bcmutils.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174
  1. /*
  2. * Driver O/S-independent utility routines
  3. *
  4. * Copyright (C) 1999-2015, Broadcom Corporation
  5. *
  6. * Unless you and Broadcom execute a separate written software license
  7. * agreement governing use of this software, this software is licensed to you
  8. * under the terms of the GNU General Public License version 2 (the "GPL"),
  9. * available at http://www.broadcom.com/licenses/GPLv2.php, with the
  10. * following added to such license:
  11. *
  12. * As a special exception, the copyright holders of this software give you
  13. * permission to link this software with independent modules, and to copy and
  14. * distribute the resulting executable under terms of your choice, provided that
  15. * you also meet, for each linked independent module, the terms and conditions of
  16. * the license of that module. An independent module is a module which is not
  17. * derived from this software. The special exception does not apply to any
  18. * modifications of the software.
  19. *
  20. * Notwithstanding the above, under no circumstances may you combine this
  21. * software in any way with any other Broadcom software provided under a license
  22. * other than the GPL, without Broadcom's express prior written consent.
  23. * $Id: bcmutils.c 551820 2015-04-24 08:43:23Z $
  24. */
  25. #include <bcm_cfg.h>
  26. #include <typedefs.h>
  27. #include <bcmdefs.h>
  28. #include <stdarg.h>
  29. #ifdef BCMDRIVER
  30. #include <osl.h>
  31. #include <bcmutils.h>
  32. #else /* !BCMDRIVER */
  33. #include <stdio.h>
  34. #include <string.h>
  35. #include <bcmutils.h>
  36. #if defined(BCMEXTSUP)
  37. #include <bcm_osl.h>
  38. #endif
  39. #ifndef ASSERT
  40. #define ASSERT(exp)
  41. #endif
  42. #endif /* !BCMDRIVER */
  43. #include <bcmendian.h>
  44. #include <bcmdevs.h>
  45. #include <proto/ethernet.h>
  46. #include <proto/vlan.h>
  47. #include <proto/bcmip.h>
  48. #include <proto/802.1d.h>
  49. #include <proto/802.11.h>
  50. void *_bcmutils_dummy_fn = NULL;
  51. #ifdef BCMDRIVER
  52. /* copy a pkt buffer chain into a buffer */
  53. uint
  54. pktcopy(osl_t *osh, void *p, uint offset, int len, uchar *buf)
  55. {
  56. uint n, ret = 0;
  57. if (len < 0)
  58. len = 4096; /* "infinite" */
  59. /* skip 'offset' bytes */
  60. for (; p && offset; p = PKTNEXT(osh, p)) {
  61. if (offset < (uint)PKTLEN(osh, p))
  62. break;
  63. offset -= PKTLEN(osh, p);
  64. }
  65. if (!p)
  66. return 0;
  67. /* copy the data */
  68. for (; p && len; p = PKTNEXT(osh, p)) {
  69. n = MIN((uint)PKTLEN(osh, p) - offset, (uint)len);
  70. bcopy(PKTDATA(osh, p) + offset, buf, n);
  71. buf += n;
  72. len -= n;
  73. ret += n;
  74. offset = 0;
  75. }
  76. return ret;
  77. }
  78. /* copy a buffer into a pkt buffer chain */
  79. uint
  80. pktfrombuf(osl_t *osh, void *p, uint offset, int len, uchar *buf)
  81. {
  82. uint n, ret = 0;
  83. /* skip 'offset' bytes */
  84. for (; p && offset; p = PKTNEXT(osh, p)) {
  85. if (offset < (uint)PKTLEN(osh, p))
  86. break;
  87. offset -= PKTLEN(osh, p);
  88. }
  89. if (!p)
  90. return 0;
  91. /* copy the data */
  92. for (; p && len; p = PKTNEXT(osh, p)) {
  93. n = MIN((uint)PKTLEN(osh, p) - offset, (uint)len);
  94. bcopy(buf, PKTDATA(osh, p) + offset, n);
  95. buf += n;
  96. len -= n;
  97. ret += n;
  98. offset = 0;
  99. }
  100. return ret;
  101. }
  102. /* return total length of buffer chain */
  103. uint BCMFASTPATH
  104. pkttotlen(osl_t *osh, void *p)
  105. {
  106. uint total;
  107. int len;
  108. total = 0;
  109. for (; p; p = PKTNEXT(osh, p)) {
  110. len = PKTLEN(osh, p);
  111. total += len;
  112. #ifdef BCMLFRAG
  113. if (BCMLFRAG_ENAB()) {
  114. if (PKTISFRAG(osh, p)) {
  115. total += PKTFRAGTOTLEN(osh, p);
  116. }
  117. }
  118. #endif
  119. }
  120. return (total);
  121. }
  122. /* return the last buffer of chained pkt */
  123. void *
  124. pktlast(osl_t *osh, void *p)
  125. {
  126. for (; PKTNEXT(osh, p); p = PKTNEXT(osh, p))
  127. ;
  128. return (p);
  129. }
  130. /* count segments of a chained packet */
  131. uint BCMFASTPATH
  132. pktsegcnt(osl_t *osh, void *p)
  133. {
  134. uint cnt;
  135. for (cnt = 0; p; p = PKTNEXT(osh, p)) {
  136. cnt++;
  137. #ifdef BCMLFRAG
  138. if (BCMLFRAG_ENAB()) {
  139. if (PKTISFRAG(osh, p)) {
  140. cnt += PKTFRAGTOTNUM(osh, p);
  141. }
  142. }
  143. #endif
  144. }
  145. return cnt;
  146. }
  147. /* count segments of a chained packet */
  148. uint BCMFASTPATH
  149. pktsegcnt_war(osl_t *osh, void *p)
  150. {
  151. uint cnt;
  152. uint8 *pktdata;
  153. uint len, remain, align64;
  154. for (cnt = 0; p; p = PKTNEXT(osh, p)) {
  155. cnt++;
  156. len = PKTLEN(osh, p);
  157. if (len > 128) {
  158. pktdata = (uint8 *)PKTDATA(osh, p); /* starting address of data */
  159. /* Check for page boundary straddle (2048B) */
  160. if (((uintptr)pktdata & ~0x7ff) != ((uintptr)(pktdata+len) & ~0x7ff))
  161. cnt++;
  162. align64 = (uint)((uintptr)pktdata & 0x3f); /* aligned to 64B */
  163. align64 = (64 - align64) & 0x3f;
  164. len -= align64; /* bytes from aligned 64B to end */
  165. /* if aligned to 128B, check for MOD 128 between 1 to 4B */
  166. remain = len % 128;
  167. if (remain > 0 && remain <= 4)
  168. cnt++; /* add extra seg */
  169. }
  170. }
  171. return cnt;
  172. }
  173. uint8 * BCMFASTPATH
  174. pktdataoffset(osl_t *osh, void *p, uint offset)
  175. {
  176. uint total = pkttotlen(osh, p);
  177. uint pkt_off = 0, len = 0;
  178. uint8 *pdata = (uint8 *) PKTDATA(osh, p);
  179. if (offset > total)
  180. return NULL;
  181. for (; p; p = PKTNEXT(osh, p)) {
  182. pdata = (uint8 *) PKTDATA(osh, p);
  183. pkt_off = offset - len;
  184. len += PKTLEN(osh, p);
  185. if (len > offset)
  186. break;
  187. }
  188. return (uint8*) (pdata+pkt_off);
  189. }
  190. /* given a offset in pdata, find the pkt seg hdr */
  191. void *
  192. pktoffset(osl_t *osh, void *p, uint offset)
  193. {
  194. uint total = pkttotlen(osh, p);
  195. uint len = 0;
  196. if (offset > total)
  197. return NULL;
  198. for (; p; p = PKTNEXT(osh, p)) {
  199. len += PKTLEN(osh, p);
  200. if (len > offset)
  201. break;
  202. }
  203. return p;
  204. }
  205. /*
  206. * osl multiple-precedence packet queue
  207. * hi_prec is always >= the number of the highest non-empty precedence
  208. */
  209. void * BCMFASTPATH
  210. pktq_penq(struct pktq *pq, int prec, void *p)
  211. {
  212. struct pktq_prec *q;
  213. ASSERT(prec >= 0 && prec < pq->num_prec);
  214. ASSERT(PKTLINK(p) == NULL); /* queueing chains not allowed */
  215. ASSERT(!pktq_full(pq));
  216. ASSERT(!pktq_pfull(pq, prec));
  217. q = &pq->q[prec];
  218. if (q->head)
  219. PKTSETLINK(q->tail, p);
  220. else
  221. q->head = p;
  222. q->tail = p;
  223. q->len++;
  224. pq->len++;
  225. if (pq->hi_prec < prec)
  226. pq->hi_prec = (uint8)prec;
  227. return p;
  228. }
  229. void * BCMFASTPATH
  230. pktq_penq_head(struct pktq *pq, int prec, void *p)
  231. {
  232. struct pktq_prec *q;
  233. ASSERT(prec >= 0 && prec < pq->num_prec);
  234. ASSERT(PKTLINK(p) == NULL); /* queueing chains not allowed */
  235. ASSERT(!pktq_full(pq));
  236. ASSERT(!pktq_pfull(pq, prec));
  237. q = &pq->q[prec];
  238. if (q->head == NULL)
  239. q->tail = p;
  240. PKTSETLINK(p, q->head);
  241. q->head = p;
  242. q->len++;
  243. pq->len++;
  244. if (pq->hi_prec < prec)
  245. pq->hi_prec = (uint8)prec;
  246. return p;
  247. }
  248. void * BCMFASTPATH
  249. pktq_pdeq(struct pktq *pq, int prec)
  250. {
  251. struct pktq_prec *q;
  252. void *p;
  253. ASSERT(prec >= 0 && prec < pq->num_prec);
  254. q = &pq->q[prec];
  255. if ((p = q->head) == NULL)
  256. return NULL;
  257. if ((q->head = PKTLINK(p)) == NULL)
  258. q->tail = NULL;
  259. q->len--;
  260. pq->len--;
  261. PKTSETLINK(p, NULL);
  262. return p;
  263. }
  264. void * BCMFASTPATH
  265. pktq_pdeq_prev(struct pktq *pq, int prec, void *prev_p)
  266. {
  267. struct pktq_prec *q;
  268. void *p;
  269. ASSERT(prec >= 0 && prec < pq->num_prec);
  270. q = &pq->q[prec];
  271. if (prev_p == NULL)
  272. return NULL;
  273. if ((p = PKTLINK(prev_p)) == NULL)
  274. return NULL;
  275. q->len--;
  276. pq->len--;
  277. PKTSETLINK(prev_p, PKTLINK(p));
  278. PKTSETLINK(p, NULL);
  279. return p;
  280. }
  281. void * BCMFASTPATH
  282. pktq_pdeq_with_fn(struct pktq *pq, int prec, ifpkt_cb_t fn, int arg)
  283. {
  284. struct pktq_prec *q;
  285. void *p, *prev = NULL;
  286. ASSERT(prec >= 0 && prec < pq->num_prec);
  287. q = &pq->q[prec];
  288. p = q->head;
  289. while (p) {
  290. if (fn == NULL || (*fn)(p, arg)) {
  291. break;
  292. } else {
  293. prev = p;
  294. p = PKTLINK(p);
  295. }
  296. }
  297. if (p == NULL)
  298. return NULL;
  299. if (prev == NULL) {
  300. if ((q->head = PKTLINK(p)) == NULL) {
  301. q->tail = NULL;
  302. }
  303. } else {
  304. PKTSETLINK(prev, PKTLINK(p));
  305. if (q->tail == p) {
  306. q->tail = prev;
  307. }
  308. }
  309. q->len--;
  310. pq->len--;
  311. PKTSETLINK(p, NULL);
  312. return p;
  313. }
  314. void * BCMFASTPATH
  315. pktq_pdeq_tail(struct pktq *pq, int prec)
  316. {
  317. struct pktq_prec *q;
  318. void *p, *prev;
  319. ASSERT(prec >= 0 && prec < pq->num_prec);
  320. q = &pq->q[prec];
  321. if ((p = q->head) == NULL)
  322. return NULL;
  323. for (prev = NULL; p != q->tail; p = PKTLINK(p))
  324. prev = p;
  325. if (prev)
  326. PKTSETLINK(prev, NULL);
  327. else
  328. q->head = NULL;
  329. q->tail = prev;
  330. q->len--;
  331. pq->len--;
  332. return p;
  333. }
  334. void
  335. pktq_pflush(osl_t *osh, struct pktq *pq, int prec, bool dir, ifpkt_cb_t fn, int arg)
  336. {
  337. struct pktq_prec *q;
  338. void *p, *prev = NULL;
  339. q = &pq->q[prec];
  340. p = q->head;
  341. while (p) {
  342. if (fn == NULL || (*fn)(p, arg)) {
  343. bool head = (p == q->head);
  344. if (head)
  345. q->head = PKTLINK(p);
  346. else
  347. PKTSETLINK(prev, PKTLINK(p));
  348. PKTSETLINK(p, NULL);
  349. PKTFREE(osh, p, dir);
  350. q->len--;
  351. pq->len--;
  352. p = (head ? q->head : PKTLINK(prev));
  353. } else {
  354. prev = p;
  355. p = PKTLINK(p);
  356. }
  357. }
  358. if (q->head == NULL) {
  359. ASSERT(q->len == 0);
  360. q->tail = NULL;
  361. }
  362. }
  363. bool BCMFASTPATH
  364. pktq_pdel(struct pktq *pq, void *pktbuf, int prec)
  365. {
  366. struct pktq_prec *q;
  367. void *p;
  368. ASSERT(prec >= 0 && prec < pq->num_prec);
  369. if (!pktbuf)
  370. return FALSE;
  371. q = &pq->q[prec];
  372. if (q->head == pktbuf) {
  373. if ((q->head = PKTLINK(pktbuf)) == NULL)
  374. q->tail = NULL;
  375. } else {
  376. for (p = q->head; p && PKTLINK(p) != pktbuf; p = PKTLINK(p))
  377. ;
  378. if (p == NULL)
  379. return FALSE;
  380. PKTSETLINK(p, PKTLINK(pktbuf));
  381. if (q->tail == pktbuf)
  382. q->tail = p;
  383. }
  384. q->len--;
  385. pq->len--;
  386. PKTSETLINK(pktbuf, NULL);
  387. return TRUE;
  388. }
  389. void
  390. pktq_init(struct pktq *pq, int num_prec, int max_len)
  391. {
  392. int prec;
  393. ASSERT(num_prec > 0 && num_prec <= PKTQ_MAX_PREC);
  394. /* pq is variable size; only zero out what's requested */
  395. bzero(pq, OFFSETOF(struct pktq, q) + (sizeof(struct pktq_prec) * num_prec));
  396. pq->num_prec = (uint16)num_prec;
  397. pq->max = (uint16)max_len;
  398. for (prec = 0; prec < num_prec; prec++)
  399. pq->q[prec].max = pq->max;
  400. }
  401. void
  402. pktq_set_max_plen(struct pktq *pq, int prec, int max_len)
  403. {
  404. ASSERT(prec >= 0 && prec < pq->num_prec);
  405. if (prec < pq->num_prec)
  406. pq->q[prec].max = (uint16)max_len;
  407. }
  408. void * BCMFASTPATH
  409. pktq_deq(struct pktq *pq, int *prec_out)
  410. {
  411. struct pktq_prec *q;
  412. void *p;
  413. int prec;
  414. if (pq->len == 0)
  415. return NULL;
  416. while ((prec = pq->hi_prec) > 0 && pq->q[prec].head == NULL)
  417. pq->hi_prec--;
  418. q = &pq->q[prec];
  419. if ((p = q->head) == NULL)
  420. return NULL;
  421. if ((q->head = PKTLINK(p)) == NULL)
  422. q->tail = NULL;
  423. q->len--;
  424. pq->len--;
  425. if (prec_out)
  426. *prec_out = prec;
  427. PKTSETLINK(p, NULL);
  428. return p;
  429. }
  430. void * BCMFASTPATH
  431. pktq_deq_tail(struct pktq *pq, int *prec_out)
  432. {
  433. struct pktq_prec *q;
  434. void *p, *prev;
  435. int prec;
  436. if (pq->len == 0)
  437. return NULL;
  438. for (prec = 0; prec < pq->hi_prec; prec++)
  439. if (pq->q[prec].head)
  440. break;
  441. q = &pq->q[prec];
  442. if ((p = q->head) == NULL)
  443. return NULL;
  444. for (prev = NULL; p != q->tail; p = PKTLINK(p))
  445. prev = p;
  446. if (prev)
  447. PKTSETLINK(prev, NULL);
  448. else
  449. q->head = NULL;
  450. q->tail = prev;
  451. q->len--;
  452. pq->len--;
  453. if (prec_out)
  454. *prec_out = prec;
  455. PKTSETLINK(p, NULL);
  456. return p;
  457. }
  458. void *
  459. pktq_peek(struct pktq *pq, int *prec_out)
  460. {
  461. int prec;
  462. if (pq->len == 0)
  463. return NULL;
  464. while ((prec = pq->hi_prec) > 0 && pq->q[prec].head == NULL)
  465. pq->hi_prec--;
  466. if (prec_out)
  467. *prec_out = prec;
  468. return (pq->q[prec].head);
  469. }
  470. void *
  471. pktq_peek_tail(struct pktq *pq, int *prec_out)
  472. {
  473. int prec;
  474. if (pq->len == 0)
  475. return NULL;
  476. for (prec = 0; prec < pq->hi_prec; prec++)
  477. if (pq->q[prec].head)
  478. break;
  479. if (prec_out)
  480. *prec_out = prec;
  481. return (pq->q[prec].tail);
  482. }
  483. void
  484. pktq_flush(osl_t *osh, struct pktq *pq, bool dir, ifpkt_cb_t fn, int arg)
  485. {
  486. int prec;
  487. /* Optimize flush, if pktq len = 0, just return.
