123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951 |
- /*
- * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
- * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
- * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
- * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- *
- */
- /***********************\
- * PHY related functions *
- \***********************/
- #include <linux/delay.h>
- #include <linux/slab.h>
- #include <asm/unaligned.h>
- #include "ath5k.h"
- #include "reg.h"
- #include "rfbuffer.h"
- #include "rfgain.h"
- #include "../regd.h"
- /**
- * DOC: PHY related functions
- *
- * Here we handle the low-level functions related to baseband
- * and analog frontend (RF) parts. This is by far the most complex
- * part of the hw code so make sure you know what you are doing.
- *
- * Here is a list of what this is all about:
- *
- * - Channel setting/switching
- *
- * - Automatic Gain Control (AGC) calibration
- *
- * - Noise Floor calibration
- *
- * - I/Q imbalance calibration (QAM correction)
- *
- * - Calibration due to thermal changes (gain_F)
- *
- * - Spur noise mitigation
- *
- * - RF/PHY initialization for the various operating modes and bwmodes
- *
- * - Antenna control
- *
- * - TX power control per channel/rate/packet type
- *
- * Also have in mind we never got documentation for most of these
- * functions, what we have comes mostly from Atheros's code, reverse
- * engineering and patent docs/presentations etc.
- */
- /******************\
- * Helper functions *
- \******************/
- /**
- * ath5k_hw_radio_revision() - Get the PHY Chip revision
- * @ah: The &struct ath5k_hw
- * @band: One of enum ieee80211_band
- *
- * Returns the revision number of a 2GHz, 5GHz or single chip
- * radio.
- */
- u16
- ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
- {
- unsigned int i;
- u32 srev;
- u16 ret;
- /*
- * Set the radio chip access register
- */
- switch (band) {
- case IEEE80211_BAND_2GHZ:
- ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
- break;
- case IEEE80211_BAND_5GHZ:
- ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
- break;
- default:
- return 0;
- }
- usleep_range(2000, 2500);
- /* ...wait until PHY is ready and read the selected radio revision */
- ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
- for (i = 0; i < 8; i++)
- ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
- if (ah->ah_version == AR5K_AR5210) {
- srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
- ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
- } else {
- srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
- ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
- ((srev & 0x0f) << 4), 8);
- }
- /* Reset to the 5GHz mode */
- ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
- return ret;
- }
- /**
- * ath5k_channel_ok() - Check if a channel is supported by the hw
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- *
- * Note: We don't do any regulatory domain checks here, it's just
- * a sanity check.
- */
- bool
- ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
- {
- u16 freq = channel->center_freq;
- /* Check if the channel is in our supported range */
- if (channel->band == IEEE80211_BAND_2GHZ) {
- if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
- (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
- return true;
- } else if (channel->band == IEEE80211_BAND_5GHZ)
- if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
- (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
- return true;
- return false;
- }
- /**
- * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- */
- bool
- ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
- {
- u8 refclk_freq;
- if ((ah->ah_radio == AR5K_RF5112) ||
- (ah->ah_radio == AR5K_RF5413) ||
- (ah->ah_radio == AR5K_RF2413) ||
- (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
- refclk_freq = 40;
- else
- refclk_freq = 32;
- if ((channel->center_freq % refclk_freq != 0) &&
- ((channel->center_freq % refclk_freq < 10) ||
- (channel->center_freq % refclk_freq > 22)))
- return true;
- else
- return false;
- }
- /**
- * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
- * @ah: The &struct ath5k_hw
- * @rf_regs: The struct ath5k_rf_reg
- * @val: New value
- * @reg_id: RF register ID
- * @set: Indicate we need to swap data
- *
- * This is an internal function used to modify RF Banks before
- * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
- * infos.
