rt2400pci.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2400pci
  19. Abstract: rt2400pci device specific routines.
  20. Supported chipsets: RT2460.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include <linux/slab.h>
  30. #include "rt2x00.h"
  31. #include "rt2x00pci.h"
  32. #include "rt2400pci.h"
  33. /*
  34. * Register access.
  35. * All access to the CSR registers will go through the methods
  36. * rt2x00pci_register_read and rt2x00pci_register_write.
  37. * BBP and RF register require indirect register access,
  38. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  39. * These indirect registers work with busy bits,
  40. * and we will try maximal REGISTER_BUSY_COUNT times to access
  41. * the register while taking a REGISTER_BUSY_DELAY us delay
  42. * between each attempt. When the busy bit is still set at that time,
  43. * the access attempt is considered to have failed,
  44. * and we will print an error.
  45. */
  46. #define WAIT_FOR_BBP(__dev, __reg) \
  47. rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  48. #define WAIT_FOR_RF(__dev, __reg) \
  49. rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  50. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  51. const unsigned int word, const u8 value)
  52. {
  53. u32 reg;
  54. mutex_lock(&rt2x00dev->csr_mutex);
  55. /*
  56. * Wait until the BBP becomes available, afterwards we
  57. * can safely write the new data into the register.
  58. */
  59. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  60. reg = 0;
  61. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  62. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  63. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  64. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  65. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  66. }
  67. mutex_unlock(&rt2x00dev->csr_mutex);
  68. }
  69. static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  70. const unsigned int word, u8 *value)
  71. {
  72. u32 reg;
  73. mutex_lock(&rt2x00dev->csr_mutex);
  74. /*
  75. * Wait until the BBP becomes available, afterwards we
  76. * can safely write the read request into the register.
  77. * After the data has been written, we wait until hardware
  78. * returns the correct value, if at any time the register
  79. * doesn't become available in time, reg will be 0xffffffff
  80. * which means we return 0xff to the caller.
  81. */
  82. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  83. reg = 0;
  84. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  85. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  86. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  87. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  88. WAIT_FOR_BBP(rt2x00dev, &reg);
  89. }
  90. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  91. mutex_unlock(&rt2x00dev->csr_mutex);
  92. }
  93. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  94. const unsigned int word, const u32 value)
  95. {
  96. u32 reg;
  97. mutex_lock(&rt2x00dev->csr_mutex);
  98. /*
  99. * Wait until the RF becomes available, afterwards we
  100. * can safely write the new data into the register.
  101. */
  102. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  103. reg = 0;
  104. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  105. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  106. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  107. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  108. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  109. rt2x00_rf_write(rt2x00dev, word, value);
  110. }
  111. mutex_unlock(&rt2x00dev->csr_mutex);
  112. }
  113. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  114. {
  115. struct rt2x00_dev *rt2x00dev = eeprom->data;
  116. u32 reg;
  117. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  118. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  119. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  120. eeprom->reg_data_clock =
  121. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  122. eeprom->reg_chip_select =
  123. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  124. }
  125. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  126. {
  127. struct rt2x00_dev *rt2x00dev = eeprom->data;
  128. u32 reg = 0;
  129. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  130. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  131. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  132. !!eeprom->reg_data_clock);
  133. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  134. !!eeprom->reg_chip_select);
  135. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  136. }
  137. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  138. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  139. .owner = THIS_MODULE,
  140. .csr = {
  141. .read = rt2x00pci_register_read,
  142. .write = rt2x00pci_register_write,
  143. .flags = RT2X00DEBUGFS_OFFSET,
  144. .word_base = CSR_REG_BASE,
  145. .word_size = sizeof(u32),
  146. .word_count = CSR_REG_SIZE / sizeof(u32),
  147. },
  148. .eeprom = {
  149. .read = rt2x00_eeprom_read,
  150. .write = rt2x00_eeprom_write,
  151. .word_base = EEPROM_BASE,
  152. .word_size = sizeof(u16),
  153. .word_count = EEPROM_SIZE / sizeof(u16),
  154. },
  155. .bbp = {
  156. .read = rt2400pci_bbp_read,
  157. .write = rt2400pci_bbp_write,
  158. .word_base = BBP_BASE,
  159. .word_size = sizeof(u8),
  160. .word_count = BBP_SIZE / sizeof(u8),
  161. },
  162. .rf = {
  163. .read = rt2x00_rf_read,
  164. .write = rt2400pci_rf_write,
  165. .word_base = RF_BASE,
  166. .word_size = sizeof(u32),
  167. .word_count = RF_SIZE / sizeof(u32),
  168. },
  169. };
  170. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  171. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  172. {
  173. u32 reg;
  174. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  175. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  176. }
  177. #ifdef CONFIG_RT2X00_LIB_LEDS
  178. static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
  179. enum led_brightness brightness)
  180. {
  181. struct rt2x00_led *led =
  182. container_of(led_cdev, struct rt2x00_led, led_dev);
  183. unsigned int enabled = brightness != LED_OFF;
  184. u32 reg;
  185. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  186. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  187. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  188. else if (led->type == LED_TYPE_ACTIVITY)
  189. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  190. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  191. }
  192. static int rt2400pci_blink_set(struct led_classdev *led_cdev,
  193. unsigned long *delay_on,
  194. unsigned long *delay_off)
  195. {
  196. struct rt2x00_led *led =
  197. container_of(led_cdev, struct rt2x00_led, led_dev);
  198. u32 reg;
  199. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  200. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  201. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  202. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  203. return 0;
  204. }
  205. static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
  206. struct rt2x00_led *led,
  207. enum led_type type)
  208. {
  209. led->rt2x00dev = rt2x00dev;
  210. led->type = type;
  211. led->led_dev.brightness_set = rt2400pci_brightness_set;
  212. led->led_dev.blink_set = rt2400pci_blink_set;
  213. led->flags = LED_INITIALIZED;
  214. }
  215. #endif /* CONFIG_RT2X00_LIB_LEDS */
  216. /*
  217. * Configuration handlers.