  488. * pktq len of 0 means pktq's prec q's are all empty.
  489. */
  490. if (pq->len == 0) {
  491. return;
  492. }
  493. for (prec = 0; prec < pq->num_prec; prec++)
  494. pktq_pflush(osh, pq, prec, dir, fn, arg);
  495. if (fn == NULL)
  496. ASSERT(pq->len == 0);
  497. }
  498. /* Return sum of lengths of a specific set of precedences */
  499. int
  500. pktq_mlen(struct pktq *pq, uint prec_bmp)
  501. {
  502. int prec, len;
  503. len = 0;
  504. for (prec = 0; prec <= pq->hi_prec; prec++)
  505. if (prec_bmp & (1 << prec))
  506. len += pq->q[prec].len;
  507. return len;
  508. }
  509. /* Priority peek from a specific set of precedences */
  510. void * BCMFASTPATH
  511. pktq_mpeek(struct pktq *pq, uint prec_bmp, int *prec_out)
  512. {
  513. struct pktq_prec *q;
  514. void *p;
  515. int prec;
  516. if (pq->len == 0)
  517. {
  518. return NULL;
  519. }
  520. while ((prec = pq->hi_prec) > 0 && pq->q[prec].head == NULL)
  521. pq->hi_prec--;
  522. while ((prec_bmp & (1 << prec)) == 0 || pq->q[prec].head == NULL)
  523. if (prec-- == 0)
  524. return NULL;
  525. q = &pq->q[prec];
  526. if ((p = q->head) == NULL)
  527. return NULL;
  528. if (prec_out)
  529. *prec_out = prec;
  530. return p;
  531. }
  532. /* Priority dequeue from a specific set of precedences */
  533. void * BCMFASTPATH
  534. pktq_mdeq(struct pktq *pq, uint prec_bmp, int *prec_out)
  535. {
  536. struct pktq_prec *q;
  537. void *p;
  538. int prec;
  539. if (pq->len == 0)
  540. return NULL;
  541. while ((prec = pq->hi_prec) > 0 && pq->q[prec].head == NULL)
  542. pq->hi_prec--;
  543. while ((pq->q[prec].head == NULL) || ((prec_bmp & (1 << prec)) == 0))
  544. if (prec-- == 0)
  545. return NULL;
  546. q = &pq->q[prec];
  547. if ((p = q->head) == NULL)
  548. return NULL;
  549. if ((q->head = PKTLINK(p)) == NULL)
  550. q->tail = NULL;
  551. q->len--;
  552. if (prec_out)
  553. *prec_out = prec;
  554. pq->len--;
  555. PKTSETLINK(p, NULL);
  556. return p;
  557. }
  558. #endif /* BCMDRIVER */
  559. #if !defined(BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS)
  560. const unsigned char bcm_ctype[] = {
  561. _BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 0-7 */
  562. _BCM_C, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C,
  563. _BCM_C, /* 8-15 */
  564. _BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 16-23 */
  565. _BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 24-31 */
  566. _BCM_S|_BCM_SP,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 32-39 */
  567. _BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 40-47 */
  568. _BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D, /* 48-55 */
  569. _BCM_D,_BCM_D,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 56-63 */
  570. _BCM_P, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X,
  571. _BCM_U|_BCM_X, _BCM_U, /* 64-71 */
  572. _BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U, /* 72-79 */
  573. _BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U, /* 80-87 */
  574. _BCM_U,_BCM_U,_BCM_U,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 88-95 */
  575. _BCM_P, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X,
  576. _BCM_L|_BCM_X, _BCM_L, /* 96-103 */
  577. _BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L, /* 104-111 */
  578. _BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L, /* 112-119 */
  579. _BCM_L,_BCM_L,_BCM_L,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_C, /* 120-127 */
  580. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 128-143 */
  581. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 144-159 */
  582. _BCM_S|_BCM_SP, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P,
  583. _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, /* 160-175 */
  584. _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P,
  585. _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, /* 176-191 */
  586. _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U,
  587. _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, /* 192-207 */
  588. _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_P, _BCM_U, _BCM_U, _BCM_U,
  589. _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_L, /* 208-223 */
  590. _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L,
  591. _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, /* 224-239 */
  592. _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_P, _BCM_L, _BCM_L, _BCM_L,
  593. _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L /* 240-255 */
  594. };
  595. ulong
  596. bcm_strtoul(const char *cp, char **endp, uint base)
  597. {
  598. ulong result, last_result = 0, value;
  599. bool minus;
  600. minus = FALSE;
  601. while (bcm_isspace(*cp))
  602. cp++;
  603. if (cp[0] == '+')
  604. cp++;
  605. else if (cp[0] == '-') {
  606. minus = TRUE;
  607. cp++;
  608. }
  609. if (base == 0) {
  610. if (cp[0] == '0') {
  611. if ((cp[1] == 'x') || (cp[1] == 'X')) {
  612. base = 16;
  613. cp = &cp[2];
  614. } else {
  615. base = 8;
  616. cp = &cp[1];
  617. }
  618. } else
  619. base = 10;
  620. } else if (base == 16 && (cp[0] == '0') && ((cp[1] == 'x') || (cp[1] == 'X'))) {
  621. cp = &cp[2];
  622. }
  623. result = 0;
  624. while (bcm_isxdigit(*cp) &&
  625. (value = bcm_isdigit(*cp) ? *cp-'0' : bcm_toupper(*cp)-'A'+10) < base) {
  626. result = result*base + value;
  627. /* Detected overflow */
  628. if (result < last_result && !minus)
  629. return (ulong)-1;
  630. last_result = result;
  631. cp++;
  632. }
  633. if (minus)
  634. result = (ulong)(-(long)result);
  635. if (endp)
  636. *endp = DISCARD_QUAL(cp, char);
  637. return (result);
  638. }
  639. int
  640. bcm_atoi(const char *s)
  641. {
  642. return (int)bcm_strtoul(s, NULL, 10);
  643. }
  644. /* return pointer to location of substring 'needle' in 'haystack' */
  645. char *
  646. bcmstrstr(const char *haystack, const char *needle)
  647. {
  648. int len, nlen;
  649. int i;
  650. if ((haystack == NULL) || (needle == NULL))
  651. return DISCARD_QUAL(haystack, char);
  652. nlen = strlen(needle);
  653. len = strlen(haystack) - nlen + 1;
  654. for (i = 0; i < len; i++)
  655. if (memcmp(needle, &haystack[i], nlen) == 0)
  656. return DISCARD_QUAL(&haystack[i], char);
  657. return (NULL);
  658. }
  659. char *
  660. bcmstrcat(char *dest, const char *src)
  661. {
  662. char *p;
  663. p = dest + strlen(dest);
  664. while ((*p++ = *src++) != '\0')
  665. ;
  666. return (dest);
  667. }
  668. char *
  669. bcmstrncat(char *dest, const char *src, uint size)
  670. {
  671. char *endp;
  672. char *p;
  673. p = dest + strlen(dest);
  674. endp = p + size;
  675. while (p != endp && (*p++ = *src++) != '\0')
  676. ;
  677. return (dest);
  678. }
  679. /****************************************************************************
  680. * Function: bcmstrtok
  681. *
  682. * Purpose:
  683. * Tokenizes a string. This function is conceptually similiar to ANSI C strtok(),
  684. * but allows strToken() to be used by different strings or callers at the same
  685. * time. Each call modifies '*string' by substituting a NULL character for the
  686. * first delimiter that is encountered, and updates 'string' to point to the char
  687. * after the delimiter. Leading delimiters are skipped.
  688. *
  689. * Parameters:
  690. * string (mod) Ptr to string ptr, updated by token.
  691. * delimiters (in) Set of delimiter characters.
  692. * tokdelim (out) Character that delimits the returned token. (May
  693. * be set to NULL if token delimiter is not required).
  694. *
  695. * Returns: Pointer to the next token found. NULL when no more tokens are found.
  696. *****************************************************************************
  697. */
  698. char *
  699. bcmstrtok(char **string, const char *delimiters, char *tokdelim)
  700. {
  701. unsigned char *str;
  702. unsigned long map[8];
  703. int count;
  704. char *nextoken;
  705. if (tokdelim != NULL) {
  706. /* Prime the token delimiter */
  707. *tokdelim = '\0';
  708. }
  709. /* Clear control map */
  710. for (count = 0; count < 8; count++) {
  711. map[count] = 0;
  712. }
  713. /* Set bits in delimiter table */
  714. do {
  715. map[*delimiters >> 5] |= (1 << (*delimiters & 31));
  716. }
  717. while (*delimiters++);
  718. str = (unsigned char*)*string;
  719. /* Find beginning of token (skip over leading delimiters). Note that
  720. * there is no token iff this loop sets str to point to the terminal
  721. * null (*str == '\0')
  722. */
  723. while (((map[*str >> 5] & (1 << (*str & 31))) && *str) || (*str == ' ')) {
  724. str++;
  725. }
  726. nextoken = (char*)str;
  727. /* Find the end of the token. If it is not the end of the string,
  728. * put a null there.
  729. */
  730. for (; *str; str++) {
  731. if (map[*str >> 5] & (1 << (*str & 31))) {
  732. if (tokdelim != NULL) {
  733. *tokdelim = *str;
  734. }
  735. *str++ = '\0';
  736. break;
  737. }
  738. }
  739. *string = (char*)str;
  740. /* Determine if a token has been found. */
  741. if (nextoken == (char *) str) {
  742. return NULL;
  743. }
  744. else {
  745. return nextoken;
  746. }
  747. }
  748. #define xToLower(C) \
  749. ((C >= 'A' && C <= 'Z') ? (char)((int)C - (int)'A' + (int)'a') : C)
  750. /****************************************************************************
  751. * Function: bcmstricmp
  752. *
  753. * Purpose: Compare to strings case insensitively.
  754. *
  755. * Parameters: s1 (in) First string to compare.
  756. * s2 (in) Second string to compare.
  757. *
  758. * Returns: Return 0 if the two strings are equal, -1 if t1 < t2 and 1 if
  759. * t1 > t2, when ignoring case sensitivity.
  760. *****************************************************************************
  761. */
  762. int
  763. bcmstricmp(const char *s1, const char *s2)
  764. {
  765. char dc, sc;
  766. while (*s2 && *s1) {
  767. dc = xToLower(*s1);
  768. sc = xToLower(*s2);
  769. if (dc < sc) return -1;
  770. if (dc > sc) return 1;
  771. s1++;
  772. s2++;
  773. }
  774. if (*s1 && !*s2) return 1;
  775. if (!*s1 && *s2) return -1;
  776. return 0;
  777. }
  778. /****************************************************************************
  779. * Function: bcmstrnicmp
  780. *
  781. * Purpose: Compare to strings case insensitively, upto a max of 'cnt'
  782. * characters.