- */
- static unsigned int
- ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
- u32 val, u8 reg_id, bool set)
- {
- const struct ath5k_rf_reg *rfreg = NULL;
- u8 offset, bank, num_bits, col, position;
- u16 entry;
- u32 mask, data, last_bit, bits_shifted, first_bit;
- u32 *rfb;
- s32 bits_left;
- int i;
- data = 0;
- rfb = ah->ah_rf_banks;
- for (i = 0; i < ah->ah_rf_regs_count; i++) {
- if (rf_regs[i].index == reg_id) {
- rfreg = &rf_regs[i];
- break;
- }
- }
- if (rfb == NULL || rfreg == NULL) {
- ATH5K_PRINTF("Rf register not found!\n");
- /* should not happen */
- return 0;
- }
- bank = rfreg->bank;
- num_bits = rfreg->field.len;
- first_bit = rfreg->field.pos;
- col = rfreg->field.col;
- /* first_bit is an offset from bank's
- * start. Since we have all banks on
- * the same array, we use this offset
- * to mark each bank's start */
- offset = ah->ah_offset[bank];
- /* Boundary check */
- if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
- ATH5K_PRINTF("invalid values at offset %u\n", offset);
- return 0;
- }
- entry = ((first_bit - 1) / 8) + offset;
- position = (first_bit - 1) % 8;
- if (set)
- data = ath5k_hw_bitswap(val, num_bits);
- for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
- position = 0, entry++) {
- last_bit = (position + bits_left > 8) ? 8 :
- position + bits_left;
- mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
- (col * 8);
- if (set) {
- rfb[entry] &= ~mask;
- rfb[entry] |= ((data << position) << (col * 8)) & mask;
- data >>= (8 - position);
- } else {
- data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
- << bits_shifted;
- bits_shifted += last_bit - position;
- }
- bits_left -= 8 - position;
- }
- data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
- return data;
- }
- /**
- * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
- * @ah: the &struct ath5k_hw
- * @channel: the currently set channel upon reset
- *
- * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
- * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
- *
- * Since delta slope is floating point we split it on its exponent and
- * mantissa and provide these values on hw.
- *
- * For more infos i think this patent is related
- * "http://www.freepatentsonline.com/7184495.html"
- */
- static inline int
- ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
- {
- /* Get exponent and mantissa and set it */
- u32 coef_scaled, coef_exp, coef_man,
- ds_coef_exp, ds_coef_man, clock;
- BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
- (channel->hw_value == AR5K_MODE_11B));
- /* Get coefficient
- * ALGO: coef = (5 * clock / carrier_freq) / 2
- * we scale coef by shifting clock value by 24 for
- * better precision since we use integers */
- switch (ah->ah_bwmode) {
- case AR5K_BWMODE_40MHZ:
- clock = 40 * 2;
- break;
- case AR5K_BWMODE_10MHZ:
- clock = 40 / 2;
- break;
- case AR5K_BWMODE_5MHZ:
- clock = 40 / 4;
- break;
- default:
- clock = 40;
- break;
- }
- coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
- /* Get exponent
- * ALGO: coef_exp = 14 - highest set bit position */
- coef_exp = ilog2(coef_scaled);
- /* Doesn't make sense if it's zero*/
- if (!coef_scaled || !coef_exp)
- return -EINVAL;
- /* Note: we've shifted coef_scaled by 24 */
- coef_exp = 14 - (coef_exp - 24);
- /* Get mantissa (significant digits)
- * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
- coef_man = coef_scaled +
- (1 << (24 - coef_exp - 1));
- /* Calculate delta slope coefficient exponent
- * and mantissa (remove scaling) and set them on hw */
- ds_coef_man = coef_man >> (24 - coef_exp);
- ds_coef_exp = coef_exp - 16;
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
- AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
- AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
- return 0;
- }
- /**
- * ath5k_hw_phy_disable() - Disable PHY
- * @ah: The &struct ath5k_hw
- */
- int ath5k_hw_phy_disable(struct ath5k_hw *ah)
- {
- /*Just a try M.F.*/
- ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
- return 0;
- }
- /**
- * ath5k_hw_wait_for_synth() - Wait for synth to settle
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- */
- static void
- ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
- {
- /*
- * On 5211+ read activation -> rx delay
- * and use it (100ns steps).
