  561. if (!data->pkt_rx_buff) {
  562. /* flush queue and set status of all transfers to -ENOMEM */
  563. dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
  564. list_for_each_entry(pmsg, data->queue.next, queue) {
  565. pmsg->status = -ENOMEM;
  566. if (pmsg->complete != 0)
  567. pmsg->complete(pmsg->context);
  568. /* delete from queue */
  569. list_del_init(&pmsg->queue);
  570. }
  571. return;
  572. }
  573. /* copy Tx Data */
  574. if (data->cur_trans->tx_buf != NULL) {
  575. if (*bpw == 8) {
  576. tx_buf = data->cur_trans->tx_buf;
  577. for (j = 0; j < data->bpw_len; j++)
  578. data->pkt_tx_buff[j] = *tx_buf++;
  579. } else {
  580. tx_sbuf = data->cur_trans->tx_buf;
  581. for (j = 0; j < data->bpw_len; j++)
  582. data->pkt_tx_buff[j] = *tx_sbuf++;
  583. }
  584. }
  585. /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
  586. n_writes = data->bpw_len;
  587. if (n_writes > PCH_MAX_FIFO_DEPTH)
  588. n_writes = PCH_MAX_FIFO_DEPTH;
  589. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  590. "0x2 to SSNXCR\n", __func__);
  591. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  592. for (j = 0; j < n_writes; j++)
  593. pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
  594. /* update tx_index */
  595. data->tx_index = j;
  596. /* reset transfer complete flag */
  597. data->transfer_complete = false;
  598. data->transfer_active = true;
  599. }
  600. static void pch_spi_nomore_transfer(struct pch_spi_data *data)
  601. {
  602. struct spi_message *pmsg;
  603. dev_dbg(&data->master->dev, "%s called\n", __func__);
  604. /* Invoke complete callback
  605. * [To the spi core..indicating end of transfer] */
  606. data->current_msg->status = 0;
  607. if (data->current_msg->complete != 0) {
  608. dev_dbg(&data->master->dev,
  609. "%s:Invoking callback of SPI core\n", __func__);
  610. data->current_msg->complete(data->current_msg->context);
  611. }
  612. /* update status in global variable */
  613. data->bcurrent_msg_processing = false;
  614. dev_dbg(&data->master->dev,
  615. "%s:data->bcurrent_msg_processing = false\n", __func__);
  616. data->current_msg = NULL;
  617. data->cur_trans = NULL;
  618. /* check if we have items in list and not suspending
  619. * return 1 if list empty */
  620. if ((list_empty(&data->queue) == 0) &&
  621. (!data->board_dat->suspend_sts) &&
  622. (data->status != STATUS_EXITING)) {
  623. /* We have some more work to do (either there is more tranint
  624. * bpw;sfer requests in the current message or there are
  625. *more messages)
  626. */
  627. dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
  628. queue_work(data->wk, &data->work);
  629. } else if (data->board_dat->suspend_sts ||
  630. data->status == STATUS_EXITING) {
  631. dev_dbg(&data->master->dev,
  632. "%s suspend/remove initiated, flushing queue\n",
  633. __func__);
  634. list_for_each_entry(pmsg, data->queue.next, queue) {
  635. pmsg->status = -EIO;
  636. if (pmsg->complete)
  637. pmsg->complete(pmsg->context);
  638. /* delete from queue */
  639. list_del_init(&pmsg->queue);
  640. }
  641. }
  642. }
  643. static void pch_spi_set_ir(struct pch_spi_data *data)
  644. {
  645. /* enable interrupts, set threshold, enable SPI */
  646. if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
  647. /* set receive threshold to PCH_RX_THOLD */
  648. pch_spi_setclr_reg(data->master, PCH_SPCR,
  649. PCH_RX_THOLD << SPCR_RFIC_FIELD |
  650. SPCR_FIE_BIT | SPCR_RFIE_BIT |
  651. SPCR_ORIE_BIT | SPCR_SPE_BIT,
  652. MASK_RFIC_SPCR_BITS | PCH_ALL);
  653. else
  654. /* set receive threshold to maximum */
  655. pch_spi_setclr_reg(data->master, PCH_SPCR,
  656. PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
  657. SPCR_FIE_BIT | SPCR_ORIE_BIT |
  658. SPCR_SPE_BIT,
  659. MASK_RFIC_SPCR_BITS | PCH_ALL);
  660. /* Wait until the transfer completes; go to sleep after
  661. initiating the transfer. */
  662. dev_dbg(&data->master->dev,
  663. "%s:waiting for transfer to get over\n", __func__);
  664. wait_event_interruptible(data->wait, data->transfer_complete);
  665. /* clear all interrupts */
  666. pch_spi_writereg(data->master, PCH_SPSR,
  667. pch_spi_readreg(data->master, PCH_SPSR));
  668. /* Disable interrupts and SPI transfer */
  669. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
  670. /* clear FIFO */
  671. pch_spi_clear_fifo(data->master);
  672. }
  673. static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
  674. {
  675. int j;