  218. */
  219. static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
  220. const unsigned int filter_flags)
  221. {
  222. u32 reg;
  223. /*
  224. * Start configuration steps.
  225. * Note that the version error will always be dropped
  226. * since there is no filter for it at this time.
  227. */
  228. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  229. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  230. !(filter_flags & FIF_FCSFAIL));
  231. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  232. !(filter_flags & FIF_PLCPFAIL));
  233. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  234. !(filter_flags & FIF_CONTROL));
  235. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  236. !(filter_flags & FIF_PROMISC_IN_BSS));
  237. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  238. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  239. !rt2x00dev->intf_ap_count);
  240. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  241. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  242. }
  243. static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
  244. struct rt2x00_intf *intf,
  245. struct rt2x00intf_conf *conf,
  246. const unsigned int flags)
  247. {
  248. unsigned int bcn_preload;
  249. u32 reg;
  250. if (flags & CONFIG_UPDATE_TYPE) {
  251. /*
  252. * Enable beacon config
  253. */
  254. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  255. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  256. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  257. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  258. /*
  259. * Enable synchronisation.
  260. */
  261. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  262. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  263. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  264. }
  265. if (flags & CONFIG_UPDATE_MAC)
  266. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  267. conf->mac, sizeof(conf->mac));
  268. if (flags & CONFIG_UPDATE_BSSID)
  269. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  270. conf->bssid, sizeof(conf->bssid));
  271. }
  272. static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
  273. struct rt2x00lib_erp *erp,
  274. u32 changed)
  275. {
  276. int preamble_mask;
  277. u32 reg;
  278. /*
  279. * When short preamble is enabled, we should set bit 0x08
  280. */
  281. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  282. preamble_mask = erp->short_preamble << 3;
  283. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  284. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
  285. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
  286. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  287. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  288. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  289. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  290. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  291. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  292. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  293. GET_DURATION(ACK_SIZE, 10));
  294. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  295. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  296. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  297. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  298. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  299. GET_DURATION(ACK_SIZE, 20));
  300. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  301. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  302. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  303. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  304. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  305. GET_DURATION(ACK_SIZE, 55));
  306. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  307. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  308. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  309. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  310. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  311. GET_DURATION(ACK_SIZE, 110));
  312. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  313. }
  314. if (changed & BSS_CHANGED_BASIC_RATES)
  315. rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  316. if (changed & BSS_CHANGED_ERP_SLOT) {
  317. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  318. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  319. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  320. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  321. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  322. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  323. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  324. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  325. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  326. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  327. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  328. }
  329. if (changed & BSS_CHANGED_BEACON_INT) {
  330. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  331. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  332. erp->beacon_int * 16);
  333. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  334. erp->beacon_int * 16);
  335. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  336. }
  337. }
  338. static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
  339. struct antenna_setup *ant)
  340. {
  341. u8 r1;
  342. u8 r4;
  343. /*
  344. * We should never come here because rt2x00lib is supposed
  345. * to catch this and send us the correct antenna explicitely.
  346. */
  347. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  348. ant->tx == ANTENNA_SW_DIVERSITY);
  349. rt2400pci_bbp_read(rt2x00dev, 4, &r4);
  350. rt2400pci_bbp_read(rt2x00dev, 1, &r1);
  351. /*
  352. * Configure the TX antenna.
  353. */
  354. switch (ant->tx) {
  355. case ANTENNA_HW_DIVERSITY:
  356. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  357. break;
  358. case ANTENNA_A:
  359. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  360. break;
  361. case ANTENNA_B:
  362. default:
  363. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  364. break;
  365. }
  366. /*
  367. * Configure the RX antenna.
  368. */
  369. switch (ant->rx) {
  370. case ANTENNA_HW_DIVERSITY:
  371. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  372. break;
  373. case ANTENNA_A:
  374. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  375. break;
  376. case ANTENNA_B:
  377. default:
  378. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  379. break;
  380. }
  381. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  382. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  383. }
  384. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  385. struct rf_channel *rf)
  386. {
  387. /*
  388. * Switch on tuning bits.
  389. */
  390. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  391. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  392. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  393. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  394. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  395. /*
  396. * RF2420 chipset don't need any additional actions.
  397. */
  398. if (rt2x00_rf(rt2x00dev, RF2420))
  399. return;
  400. /*
  401. * For the RT2421 chipsets we need to write an invalid
  402. * reference clock rate to activate auto_tune.
  403. * After that we set the value back to the correct channel.
  404. */
  405. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  406. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  407. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  408. msleep(1);
  409. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  410. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  411. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  412. msleep(1);
  413. /*
  414. * Switch off tuning bits.
  415. */
  416. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  417. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  418. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  419. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  420. /*
  421. * Clear false CRC during channel switch.