- */
- if (ah->ah_version != AR5K_AR5210) {
- u32 delay;
- delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
- AR5K_PHY_RX_DELAY_M;
- delay = (channel->hw_value == AR5K_MODE_11B) ?
- ((delay << 2) / 22) : (delay / 10);
- if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
- delay = delay << 1;
- if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
- delay = delay << 2;
- /* XXX: /2 on turbo ? Let's be safe
- * for now */
- usleep_range(100 + delay, 100 + (2 * delay));
- } else {
- usleep_range(1000, 1500);
- }
- }
- /**********************\
- * RF Gain optimization *
- \**********************/
- /**
- * DOC: RF Gain optimization
- *
- * This code is used to optimize RF gain on different environments
- * (temperature mostly) based on feedback from a power detector.
- *
- * It's only used on RF5111 and RF5112, later RF chips seem to have
- * auto adjustment on hw -notice they have a much smaller BANK 7 and
- * no gain optimization ladder-.
- *
- * For more infos check out this patent doc
- * "http://www.freepatentsonline.com/7400691.html"
- *
- * This paper describes power drops as seen on the receiver due to
- * probe packets
- * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
- * %20of%20Power%20Control.pdf"
- *
- * And this is the MadWiFi bug entry related to the above
- * "http://madwifi-project.org/ticket/1659"
- * with various measurements and diagrams
- */
- /**
- * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
- * @ah: The &struct ath5k_hw
- */
- int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
- {
- /* Initialize the gain optimization values */
- switch (ah->ah_radio) {
- case AR5K_RF5111:
- ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
- ah->ah_gain.g_low = 20;
- ah->ah_gain.g_high = 35;
- ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
- break;
- case AR5K_RF5112:
- ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
- ah->ah_gain.g_low = 20;
- ah->ah_gain.g_high = 85;
- ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
- break;
- default:
- return -EINVAL;
- }
- return 0;
- }
- /**
- * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
- * @ah: The &struct ath5k_hw
- *
- * Schedules a gain probe check on the next transmitted packet.
- * That means our next packet is going to be sent with lower
- * tx power and a Peak to Average Power Detector (PAPD) will try
- * to measure the gain.
- *
- * TODO: Force a tx packet (bypassing PCU arbitrator etc)
- * just after we enable the probe so that we don't mess with
- * standard traffic.
- */
- static void
- ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
- {
- /* Skip if gain calibration is inactive or
- * we already handle a probe request */
- if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
- return;
- /* Send the packet with 2dB below max power as
- * patent doc suggest */
- ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
- AR5K_PHY_PAPD_PROBE_TXPOWER) |
- AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
- ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
- }
- /**
- * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
- * @ah: The &struct ath5k_hw
- *
- * Calculate Gain_F measurement correction
- * based on the current step for RF5112 rev. 2
- */
- static u32
- ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
- {
- u32 mix, step;
- u32 *rf;
- const struct ath5k_gain_opt *go;
- const struct ath5k_gain_opt_step *g_step;
- const struct ath5k_rf_reg *rf_regs;
- /* Only RF5112 Rev. 2 supports it */
- if ((ah->ah_radio != AR5K_RF5112) ||
- (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
- return 0;
- go = &rfgain_opt_5112;
- rf_regs = rf_regs_5112a;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
- g_step = &go->go_step[ah->ah_gain.g_step_idx];
- if (ah->ah_rf_banks == NULL)
- return 0;
- rf = ah->ah_rf_banks;
- ah->ah_gain.g_f_corr = 0;
- /* No VGA (Variable Gain Amplifier) override, skip */
- if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
- return 0;
- /* Mix gain stepping */
- step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
- /* Mix gain override */
- mix = g_step->gos_param[0];
- switch (mix) {
- case 3:
- ah->ah_gain.g_f_corr = step * 2;
- break;
- case 2:
- ah->ah_gain.g_f_corr = (step - 5) * 2;
- break;
- case 1:
- ah->ah_gain.g_f_corr = step;
- break;
- default:
- ah->ah_gain.g_f_corr = 0;
- break;
- }
- return ah->ah_gain.g_f_corr;
- }
- /**
- * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
- * @ah: The &struct ath5k_hw
- *
- * Check if current gain_F measurement is in the range of our
- * power detector windows. If we get a measurement outside range
- * we know it's not accurate (detectors can't measure anything outside
- * their detection window) so we must ignore it.