  676. u8 *rx_buf;
  677. u16 *rx_sbuf;
  678. /* copy Rx Data */
  679. if (!data->cur_trans->rx_buf)
  680. return;
  681. if (bpw == 8) {
  682. rx_buf = data->cur_trans->rx_buf;
  683. for (j = 0; j < data->bpw_len; j++)
  684. *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
  685. } else {
  686. rx_sbuf = data->cur_trans->rx_buf;
  687. for (j = 0; j < data->bpw_len; j++)
  688. *rx_sbuf++ = data->pkt_rx_buff[j];
  689. }
  690. }
  691. static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
  692. {
  693. int j;
  694. u8 *rx_buf;
  695. u16 *rx_sbuf;
  696. const u8 *rx_dma_buf;
  697. const u16 *rx_dma_sbuf;
  698. /* copy Rx Data */
  699. if (!data->cur_trans->rx_buf)
  700. return;
  701. if (bpw == 8) {
  702. rx_buf = data->cur_trans->rx_buf;
  703. rx_dma_buf = data->dma.rx_buf_virt;
  704. for (j = 0; j < data->bpw_len; j++)
  705. *rx_buf++ = *rx_dma_buf++ & 0xFF;
  706. data->cur_trans->rx_buf = rx_buf;
  707. } else {
  708. rx_sbuf = data->cur_trans->rx_buf;
  709. rx_dma_sbuf = data->dma.rx_buf_virt;
  710. for (j = 0; j < data->bpw_len; j++)
  711. *rx_sbuf++ = *rx_dma_sbuf++;
  712. data->cur_trans->rx_buf = rx_sbuf;
  713. }
  714. }
  715. static int pch_spi_start_transfer(struct pch_spi_data *data)
  716. {
  717. struct pch_spi_dma_ctrl *dma;
  718. unsigned long flags;
  719. int rtn;
  720. dma = &data->dma;
  721. spin_lock_irqsave(&data->lock, flags);
  722. /* disable interrupts, SPI set enable */
  723. pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
  724. spin_unlock_irqrestore(&data->lock, flags);
  725. /* Wait until the transfer completes; go to sleep after
  726. initiating the transfer. */
  727. dev_dbg(&data->master->dev,
  728. "%s:waiting for transfer to get over\n", __func__);
  729. rtn = wait_event_interruptible_timeout(data->wait,
  730. data->transfer_complete,
  731. msecs_to_jiffies(2 * HZ));
  732. if (!rtn)
  733. dev_err(&data->master->dev,
  734. "%s wait-event timeout\n", __func__);
  735. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
  736. DMA_FROM_DEVICE);
  737. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
  738. DMA_FROM_DEVICE);
  739. memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
  740. async_tx_ack(dma->desc_rx);
  741. async_tx_ack(dma->desc_tx);
  742. kfree(dma->sg_tx_p);
  743. kfree(dma->sg_rx_p);
  744. spin_lock_irqsave(&data->lock, flags);
  745. /* clear fifo threshold, disable interrupts, disable SPI transfer */
  746. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  747. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
  748. SPCR_SPE_BIT);
  749. /* clear all interrupts */
  750. pch_spi_writereg(data->master, PCH_SPSR,
  751. pch_spi_readreg(data->master, PCH_SPSR));
  752. /* clear FIFO */
  753. pch_spi_clear_fifo(data->master);
  754. spin_unlock_irqrestore(&data->lock, flags);
  755. return rtn;
  756. }
  757. static void pch_dma_rx_complete(void *arg)
  758. {
  759. struct pch_spi_data *data = arg;
  760. /* transfer is completed;inform pch_spi_process_messages_dma */
  761. data->transfer_complete = true;
  762. wake_up_interruptible(&data->wait);
  763. }
  764. static bool pch_spi_filter(struct dma_chan *chan, void *slave)
  765. {
  766. struct pch_dma_slave *param = slave;
  767. if ((chan->chan_id == param->chan_id) &&
  768. (param->dma_dev == chan->device->dev)) {
  769. chan->private = param;
  770. return true;
  771. } else {
  772. return false;
  773. }
  774. }
  775. static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
  776. {
  777. dma_cap_mask_t mask;
  778. struct dma_chan *chan;
  779. struct pci_dev *dma_dev;
  780. struct pch_dma_slave *param;
  781. struct pch_spi_dma_ctrl *dma;
  782. unsigned int width;
  783. if (bpw == 8)
  784. width = PCH_DMA_WIDTH_1_BYTE;
  785. else
  786. width = PCH_DMA_WIDTH_2_BYTES;
  787. dma = &data->dma;
  788. dma_cap_zero(mask);
  789. dma_cap_set(DMA_SLAVE, mask);
  790. /* Get DMA's dev information */
  791. dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
  792. PCI_DEVFN(12, 0));
  793. /* Set Tx DMA */
  794. param = &dma->param_tx;
  795. param->dma_dev = &dma_dev->dev;
  796. param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
  797. param->tx_reg = data->io_base_addr + PCH_SPDWR;
  798. param->width = width;
  799. chan = dma_request_channel(mask, pch_spi_filter, param);
  800. if (!chan) {
  801. dev_err(&data->master->dev,
  802. "ERROR: dma_request_channel FAILS(Tx)\n");
  803. data->use_dma = 0;