  783. *
  784. * Parameters: s1 (in) First string to compare.
  785. * s2 (in) Second string to compare.
  786. * cnt (in) Max characters to compare.
  787. *
  788. * Returns: Return 0 if the two strings are equal, -1 if t1 < t2 and 1 if
  789. * t1 > t2, when ignoring case sensitivity.
  790. *****************************************************************************
  791. */
  792. int
  793. bcmstrnicmp(const char* s1, const char* s2, int cnt)
  794. {
  795. char dc, sc;
  796. while (*s2 && *s1 && cnt) {
  797. dc = xToLower(*s1);
  798. sc = xToLower(*s2);
  799. if (dc < sc) return -1;
  800. if (dc > sc) return 1;
  801. s1++;
  802. s2++;
  803. cnt--;
  804. }
  805. if (!cnt) return 0;
  806. if (*s1 && !*s2) return 1;
  807. if (!*s1 && *s2) return -1;
  808. return 0;
  809. }
  810. /* parse a xx:xx:xx:xx:xx:xx format ethernet address */
  811. int
  812. bcm_ether_atoe(const char *p, struct ether_addr *ea)
  813. {
  814. int i = 0;
  815. char *ep;
  816. for (;;) {
  817. ea->octet[i++] = (char) bcm_strtoul(p, &ep, 16);
  818. p = ep;
  819. if (!*p++ || i == 6)
  820. break;
  821. }
  822. return (i == 6);
  823. }
  824. int
  825. bcm_atoipv4(const char *p, struct ipv4_addr *ip)
  826. {
  827. int i = 0;
  828. char *c;
  829. for (;;) {
  830. ip->addr[i++] = (uint8)bcm_strtoul(p, &c, 0);
  831. if (*c++ != '.' || i == IPV4_ADDR_LEN)
  832. break;
  833. p = c;
  834. }
  835. return (i == IPV4_ADDR_LEN);
  836. }
  837. #endif /* !BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS */
  838. #if defined(CONFIG_USBRNDIS_RETAIL) || defined(NDIS_MINIPORT_DRIVER)
  839. /* registry routine buffer preparation utility functions:
  840. * parameter order is like strncpy, but returns count
  841. * of bytes copied. Minimum bytes copied is null char(1)/wchar(2)
  842. */
  843. ulong
  844. wchar2ascii(char *abuf, ushort *wbuf, ushort wbuflen, ulong abuflen)
  845. {
  846. ulong copyct = 1;
  847. ushort i;
  848. if (abuflen == 0)
  849. return 0;
  850. /* wbuflen is in bytes */
  851. wbuflen /= sizeof(ushort);
  852. for (i = 0; i < wbuflen; ++i) {
  853. if (--abuflen == 0)
  854. break;
  855. *abuf++ = (char) *wbuf++;
  856. ++copyct;
  857. }
  858. *abuf = '\0';
  859. return copyct;
  860. }
  861. #endif /* CONFIG_USBRNDIS_RETAIL || NDIS_MINIPORT_DRIVER */
  862. char *
  863. bcm_ether_ntoa(const struct ether_addr *ea, char *buf)
  864. {
  865. static const char hex[] =
  866. {
  867. '0', '1', '2', '3', '4', '5', '6', '7',
  868. '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
  869. };
  870. const uint8 *octet = ea->octet;
  871. char *p = buf;
  872. int i;
  873. for (i = 0; i < 6; i++, octet++) {
  874. *p++ = hex[(*octet >> 4) & 0xf];
  875. *p++ = hex[*octet & 0xf];
  876. *p++ = ':';
  877. }
  878. *(p-1) = '\0';
  879. return (buf);
  880. }
  881. char *
  882. bcm_ip_ntoa(struct ipv4_addr *ia, char *buf)
  883. {
  884. snprintf(buf, 16, "%d.%d.%d.%d",
  885. ia->addr[0], ia->addr[1], ia->addr[2], ia->addr[3]);
  886. return (buf);
  887. }
  888. char *
  889. bcm_ipv6_ntoa(void *ipv6, char *buf)
  890. {
  891. /* Implementing RFC 5952 Sections 4 + 5 */
  892. /* Not thoroughly tested */
  893. uint16 tmp[8];
  894. uint16 *a = &tmp[0];
  895. char *p = buf;
  896. int i, i_max = -1, cnt = 0, cnt_max = 1;
  897. uint8 *a4 = NULL;
  898. memcpy((uint8 *)&tmp[0], (uint8 *)ipv6, IPV6_ADDR_LEN);
  899. for (i = 0; i < IPV6_ADDR_LEN/2; i++) {
  900. if (a[i]) {
  901. if (cnt > cnt_max) {
  902. cnt_max = cnt;
  903. i_max = i - cnt;
  904. }
  905. cnt = 0;
  906. } else
  907. cnt++;
  908. }
  909. if (cnt > cnt_max) {
  910. cnt_max = cnt;
  911. i_max = i - cnt;
  912. }
  913. if (i_max == 0 &&
  914. /* IPv4-translated: ::ffff:0:a.b.c.d */
  915. ((cnt_max == 4 && a[4] == 0xffff && a[5] == 0) ||
  916. /* IPv4-mapped: ::ffff:a.b.c.d */
  917. (cnt_max == 5 && a[5] == 0xffff)))
  918. a4 = (uint8*) (a + 6);
  919. for (i = 0; i < IPV6_ADDR_LEN/2; i++) {
  920. if ((uint8*) (a + i) == a4) {
  921. snprintf(p, 16, ":%u.%u.%u.%u", a4[0], a4[1], a4[2], a4[3]);
  922. break;
  923. } else if (i == i_max) {
  924. *p++ = ':';
  925. i += cnt_max - 1;
  926. p[0] = ':';
  927. p[1] = '\0';
  928. } else {
  929. if (i)
  930. *p++ = ':';
  931. p += snprintf(p, 8, "%x", ntoh16(a[i]));
  932. }
  933. }
  934. return buf;
  935. }
  936. #ifdef BCMDRIVER
  937. void
  938. bcm_mdelay(uint ms)
  939. {
  940. uint i;
  941. for (i = 0; i < ms; i++) {
  942. OSL_DELAY(1000);
  943. }
  944. }
  945. #if defined(DHD_DEBUG)
  946. /* pretty hex print a pkt buffer chain */
  947. void
  948. prpkt(const char *msg, osl_t *osh, void *p0)
  949. {
  950. void *p;
  951. if (msg && (msg[0] != '\0'))
  952. printf("%s:\n", msg);
  953. for (p = p0; p; p = PKTNEXT(osh, p))
  954. prhex(NULL, PKTDATA(osh, p), PKTLEN(osh, p));
  955. }
  956. #endif
  957. /* Takes an Ethernet frame and sets out-of-bound PKTPRIO.
  958. * Also updates the inplace vlan tag if requested.
  959. * For debugging, it returns an indication of what it did.
  960. */
  961. uint BCMFASTPATH
  962. pktsetprio(void *pkt, bool update_vtag)
  963. {
  964. struct ether_header *eh;
  965. struct ethervlan_header *evh;
  966. uint8 *pktdata;
  967. int priority = 0;
  968. int rc = 0;
  969. pktdata = (uint8 *)PKTDATA(OSH_NULL, pkt);
  970. ASSERT(ISALIGNED((uintptr)pktdata, sizeof(uint16)));
  971. eh = (struct ether_header *) pktdata;
  972. if (eh->ether_type == hton16(ETHER_TYPE_8021Q)) {
  973. uint16 vlan_tag;
  974. int vlan_prio, dscp_prio = 0;
  975. evh = (struct ethervlan_header *)eh;
  976. vlan_tag = ntoh16(evh->vlan_tag);
  977. vlan_prio = (int) (vlan_tag >> VLAN_PRI_SHIFT) & VLAN_PRI_MASK;
  978. if (evh->ether_type == hton16(ETHER_TYPE_IP)) {
  979. uint8 *ip_body = pktdata + sizeof(struct ethervlan_header);
  980. uint8 tos_tc = IP_TOS46(ip_body);
  981. dscp_prio = (int)(tos_tc >> IPV4_TOS_PREC_SHIFT);
  982. }
  983. /* DSCP priority gets precedence over 802.1P (vlan tag) */
  984. if (dscp_prio != 0) {
  985. priority = dscp_prio;
  986. rc |= PKTPRIO_VDSCP;
  987. } else {
  988. priority = vlan_prio;
  989. rc |= PKTPRIO_VLAN;
  990. }
  991. /*
  992. * If the DSCP priority is not the same as the VLAN priority,
  993. * then overwrite the priority field in the vlan tag, with the
  994. * DSCP priority value. This is required for Linux APs because
  995. * the VLAN driver on Linux, overwrites the skb->priority field
  996. * with the priority value in the vlan tag
  997. */
  998. if (update_vtag && (priority != vlan_prio)) {
  999. vlan_tag &= ~(VLAN_PRI_MASK << VLAN_PRI_SHIFT);
  1000. vlan_tag |= (uint16)priority << VLAN_PRI_SHIFT;
  1001. evh->vlan_tag = hton16(vlan_tag);
  1002. rc |= PKTPRIO_UPD;
  1003. }
  1004. #ifdef DHD_LOSSLESS_ROAMING
  1005. } else if (eh->ether_type == hton16(ETHER_TYPE_802_1X)) {
  1006. priority = PRIO_8021D_NC;
  1007. rc = PKTPRIO_DSCP;
  1008. #endif /* DHD_LOSSLESS_ROAMING */
  1009. } else if (eh->ether_type == hton16(ETHER_TYPE_IP)) {
  1010. uint8 *ip_body = pktdata + sizeof(struct ether_header);
  1011. uint8 tos_tc = IP_TOS46(ip_body);
  1012. uint8 dscp = tos_tc >> IPV4_TOS_DSCP_SHIFT;
  1013. switch (dscp) {
  1014. case DSCP_EF:
  1015. priority = PRIO_8021D_VO;
  1016. break;
  1017. case DSCP_AF31:
  1018. case DSCP_AF32:
  1019. case DSCP_AF33:
  1020. priority = PRIO_8021D_CL;
  1021. break;
  1022. case DSCP_AF21:
  1023. case DSCP_AF22:
  1024. case DSCP_AF23:
  1025. case DSCP_AF11:
  1026. case DSCP_AF12:
  1027. case DSCP_AF13:
  1028. priority = PRIO_8021D_EE;
  1029. break;
  1030. default:
  1031. priority = (int)(tos_tc >> IPV4_TOS_PREC_SHIFT);
  1032. break;
  1033. }
  1034. rc |= PKTPRIO_DSCP;
  1035. }
  1036. ASSERT(priority >= 0 && priority <= MAXPRIO);
  1037. PKTSETPRIO(pkt, priority);
  1038. return (rc | priority);
  1039. }
  1040. /* lookup user priority for specified DSCP */
  1041. static uint8
  1042. dscp2up(uint8 *up_table, uint8 dscp)
  1043. {
  1044. uint8 up = 255;
  1045. /* lookup up from table if parameters valid */
  1046. if (up_table != NULL && dscp < UP_TABLE_MAX) {
  1047. up = up_table[dscp];
  1048. }
  1049. /* 255 is unused value so return up from dscp */
  1050. if (up == 255) {
  1051. up = dscp >> (IPV4_TOS_PREC_SHIFT - IPV4_TOS_DSCP_SHIFT);
  1052. }
  1053. return up;
  1054. }
  1055. /* set user priority by QoS Map Set table (UP table), table size is UP_TABLE_MAX */
  1056. uint BCMFASTPATH
  1057. pktsetprio_qms(void *pkt, int8* up_table, bool update_vtag)
  1058. {
  1059. if (up_table) {
  1060. uint8 *pktdata;
  1061. uint pktlen;
  1062. uint8 dscp;
  1063. uint up = 0;
  1064. uint rc = 0;
  1065. pktdata = (uint8 *)PKTDATA(OSH_NULL, pkt);
  1066. pktlen = PKTLEN(OSH_NULL, pkt);
  1067. if (pktgetdscp(pktdata, pktlen, &dscp)) {
  1068. rc = PKTPRIO_DSCP;
  1069. up = dscp2up(up_table, dscp);
  1070. PKTSETPRIO(pkt, up);
  1071. printf("dscp=%d, up=%d\n", dscp, up);
  1072. }
  1073. return (rc | up);
  1074. }
  1075. else {
  1076. return pktsetprio(pkt, update_vtag);
  1077. }
  1078. }
  1079. /* Returns TRUE and DSCP if IP header found, FALSE otherwise.