- *
- * Returns true if readback was O.K. or false on failure
- */
- static bool
- ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
- {
- const struct ath5k_rf_reg *rf_regs;
- u32 step, mix_ovr, level[4];
- u32 *rf;
- if (ah->ah_rf_banks == NULL)
- return false;
- rf = ah->ah_rf_banks;
- if (ah->ah_radio == AR5K_RF5111) {
- rf_regs = rf_regs_5111;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
- step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
- false);
- level[0] = 0;
- level[1] = (step == 63) ? 50 : step + 4;
- level[2] = (step != 63) ? 64 : level[0];
- level[3] = level[2] + 50;
- ah->ah_gain.g_high = level[3] -
- (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
- ah->ah_gain.g_low = level[0] +
- (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
- } else {
- rf_regs = rf_regs_5112;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
- mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
- false);
- level[0] = level[2] = 0;
- if (mix_ovr == 1) {
- level[1] = level[3] = 83;
- } else {
- level[1] = level[3] = 107;
- ah->ah_gain.g_high = 55;
- }
- }
- return (ah->ah_gain.g_current >= level[0] &&
- ah->ah_gain.g_current <= level[1]) ||
- (ah->ah_gain.g_current >= level[2] &&
- ah->ah_gain.g_current <= level[3]);
- }
- /**
- * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
- * @ah: The &struct ath5k_hw
- *
- * Choose the right target gain based on current gain
- * and RF gain optimization ladder
- */
- static s8
- ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
- {
- const struct ath5k_gain_opt *go;
- const struct ath5k_gain_opt_step *g_step;
- int ret = 0;
- switch (ah->ah_radio) {
- case AR5K_RF5111:
- go = &rfgain_opt_5111;
- break;
- case AR5K_RF5112:
- go = &rfgain_opt_5112;
- break;
- default:
- return 0;
- }
- g_step = &go->go_step[ah->ah_gain.g_step_idx];
- if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
- /* Reached maximum */
- if (ah->ah_gain.g_step_idx == 0)
- return -1;
- for (ah->ah_gain.g_target = ah->ah_gain.g_current;
- ah->ah_gain.g_target >= ah->ah_gain.g_high &&
- ah->ah_gain.g_step_idx > 0;
- g_step = &go->go_step[ah->ah_gain.g_step_idx])
- ah->ah_gain.g_target -= 2 *
- (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
- g_step->gos_gain);
- ret = 1;
- goto done;
- }
- if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
- /* Reached minimum */
- if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
- return -2;
- for (ah->ah_gain.g_target = ah->ah_gain.g_current;
- ah->ah_gain.g_target <= ah->ah_gain.g_low &&
- ah->ah_gain.g_step_idx < go->go_steps_count - 1;
- g_step = &go->go_step[ah->ah_gain.g_step_idx])
- ah->ah_gain.g_target -= 2 *
- (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
- g_step->gos_gain);
- ret = 2;
- goto done;
- }
- done:
- ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
- "ret %d, gain step %u, current gain %u, target gain %u\n",
- ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
- ah->ah_gain.g_target);
- return ret;
- }
- /**
- * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
- * @ah: The &struct ath5k_hw
- *
- * Main callback for thermal RF gain calibration engine
- * Check for a new gain reading and schedule an adjustment
- * if needed.