  804. return;
  805. }
  806. dma->chan_tx = chan;
  807. /* Set Rx DMA */
  808. param = &dma->param_rx;
  809. param->dma_dev = &dma_dev->dev;
  810. param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
  811. param->rx_reg = data->io_base_addr + PCH_SPDRR;
  812. param->width = width;
  813. chan = dma_request_channel(mask, pch_spi_filter, param);
  814. if (!chan) {
  815. dev_err(&data->master->dev,
  816. "ERROR: dma_request_channel FAILS(Rx)\n");
  817. dma_release_channel(dma->chan_tx);
  818. dma->chan_tx = NULL;
  819. data->use_dma = 0;
  820. return;
  821. }
  822. dma->chan_rx = chan;
  823. }
  824. static void pch_spi_release_dma(struct pch_spi_data *data)
  825. {
  826. struct pch_spi_dma_ctrl *dma;
  827. dma = &data->dma;
  828. if (dma->chan_tx) {
  829. dma_release_channel(dma->chan_tx);
  830. dma->chan_tx = NULL;
  831. }
  832. if (dma->chan_rx) {
  833. dma_release_channel(dma->chan_rx);
  834. dma->chan_rx = NULL;
  835. }
  836. return;
  837. }
  838. static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
  839. {
  840. const u8 *tx_buf;
  841. const u16 *tx_sbuf;
  842. u8 *tx_dma_buf;
  843. u16 *tx_dma_sbuf;
  844. struct scatterlist *sg;
  845. struct dma_async_tx_descriptor *desc_tx;
  846. struct dma_async_tx_descriptor *desc_rx;
  847. int num;
  848. int i;
  849. int size;
  850. int rem;
  851. int head;
  852. unsigned long flags;
  853. struct pch_spi_dma_ctrl *dma;
  854. dma = &data->dma;
  855. /* set baud rate if needed */
  856. if (data->cur_trans->speed_hz) {
  857. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  858. spin_lock_irqsave(&data->lock, flags);
  859. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  860. spin_unlock_irqrestore(&data->lock, flags);
  861. }
  862. /* set bits per word if needed */
  863. if (data->cur_trans->bits_per_word &&
  864. (data->current_msg->spi->bits_per_word !=
  865. data->cur_trans->bits_per_word)) {
  866. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  867. spin_lock_irqsave(&data->lock, flags);
  868. pch_spi_set_bits_per_word(data->master,
  869. data->cur_trans->bits_per_word);
  870. spin_unlock_irqrestore(&data->lock, flags);
  871. *bpw = data->cur_trans->bits_per_word;
  872. } else {
  873. *bpw = data->current_msg->spi->bits_per_word;
  874. }
  875. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  876. if (data->bpw_len > PCH_BUF_SIZE) {
  877. data->bpw_len = PCH_BUF_SIZE;
  878. data->cur_trans->len -= PCH_BUF_SIZE;
  879. }
  880. /* copy Tx Data */
  881. if (data->cur_trans->tx_buf != NULL) {
  882. if (*bpw == 8) {
  883. tx_buf = data->cur_trans->tx_buf;
  884. tx_dma_buf = dma->tx_buf_virt;
  885. for (i = 0; i < data->bpw_len; i++)
  886. *tx_dma_buf++ = *tx_buf++;
  887. } else {
  888. tx_sbuf = data->cur_trans->tx_buf;
  889. tx_dma_sbuf = dma->tx_buf_virt;
  890. for (i = 0; i < data->bpw_len; i++)
  891. *tx_dma_sbuf++ = *tx_sbuf++;
  892. }
  893. }
  894. /* Calculate Rx parameter for DMA transmitting */
  895. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  896. if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
  897. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  898. rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
  899. } else {
  900. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  901. rem = PCH_DMA_TRANS_SIZE;
  902. }
  903. size = PCH_DMA_TRANS_SIZE;
  904. } else {
  905. num = 1;
  906. size = data->bpw_len;
  907. rem = data->bpw_len;
  908. }
  909. dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
  910. __func__, num, size, rem);
  911. spin_lock_irqsave(&data->lock, flags);
  912. /* set receive fifo threshold and transmit fifo threshold */
  913. pch_spi_setclr_reg(data->master, PCH_SPCR,
  914. ((size - 1) << SPCR_RFIC_FIELD) |
  915. (PCH_TX_THOLD << SPCR_TFIC_FIELD),
  916. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
  917. spin_unlock_irqrestore(&data->lock, flags);
  918. /* RX */
  919. dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  920. sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
  921. /* offset, length setting */
  922. sg = dma->sg_rx_p;
  923. for (i = 0; i < num; i++, sg++) {
  924. if (i == (num - 2)) {
  925. sg->offset = size * i;
  926. sg->offset = sg->offset * (*bpw / 8);
  927. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
  928. sg->offset);
  929. sg_dma_len(sg) = rem;
  930. } else if (i == (num - 1)) {
  931. sg->offset = size * (i - 1) + rem;