  1080. */
  1081. bool BCMFASTPATH
  1082. pktgetdscp(uint8 *pktdata, uint pktlen, uint8 *dscp)
  1083. {
  1084. struct ether_header *eh;
  1085. struct ethervlan_header *evh;
  1086. uint8 *ip_body;
  1087. bool rc = FALSE;
  1088. /* minimum length is ether header and IP header */
  1089. if (pktlen < sizeof(struct ether_header) + IPV4_MIN_HEADER_LEN)
  1090. return FALSE;
  1091. eh = (struct ether_header *) pktdata;
  1092. if (eh->ether_type == HTON16(ETHER_TYPE_IP)) {
  1093. ip_body = pktdata + sizeof(struct ether_header);
  1094. *dscp = IP_DSCP46(ip_body);
  1095. rc = TRUE;
  1096. }
  1097. else if (eh->ether_type == HTON16(ETHER_TYPE_8021Q)) {
  1098. evh = (struct ethervlan_header *)eh;
  1099. /* minimum length is ethervlan header and IP header */
  1100. if (pktlen >= sizeof(struct ethervlan_header) + IPV4_MIN_HEADER_LEN &&
  1101. evh->ether_type == HTON16(ETHER_TYPE_IP)) {
  1102. ip_body = pktdata + sizeof(struct ethervlan_header);
  1103. *dscp = IP_DSCP46(ip_body);
  1104. rc = TRUE;
  1105. }
  1106. }
  1107. return rc;
  1108. }
  1109. static char bcm_undeferrstr[32];
  1110. static const char *bcmerrorstrtable[] = BCMERRSTRINGTABLE;
  1111. /* Convert the error codes into related error strings */
  1112. const char *
  1113. bcmerrorstr(int bcmerror)
  1114. {
  1115. /* check if someone added a bcmerror code but forgot to add errorstring */
  1116. ASSERT(ABS(BCME_LAST) == (ARRAYSIZE(bcmerrorstrtable) - 1));
  1117. if (bcmerror > 0 || bcmerror < BCME_LAST) {
  1118. snprintf(bcm_undeferrstr, sizeof(bcm_undeferrstr), "Undefined error %d", bcmerror);
  1119. return bcm_undeferrstr;
  1120. }
  1121. ASSERT(strlen(bcmerrorstrtable[-bcmerror]) < BCME_STRLEN);
  1122. return bcmerrorstrtable[-bcmerror];
  1123. }
  1124. /* iovar table lookup */
  1125. const bcm_iovar_t*
  1126. bcm_iovar_lookup(const bcm_iovar_t *table, const char *name)
  1127. {
  1128. const bcm_iovar_t *vi;
  1129. const char *lookup_name;
  1130. /* skip any ':' delimited option prefixes */
  1131. lookup_name = strrchr(name, ':');
  1132. if (lookup_name != NULL)
  1133. lookup_name++;
  1134. else
  1135. lookup_name = name;
  1136. ASSERT(table != NULL);
  1137. for (vi = table; vi->name; vi++) {
  1138. if (!strcmp(vi->name, lookup_name))
  1139. return vi;
  1140. }
  1141. /* ran to end of table */
  1142. return NULL; /* var name not found */
  1143. }
  1144. int
  1145. bcm_iovar_lencheck(const bcm_iovar_t *vi, void *arg, int len, bool set)
  1146. {
  1147. int bcmerror = 0;
  1148. /* length check on io buf */
  1149. switch (vi->type) {
  1150. case IOVT_BOOL:
  1151. case IOVT_INT8:
  1152. case IOVT_INT16:
  1153. case IOVT_INT32:
  1154. case IOVT_UINT8:
  1155. case IOVT_UINT16:
  1156. case IOVT_UINT32:
  1157. /* all integers are int32 sized args at the ioctl interface */
  1158. if (len < (int)sizeof(int)) {
  1159. bcmerror = BCME_BUFTOOSHORT;
  1160. }
  1161. break;
  1162. case IOVT_BUFFER:
  1163. /* buffer must meet minimum length requirement */
  1164. if (len < vi->minlen) {
  1165. bcmerror = BCME_BUFTOOSHORT;
  1166. }
  1167. break;
  1168. case IOVT_VOID:
  1169. if (!set) {
  1170. /* Cannot return nil... */
  1171. bcmerror = BCME_UNSUPPORTED;
  1172. } else if (len) {
  1173. /* Set is an action w/o parameters */
  1174. bcmerror = BCME_BUFTOOLONG;
  1175. }
  1176. break;
  1177. default:
  1178. /* unknown type for length check in iovar info */
  1179. ASSERT(0);
  1180. bcmerror = BCME_UNSUPPORTED;
  1181. }
  1182. return bcmerror;
  1183. }
  1184. #endif /* BCMDRIVER */
  1185. uint8 *
  1186. bcm_write_tlv(int type, const void *data, int datalen, uint8 *dst)
  1187. {
  1188. uint8 *new_dst = dst;
  1189. bcm_tlv_t *dst_tlv = (bcm_tlv_t *)dst;
  1190. /* dst buffer should always be valid */
  1191. ASSERT(dst);
  1192. /* data len must be within valid range */
  1193. ASSERT((datalen >= 0) && (datalen <= BCM_TLV_MAX_DATA_SIZE));
  1194. /* source data buffer pointer should be valid, unless datalen is 0
  1195. * meaning no data with this TLV
  1196. */
  1197. ASSERT((data != NULL) || (datalen == 0));
  1198. /* only do work if the inputs are valid
  1199. * - must have a dst to write to AND
  1200. * - datalen must be within range AND
  1201. * - the source data pointer must be non-NULL if datalen is non-zero
  1202. * (this last condition detects datalen > 0 with a NULL data pointer)
  1203. */
  1204. if ((dst != NULL) &&
  1205. ((datalen >= 0) && (datalen <= BCM_TLV_MAX_DATA_SIZE)) &&
  1206. ((data != NULL) || (datalen == 0))) {
  1207. /* write type, len fields */
  1208. dst_tlv->id = (uint8)type;
  1209. dst_tlv->len = (uint8)datalen;
  1210. /* if data is present, copy to the output buffer and update
  1211. * pointer to output buffer
  1212. */
  1213. if (datalen > 0) {
  1214. memcpy(dst_tlv->data, data, datalen);
  1215. }
  1216. /* update the output destination poitner to point past
  1217. * the TLV written
  1218. */
  1219. new_dst = dst + BCM_TLV_HDR_SIZE + datalen;
  1220. }
  1221. return (new_dst);
  1222. }
  1223. uint8 *
  1224. bcm_write_tlv_safe(int type, const void *data, int datalen, uint8 *dst, int dst_maxlen)
  1225. {
  1226. uint8 *new_dst = dst;
  1227. if ((datalen >= 0) && (datalen <= BCM_TLV_MAX_DATA_SIZE)) {
  1228. /* if len + tlv hdr len is more than destlen, don't do anything
  1229. * just return the buffer untouched
  1230. */
  1231. if ((int)(datalen + BCM_TLV_HDR_SIZE) <= dst_maxlen) {
  1232. new_dst = bcm_write_tlv(type, data, datalen, dst);
  1233. }
  1234. }
  1235. return (new_dst);
  1236. }
  1237. uint8 *
  1238. bcm_copy_tlv(const void *src, uint8 *dst)
  1239. {
  1240. uint8 *new_dst = dst;
  1241. const bcm_tlv_t *src_tlv = (const bcm_tlv_t *)src;
  1242. uint totlen;
  1243. ASSERT(dst && src);
  1244. if (dst && src) {
  1245. totlen = BCM_TLV_HDR_SIZE + src_tlv->len;
  1246. memcpy(dst, src_tlv, totlen);
  1247. new_dst = dst + totlen;
  1248. }
  1249. return (new_dst);
  1250. }
  1251. uint8 *bcm_copy_tlv_safe(const void *src, uint8 *dst, int dst_maxlen)
  1252. {
  1253. uint8 *new_dst = dst;
  1254. const bcm_tlv_t *src_tlv = (const bcm_tlv_t *)src;
  1255. ASSERT(src);
  1256. if (src) {
  1257. if (bcm_valid_tlv(src_tlv, dst_maxlen)) {
  1258. new_dst = bcm_copy_tlv(src, dst);
  1259. }
  1260. }
  1261. return (new_dst);
  1262. }
  1263. #if !defined(BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS)
  1264. /*******************************************************************************
  1265. * crc8
  1266. *
  1267. * Computes a crc8 over the input data using the polynomial:
  1268. *
  1269. * x^8 + x^7 +x^6 + x^4 + x^2 + 1
  1270. *
  1271. * The caller provides the initial value (either CRC8_INIT_VALUE
  1272. * or the previous returned value) to allow for processing of
  1273. * discontiguous blocks of data. When generating the CRC the
  1274. * caller is responsible for complementing the final return value
  1275. * and inserting it into the byte stream. When checking, a final
  1276. * return value of CRC8_GOOD_VALUE indicates a valid CRC.
  1277. *
  1278. * Reference: Dallas Semiconductor Application Note 27
  1279. * Williams, Ross N., "A Painless Guide to CRC Error Detection Algorithms",
  1280. * ver 3, Aug 1993, ross@guest.adelaide.edu.au, Rocksoft Pty Ltd.,
  1281. * ftp://ftp.rocksoft.com/clients/rocksoft/papers/crc_v3.txt
  1282. *
  1283. * ****************************************************************************
  1284. */
  1285. static const uint8 crc8_table[256] = {
  1286. 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
  1287. 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
  1288. 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
  1289. 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
  1290. 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
  1291. 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
  1292. 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
  1293. 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
  1294. 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
  1295. 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
  1296. 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
  1297. 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
  1298. 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
  1299. 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
  1300. 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
  1301. 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
  1302. 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
  1303. 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
  1304. 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
  1305. 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
  1306. 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
  1307. 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
  1308. 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
  1309. 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
  1310. 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
  1311. 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
  1312. 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
  1313. 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
  1314. 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
  1315. 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
  1316. 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
  1317. 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F
  1318. };
  1319. #define CRC_INNER_LOOP(n, c, x) \
  1320. (c) = ((c) >> 8) ^ crc##n##_table[((c) ^ (x)) & 0xff]
  1321. uint8
  1322. hndcrc8(
  1323. uint8 *pdata, /* pointer to array of data to process */
  1324. uint nbytes, /* number of input data bytes to process */
  1325. uint8 crc /* either CRC8_INIT_VALUE or previous return value */
  1326. )
  1327. {
  1328. /* hard code the crc loop instead of using CRC_INNER_LOOP macro
  1329. * to avoid the undefined and unnecessary (uint8 >> 8) operation.
  1330. */
  1331. while (nbytes-- > 0)
  1332. crc = crc8_table[(crc ^ *pdata++) & 0xff];
  1333. return crc;
  1334. }
  1335. /*******************************************************************************
  1336. * crc16
  1337. *
  1338. * Computes a crc16 over the input data using the polynomial:
  1339. *
  1340. * x^16 + x^12 +x^5 + 1
  1341. *
  1342. * The caller provides the initial value (either CRC16_INIT_VALUE
  1343. * or the previous returned value) to allow for processing of
  1344. * discontiguous blocks of data. When generating the CRC the
  1345. * caller is responsible for complementing the final return value
  1346. * and inserting it into the byte stream. When checking, a final
  1347. * return value of CRC16_GOOD_VALUE indicates a valid CRC.
  1348. *
  1349. * Reference: Dallas Semiconductor Application Note 27
  1350. * Williams, Ross N., "A Painless Guide to CRC Error Detection Algorithms",
  1351. * ver 3, Aug 1993, ross@guest.adelaide.edu.au, Rocksoft Pty Ltd.,
  1352. * ftp://ftp.rocksoft.com/clients/rocksoft/papers/crc_v3.txt
  1353. *
  1354. * ****************************************************************************
  1355. */
  1356. static const uint16 crc16_table[256] = {
  1357. 0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF,
  1358. 0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7,
  1359. 0x1081, 0x0108, 0x3393, 0x221A, 0x56A5, 0x472C, 0x75B7, 0x643E,
  1360. 0x9CC9, 0x8D40, 0xBFDB, 0xAE52, 0xDAED, 0xCB64, 0xF9FF, 0xE876,
  1361. 0x2102, 0x308B, 0x0210, 0x1399, 0x6726, 0x76AF, 0x4434, 0x55BD,
  1362. 0xAD4A, 0xBCC3, 0x8E58, 0x9FD1, 0xEB6E, 0xFAE7, 0xC87C, 0xD9F5,
  1363. 0x3183, 0x200A, 0x1291, 0x0318, 0x77A7, 0x662E, 0x54B5, 0x453C,
  1364. 0xBDCB, 0xAC42, 0x9ED9, 0x8F50, 0xFBEF, 0xEA66, 0xD8FD, 0xC974,
  1365. 0x4204, 0x538D, 0x6116, 0x709F, 0x0420, 0x15A9, 0x2732, 0x36BB,
  1366. 0xCE4C, 0xDFC5, 0xED5E, 0xFCD7, 0x8868, 0x99E1, 0xAB7A, 0xBAF3,
  1367. 0x5285, 0x430C, 0x7197, 0x601E, 0x14A1, 0x0528, 0x37B3, 0x263A,
  1368. 0xDECD, 0xCF44, 0xFDDF, 0xEC56, 0x98E9, 0x8960, 0xBBFB, 0xAA72,
  1369. 0x6306, 0x728F, 0x4014, 0x519D, 0x2522, 0x34AB, 0x0630, 0x17B9,
  1370. 0xEF4E, 0xFEC7, 0xCC5C, 0xDDD5, 0xA96A, 0xB8E3, 0x8A78, 0x9BF1,
  1371. 0x7387, 0x620E, 0x5095, 0x411C, 0x35A3, 0x242A, 0x16B1, 0x0738,
  1372. 0xFFCF, 0xEE46, 0xDCDD, 0xCD54, 0xB9EB, 0xA862, 0x9AF9, 0x8B70,
  1373. 0x8408, 0x9581, 0xA71A, 0xB693, 0xC22C, 0xD3A5, 0xE13E, 0xF0B7,
  1374. 0x0840, 0x19C9, 0x2B52, 0x3ADB, 0x4E64, 0x5FED, 0x6D76, 0x7CFF,
  1375. 0x9489, 0x8500, 0xB79B, 0xA612, 0xD2AD, 0xC324, 0xF1BF, 0xE036,
  1376. 0x18C1, 0x0948, 0x3BD3, 0x2A5A, 0x5EE5, 0x4F6C, 0x7DF7, 0x6C7E,
  1377. 0xA50A, 0xB483, 0x8618, 0x9791, 0xE32E, 0xF2A7, 0xC03C, 0xD1B5,
  1378. 0x2942, 0x38CB, 0x0A50, 0x1BD9, 0x6F66, 0x7EEF, 0x4C74, 0x5DFD,
  1379. 0xB58B, 0xA402, 0x9699, 0x8710, 0xF3AF, 0xE226, 0xD0BD, 0xC134,
  1380. 0x39C3, 0x284A, 0x1AD1, 0x0B58, 0x7FE7, 0x6E6E, 0x5CF5, 0x4D7C,
  1381. 0xC60C, 0xD785, 0xE51E, 0xF497, 0x8028, 0x91A1, 0xA33A, 0xB2B3,
  1382. 0x4A44, 0x5BCD, 0x6956, 0x78DF, 0x0C60, 0x1DE9, 0x2F72, 0x3EFB,
  1383. 0xD68D, 0xC704, 0xF59F, 0xE416, 0x90A9, 0x8120, 0xB3BB, 0xA232,
  1384. 0x5AC5, 0x4B4C, 0x79D7, 0x685E, 0x1CE1, 0x0D68, 0x3FF3, 0x2E7A,
  1385. 0xE70E, 0xF687, 0xC41C, 0xD595, 0xA12A, 0xB0A3, 0x8238, 0x93B1,
  1386. 0x6B46, 0x7ACF, 0x4854, 0x59DD, 0x2D62, 0x3CEB, 0x0E70, 0x1FF9,
  1387. 0xF78F, 0xE606, 0xD49D, 0xC514, 0xB1AB, 0xA022, 0x92B9, 0x8330,
  1388. 0x7BC7, 0x6A4E, 0x58D5, 0x495C, 0x3DE3, 0x2C6A, 0x1EF1, 0x0F78
  1389. };
  1390. uint16
  1391. hndcrc16(
  1392. uint8 *pdata, /* pointer to array of data to process */
  1393. uint nbytes, /* number of input data bytes to process */
  1394. uint16 crc /* either CRC16_INIT_VALUE or previous return value */
  1395. )
  1396. {
  1397. while (nbytes-- > 0)
  1398. CRC_INNER_LOOP(16, crc, *pdata++);
  1399. return crc;
  1400. }
  1401. static const uint32 crc32_table[256] = {
  1402. 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA,
  1403. 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
  1404. 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
  1405. 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
  1406. 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE,
  1407. 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
  1408. 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
  1409. 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
  1410. 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
  1411. 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
  1412. 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940,
  1413. 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
  1414. 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116,
  1415. 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
  1416. 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
  1417. 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
  1418. 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A,
  1419. 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
  1420. 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818,
  1421. 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
  1422. 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
  1423. 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
  1424. 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C,
  1425. 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
  1426. 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2,
  1427. 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
  1428. 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
  1429. 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
  1430. 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086,
  1431. 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
  1432. 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4,
  1433. 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
  1434. 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
  1435. 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
  1436. 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
  1437. 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
  1438. 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE,
  1439. 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
  1440. 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
  1441. 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
  1442. 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252,
  1443. 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
  1444. 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60,
  1445. 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
  1446. 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
  1447. 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
  1448. 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04,
  1449. 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
  1450. 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A,
  1451. 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
  1452. 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
  1453. 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
  1454. 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E,
  1455. 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
  1456. 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
  1457. 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
  1458. 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
  1459. 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
  1460. 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0,
  1461. 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
  1462. 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6,
  1463. 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
  1464. 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
  1465. 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
  1466. };
  1467. /*
  1468. * crc input is CRC32_INIT_VALUE for a fresh start, or previous return value if
  1469. * accumulating over multiple pieces.