  422. */
  423. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  424. }
  425. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  426. {
  427. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  428. }
  429. static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  430. struct rt2x00lib_conf *libconf)
  431. {
  432. u32 reg;
  433. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  434. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  435. libconf->conf->long_frame_max_tx_count);
  436. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  437. libconf->conf->short_frame_max_tx_count);
  438. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  439. }
  440. static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
  441. struct rt2x00lib_conf *libconf)
  442. {
  443. enum dev_state state =
  444. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  445. STATE_SLEEP : STATE_AWAKE;
  446. u32 reg;
  447. if (state == STATE_SLEEP) {
  448. rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
  449. rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
  450. (rt2x00dev->beacon_int - 20) * 16);
  451. rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
  452. libconf->conf->listen_interval - 1);
  453. /* We must first disable autowake before it can be enabled */
  454. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  455. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  456. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
  457. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  458. } else {
  459. rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
  460. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  461. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  462. }
  463. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  464. }
  465. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  466. struct rt2x00lib_conf *libconf,
  467. const unsigned int flags)
  468. {
  469. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  470. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  471. if (flags & IEEE80211_CONF_CHANGE_POWER)
  472. rt2400pci_config_txpower(rt2x00dev,
  473. libconf->conf->power_level);
  474. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  475. rt2400pci_config_retry_limit(rt2x00dev, libconf);
  476. if (flags & IEEE80211_CONF_CHANGE_PS)
  477. rt2400pci_config_ps(rt2x00dev, libconf);
  478. }
  479. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  480. const int cw_min, const int cw_max)
  481. {
  482. u32 reg;
  483. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  484. rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
  485. rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
  486. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  487. }
  488. /*
  489. * Link tuning
  490. */
  491. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  492. struct link_qual *qual)
  493. {
  494. u32 reg;
  495. u8 bbp;
  496. /*
  497. * Update FCS error count from register.
  498. */
  499. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  500. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  501. /*
  502. * Update False CCA count from register.
  503. */
  504. rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
  505. qual->false_cca = bbp;
  506. }
  507. static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  508. struct link_qual *qual, u8 vgc_level)
  509. {
  510. if (qual->vgc_level_reg != vgc_level) {
  511. rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
  512. qual->vgc_level = vgc_level;
  513. qual->vgc_level_reg = vgc_level;
  514. }
  515. }
  516. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  517. struct link_qual *qual)
  518. {
  519. rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
  520. }
  521. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  522. struct link_qual *qual, const u32 count)
  523. {
  524. /*
  525. * The link tuner should not run longer then 60 seconds,
  526. * and should run once every 2 seconds.
  527. */
  528. if (count > 60 || !(count & 1))
  529. return;
  530. /*
  531. * Base r13 link tuning on the false cca count.
  532. */
  533. if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
  534. rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
  535. else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
  536. rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
  537. }
  538. /*
  539. * Queue handlers.
  540. */
  541. static void rt2400pci_start_queue(struct data_queue *queue)
  542. {
  543. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  544. u32 reg;
  545. switch (queue->qid) {
  546. case QID_RX:
  547. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  548. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
  549. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  550. break;
  551. case QID_BEACON:
  552. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  553. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  554. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  555. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  556. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  557. break;
  558. default:
  559. break;
  560. }
  561. }
  562. static void rt2400pci_kick_queue(struct data_queue *queue)
  563. {
  564. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  565. u32 reg;
  566. switch (queue->qid) {
  567. case QID_AC_VO:
  568. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  569. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
  570. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  571. break;
  572. case QID_AC_VI:
  573. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  574. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
  575. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  576. break;
  577. case QID_ATIM:
  578. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  579. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
  580. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  581. break;
  582. default:
  583. break;
  584. }
  585. }
  586. static void rt2400pci_stop_queue(struct data_queue *queue)
  587. {
  588. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  589. u32 reg;
  590. switch (queue->qid) {
  591. case QID_AC_VO:
  592. case QID_AC_VI:
  593. case QID_ATIM:
  594. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  595. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  596. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  597. break;
  598. case QID_RX:
  599. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  600. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
  601. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  602. break;
  603. case QID_BEACON:
  604. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  605. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  606. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  607. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  608. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  609. /*
  610. * Wait for possibly running tbtt tasklets.
  611. */
  612. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  613. break;
  614. default:
  615. break;
  616. }
  617. }
  618. /*
  619. * Initialization functions.
  620. */
  621. static bool rt2400pci_get_entry_state(struct queue_entry *entry)
  622. {
  623. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  624. u32 word;
  625. if (entry->queue->qid == QID_RX) {
  626. rt2x00_desc_read(entry_priv->desc, 0, &word);
  627. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  628. } else {
  629. rt2x00_desc_read(entry_priv->desc, 0, &word);
  630. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  631. rt2x00_get_field32(word, TXD_W0_VALID));
  632. }
  633. }
  634. static void rt2400pci_clear_entry(struct queue_entry *entry)
  635. {
  636. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  637. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  638. u32 word;
  639. if (entry->queue->qid == QID_RX) {
  640. rt2x00_desc_read(entry_priv->desc, 2, &word);
  641. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
  642. rt2x00_desc_write(entry_priv->desc, 2, word);
  643. rt2x00_desc_read(entry_priv->desc, 1, &word);
  644. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  645. rt2x00_desc_write(entry_priv->desc, 1, word);
  646. rt2x00_desc_read(entry_priv->desc, 0, &word);
  647. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  648. rt2x00_desc_write(entry_priv->desc, 0, word);
  649. } else {
  650. rt2x00_desc_read(entry_priv->desc, 0, &word);
  651. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  652. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  653. rt2x00_desc_write(entry_priv->desc, 0, word);
  654. }
  655. }
  656. static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
  657. {
  658. struct queue_entry_priv_pci *entry_priv;
  659. u32 reg;
  660. /*
  661. * Initialize registers.