  932. sg->offset = sg->offset * (*bpw / 8);
  933. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  934. sg->offset);
  935. sg_dma_len(sg) = size;
  936. } else {
  937. sg->offset = size * i;
  938. sg->offset = sg->offset * (*bpw / 8);
  939. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  940. sg->offset);
  941. sg_dma_len(sg) = size;
  942. }
  943. sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
  944. }
  945. sg = dma->sg_rx_p;
  946. desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
  947. num, DMA_DEV_TO_MEM,
  948. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  949. if (!desc_rx) {
  950. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  951. __func__);
  952. return;
  953. }
  954. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
  955. desc_rx->callback = pch_dma_rx_complete;
  956. desc_rx->callback_param = data;
  957. dma->nent = num;
  958. dma->desc_rx = desc_rx;
  959. /* Calculate Tx parameter for DMA transmitting */
  960. if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
  961. head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
  962. if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
  963. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  964. rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
  965. } else {
  966. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  967. rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
  968. PCH_DMA_TRANS_SIZE - head;
  969. }
  970. size = PCH_DMA_TRANS_SIZE;
  971. } else {
  972. num = 1;
  973. size = data->bpw_len;
  974. rem = data->bpw_len;
  975. head = 0;
  976. }
  977. dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  978. sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
  979. /* offset, length setting */
  980. sg = dma->sg_tx_p;
  981. for (i = 0; i < num; i++, sg++) {
  982. if (i == 0) {
  983. sg->offset = 0;
  984. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
  985. sg->offset);
  986. sg_dma_len(sg) = size + head;
  987. } else if (i == (num - 1)) {
  988. sg->offset = head + size * i;
  989. sg->offset = sg->offset * (*bpw / 8);
  990. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
  991. sg->offset);
  992. sg_dma_len(sg) = rem;
  993. } else {
  994. sg->offset = head + size * i;
  995. sg->offset = sg->offset * (*bpw / 8);
  996. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
  997. sg->offset);
  998. sg_dma_len(sg) = size;
  999. }
  1000. sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
  1001. }
  1002. sg = dma->sg_tx_p;
  1003. desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
  1004. sg, num, DMA_MEM_TO_DEV,
  1005. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1006. if (!desc_tx) {
  1007. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  1008. __func__);
  1009. return;
  1010. }
  1011. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
  1012. desc_tx->callback = NULL;
  1013. desc_tx->callback_param = data;
  1014. dma->nent = num;
  1015. dma->desc_tx = desc_tx;
  1016. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  1017. "0x2 to SSNXCR\n", __func__);
  1018. spin_lock_irqsave(&data->lock, flags);
  1019. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  1020. desc_rx->tx_submit(desc_rx);
  1021. desc_tx->tx_submit(desc_tx);
  1022. spin_unlock_irqrestore(&data->lock, flags);
  1023. /* reset transfer complete flag */
  1024. data->transfer_complete = false;
  1025. }
  1026. static void pch_spi_process_messages(struct work_struct *pwork)
  1027. {
  1028. struct spi_message *pmsg;
  1029. struct pch_spi_data *data;
  1030. int bpw;
  1031. data = container_of(pwork, struct pch_spi_data, work);
  1032. dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
  1033. spin_lock(&data->lock);
  1034. /* check if suspend has been initiated;if yes flush queue */
  1035. if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
  1036. dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
  1037. "flushing queue\n", __func__);
  1038. list_for_each_entry(pmsg, data->queue.next, queue) {
  1039. pmsg->status = -EIO;
  1040. if (pmsg->complete != 0) {
  1041. spin_unlock(&data->lock);
  1042. pmsg->complete(pmsg->context);
  1043. spin_lock(&data->lock);
  1044. }
  1045. /* delete from queue */
  1046. list_del_init(&pmsg->queue);
  1047. }
  1048. spin_unlock(&data->lock);
  1049. return;
  1050. }
  1051. data->bcurrent_msg_processing = true;
  1052. dev_dbg(&data->master->dev,
  1053. "%s Set data->bcurrent_msg_processing= true\n", __func__);