  1470. */
  1471. uint32
  1472. hndcrc32(uint8 *pdata, uint nbytes, uint32 crc)
  1473. {
  1474. uint8 *pend;
  1475. pend = pdata + nbytes;
  1476. while (pdata < pend)
  1477. CRC_INNER_LOOP(32, crc, *pdata++);
  1478. return crc;
  1479. }
  1480. #ifdef notdef
  1481. #define CLEN 1499 /* CRC Length */
  1482. #define CBUFSIZ (CLEN+4)
  1483. #define CNBUFS 5 /* # of bufs */
  1484. void
  1485. testcrc32(void)
  1486. {
  1487. uint j, k, l;
  1488. uint8 *buf;
  1489. uint len[CNBUFS];
  1490. uint32 crcr;
  1491. uint32 crc32tv[CNBUFS] =
  1492. {0xd2cb1faa, 0xd385c8fa, 0xf5b4f3f3, 0x55789e20, 0x00343110};
  1493. ASSERT((buf = MALLOC(CBUFSIZ*CNBUFS)) != NULL);
  1494. /* step through all possible alignments */
  1495. for (l = 0; l <= 4; l++) {
  1496. for (j = 0; j < CNBUFS; j++) {
  1497. len[j] = CLEN;
  1498. for (k = 0; k < len[j]; k++)
  1499. *(buf + j*CBUFSIZ + (k+l)) = (j+k) & 0xff;
  1500. }
  1501. for (j = 0; j < CNBUFS; j++) {
  1502. crcr = crc32(buf + j*CBUFSIZ + l, len[j], CRC32_INIT_VALUE);
  1503. ASSERT(crcr == crc32tv[j]);
  1504. }
  1505. }
  1506. MFREE(buf, CBUFSIZ*CNBUFS);
  1507. return;
  1508. }
  1509. #endif /* notdef */
  1510. /*
  1511. * Advance from the current 1-byte tag/1-byte length/variable-length value
  1512. * triple, to the next, returning a pointer to the next.
  1513. * If the current or next TLV is invalid (does not fit in given buffer length),
  1514. * NULL is returned.
  1515. * *buflen is not modified if the TLV elt parameter is invalid, or is decremented
  1516. * by the TLV parameter's length if it is valid.
  1517. */
  1518. bcm_tlv_t *
  1519. bcm_next_tlv(bcm_tlv_t *elt, int *buflen)
  1520. {
  1521. int len;
  1522. /* validate current elt */
  1523. if (!bcm_valid_tlv(elt, *buflen)) {
  1524. return NULL;
  1525. }
  1526. /* advance to next elt */
  1527. len = elt->len;
  1528. elt = (bcm_tlv_t*)(elt->data + len);
  1529. *buflen -= (TLV_HDR_LEN + len);
  1530. /* validate next elt */
  1531. if (!bcm_valid_tlv(elt, *buflen)) {
  1532. return NULL;
  1533. }
  1534. return elt;
  1535. }
  1536. /*
  1537. * Traverse a string of 1-byte tag/1-byte length/variable-length value
  1538. * triples, returning a pointer to the substring whose first element
  1539. * matches tag
  1540. */
  1541. bcm_tlv_t *
  1542. bcm_parse_tlvs(void *buf, int buflen, uint key)
  1543. {
  1544. bcm_tlv_t *elt;
  1545. int totlen;
  1546. elt = (bcm_tlv_t*)buf;
  1547. totlen = buflen;
  1548. /* find tagged parameter */
  1549. while (totlen >= TLV_HDR_LEN) {
  1550. int len = elt->len;
  1551. /* validate remaining totlen */
  1552. if ((elt->id == key) && (totlen >= (int)(len + TLV_HDR_LEN))) {
  1553. return (elt);
  1554. }
  1555. elt = (bcm_tlv_t*)((uint8*)elt + (len + TLV_HDR_LEN));
  1556. totlen -= (len + TLV_HDR_LEN);
  1557. }
  1558. return NULL;
  1559. }
  1560. /*
  1561. * Traverse a string of 1-byte tag/1-byte length/variable-length value
  1562. * triples, returning a pointer to the substring whose first element
  1563. * matches tag. Stop parsing when we see an element whose ID is greater
  1564. * than the target key.
  1565. */
  1566. bcm_tlv_t *
  1567. bcm_parse_ordered_tlvs(void *buf, int buflen, uint key)
  1568. {
  1569. bcm_tlv_t *elt;
  1570. int totlen;
  1571. elt = (bcm_tlv_t*)buf;
  1572. totlen = buflen;
  1573. /* find tagged parameter */
  1574. while (totlen >= TLV_HDR_LEN) {
  1575. uint id = elt->id;
  1576. int len = elt->len;
  1577. /* Punt if we start seeing IDs > than target key */
  1578. if (id > key) {
  1579. return (NULL);
  1580. }
  1581. /* validate remaining totlen */
  1582. if ((id == key) && (totlen >= (int)(len + TLV_HDR_LEN))) {
  1583. return (elt);
  1584. }
  1585. elt = (bcm_tlv_t*)((uint8*)elt + (len + TLV_HDR_LEN));
  1586. totlen -= (len + TLV_HDR_LEN);
  1587. }
  1588. return NULL;
  1589. }
  1590. #endif /* !BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS */
  1591. #if defined(WLMSG_PRHDRS) || defined(WLMSG_PRPKT) || defined(WLMSG_ASSOC) || \
  1592. defined(DHD_DEBUG)
  1593. int
  1594. bcm_format_field(const bcm_bit_desc_ex_t *bd, uint32 flags, char* buf, int len)
  1595. {
  1596. int i, slen = 0;
  1597. uint32 bit, mask;
  1598. const char *name;
  1599. mask = bd->mask;
  1600. if (len < 2 || !buf)
  1601. return 0;
  1602. buf[0] = '\0';
  1603. for (i = 0; (name = bd->bitfield[i].name) != NULL; i++) {
  1604. bit = bd->bitfield[i].bit;
  1605. if ((flags & mask) == bit) {
  1606. if (len > (int)strlen(name)) {
  1607. slen = strlen(name);
  1608. strncpy(buf, name, slen+1);
  1609. }
  1610. break;
  1611. }
  1612. }
  1613. return slen;
  1614. }
  1615. int
  1616. bcm_format_flags(const bcm_bit_desc_t *bd, uint32 flags, char* buf, int len)
  1617. {
  1618. int i;
  1619. char* p = buf;
  1620. char hexstr[16];
  1621. int slen = 0, nlen = 0;
  1622. uint32 bit;
  1623. const char* name;
  1624. if (len < 2 || !buf)
  1625. return 0;
  1626. buf[0] = '\0';
  1627. for (i = 0; flags != 0; i++) {
  1628. bit = bd[i].bit;
  1629. name = bd[i].name;
  1630. if (bit == 0 && flags != 0) {
  1631. /* print any unnamed bits */
  1632. snprintf(hexstr, 16, "0x%X", flags);
  1633. name = hexstr;
  1634. flags = 0; /* exit loop */
  1635. } else if ((flags & bit) == 0)
  1636. continue;
  1637. flags &= ~bit;
  1638. nlen = strlen(name);
  1639. slen += nlen;
  1640. /* count btwn flag space */
  1641. if (flags != 0)
  1642. slen += 1;
  1643. /* need NULL char as well */
  1644. if (len <= slen)
  1645. break;
  1646. /* copy NULL char but don't count it */
  1647. strncpy(p, name, nlen + 1);
  1648. p += nlen;
  1649. /* copy btwn flag space and NULL char */
  1650. if (flags != 0)
  1651. p += snprintf(p, 2, " ");
  1652. }
  1653. /* indicate the str was too short */
  1654. if (flags != 0) {
  1655. p += snprintf(p, 2, ">");
  1656. }
  1657. return (int)(p - buf);
  1658. }
  1659. /* print bytes formatted as hex to a string. return the resulting string length */
  1660. int
  1661. bcm_format_hex(char *str, const void *bytes, int len)
  1662. {
  1663. int i;
  1664. char *p = str;
  1665. const uint8 *src = (const uint8*)bytes;
  1666. for (i = 0; i < len; i++) {
  1667. p += snprintf(p, 3, "%02X", *src);
  1668. src++;
  1669. }
  1670. return (int)(p - str);
  1671. }
  1672. #endif
  1673. /* pretty hex print a contiguous buffer */
  1674. void
  1675. prhex(const char *msg, uchar *buf, uint nbytes)
  1676. {
  1677. char line[128], *p;
  1678. int len = sizeof(line);
  1679. int nchar;
  1680. uint i;
  1681. if (msg && (msg[0] != '\0'))
  1682. printf("%s:\n", msg);
  1683. p = line;
  1684. for (i = 0; i < nbytes; i++) {
  1685. if (i % 16 == 0) {
  1686. nchar = snprintf(p, len, " %04d: ", i); /* line prefix */
  1687. p += nchar;
  1688. len -= nchar;
  1689. }
  1690. if (len > 0) {
  1691. nchar = snprintf(p, len, "%02x ", buf[i]);
  1692. p += nchar;
  1693. len -= nchar;
  1694. }
  1695. if (i % 16 == 15) {
  1696. printf("%s\n", line); /* flush line */
  1697. p = line;
  1698. len = sizeof(line);
  1699. }
  1700. }
  1701. /* flush last partial line */
  1702. if (p != line)
  1703. printf("%s\n", line);
  1704. }
  1705. static const char *crypto_algo_names[] = {
  1706. "NONE",
  1707. "WEP1",
  1708. "TKIP",
  1709. "WEP128",
  1710. "AES_CCM",
  1711. "AES_OCB_MSDU",
  1712. "AES_OCB_MPDU",
  1713. #ifdef BCMCCX
  1714. "CKIP",
  1715. "CKIP_MMH",
  1716. "WEP_MMH",
  1717. "NALG",
  1718. #else
  1719. "NALG",
  1720. "UNDEF",
  1721. "UNDEF",
  1722. "UNDEF",
  1723. #endif /* BCMCCX */
  1724. "WAPI",
  1725. "PMK",
  1726. "BIP",
  1727. "AES_GCM",
  1728. "AES_CCM256",
  1729. "AES_GCM256",
  1730. "BIP_CMAC256",
  1731. "BIP_GMAC",
  1732. "BIP_GMAC256",
  1733. "UNDEF"
  1734. };
  1735. const char *
  1736. bcm_crypto_algo_name(uint algo)
  1737. {
  1738. return (algo < ARRAYSIZE(crypto_algo_names)) ? crypto_algo_names[algo] : "ERR";
  1739. }
  1740. char *
  1741. bcm_chipname(uint chipid, char *buf, uint len)
  1742. {
  1743. const char *fmt;
  1744. fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
  1745. snprintf(buf, len, fmt, chipid);
  1746. return buf;
  1747. }
  1748. /* Produce a human-readable string for boardrev */
  1749. char *
  1750. bcm_brev_str(uint32 brev, char *buf)
  1751. {
  1752. if (brev < 0x100)
  1753. snprintf(buf, 8, "%d.%d", (brev & 0xf0) >> 4, brev & 0xf);
  1754. else
  1755. snprintf(buf, 8, "%c%03x", ((brev & 0xf000) == 0x1000) ? 'P' : 'A', brev & 0xfff);
  1756. return (buf);
  1757. }
  1758. #define BUFSIZE_TODUMP_ATONCE 512 /* Buffer size */
  1759. /* dump large strings to console */
  1760. void
  1761. printbig(char *buf)
  1762. {
  1763. uint len, max_len;
  1764. char c;
  1765. len = strlen(buf);
  1766. max_len = BUFSIZE_TODUMP_ATONCE;
  1767. while (len > max_len) {
  1768. c = buf[max_len];
  1769. buf[max_len] = '\0';
  1770. printf("%s", buf);
  1771. buf[max_len] = c;
  1772. buf += max_len;
  1773. len -= max_len;
  1774. }
  1775. /* print the remaining string */
  1776. printf("%s\n", buf);
  1777. return;
  1778. }
  1779. /* routine to dump fields in a fileddesc structure */
  1780. uint
  1781. bcmdumpfields(bcmutl_rdreg_rtn read_rtn, void *arg0, uint arg1, struct fielddesc *fielddesc_array,
  1782. char *buf, uint32 bufsize)
  1783. {
  1784. uint filled_len;
  1785. int len;
  1786. struct fielddesc *cur_ptr;
  1787. filled_len = 0;
  1788. cur_ptr = fielddesc_array;
  1789. while (bufsize > 1) {
  1790. if (cur_ptr->nameandfmt == NULL)
  1791. break;
  1792. len = snprintf(buf, bufsize, cur_ptr->nameandfmt,
  1793. read_rtn(arg0, arg1, cur_ptr->offset));
  1794. /* check for snprintf overflow or error */
  1795. if (len < 0 || (uint32)len >= bufsize)
  1796. len = bufsize - 1;
  1797. buf += len;
  1798. bufsize -= len;
  1799. filled_len += len;
  1800. cur_ptr++;
  1801. }
  1802. return filled_len;
  1803. }
  1804. uint
  1805. bcm_mkiovar(char *name, char *data, uint datalen, char *buf, uint buflen)
  1806. {
  1807. uint len;
  1808. len = strlen(name) + 1;
  1809. if ((len + datalen) > buflen)
  1810. return 0;
  1811. strncpy(buf, name, buflen);
  1812. /* append data onto the end of the name string */
  1813. if (data) {
  1814. memcpy(&buf[len], data, datalen);
  1815. len += datalen;
  1816. }
  1817. return len;
  1818. }
  1819. /* Quarter dBm units to mW
  1820. * Table starts at QDBM_OFFSET, so the first entry is mW for qdBm=153
  1821. * Table is offset so the last entry is largest mW value that fits in
  1822. * a uint16.