  662. */
  663. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  664. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  665. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  666. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
  667. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  668. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  669. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  670. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  671. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  672. entry_priv->desc_dma);
  673. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  674. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  675. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  676. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  677. entry_priv->desc_dma);
  678. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  679. entry_priv = rt2x00dev->atim->entries[0].priv_data;
  680. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  681. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  682. entry_priv->desc_dma);
  683. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  684. entry_priv = rt2x00dev->bcn->entries[0].priv_data;
  685. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  686. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  687. entry_priv->desc_dma);
  688. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  689. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  690. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  691. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  692. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  693. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  694. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  695. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  696. entry_priv->desc_dma);
  697. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  698. return 0;
  699. }
  700. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  701. {
  702. u32 reg;
  703. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  704. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  705. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  706. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  707. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  708. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  709. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  710. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  711. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  712. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  713. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  714. (rt2x00dev->rx->data_size / 128));
  715. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  716. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  717. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  718. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  719. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  720. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  721. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  722. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  723. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  724. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  725. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  726. rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
  727. rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
  728. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  729. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  730. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  731. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  732. rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
  733. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  734. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  735. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  736. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  737. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  738. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  739. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  740. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  741. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  742. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  743. return -EBUSY;
  744. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
  745. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  746. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  747. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  748. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  749. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  750. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  751. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  752. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  753. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  754. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  755. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  756. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  757. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  758. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  759. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  760. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  761. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  762. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  763. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  764. /*
  765. * We must clear the FCS and FIFO error count.
  766. * These registers are cleared on read,
  767. * so we may pass a useless variable to store the value.
  768. */
  769. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  770. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  771. return 0;
  772. }
  773. static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  774. {
  775. unsigned int i;
  776. u8 value;
  777. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  778. rt2400pci_bbp_read(rt2x00dev, 0, &value);
  779. if ((value != 0xff) && (value != 0x00))
  780. return 0;
  781. udelay(REGISTER_BUSY_DELAY);
  782. }
  783. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  784. return -EACCES;
  785. }
  786. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  787. {
  788. unsigned int i;
  789. u16 eeprom;
  790. u8 reg_id;
  791. u8 value;
  792. if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
  793. return -EACCES;
  794. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  795. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  796. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  797. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  798. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  799. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  800. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  801. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  802. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  803. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  804. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  805. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  806. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  807. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  808. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  809. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  810. if (eeprom != 0xffff && eeprom != 0x0000) {
  811. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  812. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  813. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  814. }
  815. }
  816. return 0;
  817. }
  818. /*
  819. * Device state switch handlers.
  820. */
  821. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  822. enum dev_state state)
  823. {
  824. int mask = (state == STATE_RADIO_IRQ_OFF);
  825. u32 reg;
  826. unsigned long flags;
  827. /*
  828. * When interrupts are being enabled, the interrupt registers
  829. * should clear the register to assure a clean state.
  830. */
  831. if (state == STATE_RADIO_IRQ_ON) {
  832. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  833. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  834. }
  835. /*
  836. * Only toggle the interrupts bits we are going to use.
  837. * Non-checked interrupt bits are disabled by default.
  838. */
  839. spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
  840. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  841. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  842. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  843. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  844. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  845. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  846. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  847. spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
  848. if (state == STATE_RADIO_IRQ_OFF) {
  849. /*
  850. * Ensure that all tasklets are finished before
  851. * disabling the interrupts.
  852. */
  853. tasklet_kill(&rt2x00dev->txstatus_tasklet);
  854. tasklet_kill(&rt2x00dev->rxdone_tasklet);
  855. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  856. }
  857. }
  858. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  859. {
  860. /*
  861. * Initialize all registers.
  862. */
  863. if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
  864. rt2400pci_init_registers(rt2x00dev) ||
  865. rt2400pci_init_bbp(rt2x00dev)))
  866. return -EIO;
  867. return 0;
  868. }
  869. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  870. {
  871. /*
  872. * Disable power
  873. */
  874. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  875. }
  876. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  877. enum dev_state state)
  878. {
  879. u32 reg, reg2;
  880. unsigned int i;
  881. char put_to_sleep;
  882. char bbp_state;
  883. char rf_state;
  884. put_to_sleep = (state != STATE_AWAKE);
  885. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  886. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  887. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  888. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  889. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  890. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  891. /*
  892. * Device is not guaranteed to be in the requested state yet.
  893. * We must wait until the register indicates that the
  894. * device has entered the correct state.