  1054. /* Get the message from the queue and delete it from there. */
  1055. data->current_msg = list_entry(data->queue.next, struct spi_message,
  1056. queue);
  1057. list_del_init(&data->current_msg->queue);
  1058. data->current_msg->status = 0;
  1059. pch_spi_select_chip(data, data->current_msg->spi);
  1060. spin_unlock(&data->lock);
  1061. if (data->use_dma)
  1062. pch_spi_request_dma(data,
  1063. data->current_msg->spi->bits_per_word);
  1064. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
  1065. do {
  1066. int cnt;
  1067. /* If we are already processing a message get the next
  1068. transfer structure from the message otherwise retrieve
  1069. the 1st transfer request from the message. */
  1070. spin_lock(&data->lock);
  1071. if (data->cur_trans == NULL) {
  1072. data->cur_trans =
  1073. list_entry(data->current_msg->transfers.next,
  1074. struct spi_transfer, transfer_list);
  1075. dev_dbg(&data->master->dev, "%s "
  1076. ":Getting 1st transfer message\n", __func__);
  1077. } else {
  1078. data->cur_trans =
  1079. list_entry(data->cur_trans->transfer_list.next,
  1080. struct spi_transfer, transfer_list);
  1081. dev_dbg(&data->master->dev, "%s "
  1082. ":Getting next transfer message\n", __func__);
  1083. }
  1084. spin_unlock(&data->lock);
  1085. if (!data->cur_trans->len)
  1086. goto out;
  1087. cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
  1088. data->save_total_len = data->cur_trans->len;
  1089. if (data->use_dma) {
  1090. int i;
  1091. char *save_rx_buf = data->cur_trans->rx_buf;
  1092. for (i = 0; i < cnt; i ++) {
  1093. pch_spi_handle_dma(data, &bpw);
  1094. if (!pch_spi_start_transfer(data)) {
  1095. data->transfer_complete = true;
  1096. data->current_msg->status = -EIO;
  1097. data->current_msg->complete
  1098. (data->current_msg->context);
  1099. data->bcurrent_msg_processing = false;
  1100. data->current_msg = NULL;
  1101. data->cur_trans = NULL;
  1102. goto out;
  1103. }
  1104. pch_spi_copy_rx_data_for_dma(data, bpw);
  1105. }
  1106. data->cur_trans->rx_buf = save_rx_buf;
  1107. } else {
  1108. pch_spi_set_tx(data, &bpw);
  1109. pch_spi_set_ir(data);
  1110. pch_spi_copy_rx_data(data, bpw);
  1111. kfree(data->pkt_rx_buff);
  1112. data->pkt_rx_buff = NULL;
  1113. kfree(data->pkt_tx_buff);
  1114. data->pkt_tx_buff = NULL;
  1115. }
  1116. /* increment message count */
  1117. data->cur_trans->len = data->save_total_len;
  1118. data->current_msg->actual_length += data->cur_trans->len;
  1119. dev_dbg(&data->master->dev,
  1120. "%s:data->current_msg->actual_length=%d\n",
  1121. __func__, data->current_msg->actual_length);
  1122. /* check for delay */
  1123. if (data->cur_trans->delay_usecs) {
  1124. dev_dbg(&data->master->dev, "%s:"
  1125. "delay in usec=%d\n", __func__,
  1126. data->cur_trans->delay_usecs);
  1127. udelay(data->cur_trans->delay_usecs);
  1128. }
  1129. spin_lock(&data->lock);
  1130. /* No more transfer in this message. */
  1131. if ((data->cur_trans->transfer_list.next) ==
  1132. &(data->current_msg->transfers)) {
  1133. pch_spi_nomore_transfer(data);
  1134. }
  1135. spin_unlock(&data->lock);
  1136. } while (data->cur_trans != NULL);
  1137. out:
  1138. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
  1139. if (data->use_dma)
  1140. pch_spi_release_dma(data);
  1141. }
  1142. static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
  1143. struct pch_spi_data *data)
  1144. {
  1145. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1146. /* free workqueue */
  1147. if (data->wk != NULL) {
  1148. destroy_workqueue(data->wk);
  1149. data->wk = NULL;
  1150. dev_dbg(&board_dat->pdev->dev,
  1151. "%s destroy_workqueue invoked successfully\n",
  1152. __func__);
  1153. }
  1154. }
  1155. static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
  1156. struct pch_spi_data *data)
  1157. {
  1158. int retval = 0;
  1159. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1160. /* create workqueue */
  1161. data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
  1162. if (!data->wk) {
  1163. dev_err(&board_dat->pdev->dev,
  1164. "%s create_singlet hread_workqueue failed\n", __func__);
  1165. retval = -EBUSY;
  1166. goto err_return;
  1167. }
  1168. /* reset PCH SPI h/w */
  1169. pch_spi_reset(data->master);
  1170. dev_dbg(&board_dat->pdev->dev,
  1171. "%s pch_spi_reset invoked successfully\n", __func__);
  1172. dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