  1823. */
  1824. #define QDBM_OFFSET 153 /* Offset for first entry */
  1825. #define QDBM_TABLE_LEN 40 /* Table size */
  1826. /* Smallest mW value that will round up to the first table entry, QDBM_OFFSET.
  1827. * Value is ( mW(QDBM_OFFSET - 1) + mW(QDBM_OFFSET) ) / 2
  1828. */
  1829. #define QDBM_TABLE_LOW_BOUND 6493 /* Low bound */
  1830. /* Largest mW value that will round down to the last table entry,
  1831. * QDBM_OFFSET + QDBM_TABLE_LEN-1.
  1832. * Value is ( mW(QDBM_OFFSET + QDBM_TABLE_LEN - 1) + mW(QDBM_OFFSET + QDBM_TABLE_LEN) ) / 2.
  1833. */
  1834. #define QDBM_TABLE_HIGH_BOUND 64938 /* High bound */
  1835. static const uint16 nqdBm_to_mW_map[QDBM_TABLE_LEN] = {
  1836. /* qdBm: +0 +1 +2 +3 +4 +5 +6 +7 */
  1837. /* 153: */ 6683, 7079, 7499, 7943, 8414, 8913, 9441, 10000,
  1838. /* 161: */ 10593, 11220, 11885, 12589, 13335, 14125, 14962, 15849,
  1839. /* 169: */ 16788, 17783, 18836, 19953, 21135, 22387, 23714, 25119,
  1840. /* 177: */ 26607, 28184, 29854, 31623, 33497, 35481, 37584, 39811,
  1841. /* 185: */ 42170, 44668, 47315, 50119, 53088, 56234, 59566, 63096
  1842. };
  1843. uint16
  1844. bcm_qdbm_to_mw(uint8 qdbm)
  1845. {
  1846. uint factor = 1;
  1847. int idx = qdbm - QDBM_OFFSET;
  1848. if (idx >= QDBM_TABLE_LEN) {
  1849. /* clamp to max uint16 mW value */
  1850. return 0xFFFF;
  1851. }
  1852. /* scale the qdBm index up to the range of the table 0-40
  1853. * where an offset of 40 qdBm equals a factor of 10 mW.
  1854. */
  1855. while (idx < 0) {
  1856. idx += 40;
  1857. factor *= 10;
  1858. }
  1859. /* return the mW value scaled down to the correct factor of 10,
  1860. * adding in factor/2 to get proper rounding.
  1861. */
  1862. return ((nqdBm_to_mW_map[idx] + factor/2) / factor);
  1863. }
  1864. uint8
  1865. bcm_mw_to_qdbm(uint16 mw)
  1866. {
  1867. uint8 qdbm;
  1868. int offset;
  1869. uint mw_uint = mw;
  1870. uint boundary;
  1871. /* handle boundary case */
  1872. if (mw_uint <= 1)
  1873. return 0;
  1874. offset = QDBM_OFFSET;
  1875. /* move mw into the range of the table */
  1876. while (mw_uint < QDBM_TABLE_LOW_BOUND) {
  1877. mw_uint *= 10;
  1878. offset -= 40;
  1879. }
  1880. for (qdbm = 0; qdbm < QDBM_TABLE_LEN-1; qdbm++) {
  1881. boundary = nqdBm_to_mW_map[qdbm] + (nqdBm_to_mW_map[qdbm+1] -
  1882. nqdBm_to_mW_map[qdbm])/2;
  1883. if (mw_uint < boundary) break;
  1884. }
  1885. qdbm += (uint8)offset;
  1886. return (qdbm);
  1887. }
  1888. uint
  1889. bcm_bitcount(uint8 *bitmap, uint length)
  1890. {
  1891. uint bitcount = 0, i;
  1892. uint8 tmp;
  1893. for (i = 0; i < length; i++) {
  1894. tmp = bitmap[i];
  1895. while (tmp) {
  1896. bitcount++;
  1897. tmp &= (tmp - 1);
  1898. }
  1899. }
  1900. return bitcount;
  1901. }
  1902. #ifdef BCMDRIVER
  1903. /* Initialization of bcmstrbuf structure */
  1904. void
  1905. bcm_binit(struct bcmstrbuf *b, char *buf, uint size)
  1906. {
  1907. b->origsize = b->size = size;
  1908. b->origbuf = b->buf = buf;
  1909. }
  1910. /* Buffer sprintf wrapper to guard against buffer overflow */
  1911. int
  1912. bcm_bprintf(struct bcmstrbuf *b, const char *fmt, ...)
  1913. {
  1914. va_list ap;
  1915. int r;
  1916. va_start(ap, fmt);
  1917. r = vsnprintf(b->buf, b->size, fmt, ap);
  1918. /* Non Ansi C99 compliant returns -1,
  1919. * Ansi compliant return r >= b->size,
  1920. * bcmstdlib returns 0, handle all
  1921. */
  1922. /* r == 0 is also the case when strlen(fmt) is zero.
  1923. * typically the case when "" is passed as argument.
  1924. */
  1925. if ((r == -1) || (r >= (int)b->size)) {
  1926. b->size = 0;
  1927. } else {
  1928. b->size -= r;
  1929. b->buf += r;
  1930. }
  1931. va_end(ap);
  1932. return r;
  1933. }
  1934. void
  1935. bcm_bprhex(struct bcmstrbuf *b, const char *msg, bool newline, uint8 *buf, int len)
  1936. {
  1937. int i;
  1938. if (msg != NULL && msg[0] != '\0')
  1939. bcm_bprintf(b, "%s", msg);
  1940. for (i = 0; i < len; i ++)
  1941. bcm_bprintf(b, "%02X", buf[i]);
  1942. if (newline)
  1943. bcm_bprintf(b, "\n");
  1944. }
  1945. void
  1946. bcm_inc_bytes(uchar *num, int num_bytes, uint8 amount)
  1947. {
  1948. int i;
  1949. for (i = 0; i < num_bytes; i++) {
  1950. num[i] += amount;
  1951. if (num[i] >= amount)
  1952. break;
  1953. amount = 1;
  1954. }
  1955. }
  1956. int
  1957. bcm_cmp_bytes(const uchar *arg1, const uchar *arg2, uint8 nbytes)
  1958. {
  1959. int i;
  1960. for (i = nbytes - 1; i >= 0; i--) {
  1961. if (arg1[i] != arg2[i])
  1962. return (arg1[i] - arg2[i]);
  1963. }
  1964. return 0;
  1965. }
  1966. void
  1967. bcm_print_bytes(const char *name, const uchar *data, int len)
  1968. {
  1969. int i;
  1970. int per_line = 0;
  1971. printf("%s: %d \n", name ? name : "", len);
  1972. for (i = 0; i < len; i++) {
  1973. printf("%02x ", *data++);
  1974. per_line++;
  1975. if (per_line == 16) {
  1976. per_line = 0;
  1977. printf("\n");
  1978. }
  1979. }
  1980. printf("\n");
  1981. }
  1982. /* Look for vendor-specific IE with specified OUI and optional type */
  1983. bcm_tlv_t *
  1984. bcm_find_vendor_ie(void *tlvs, int tlvs_len, const char *voui, uint8 *type, int type_len)
  1985. {
  1986. bcm_tlv_t *ie;
  1987. uint8 ie_len;
  1988. ie = (bcm_tlv_t*)tlvs;
  1989. /* make sure we are looking at a valid IE */
  1990. if (ie == NULL || !bcm_valid_tlv(ie, tlvs_len)) {
  1991. return NULL;
  1992. }
  1993. /* Walk through the IEs looking for an OUI match */
  1994. do {
  1995. ie_len = ie->len;
  1996. if ((ie->id == DOT11_MNG_PROPR_ID) &&
  1997. (ie_len >= (DOT11_OUI_LEN + type_len)) &&
  1998. !bcmp(ie->data, voui, DOT11_OUI_LEN))
  1999. {
  2000. /* compare optional type */
  2001. if (type_len == 0 ||
  2002. !bcmp(&ie->data[DOT11_OUI_LEN], type, type_len)) {
  2003. return (ie); /* a match */
  2004. }
  2005. }
  2006. } while ((ie = bcm_next_tlv(ie, &tlvs_len)) != NULL);
  2007. return NULL;
  2008. }
  2009. #if defined(WLTINYDUMP) || defined(WLMSG_INFORM) || defined(WLMSG_ASSOC) || \
  2010. defined(WLMSG_PRPKT) || defined(WLMSG_WSEC)
  2011. #define SSID_FMT_BUF_LEN ((4 * DOT11_MAX_SSID_LEN) + 1)
  2012. int
  2013. bcm_format_ssid(char* buf, const uchar ssid[], uint ssid_len)
  2014. {
  2015. uint i, c;
  2016. char *p = buf;
  2017. char *endp = buf + SSID_FMT_BUF_LEN;
  2018. if (ssid_len > DOT11_MAX_SSID_LEN) ssid_len = DOT11_MAX_SSID_LEN;
  2019. for (i = 0; i < ssid_len; i++) {
  2020. c = (uint)ssid[i];
  2021. if (c == '\\') {
  2022. *p++ = '\\';
  2023. *p++ = '\\';
  2024. } else if (bcm_isprint((uchar)c)) {
  2025. *p++ = (char)c;
  2026. } else {
  2027. p += snprintf(p, (endp - p), "\\x%02X", c);
  2028. }
  2029. }
  2030. *p = '\0';
  2031. ASSERT(p < endp);
  2032. return (int)(p - buf);
  2033. }
  2034. #endif
  2035. #endif /* BCMDRIVER */
  2036. /*
  2037. * ProcessVars:Takes a buffer of "<var>=<value>\n" lines read from a file and ending in a NUL.
  2038. * also accepts nvram files which are already in the format of <var1>=<value>\0\<var2>=<value2>\0
  2039. * Removes carriage returns, empty lines, comment lines, and converts newlines to NULs.
  2040. * Shortens buffer as needed and pads with NULs. End of buffer is marked by two NULs.