  895. */
  896. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  897. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
  898. bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
  899. rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
  900. if (bbp_state == state && rf_state == state)
  901. return 0;
  902. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  903. msleep(10);
  904. }
  905. return -EBUSY;
  906. }
  907. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  908. enum dev_state state)
  909. {
  910. int retval = 0;
  911. switch (state) {
  912. case STATE_RADIO_ON:
  913. retval = rt2400pci_enable_radio(rt2x00dev);
  914. break;
  915. case STATE_RADIO_OFF:
  916. rt2400pci_disable_radio(rt2x00dev);
  917. break;
  918. case STATE_RADIO_IRQ_ON:
  919. case STATE_RADIO_IRQ_OFF:
  920. rt2400pci_toggle_irq(rt2x00dev, state);
  921. break;
  922. case STATE_DEEP_SLEEP:
  923. case STATE_SLEEP:
  924. case STATE_STANDBY:
  925. case STATE_AWAKE:
  926. retval = rt2400pci_set_state(rt2x00dev, state);
  927. break;
  928. default:
  929. retval = -ENOTSUPP;
  930. break;
  931. }
  932. if (unlikely(retval))
  933. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  934. state, retval);
  935. return retval;
  936. }
  937. /*
  938. * TX descriptor initialization
  939. */
  940. static void rt2400pci_write_tx_desc(struct queue_entry *entry,
  941. struct txentry_desc *txdesc)
  942. {
  943. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  944. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  945. __le32 *txd = entry_priv->desc;
  946. u32 word;
  947. /*
  948. * Start writing the descriptor words.
  949. */
  950. rt2x00_desc_read(txd, 1, &word);
  951. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  952. rt2x00_desc_write(txd, 1, word);
  953. rt2x00_desc_read(txd, 2, &word);
  954. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
  955. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
  956. rt2x00_desc_write(txd, 2, word);
  957. rt2x00_desc_read(txd, 3, &word);
  958. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
  959. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
  960. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
  961. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
  962. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
  963. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
  964. rt2x00_desc_write(txd, 3, word);
  965. rt2x00_desc_read(txd, 4, &word);
  966. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
  967. txdesc->u.plcp.length_low);
  968. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
  969. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
  970. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
  971. txdesc->u.plcp.length_high);
  972. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
  973. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
  974. rt2x00_desc_write(txd, 4, word);
  975. /*
  976. * Writing TXD word 0 must the last to prevent a race condition with
  977. * the device, whereby the device may take hold of the TXD before we
  978. * finished updating it.
  979. */
  980. rt2x00_desc_read(txd, 0, &word);
  981. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  982. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  983. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  984. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  985. rt2x00_set_field32(&word, TXD_W0_ACK,
  986. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  987. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  988. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  989. rt2x00_set_field32(&word, TXD_W0_RTS,
  990. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  991. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
  992. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  993. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  994. rt2x00_desc_write(txd, 0, word);
  995. /*
  996. * Register descriptor details in skb frame descriptor.
  997. */
  998. skbdesc->desc = txd;
  999. skbdesc->desc_len = TXD_DESC_SIZE;
  1000. }
  1001. /*
  1002. * TX data initialization
  1003. */
  1004. static void rt2400pci_write_beacon(struct queue_entry *entry,
  1005. struct txentry_desc *txdesc)
  1006. {
  1007. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1008. u32 reg;
  1009. /*
  1010. * Disable beaconing while we are reloading the beacon data,
  1011. * otherwise we might be sending out invalid data.
  1012. */
  1013. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1014. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1015. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1016. rt2x00queue_map_txskb(entry);
  1017. /*
  1018. * Write the TX descriptor for the beacon.
  1019. */
  1020. rt2400pci_write_tx_desc(entry, txdesc);
  1021. /*
  1022. * Dump beacon to userspace through debugfs.
  1023. */
  1024. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
  1025. /*
  1026. * Enable beaconing again.
  1027. */
  1028. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1029. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1030. }
  1031. /*
  1032. * RX control handlers
  1033. */
  1034. static void rt2400pci_fill_rxdone(struct queue_entry *entry,
  1035. struct rxdone_entry_desc *rxdesc)
  1036. {
  1037. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1038. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1039. u32 word0;
  1040. u32 word2;
  1041. u32 word3;
  1042. u32 word4;
  1043. u64 tsf;
  1044. u32 rx_low;
  1045. u32 rx_high;
  1046. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  1047. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  1048. rt2x00_desc_read(entry_priv->desc, 3, &word3);
  1049. rt2x00_desc_read(entry_priv->desc, 4, &word4);
  1050. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1051. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1052. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1053. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1054. /*
  1055. * We only get the lower 32bits from the timestamp,
  1056. * to get the full 64bits we must complement it with
  1057. * the timestamp from get_tsf().
  1058. * Note that when a wraparound of the lower 32bits
  1059. * has occurred between the frame arrival and the get_tsf()
  1060. * call, we must decrease the higher 32bits with 1 to get
  1061. * to correct value.
  1062. */
  1063. tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
  1064. rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
  1065. rx_high = upper_32_bits(tsf);
  1066. if ((u32)tsf <= rx_low)
  1067. rx_high--;
  1068. /*
  1069. * Obtain the status about this packet.
  1070. * The signal is the PLCP value, and needs to be stripped
  1071. * of the preamble bit (0x08).
  1072. */
  1073. rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
  1074. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
  1075. rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) -
  1076. entry->queue->rt2x00dev->rssi_offset;
  1077. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1078. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1079. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1080. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1081. }
  1082. /*
  1083. * Interrupt functions.
  1084. */
  1085. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
  1086. const enum data_queue_qid queue_idx)
  1087. {
  1088. struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
  1089. struct queue_entry_priv_pci *entry_priv;
  1090. struct queue_entry *entry;
  1091. struct txdone_entry_desc txdesc;
  1092. u32 word;
  1093. while (!rt2x00queue_empty(queue)) {
  1094. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1095. entry_priv = entry->priv_data;
  1096. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1097. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1098. !rt2x00_get_field32(word, TXD_W0_VALID))
  1099. break;
  1100. /*
  1101. * Obtain the status about this packet.