  1173. err_return:
  1174. if (retval != 0) {
  1175. dev_err(&board_dat->pdev->dev,
  1176. "%s FAIL:invoking pch_spi_free_resources\n", __func__);
  1177. pch_spi_free_resources(board_dat, data);
  1178. }
  1179. dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
  1180. return retval;
  1181. }
  1182. static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
  1183. struct pch_spi_data *data)
  1184. {
  1185. struct pch_spi_dma_ctrl *dma;
  1186. dma = &data->dma;
  1187. if (dma->tx_buf_dma)
  1188. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1189. dma->tx_buf_virt, dma->tx_buf_dma);
  1190. if (dma->rx_buf_dma)
  1191. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1192. dma->rx_buf_virt, dma->rx_buf_dma);
  1193. return;
  1194. }
  1195. static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
  1196. struct pch_spi_data *data)
  1197. {
  1198. struct pch_spi_dma_ctrl *dma;
  1199. dma = &data->dma;
  1200. /* Get Consistent memory for Tx DMA */
  1201. dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1202. PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
  1203. /* Get Consistent memory for Rx DMA */
  1204. dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1205. PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
  1206. }
  1207. static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
  1208. {
  1209. int ret;
  1210. struct spi_master *master;
  1211. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1212. struct pch_spi_data *data;
  1213. dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
  1214. master = spi_alloc_master(&board_dat->pdev->dev,
  1215. sizeof(struct pch_spi_data));
  1216. if (!master) {
  1217. dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
  1218. plat_dev->id);
  1219. return -ENOMEM;
  1220. }
  1221. data = spi_master_get_devdata(master);
  1222. data->master = master;
  1223. platform_set_drvdata(plat_dev, data);
  1224. /* baseaddress + address offset) */
  1225. data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
  1226. PCH_ADDRESS_SIZE * plat_dev->id;
  1227. data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
  1228. PCH_ADDRESS_SIZE * plat_dev->id;
  1229. if (!data->io_remap_addr) {
  1230. dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
  1231. ret = -ENOMEM;
  1232. goto err_pci_iomap;
  1233. }
  1234. dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
  1235. plat_dev->id, data->io_remap_addr);
  1236. /* initialize members of SPI master */
  1237. master->bus_num = -1;
  1238. master->num_chipselect = PCH_MAX_CS;
  1239. master->setup = pch_spi_setup;
  1240. master->transfer = pch_spi_transfer;
  1241. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1242. data->board_dat = board_dat;
  1243. data->plat_dev = plat_dev;
  1244. data->n_curnt_chip = 255;
  1245. data->status = STATUS_RUNNING;
  1246. data->ch = plat_dev->id;
  1247. data->use_dma = use_dma;
  1248. INIT_LIST_HEAD(&data->queue);
  1249. spin_lock_init(&data->lock);
  1250. INIT_WORK(&data->work, pch_spi_process_messages);
  1251. init_waitqueue_head(&data->wait);
  1252. ret = pch_spi_get_resources(board_dat, data);
  1253. if (ret) {
  1254. dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
  1255. goto err_spi_get_resources;
  1256. }
  1257. ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1258. IRQF_SHARED, KBUILD_MODNAME, data);
  1259. if (ret) {
  1260. dev_err(&plat_dev->dev,
  1261. "%s request_irq failed\n", __func__);
  1262. goto err_request_irq;
  1263. }
  1264. data->irq_reg_sts = true;
  1265. pch_spi_set_master_mode(master);
  1266. ret = spi_register_master(master);
  1267. if (ret != 0) {
  1268. dev_err(&plat_dev->dev,
  1269. "%s spi_register_master FAILED\n", __func__);
  1270. goto err_spi_register_master;
  1271. }
  1272. if (use_dma) {
  1273. dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
  1274. pch_alloc_dma_buf(board_dat, data);
  1275. }
  1276. return 0;
  1277. err_spi_register_master:
  1278. free_irq(board_dat->pdev->irq, board_dat);
  1279. err_request_irq:
  1280. pch_spi_free_resources(board_dat, data);
  1281. err_spi_get_resources:
  1282. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1283. err_pci_iomap:
  1284. spi_master_put(master);
  1285. return ret;
  1286. }
  1287. static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
  1288. {
  1289. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1290. struct pch_spi_data *data = platform_get_drvdata(plat_dev);