- *
- * Returns one of enum ath5k_rfgain codes
- */
- enum ath5k_rfgain
- ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
- {
- u32 data, type;
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
- if (ah->ah_rf_banks == NULL ||
- ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
- return AR5K_RFGAIN_INACTIVE;
- /* No check requested, either engine is inactive
- * or an adjustment is already requested */
- if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
- goto done;
- /* Read the PAPD (Peak to Average Power Detector)
- * register */
- data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
- /* No probe is scheduled, read gain_F measurement */
- if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
- ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
- type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
- /* If tx packet is CCK correct the gain_F measurement
- * by cck ofdm gain delta */
- if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
- if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
- ah->ah_gain.g_current +=
- ee->ee_cck_ofdm_gain_delta;
- else
- ah->ah_gain.g_current +=
- AR5K_GAIN_CCK_PROBE_CORR;
- }
- /* Further correct gain_F measurement for
- * RF5112A radios */
- if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
- ath5k_hw_rf_gainf_corr(ah);
- ah->ah_gain.g_current =
- ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
- (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
- 0;
- }
- /* Check if measurement is ok and if we need
- * to adjust gain, schedule a gain adjustment,
- * else switch back to the active state */
- if (ath5k_hw_rf_check_gainf_readback(ah) &&
- AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
- ath5k_hw_rf_gainf_adjust(ah)) {
- ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
- } else {
- ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
- }
- }
- done:
- return ah->ah_gain.g_state;
- }
- /**
- * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
- * @ah: The &struct ath5k_hw
- * @band: One of enum ieee80211_band
- *
- * Write initial RF gain table to set the RF sensitivity.
- *
- * NOTE: This one works on all RF chips and has nothing to do
- * with Gain_F calibration
- */
- static int
- ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
- {
- const struct ath5k_ini_rfgain *ath5k_rfg;
- unsigned int i, size, index;
- switch (ah->ah_radio) {
- case AR5K_RF5111:
- ath5k_rfg = rfgain_5111;
- size = ARRAY_SIZE(rfgain_5111);
- break;
- case AR5K_RF5112:
- ath5k_rfg = rfgain_5112;
- size = ARRAY_SIZE(rfgain_5112);
- break;
- case AR5K_RF2413:
- ath5k_rfg = rfgain_2413;
- size = ARRAY_SIZE(rfgain_2413);
- break;
- case AR5K_RF2316:
- ath5k_rfg = rfgain_2316;
- size = ARRAY_SIZE(rfgain_2316);
- break;
- case AR5K_RF5413:
- ath5k_rfg = rfgain_5413;
- size = ARRAY_SIZE(rfgain_5413);
- break;
- case AR5K_RF2317:
- case AR5K_RF2425:
- ath5k_rfg = rfgain_2425;
- size = ARRAY_SIZE(rfgain_2425);
- break;
- default:
- return -EINVAL;
- }
- index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
- for (i = 0; i < size; i++) {
- AR5K_REG_WAIT(i);
- ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
- (u32)ath5k_rfg[i].rfg_register);
- }
- return 0;
- }
- /********************\
- * RF Registers setup *
- \********************/
- /**
- * ath5k_hw_rfregs_init() - Initialize RF register settings
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- * @mode: One of enum ath5k_driver_mode
- *
- * Setup RF registers by writing RF buffer on hw. For
- * more infos on this, check out rfbuffer.h
- */
- static int
- ath5k_hw_rfregs_init(struct ath5k_hw *ah,
- struct ieee80211_channel *channel,
- unsigned int mode)
- {
- const struct ath5k_rf_reg *rf_regs;
- const struct ath5k_ini_rfbuffer *ini_rfb;
- const struct ath5k_gain_opt *go = NULL;
- const struct ath5k_gain_opt_step *g_step;
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
- u8 ee_mode = 0;
- u32 *rfb;
- int i, obdb = -1, bank = -1;
- switch (ah->ah_radio) {
- case AR5K_RF5111:
- rf_regs = rf_regs_5111;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
- ini_rfb = rfb_5111;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
- go = &rfgain_opt_5111;
- break;
- case AR5K_RF5112:
- if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