  1102. */
  1103. txdesc.flags = 0;
  1104. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1105. case 0: /* Success */
  1106. case 1: /* Success with retry */
  1107. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1108. break;
  1109. case 2: /* Failure, excessive retries */
  1110. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1111. /* Don't break, this is a failed frame! */
  1112. default: /* Failure */
  1113. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1114. }
  1115. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1116. rt2x00lib_txdone(entry, &txdesc);
  1117. }
  1118. }
  1119. static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
  1120. struct rt2x00_field32 irq_field)
  1121. {
  1122. u32 reg;
  1123. /*
  1124. * Enable a single interrupt. The interrupt mask register
  1125. * access needs locking.
  1126. */
  1127. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1128. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  1129. rt2x00_set_field32(&reg, irq_field, 0);
  1130. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  1131. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1132. }
  1133. static void rt2400pci_txstatus_tasklet(unsigned long data)
  1134. {
  1135. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1136. u32 reg;
  1137. /*
  1138. * Handle all tx queues.
  1139. */
  1140. rt2400pci_txdone(rt2x00dev, QID_ATIM);
  1141. rt2400pci_txdone(rt2x00dev, QID_AC_VO);
  1142. rt2400pci_txdone(rt2x00dev, QID_AC_VI);
  1143. /*
  1144. * Enable all TXDONE interrupts again.
  1145. */
  1146. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
  1147. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1148. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  1149. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
  1150. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
  1151. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
  1152. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  1153. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1154. }
  1155. }
  1156. static void rt2400pci_tbtt_tasklet(unsigned long data)
  1157. {
  1158. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1159. rt2x00lib_beacondone(rt2x00dev);
  1160. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1161. rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
  1162. }
  1163. static void rt2400pci_rxdone_tasklet(unsigned long data)
  1164. {
  1165. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1166. if (rt2x00pci_rxdone(rt2x00dev))
  1167. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1168. else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1169. rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
  1170. }
  1171. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  1172. {
  1173. struct rt2x00_dev *rt2x00dev = dev_instance;
  1174. u32 reg, mask;
  1175. /*
  1176. * Get the interrupt sources & saved to local variable.
  1177. * Write register value back to clear pending interrupts.
  1178. */
  1179. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1180. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1181. if (!reg)
  1182. return IRQ_NONE;
  1183. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1184. return IRQ_HANDLED;
  1185. mask = reg;
  1186. /*
  1187. * Schedule tasklets for interrupt handling.
  1188. */
  1189. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1190. tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
  1191. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1192. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1193. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
  1194. rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
  1195. rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
  1196. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  1197. /*
  1198. * Mask out all txdone interrupts.
  1199. */
  1200. rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
  1201. rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
  1202. rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
  1203. }
  1204. /*
  1205. * Disable all interrupts for which a tasklet was scheduled right now,
  1206. * the tasklet will reenable the appropriate interrupts.
  1207. */
  1208. spin_lock(&rt2x00dev->irqmask_lock);
  1209. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  1210. reg |= mask;
  1211. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  1212. spin_unlock(&rt2x00dev->irqmask_lock);
  1213. return IRQ_HANDLED;
  1214. }
  1215. /*
  1216. * Device probe functions.
  1217. */
  1218. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1219. {
  1220. struct eeprom_93cx6 eeprom;
  1221. u32 reg;
  1222. u16 word;
  1223. u8 *mac;
  1224. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1225. eeprom.data = rt2x00dev;
  1226. eeprom.register_read = rt2400pci_eepromregister_read;
  1227. eeprom.register_write = rt2400pci_eepromregister_write;
  1228. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1229. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1230. eeprom.reg_data_in = 0;
  1231. eeprom.reg_data_out = 0;
  1232. eeprom.reg_data_clock = 0;
  1233. eeprom.reg_chip_select = 0;
  1234. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1235. EEPROM_SIZE / sizeof(u16));
  1236. /*
  1237. * Start validation of the data that has been read.
  1238. */
  1239. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1240. if (!is_valid_ether_addr(mac)) {
  1241. random_ether_addr(mac);
  1242. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1243. }
  1244. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1245. if (word == 0xffff) {
  1246. ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
  1247. return -EINVAL;
  1248. }
  1249. return 0;
  1250. }
  1251. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1252. {
  1253. u32 reg;
  1254. u16 value;
  1255. u16 eeprom;
  1256. /*
  1257. * Read EEPROM word for configuration.
  1258. */
  1259. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1260. /*
  1261. * Identify RF chipset.
  1262. */
  1263. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1264. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1265. rt2x00_set_chip(rt2x00dev, RT2460, value,
  1266. rt2x00_get_field32(reg, CSR0_REVISION));
  1267. if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
  1268. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1269. return -ENODEV;
  1270. }
  1271. /*
  1272. * Identify default antenna configuration.
  1273. */
  1274. rt2x00dev->default_ant.tx =
  1275. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1276. rt2x00dev->default_ant.rx =
  1277. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1278. /*
  1279. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1280. * I am not 100% sure about this, but the legacy drivers do not
  1281. * indicate antenna swapping in software is required when
  1282. * diversity is enabled.
  1283. */
  1284. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1285. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1286. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1287. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1288. /*
  1289. * Store led mode, for correct led behaviour.