  1291. int count;
  1292. unsigned long flags;
  1293. dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
  1294. __func__, plat_dev->id, board_dat->pdev->irq);
  1295. if (use_dma)
  1296. pch_free_dma_buf(board_dat, data);
  1297. /* check for any pending messages; no action is taken if the queue
  1298. * is still full; but at least we tried. Unload anyway */
  1299. count = 500;
  1300. spin_lock_irqsave(&data->lock, flags);
  1301. data->status = STATUS_EXITING;
  1302. while ((list_empty(&data->queue) == 0) && --count) {
  1303. dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
  1304. __func__);
  1305. spin_unlock_irqrestore(&data->lock, flags);
  1306. msleep(PCH_SLEEP_TIME);
  1307. spin_lock_irqsave(&data->lock, flags);
  1308. }
  1309. spin_unlock_irqrestore(&data->lock, flags);
  1310. pch_spi_free_resources(board_dat, data);
  1311. /* disable interrupts & free IRQ */
  1312. if (data->irq_reg_sts) {
  1313. /* disable interrupts */
  1314. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1315. data->irq_reg_sts = false;
  1316. free_irq(board_dat->pdev->irq, data);
  1317. }
  1318. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1319. spi_unregister_master(data->master);
  1320. spi_master_put(data->master);
  1321. platform_set_drvdata(plat_dev, NULL);
  1322. return 0;
  1323. }
  1324. #ifdef CONFIG_PM
  1325. static int pch_spi_pd_suspend(struct platform_device *pd_dev,
  1326. pm_message_t state)
  1327. {
  1328. u8 count;
  1329. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1330. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1331. dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
  1332. if (!board_dat) {
  1333. dev_err(&pd_dev->dev,
  1334. "%s pci_get_drvdata returned NULL\n", __func__);
  1335. return -EFAULT;
  1336. }
  1337. /* check if the current message is processed:
  1338. Only after thats done the transfer will be suspended */
  1339. count = 255;
  1340. while ((--count) > 0) {
  1341. if (!(data->bcurrent_msg_processing))
  1342. break;
  1343. msleep(PCH_SLEEP_TIME);
  1344. }
  1345. /* Free IRQ */
  1346. if (data->irq_reg_sts) {
  1347. /* disable all interrupts */
  1348. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1349. pch_spi_reset(data->master);
  1350. free_irq(board_dat->pdev->irq, data);
  1351. data->irq_reg_sts = false;
  1352. dev_dbg(&pd_dev->dev,
  1353. "%s free_irq invoked successfully.\n", __func__);
  1354. }
  1355. return 0;
  1356. }
  1357. static int pch_spi_pd_resume(struct platform_device *pd_dev)
  1358. {
  1359. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1360. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1361. int retval;
  1362. if (!board_dat) {
  1363. dev_err(&pd_dev->dev,
  1364. "%s pci_get_drvdata returned NULL\n", __func__);
  1365. return -EFAULT;
  1366. }
  1367. if (!data->irq_reg_sts) {
  1368. /* register IRQ */
  1369. retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1370. IRQF_SHARED, KBUILD_MODNAME, data);
  1371. if (retval < 0) {
  1372. dev_err(&pd_dev->dev,
  1373. "%s request_irq failed\n", __func__);
  1374. return retval;
  1375. }
  1376. /* reset PCH SPI h/w */
  1377. pch_spi_reset(data->master);
  1378. pch_spi_set_master_mode(data->master);
  1379. data->irq_reg_sts = true;
  1380. }
  1381. return 0;
  1382. }
  1383. #else
  1384. #define pch_spi_pd_suspend NULL
  1385. #define pch_spi_pd_resume NULL
  1386. #endif
  1387. static struct platform_driver pch_spi_pd_driver = {
  1388. .driver = {
  1389. .name = "pch-spi",
  1390. .owner = THIS_MODULE,
  1391. },
  1392. .probe = pch_spi_pd_probe,
  1393. .remove = __devexit_p(pch_spi_pd_remove),
  1394. .suspend = pch_spi_pd_suspend,
  1395. .resume = pch_spi_pd_resume
  1396. };
  1397. static int __devinit pch_spi_probe(struct pci_dev *pdev,
  1398. const struct pci_device_id *id)
  1399. {
  1400. struct pch_spi_board_data *board_dat;
  1401. struct platform_device *pd_dev = NULL;
  1402. int retval;
  1403. int i;
  1404. struct pch_pd_dev_save *pd_dev_save;
  1405. pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
  1406. if (!pd_dev_save) {
  1407. dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
  1408. return -ENOMEM;
  1409. }
  1410. board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
  1411. if (!board_dat) {
  1412. dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
  1413. retval = -ENOMEM;
  1414. goto err_no_mem;
  1415. }