  2041. */
  2042. unsigned int
  2043. process_nvram_vars(char *varbuf, unsigned int len)
  2044. {
  2045. char *dp;
  2046. bool findNewline;
  2047. int column;
  2048. unsigned int buf_len, n;
  2049. unsigned int pad = 0;
  2050. dp = varbuf;
  2051. findNewline = FALSE;
  2052. column = 0;
  2053. for (n = 0; n < len; n++) {
  2054. if (varbuf[n] == '\r')
  2055. continue;
  2056. if (findNewline && varbuf[n] != '\n')
  2057. continue;
  2058. findNewline = FALSE;
  2059. if (varbuf[n] == '#') {
  2060. findNewline = TRUE;
  2061. continue;
  2062. }
  2063. if (varbuf[n] == '\n') {
  2064. if (column == 0)
  2065. continue;
  2066. *dp++ = 0;
  2067. column = 0;
  2068. continue;
  2069. }
  2070. *dp++ = varbuf[n];
  2071. column++;
  2072. }
  2073. buf_len = (unsigned int)(dp - varbuf);
  2074. if (buf_len % 4) {
  2075. pad = 4 - buf_len % 4;
  2076. if (pad && (buf_len + pad <= len)) {
  2077. buf_len += pad;
  2078. }
  2079. }
  2080. while (dp < varbuf + n)
  2081. *dp++ = 0;
  2082. return buf_len;
  2083. }
  2084. /* calculate a * b + c */
  2085. void
  2086. bcm_uint64_multiple_add(uint32* r_high, uint32* r_low, uint32 a, uint32 b, uint32 c)
  2087. {
  2088. #define FORMALIZE(var) {cc += (var & 0x80000000) ? 1 : 0; var &= 0x7fffffff;}
  2089. uint32 r1, r0;
  2090. uint32 a1, a0, b1, b0, t, cc = 0;
  2091. a1 = a >> 16;
  2092. a0 = a & 0xffff;
  2093. b1 = b >> 16;
  2094. b0 = b & 0xffff;
  2095. r0 = a0 * b0;
  2096. FORMALIZE(r0);
  2097. t = (a1 * b0) << 16;
  2098. FORMALIZE(t);
  2099. r0 += t;
  2100. FORMALIZE(r0);
  2101. t = (a0 * b1) << 16;
  2102. FORMALIZE(t);
  2103. r0 += t;
  2104. FORMALIZE(r0);
  2105. FORMALIZE(c);
  2106. r0 += c;
  2107. FORMALIZE(r0);
  2108. r0 |= (cc % 2) ? 0x80000000 : 0;
  2109. r1 = a1 * b1 + ((a1 * b0) >> 16) + ((b1 * a0) >> 16) + (cc / 2);
  2110. *r_high = r1;
  2111. *r_low = r0;
  2112. }
  2113. /* calculate a / b */
  2114. void
  2115. bcm_uint64_divide(uint32* r, uint32 a_high, uint32 a_low, uint32 b)
  2116. {
  2117. uint32 a1 = a_high, a0 = a_low, r0 = 0;
  2118. if (b < 2)
  2119. return;
  2120. while (a1 != 0) {
  2121. r0 += (0xffffffff / b) * a1;
  2122. bcm_uint64_multiple_add(&a1, &a0, ((0xffffffff % b) + 1) % b, a1, a0);
  2123. }
  2124. r0 += a0 / b;
  2125. *r = r0;
  2126. }
  2127. #ifndef setbit /* As in the header file */
  2128. #ifdef BCMUTILS_BIT_MACROS_USE_FUNCS
  2129. /* Set bit in byte array. */
  2130. void
  2131. setbit(void *array, uint bit)
  2132. {
  2133. ((uint8 *)array)[bit / NBBY] |= 1 << (bit % NBBY);
  2134. }
  2135. /* Clear bit in byte array. */
  2136. void
  2137. clrbit(void *array, uint bit)
  2138. {
  2139. ((uint8 *)array)[bit / NBBY] &= ~(1 << (bit % NBBY));
  2140. }
  2141. /* Test if bit is set in byte array. */
  2142. bool
  2143. isset(const void *array, uint bit)
  2144. {
  2145. return (((const uint8 *)array)[bit / NBBY] & (1 << (bit % NBBY)));
  2146. }
  2147. /* Test if bit is clear in byte array. */
  2148. bool
  2149. isclr(const void *array, uint bit)
  2150. {
  2151. return ((((const uint8 *)array)[bit / NBBY] & (1 << (bit % NBBY))) == 0);
  2152. }
  2153. #endif /* BCMUTILS_BIT_MACROS_USE_FUNCS */
  2154. #endif /* setbit */
  2155. void
  2156. bcm_bitprint32(const uint32 u32)
  2157. {
  2158. int i;
  2159. for (i = NBITS(uint32) - 1; i >= 0; i--) {
  2160. isbitset(u32, i) ? printf("1") : printf("0");
  2161. if ((i % NBBY) == 0) printf(" ");
  2162. }
  2163. printf("\n");
  2164. }
  2165. #ifdef BCMDRIVER
  2166. /*
  2167. * Hierarchical Multiword bitmap based small id allocator.
  2168. *
  2169. * Multilevel hierarchy bitmap. (maximum 2 levels)
  2170. * First hierarchy uses a multiword bitmap to identify 32bit words in the
  2171. * second hierarchy that have at least a single bit set. Each bit in a word of
  2172. * the second hierarchy represents a unique ID that may be allocated.
  2173. *
  2174. * BCM_MWBMAP_ITEMS_MAX: Maximum number of IDs managed.
  2175. * BCM_MWBMAP_BITS_WORD: Number of bits in a bitmap word word
  2176. * BCM_MWBMAP_WORDS_MAX: Maximum number of bitmap words needed for free IDs.
  2177. * BCM_MWBMAP_WDMAP_MAX: Maximum number of bitmap wordss identifying first non
  2178. * non-zero bitmap word carrying at least one free ID.
  2179. * BCM_MWBMAP_SHIFT_OP: Used in MOD, DIV and MUL operations.
  2180. * BCM_MWBMAP_INVALID_IDX: Value ~0U is treated as an invalid ID
  2181. *
  2182. * Design Notes:
  2183. * BCM_MWBMAP_USE_CNTSETBITS trades CPU for memory. A runtime count of how many
  2184. * bits are computed each time on allocation and deallocation, requiring 4
  2185. * array indexed access and 3 arithmetic operations. When not defined, a runtime
  2186. * count of set bits state is maintained. Upto 32 Bytes per 1024 IDs is needed.
  2187. * In a 4K max ID allocator, up to 128Bytes are hence used per instantiation.
  2188. * In a memory limited system e.g. dongle builds, a CPU for memory tradeoff may
  2189. * be used by defining BCM_MWBMAP_USE_CNTSETBITS.
  2190. *
  2191. * Note: wd_bitmap[] is statically declared and is not ROM friendly ... array
  2192. * size is fixed. No intention to support larger than 4K indice allocation. ID
  2193. * allocators for ranges smaller than 4K will have a wastage of only 12Bytes
  2194. * with savings in not having to use an indirect access, had it been dynamically
  2195. * allocated.
  2196. */
  2197. #define BCM_MWBMAP_ITEMS_MAX (4 * 1024) /* May increase to 16K */
  2198. #define BCM_MWBMAP_BITS_WORD (NBITS(uint32))
  2199. #define BCM_MWBMAP_WORDS_MAX (BCM_MWBMAP_ITEMS_MAX / BCM_MWBMAP_BITS_WORD)
  2200. #define BCM_MWBMAP_WDMAP_MAX (BCM_MWBMAP_WORDS_MAX / BCM_MWBMAP_BITS_WORD)
  2201. #define BCM_MWBMAP_SHIFT_OP (5)
  2202. #define BCM_MWBMAP_MODOP(ix) ((ix) & (BCM_MWBMAP_BITS_WORD - 1))
  2203. #define BCM_MWBMAP_DIVOP(ix) ((ix) >> BCM_MWBMAP_SHIFT_OP)
  2204. #define BCM_MWBMAP_MULOP(ix) ((ix) << BCM_MWBMAP_SHIFT_OP)
  2205. /* Redefine PTR() and/or HDL() conversion to invoke audit for debugging */
  2206. #define BCM_MWBMAP_PTR(hdl) ((struct bcm_mwbmap *)(hdl))
  2207. #define BCM_MWBMAP_HDL(ptr) ((void *)(ptr))
  2208. #if defined(BCM_MWBMAP_DEBUG)
  2209. #define BCM_MWBMAP_AUDIT(mwb) \
  2210. do { \
  2211. ASSERT((mwb != NULL) && \
  2212. (((struct bcm_mwbmap *)(mwb))->magic == (void *)(mwb))); \
  2213. bcm_mwbmap_audit(mwb); \
  2214. } while (0)
  2215. #define MWBMAP_ASSERT(exp) ASSERT(exp)
  2216. #define MWBMAP_DBG(x) printf x
  2217. #else /* !BCM_MWBMAP_DEBUG */
  2218. #define BCM_MWBMAP_AUDIT(mwb) do {} while (0)
  2219. #define MWBMAP_ASSERT(exp) do {} while (0)
  2220. #define MWBMAP_DBG(x)
  2221. #endif /* !BCM_MWBMAP_DEBUG */
  2222. typedef struct bcm_mwbmap { /* Hierarchical multiword bitmap allocator */
  2223. uint16 wmaps; /* Total number of words in free wd bitmap */
  2224. uint16 imaps; /* Total number of words in free id bitmap */
  2225. int16 ifree; /* Count of free indices. Used only in audits */
  2226. uint16 total; /* Total indices managed by multiword bitmap */
  2227. void * magic; /* Audit handle parameter from user */
  2228. uint32 wd_bitmap[BCM_MWBMAP_WDMAP_MAX]; /* 1st level bitmap of */
  2229. #if !defined(BCM_MWBMAP_USE_CNTSETBITS)
  2230. int8 wd_count[BCM_MWBMAP_WORDS_MAX]; /* free id running count, 1st lvl */
  2231. #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
  2232. uint32 id_bitmap[0]; /* Second level bitmap */
  2233. } bcm_mwbmap_t;
  2234. /* Incarnate a hierarchical multiword bitmap based small index allocator. */
  2235. struct bcm_mwbmap *
  2236. bcm_mwbmap_init(osl_t *osh, uint32 items_max)
  2237. {
  2238. struct bcm_mwbmap * mwbmap_p;
  2239. uint32 wordix, size, words, extra;
  2240. /* Implementation Constraint: Uses 32bit word bitmap */
  2241. MWBMAP_ASSERT(BCM_MWBMAP_BITS_WORD == 32U);
  2242. MWBMAP_ASSERT(BCM_MWBMAP_SHIFT_OP == 5U);
  2243. MWBMAP_ASSERT(ISPOWEROF2(BCM_MWBMAP_ITEMS_MAX));
  2244. MWBMAP_ASSERT((BCM_MWBMAP_ITEMS_MAX % BCM_MWBMAP_BITS_WORD) == 0U);
  2245. ASSERT(items_max <= BCM_MWBMAP_ITEMS_MAX);
  2246. /* Determine the number of words needed in the multiword bitmap */
  2247. extra = BCM_MWBMAP_MODOP(items_max);
  2248. words = BCM_MWBMAP_DIVOP(items_max) + ((extra != 0U) ? 1U : 0U);
  2249. /* Allocate runtime state of multiword bitmap */
  2250. /* Note: wd_count[] or wd_bitmap[] are not dynamically allocated */
  2251. size = sizeof(bcm_mwbmap_t) + (sizeof(uint32) * words);
  2252. mwbmap_p = (bcm_mwbmap_t *)MALLOC(osh, size);
  2253. if (mwbmap_p == (bcm_mwbmap_t *)NULL) {
  2254. ASSERT(0);
  2255. goto error1;
  2256. }
  2257. memset(mwbmap_p, 0, size);
  2258. /* Initialize runtime multiword bitmap state */
  2259. mwbmap_p->imaps = (uint16)words;
  2260. mwbmap_p->ifree = (int16)items_max;
  2261. mwbmap_p->total = (uint16)items_max;
  2262. /* Setup magic, for use in audit of handle */
  2263. mwbmap_p->magic = BCM_MWBMAP_HDL(mwbmap_p);
  2264. /* Setup the second level bitmap of free indices */
  2265. /* Mark all indices as available */
  2266. for (wordix = 0U; wordix < mwbmap_p->imaps; wordix++) {
  2267. mwbmap_p->id_bitmap[wordix] = (uint32)(~0U);
  2268. #if !defined(BCM_MWBMAP_USE_CNTSETBITS)
  2269. mwbmap_p->wd_count[wordix] = BCM_MWBMAP_BITS_WORD;
  2270. #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
  2271. }
  2272. /* Ensure that extra indices are tagged as un-available */
  2273. if (extra) { /* fixup the free ids in last bitmap and wd_count */
  2274. uint32 * bmap_p = &mwbmap_p->id_bitmap[mwbmap_p->imaps - 1];
  2275. *bmap_p ^= (uint32)(~0U << extra); /* fixup bitmap */
  2276. #if !defined(BCM_MWBMAP_USE_CNTSETBITS)
  2277. mwbmap_p->wd_count[mwbmap_p->imaps - 1] = (int8)extra; /* fixup count */
  2278. #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
  2279. }
  2280. /* Setup the first level bitmap hierarchy */
  2281. extra = BCM_MWBMAP_MODOP(mwbmap_p->imaps);
  2282. words = BCM_MWBMAP_DIVOP(mwbmap_p->imaps) + ((extra != 0U) ? 1U : 0U);
  2283. mwbmap_p->wmaps = (uint16)words;
  2284. for (wordix = 0U; wordix < mwbmap_p->wmaps; wordix++)
  2285. mwbmap_p->wd_bitmap[wordix] = (uint32)(~0U);
  2286. if (extra) {
  2287. uint32 * bmap_p = &mwbmap_p->wd_bitmap[mwbmap_p->wmaps - 1];
  2288. *bmap_p ^= (uint32)(~0U << extra); /* fixup bitmap */
  2289. }
  2290. return mwbmap_p;
  2291. error1:
  2292. return BCM_MWBMAP_INVALID_HDL;
  2293. }
  2294. /* Release resources used by multiword bitmap based small index allocator. */
  2295. void
  2296. bcm_mwbmap_fini(osl_t * osh, struct bcm_mwbmap * mwbmap_hdl)
  2297. {
  2298. bcm_mwbmap_t * mwbmap_p;
  2299. BCM_MWBMAP_AUDIT(mwbmap_hdl);
  2300. mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
  2301. MFREE(osh, mwbmap_p, sizeof(struct bcm_mwbmap)
  2302. + (sizeof(uint32) * mwbmap_p->imaps));
  2303. return;
  2304. }
  2305. /* Allocate a unique small index using a multiword bitmap index allocator. */
  2306. uint32
  2307. bcm_mwbmap_alloc(struct bcm_mwbmap * mwbmap_hdl)
  2308. {
  2309. bcm_mwbmap_t * mwbmap_p;
  2310. uint32 wordix, bitmap;
  2311. BCM_MWBMAP_AUDIT(mwbmap_hdl);
  2312. mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
  2313. /* Start with the first hierarchy */
  2314. for (wordix = 0; wordix < mwbmap_p->wmaps; ++wordix) {
  2315. bitmap = mwbmap_p->wd_bitmap[wordix]; /* get the word bitmap */
  2316. if (bitmap != 0U) {
  2317. uint32 count, bitix, *bitmap_p;