  1290. */
  1291. #ifdef CONFIG_RT2X00_LIB_LEDS
  1292. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1293. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1294. if (value == LED_MODE_TXRX_ACTIVITY ||
  1295. value == LED_MODE_DEFAULT ||
  1296. value == LED_MODE_ASUS)
  1297. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1298. LED_TYPE_ACTIVITY);
  1299. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1300. /*
  1301. * Detect if this device has an hardware controlled radio.
  1302. */
  1303. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1304. __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
  1305. /*
  1306. * Check if the BBP tuning should be enabled.
  1307. */
  1308. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1309. __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
  1310. return 0;
  1311. }
  1312. /*
  1313. * RF value list for RF2420 & RF2421
  1314. * Supports: 2.4 GHz
  1315. */
  1316. static const struct rf_channel rf_vals_b[] = {
  1317. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1318. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1319. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1320. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1321. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1322. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1323. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1324. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1325. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1326. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1327. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1328. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1329. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1330. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1331. };
  1332. static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1333. {
  1334. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1335. struct channel_info *info;
  1336. char *tx_power;
  1337. unsigned int i;
  1338. /*
  1339. * Initialize all hw fields.
  1340. */
  1341. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1342. IEEE80211_HW_SIGNAL_DBM |
  1343. IEEE80211_HW_SUPPORTS_PS |
  1344. IEEE80211_HW_PS_NULLFUNC_STACK;
  1345. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1346. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1347. rt2x00_eeprom_addr(rt2x00dev,
  1348. EEPROM_MAC_ADDR_0));
  1349. /*
  1350. * Initialize hw_mode information.
  1351. */
  1352. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1353. spec->supported_rates = SUPPORT_RATE_CCK;
  1354. spec->num_channels = ARRAY_SIZE(rf_vals_b);
  1355. spec->channels = rf_vals_b;
  1356. /*
  1357. * Create channel information array
  1358. */
  1359. info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
  1360. if (!info)
  1361. return -ENOMEM;
  1362. spec->channels_info = info;
  1363. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1364. for (i = 0; i < 14; i++) {
  1365. info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
  1366. info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1367. }
  1368. return 0;
  1369. }
  1370. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1371. {
  1372. int retval;
  1373. u32 reg;
  1374. /*
  1375. * Allocate eeprom data.
  1376. */
  1377. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1378. if (retval)
  1379. return retval;
  1380. retval = rt2400pci_init_eeprom(rt2x00dev);
  1381. if (retval)
  1382. return retval;
  1383. /*
  1384. * Enable rfkill polling by setting GPIO direction of the
  1385. * rfkill switch GPIO pin correctly.
  1386. */
  1387. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  1388. rt2x00_set_field32(&reg, GPIOCSR_BIT8, 1);
  1389. rt2x00pci_register_write(rt2x00dev, GPIOCSR, reg);
  1390. /*
  1391. * Initialize hw specifications.
  1392. */
  1393. retval = rt2400pci_probe_hw_mode(rt2x00dev);
  1394. if (retval)
  1395. return retval;
  1396. /*
  1397. * This device requires the atim queue and DMA-mapped skbs.
  1398. */
  1399. __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
  1400. __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
  1401. __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
  1402. /*
  1403. * Set the rssi offset.
  1404. */
  1405. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1406. return 0;
  1407. }
  1408. /*
  1409. * IEEE80211 stack callback functions.
  1410. */
  1411. static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
  1412. struct ieee80211_vif *vif, u16 queue,
  1413. const struct ieee80211_tx_queue_params *params)
  1414. {
  1415. struct rt2x00_dev *rt2x00dev = hw->priv;
  1416. /*
  1417. * We don't support variating cw_min and cw_max variables
  1418. * per queue. So by default we only configure the TX queue,
  1419. * and ignore all other configurations.
  1420. */
  1421. if (queue != 0)
  1422. return -EINVAL;
  1423. if (rt2x00mac_conf_tx(hw, vif, queue, params))
  1424. return -EINVAL;
  1425. /*
  1426. * Write configuration to register.