  1416. retval = pci_request_regions(pdev, KBUILD_MODNAME);
  1417. if (retval) {
  1418. dev_err(&pdev->dev, "%s request_region failed\n", __func__);
  1419. goto pci_request_regions;
  1420. }
  1421. board_dat->pdev = pdev;
  1422. board_dat->num = id->driver_data;
  1423. pd_dev_save->num = id->driver_data;
  1424. pd_dev_save->board_dat = board_dat;
  1425. retval = pci_enable_device(pdev);
  1426. if (retval) {
  1427. dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
  1428. goto pci_enable_device;
  1429. }
  1430. for (i = 0; i < board_dat->num; i++) {
  1431. pd_dev = platform_device_alloc("pch-spi", i);
  1432. if (!pd_dev) {
  1433. dev_err(&pdev->dev, "platform_device_alloc failed\n");
  1434. goto err_platform_device;
  1435. }
  1436. pd_dev_save->pd_save[i] = pd_dev;
  1437. pd_dev->dev.parent = &pdev->dev;
  1438. retval = platform_device_add_data(pd_dev, board_dat,
  1439. sizeof(*board_dat));
  1440. if (retval) {
  1441. dev_err(&pdev->dev,
  1442. "platform_device_add_data failed\n");
  1443. platform_device_put(pd_dev);
  1444. goto err_platform_device;
  1445. }
  1446. retval = platform_device_add(pd_dev);
  1447. if (retval) {
  1448. dev_err(&pdev->dev, "platform_device_add failed\n");
  1449. platform_device_put(pd_dev);
  1450. goto err_platform_device;
  1451. }
  1452. }
  1453. pci_set_drvdata(pdev, pd_dev_save);
  1454. return 0;
  1455. err_platform_device:
  1456. pci_disable_device(pdev);
  1457. pci_enable_device:
  1458. pci_release_regions(pdev);
  1459. pci_request_regions:
  1460. kfree(board_dat);
  1461. err_no_mem:
  1462. kfree(pd_dev_save);
  1463. return retval;
  1464. }
  1465. static void __devexit pch_spi_remove(struct pci_dev *pdev)
  1466. {
  1467. int i;
  1468. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1469. dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
  1470. for (i = 0; i < pd_dev_save->num; i++)
  1471. platform_device_unregister(pd_dev_save->pd_save[i]);
  1472. pci_disable_device(pdev);
  1473. pci_release_regions(pdev);
  1474. kfree(pd_dev_save->board_dat);
  1475. kfree(pd_dev_save);
  1476. }
  1477. #ifdef CONFIG_PM
  1478. static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
  1479. {
  1480. int retval;
  1481. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1482. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1483. pd_dev_save->board_dat->suspend_sts = true;
  1484. /* save config space */
  1485. retval = pci_save_state(pdev);
  1486. if (retval == 0) {
  1487. pci_enable_wake(pdev, PCI_D3hot, 0);
  1488. pci_disable_device(pdev);
  1489. pci_set_power_state(pdev, PCI_D3hot);
  1490. } else {
  1491. dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
  1492. }
  1493. return retval;
  1494. }
  1495. static int pch_spi_resume(struct pci_dev *pdev)
  1496. {
  1497. int retval;
  1498. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1499. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1500. pci_set_power_state(pdev, PCI_D0);
  1501. pci_restore_state(pdev);
  1502. retval = pci_enable_device(pdev);
  1503. if (retval < 0) {
  1504. dev_err(&pdev->dev,
  1505. "%s pci_enable_device failed\n", __func__);
  1506. } else {
  1507. pci_enable_wake(pdev, PCI_D3hot, 0);
  1508. /* set suspend status to false */
  1509. pd_dev_save->board_dat->suspend_sts = false;
  1510. }
  1511. return retval;
  1512. }
  1513. #else
  1514. #define pch_spi_suspend NULL
  1515. #define pch_spi_resume NULL
  1516. #endif
  1517. static struct pci_driver pch_spi_pcidev_driver = {
  1518. .name = "pch_spi",
  1519. .id_table = pch_spi_pcidev_id,
  1520. .probe = pch_spi_probe,
  1521. .remove = pch_spi_remove,
  1522. .suspend = pch_spi_suspend,
  1523. .resume = pch_spi_resume,
  1524. };
  1525. static int __init pch_spi_init(void)
  1526. {
  1527. int ret;
  1528. ret = platform_driver_register(&pch_spi_pd_driver);
  1529. if (ret)
  1530. return ret;
  1531. ret = pci_register_driver(&pch_spi_pcidev_driver);
  1532. if (ret)
  1533. return ret;
  1534. return 0;
  1535. }
  1536. module_init(pch_spi_init);
  1537. static void __exit pch_spi_exit(void)
  1538. {
  1539. pci_unregister_driver(&pch_spi_pcidev_driver);
  1540. platform_driver_unregister(&pch_spi_pd_driver);
  1541. }
  1542. module_exit(pch_spi_exit);
  1543. module_param(use_dma, int, 0644);
  1544. MODULE_PARM_DESC(use_dma,
  1545. "to use DMA for data transfers pass 1 else 0; default 1");
  1546. MODULE_LICENSE("GPL");
  1547. MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");