  2318. bitmap_p = &mwbmap_p->wd_bitmap[wordix];
  2319. /* clear all except trailing 1 */
  2320. bitmap = (uint32)(((int)(bitmap)) & (-((int)(bitmap))));
  2321. MWBMAP_ASSERT(C_bcm_count_leading_zeros(bitmap) ==
  2322. bcm_count_leading_zeros(bitmap));
  2323. bitix = (BCM_MWBMAP_BITS_WORD - 1)
  2324. - bcm_count_leading_zeros(bitmap); /* use asm clz */
  2325. wordix = BCM_MWBMAP_MULOP(wordix) + bitix;
  2326. /* Clear bit if wd count is 0, without conditional branch */
  2327. #if defined(BCM_MWBMAP_USE_CNTSETBITS)
  2328. count = bcm_cntsetbits(mwbmap_p->id_bitmap[wordix]) - 1;
  2329. #else /* ! BCM_MWBMAP_USE_CNTSETBITS */
  2330. mwbmap_p->wd_count[wordix]--;
  2331. count = mwbmap_p->wd_count[wordix];
  2332. MWBMAP_ASSERT(count ==
  2333. (bcm_cntsetbits(mwbmap_p->id_bitmap[wordix]) - 1));
  2334. #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
  2335. MWBMAP_ASSERT(count >= 0);
  2336. /* clear wd_bitmap bit if id_map count is 0 */
  2337. bitmap = (count == 0) << bitix;
  2338. MWBMAP_DBG((
  2339. "Lvl1: bitix<%02u> wordix<%02u>: %08x ^ %08x = %08x wfree %d",
  2340. bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap, count));
  2341. *bitmap_p ^= bitmap;
  2342. /* Use bitix in the second hierarchy */
  2343. bitmap_p = &mwbmap_p->id_bitmap[wordix];
  2344. bitmap = mwbmap_p->id_bitmap[wordix]; /* get the id bitmap */
  2345. MWBMAP_ASSERT(bitmap != 0U);
  2346. /* clear all except trailing 1 */
  2347. bitmap = (uint32)(((int)(bitmap)) & (-((int)(bitmap))));
  2348. MWBMAP_ASSERT(C_bcm_count_leading_zeros(bitmap) ==
  2349. bcm_count_leading_zeros(bitmap));
  2350. bitix = BCM_MWBMAP_MULOP(wordix)
  2351. + (BCM_MWBMAP_BITS_WORD - 1)
  2352. - bcm_count_leading_zeros(bitmap); /* use asm clz */
  2353. mwbmap_p->ifree--; /* decrement system wide free count */
  2354. MWBMAP_ASSERT(mwbmap_p->ifree >= 0);
  2355. MWBMAP_DBG((
  2356. "Lvl2: bitix<%02u> wordix<%02u>: %08x ^ %08x = %08x ifree %d",
  2357. bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap,
  2358. mwbmap_p->ifree));
  2359. *bitmap_p ^= bitmap; /* mark as allocated = 1b0 */
  2360. return bitix;
  2361. }
  2362. }
  2363. ASSERT(mwbmap_p->ifree == 0);
  2364. return BCM_MWBMAP_INVALID_IDX;
  2365. }
  2366. /* Force an index at a specified position to be in use */
  2367. void
  2368. bcm_mwbmap_force(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix)
  2369. {
  2370. bcm_mwbmap_t * mwbmap_p;
  2371. uint32 count, wordix, bitmap, *bitmap_p;
  2372. BCM_MWBMAP_AUDIT(mwbmap_hdl);
  2373. mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
  2374. ASSERT(bitix < mwbmap_p->total);
  2375. /* Start with second hierarchy */
  2376. wordix = BCM_MWBMAP_DIVOP(bitix);
  2377. bitmap = (uint32)(1U << BCM_MWBMAP_MODOP(bitix));
  2378. bitmap_p = &mwbmap_p->id_bitmap[wordix];
  2379. ASSERT((*bitmap_p & bitmap) == bitmap);
  2380. mwbmap_p->ifree--; /* update free count */
  2381. ASSERT(mwbmap_p->ifree >= 0);
  2382. MWBMAP_DBG(("Lvl2: bitix<%u> wordix<%u>: %08x ^ %08x = %08x ifree %d",
  2383. bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap,
  2384. mwbmap_p->ifree));
  2385. *bitmap_p ^= bitmap; /* mark as in use */
  2386. /* Update first hierarchy */
  2387. bitix = wordix;
  2388. wordix = BCM_MWBMAP_DIVOP(bitix);
  2389. bitmap_p = &mwbmap_p->wd_bitmap[wordix];
  2390. #if defined(BCM_MWBMAP_USE_CNTSETBITS)
  2391. count = bcm_cntsetbits(mwbmap_p->id_bitmap[bitix]);
  2392. #else /* ! BCM_MWBMAP_USE_CNTSETBITS */
  2393. mwbmap_p->wd_count[bitix]--;
  2394. count = mwbmap_p->wd_count[bitix];
  2395. MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[bitix]));
  2396. #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
  2397. MWBMAP_ASSERT(count >= 0);
  2398. bitmap = (count == 0) << BCM_MWBMAP_MODOP(bitix);
  2399. MWBMAP_DBG(("Lvl1: bitix<%02lu> wordix<%02u>: %08x ^ %08x = %08x wfree %d",
  2400. BCM_MWBMAP_MODOP(bitix), wordix, *bitmap_p, bitmap,
  2401. (*bitmap_p) ^ bitmap, count));
  2402. *bitmap_p ^= bitmap; /* mark as in use */
  2403. return;
  2404. }
  2405. /* Free a previously allocated index back into the multiword bitmap allocator */
  2406. void
  2407. bcm_mwbmap_free(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix)
  2408. {
  2409. bcm_mwbmap_t * mwbmap_p;
  2410. uint32 wordix, bitmap, *bitmap_p;
  2411. BCM_MWBMAP_AUDIT(mwbmap_hdl);
  2412. mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
  2413. ASSERT(bitix < mwbmap_p->total);
  2414. /* Start with second level hierarchy */
  2415. wordix = BCM_MWBMAP_DIVOP(bitix);
  2416. bitmap = (1U << BCM_MWBMAP_MODOP(bitix));
  2417. bitmap_p = &mwbmap_p->id_bitmap[wordix];
  2418. ASSERT((*bitmap_p & bitmap) == 0U); /* ASSERT not a double free */
  2419. mwbmap_p->ifree++; /* update free count */
  2420. ASSERT(mwbmap_p->ifree <= mwbmap_p->total);
  2421. MWBMAP_DBG(("Lvl2: bitix<%02u> wordix<%02u>: %08x | %08x = %08x ifree %d",
  2422. bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) | bitmap,
  2423. mwbmap_p->ifree));
  2424. *bitmap_p |= bitmap; /* mark as available */
  2425. /* Now update first level hierarchy */
  2426. bitix = wordix;
  2427. wordix = BCM_MWBMAP_DIVOP(bitix); /* first level's word index */
  2428. bitmap = (1U << BCM_MWBMAP_MODOP(bitix));
  2429. bitmap_p = &mwbmap_p->wd_bitmap[wordix];
  2430. #if !defined(BCM_MWBMAP_USE_CNTSETBITS)
  2431. mwbmap_p->wd_count[bitix]++;
  2432. #endif
  2433. #if defined(BCM_MWBMAP_DEBUG)
  2434. {
  2435. uint32 count;
  2436. #if defined(BCM_MWBMAP_USE_CNTSETBITS)
  2437. count = bcm_cntsetbits(mwbmap_p->id_bitmap[bitix]);
  2438. #else /* ! BCM_MWBMAP_USE_CNTSETBITS */
  2439. count = mwbmap_p->wd_count[bitix];
  2440. MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[bitix]));
  2441. #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
  2442. MWBMAP_ASSERT(count <= BCM_MWBMAP_BITS_WORD);
  2443. MWBMAP_DBG(("Lvl1: bitix<%02u> wordix<%02u>: %08x | %08x = %08x wfree %d",
  2444. bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) | bitmap, count));
  2445. }
  2446. #endif /* BCM_MWBMAP_DEBUG */
  2447. *bitmap_p |= bitmap;
  2448. return;
  2449. }
  2450. /* Fetch the toal number of free indices in the multiword bitmap allocator */
  2451. uint32
  2452. bcm_mwbmap_free_cnt(struct bcm_mwbmap * mwbmap_hdl)
  2453. {
  2454. bcm_mwbmap_t * mwbmap_p;
  2455. BCM_MWBMAP_AUDIT(mwbmap_hdl);
  2456. mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
  2457. ASSERT(mwbmap_p->ifree >= 0);
  2458. return mwbmap_p->ifree;
  2459. }
  2460. /* Determine whether an index is inuse or free */
  2461. bool
  2462. bcm_mwbmap_isfree(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix)
  2463. {
  2464. bcm_mwbmap_t * mwbmap_p;
  2465. uint32 wordix, bitmap;
  2466. BCM_MWBMAP_AUDIT(mwbmap_hdl);
  2467. mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
  2468. ASSERT(bitix < mwbmap_p->total);
  2469. wordix = BCM_MWBMAP_DIVOP(bitix);
  2470. bitmap = (1U << BCM_MWBMAP_MODOP(bitix));
  2471. return ((mwbmap_p->id_bitmap[wordix] & bitmap) != 0U);
  2472. }
  2473. /* Debug dump a multiword bitmap allocator */
  2474. void
  2475. bcm_mwbmap_show(struct bcm_mwbmap * mwbmap_hdl)
  2476. {
  2477. uint32 ix, count;
  2478. bcm_mwbmap_t * mwbmap_p;
  2479. BCM_MWBMAP_AUDIT(mwbmap_hdl);
  2480. mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
  2481. printf("mwbmap_p %p wmaps %u imaps %u ifree %d total %u\n", mwbmap_p,
  2482. mwbmap_p->wmaps, mwbmap_p->imaps, mwbmap_p->ifree, mwbmap_p->total);
  2483. for (ix = 0U; ix < mwbmap_p->wmaps; ix++) {
  2484. printf("\tWDMAP:%2u. 0x%08x\t", ix, mwbmap_p->wd_bitmap[ix]);
  2485. bcm_bitprint32(mwbmap_p->wd_bitmap[ix]);
  2486. printf("\n");
  2487. }
  2488. for (ix = 0U; ix < mwbmap_p->imaps; ix++) {
  2489. #if defined(BCM_MWBMAP_USE_CNTSETBITS)
  2490. count = bcm_cntsetbits(mwbmap_p->id_bitmap[ix]);
  2491. #else /* ! BCM_MWBMAP_USE_CNTSETBITS */
  2492. count = mwbmap_p->wd_count[ix];
  2493. MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[ix]));
  2494. #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
  2495. printf("\tIDMAP:%2u. 0x%08x %02u\t", ix, mwbmap_p->id_bitmap[ix], count);
  2496. bcm_bitprint32(mwbmap_p->id_bitmap[ix]);
  2497. printf("\n");
  2498. }
  2499. return;
  2500. }
  2501. /* Audit a hierarchical multiword bitmap */
  2502. void
  2503. bcm_mwbmap_audit(struct bcm_mwbmap * mwbmap_hdl)
  2504. {
  2505. bcm_mwbmap_t * mwbmap_p;
  2506. uint32 count, free_cnt = 0U, wordix, idmap_ix, bitix, *bitmap_p;
  2507. mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
  2508. for (wordix = 0U; wordix < mwbmap_p->wmaps; ++wordix) {
  2509. bitmap_p = &mwbmap_p->wd_bitmap[wordix];
  2510. for (bitix = 0U; bitix < BCM_MWBMAP_BITS_WORD; bitix++) {
  2511. if ((*bitmap_p) & (1 << bitix)) {
  2512. idmap_ix = BCM_MWBMAP_MULOP(wordix) + bitix;
  2513. #if defined(BCM_MWBMAP_USE_CNTSETBITS)
  2514. count = bcm_cntsetbits(mwbmap_p->id_bitmap[idmap_ix]);
  2515. #else /* ! BCM_MWBMAP_USE_CNTSETBITS */
  2516. count = mwbmap_p->wd_count[idmap_ix];
  2517. ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[idmap_ix]));
  2518. #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
  2519. ASSERT(count != 0U);
  2520. free_cnt += count;
  2521. }
  2522. }
  2523. }
  2524. ASSERT(free_cnt == mwbmap_p->ifree);
  2525. }
  2526. /* END : Multiword bitmap based 64bit to Unique 32bit Id allocator. */
  2527. #endif /* BCMDRIVER */
  2528. /* calculate a >> b; and returns only lower 32 bits */
  2529. void
  2530. bcm_uint64_right_shift(uint32* r, uint32 a_high, uint32 a_low, uint32 b)
  2531. {
  2532. uint32 a1 = a_high, a0 = a_low, r0 = 0;
  2533. if (b == 0) {
  2534. r0 = a_low;
  2535. *r = r0;
  2536. return;
  2537. }
  2538. if (b < 32) {
  2539. a0 = a0 >> b;
  2540. a1 = a1 & ((1 << b) - 1);
  2541. a1 = a1 << (32 - b);
  2542. r0 = a0 | a1;
  2543. *r = r0;
  2544. return;
  2545. } else {
  2546. r0 = a1 >> (b - 32);
  2547. *r = r0;
  2548. return;
  2549. }
  2550. }
  2551. /* calculate a + b where a is a 64 bit number and b is a 32 bit number */
  2552. void
  2553. bcm_add_64(uint32* r_hi, uint32* r_lo, uint32 offset)
  2554. {
  2555. uint32 r1_lo = *r_lo;
  2556. (*r_lo) += offset;
  2557. if (*r_lo < r1_lo)
  2558. (*r_hi) ++;
  2559. }
  2560. /* calculate a - b where a is a 64 bit number and b is a 32 bit number */
  2561. void
  2562. bcm_sub_64(uint32* r_hi, uint32* r_lo, uint32 offset)
  2563. {
  2564. uint32 r1_lo = *r_lo;
  2565. (*r_lo) -= offset;
  2566. if (*r_lo > r1_lo)
  2567. (*r_hi) --;
  2568. }
  2569. #ifdef DEBUG_COUNTER
  2570. #if (OSL_SYSUPTIME_SUPPORT == TRUE)
  2571. void counter_printlog(counter_tbl_t *ctr_tbl)
  2572. {
  2573. uint32 now;
  2574. if (!ctr_tbl->enabled)
  2575. return;
  2576. now = OSL_SYSUPTIME();
  2577. if (now - ctr_tbl->prev_log_print > ctr_tbl->log_print_interval) {
  2578. uint8 i = 0;
  2579. printf("counter_print(%s %d):", ctr_tbl->name, now - ctr_tbl->prev_log_print);
  2580. for (i = 0; i < ctr_tbl->needed_cnt; i++) {
  2581. printf(" %u", ctr_tbl->cnt[i]);
  2582. }
  2583. printf("\n");
  2584. ctr_tbl->prev_log_print = now;
  2585. bzero(ctr_tbl->cnt, CNTR_TBL_MAX * sizeof(uint));
  2586. }
  2587. }
  2588. #else
  2589. /* OSL_SYSUPTIME is not supported so no way to get time */
  2590. #define counter_printlog(a) do {} while (0)
  2591. #endif /* OSL_SYSUPTIME_SUPPORT == TRUE */
  2592. #endif /* DEBUG_COUNTER */