  1427. */
  1428. rt2400pci_config_cw(rt2x00dev,
  1429. rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
  1430. return 0;
  1431. }
  1432. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
  1433. struct ieee80211_vif *vif)
  1434. {
  1435. struct rt2x00_dev *rt2x00dev = hw->priv;
  1436. u64 tsf;
  1437. u32 reg;
  1438. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1439. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1440. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1441. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1442. return tsf;
  1443. }
  1444. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1445. {
  1446. struct rt2x00_dev *rt2x00dev = hw->priv;
  1447. u32 reg;
  1448. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1449. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1450. }
  1451. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1452. .tx = rt2x00mac_tx,
  1453. .start = rt2x00mac_start,
  1454. .stop = rt2x00mac_stop,
  1455. .add_interface = rt2x00mac_add_interface,
  1456. .remove_interface = rt2x00mac_remove_interface,
  1457. .config = rt2x00mac_config,
  1458. .configure_filter = rt2x00mac_configure_filter,
  1459. .sw_scan_start = rt2x00mac_sw_scan_start,
  1460. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  1461. .get_stats = rt2x00mac_get_stats,
  1462. .bss_info_changed = rt2x00mac_bss_info_changed,
  1463. .conf_tx = rt2400pci_conf_tx,
  1464. .get_tsf = rt2400pci_get_tsf,
  1465. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1466. .rfkill_poll = rt2x00mac_rfkill_poll,
  1467. .flush = rt2x00mac_flush,
  1468. .set_antenna = rt2x00mac_set_antenna,
  1469. .get_antenna = rt2x00mac_get_antenna,
  1470. .get_ringparam = rt2x00mac_get_ringparam,
  1471. .tx_frames_pending = rt2x00mac_tx_frames_pending,
  1472. };
  1473. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1474. .irq_handler = rt2400pci_interrupt,
  1475. .txstatus_tasklet = rt2400pci_txstatus_tasklet,
  1476. .tbtt_tasklet = rt2400pci_tbtt_tasklet,
  1477. .rxdone_tasklet = rt2400pci_rxdone_tasklet,
  1478. .probe_hw = rt2400pci_probe_hw,
  1479. .initialize = rt2x00pci_initialize,
  1480. .uninitialize = rt2x00pci_uninitialize,
  1481. .get_entry_state = rt2400pci_get_entry_state,
  1482. .clear_entry = rt2400pci_clear_entry,
  1483. .set_device_state = rt2400pci_set_device_state,
  1484. .rfkill_poll = rt2400pci_rfkill_poll,
  1485. .link_stats = rt2400pci_link_stats,
  1486. .reset_tuner = rt2400pci_reset_tuner,
  1487. .link_tuner = rt2400pci_link_tuner,
  1488. .start_queue = rt2400pci_start_queue,
  1489. .kick_queue = rt2400pci_kick_queue,
  1490. .stop_queue = rt2400pci_stop_queue,
  1491. .flush_queue = rt2x00pci_flush_queue,
  1492. .write_tx_desc = rt2400pci_write_tx_desc,
  1493. .write_beacon = rt2400pci_write_beacon,
  1494. .fill_rxdone = rt2400pci_fill_rxdone,
  1495. .config_filter = rt2400pci_config_filter,
  1496. .config_intf = rt2400pci_config_intf,
  1497. .config_erp = rt2400pci_config_erp,
  1498. .config_ant = rt2400pci_config_ant,
  1499. .config = rt2400pci_config,
  1500. };
  1501. static const struct data_queue_desc rt2400pci_queue_rx = {
  1502. .entry_num = 24,
  1503. .data_size = DATA_FRAME_SIZE,
  1504. .desc_size = RXD_DESC_SIZE,
  1505. .priv_size = sizeof(struct queue_entry_priv_pci),
  1506. };
  1507. static const struct data_queue_desc rt2400pci_queue_tx = {
  1508. .entry_num = 24,
  1509. .data_size = DATA_FRAME_SIZE,
  1510. .desc_size = TXD_DESC_SIZE,
  1511. .priv_size = sizeof(struct queue_entry_priv_pci),
  1512. };
  1513. static const struct data_queue_desc rt2400pci_queue_bcn = {
  1514. .entry_num = 1,
  1515. .data_size = MGMT_FRAME_SIZE,
  1516. .desc_size = TXD_DESC_SIZE,
  1517. .priv_size = sizeof(struct queue_entry_priv_pci),
  1518. };
  1519. static const struct data_queue_desc rt2400pci_queue_atim = {
  1520. .entry_num = 8,
  1521. .data_size = DATA_FRAME_SIZE,
  1522. .desc_size = TXD_DESC_SIZE,
  1523. .priv_size = sizeof(struct queue_entry_priv_pci),
  1524. };
  1525. static const struct rt2x00_ops rt2400pci_ops = {
  1526. .name = KBUILD_MODNAME,
  1527. .max_sta_intf = 1,
  1528. .max_ap_intf = 1,
  1529. .eeprom_size = EEPROM_SIZE,
  1530. .rf_size = RF_SIZE,
  1531. .tx_queues = NUM_TX_QUEUES,
  1532. .extra_tx_headroom = 0,
  1533. .rx = &rt2400pci_queue_rx,
  1534. .tx = &rt2400pci_queue_tx,
  1535. .bcn = &rt2400pci_queue_bcn,
  1536. .atim = &rt2400pci_queue_atim,
  1537. .lib = &rt2400pci_rt2x00_ops,
  1538. .hw = &rt2400pci_mac80211_ops,
  1539. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1540. .debugfs = &rt2400pci_rt2x00debug,
  1541. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1542. };
  1543. /*
  1544. * RT2400pci module information.
  1545. */
  1546. static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
  1547. { PCI_DEVICE(0x1814, 0x0101) },
  1548. { 0, }
  1549. };
  1550. MODULE_AUTHOR(DRV_PROJECT);
  1551. MODULE_VERSION(DRV_VERSION);
  1552. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1553. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1554. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1555. MODULE_LICENSE("GPL");
  1556. static int rt2400pci_probe(struct pci_dev *pci_dev,
  1557. const struct pci_device_id *id)
  1558. {
  1559. return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
  1560. }
  1561. static struct pci_driver rt2400pci_driver = {
  1562. .name = KBUILD_MODNAME,
  1563. .id_table = rt2400pci_device_table,
  1564. .probe = rt2400pci_probe,
  1565. .remove = __devexit_p(rt2x00pci_remove),
  1566. .suspend = rt2x00pci_suspend,
  1567. .resume = rt2x00pci_resume,
  1568. };
  1569. static int __init rt2400pci_init(void)
  1570. {
  1571. return pci_register_driver(&rt2400pci_driver);
  1572. }
  1573. static void __exit rt2400pci_exit(void)
  1574. {
  1575. pci_unregister_driver(&rt2400pci_driver);
  1576. }
  1577. module_init(rt2400pci_init);
  1578. module_exit(rt2400pci_exit);