- rf_regs = rf_regs_5112a;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
- ini_rfb = rfb_5112a;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
- } else {
- rf_regs = rf_regs_5112;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
- ini_rfb = rfb_5112;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
- }
- go = &rfgain_opt_5112;
- break;
- case AR5K_RF2413:
- rf_regs = rf_regs_2413;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
- ini_rfb = rfb_2413;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
- break;
- case AR5K_RF2316:
- rf_regs = rf_regs_2316;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
- ini_rfb = rfb_2316;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
- break;
- case AR5K_RF5413:
- rf_regs = rf_regs_5413;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
- ini_rfb = rfb_5413;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
- break;
- case AR5K_RF2317:
- rf_regs = rf_regs_2425;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
- ini_rfb = rfb_2317;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
- break;
- case AR5K_RF2425:
- rf_regs = rf_regs_2425;
- ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
- if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
- ini_rfb = rfb_2425;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
- } else {
- ini_rfb = rfb_2417;
- ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
- }
- break;
- default:
- return -EINVAL;
- }
- /* If it's the first time we set RF buffer, allocate
- * ah->ah_rf_banks based on ah->ah_rf_banks_size
- * we set above */
- if (ah->ah_rf_banks == NULL) {
- ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
- GFP_KERNEL);
- if (ah->ah_rf_banks == NULL) {
- ATH5K_ERR(ah, "out of memory\n");
- return -ENOMEM;
- }
- }
- /* Copy values to modify them */
- rfb = ah->ah_rf_banks;
- for (i = 0; i < ah->ah_rf_banks_size; i++) {
- if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
- ATH5K_ERR(ah, "invalid bank\n");
- return -EINVAL;
- }
- /* Bank changed, write down the offset */
- if (bank != ini_rfb[i].rfb_bank) {
- bank = ini_rfb[i].rfb_bank;
- ah->ah_offset[bank] = i;
- }
- rfb[i] = ini_rfb[i].rfb_mode_data[mode];
- }
- /* Set Output and Driver bias current (OB/DB) */
- if (channel->band == IEEE80211_BAND_2GHZ) {
- if (channel->hw_value == AR5K_MODE_11B)
- ee_mode = AR5K_EEPROM_MODE_11B;
- else
- ee_mode = AR5K_EEPROM_MODE_11G;
- /* For RF511X/RF211X combination we
- * use b_OB and b_DB parameters stored
- * in eeprom on ee->ee_ob[ee_mode][0]
- *
- * For all other chips we use OB/DB for 2GHz
- * stored in the b/g modal section just like
- * 802.11a on ee->ee_ob[ee_mode][1] */
- if ((ah->ah_radio == AR5K_RF5111) ||
- (ah->ah_radio == AR5K_RF5112))
- obdb = 0;
- else
- obdb = 1;
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
- AR5K_RF_OB_2GHZ, true);
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
- AR5K_RF_DB_2GHZ, true);
- /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
- } else if ((channel->band == IEEE80211_BAND_5GHZ) ||
- (ah->ah_radio == AR5K_RF5111)) {
- /* For 11a, Turbo and XR we need to choose
- * OB/DB based on frequency range */
- ee_mode = AR5K_EEPROM_MODE_11A;
- obdb = channel->center_freq >= 5725 ? 3 :
- (channel->center_freq >= 5500 ? 2 :
- (channel->center_freq >= 5260 ? 1 :
- (channel->center_freq > 4000 ? 0 : -1)));
- if (obdb < 0)
- return -EINVAL;
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
- AR5K_RF_OB_5GHZ, true);
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
- AR5K_RF_DB_5GHZ, true);
- }
- g_step = &go->go_step[ah->ah_gain.g_step_idx];
- /* Set turbo mode (N/A on RF5413) */
- if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
- (ah->ah_radio != AR5K_RF5413))
- ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
- /* Bank Modifications (chip-specific) */
- if (ah->ah_radio == AR5K_RF5111) {
- /* Set gain_F settings according to current step */
- if (channel->hw_value != AR5K_MODE_11B) {
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
- AR5K_PHY_FRAME_CTL_TX_CLIP,
- g_step->gos_param[0]);
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
- AR5K_RF_PWD_90, true);
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
- AR5K_RF_PWD_84, true);
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
- AR5K_RF_RFGAIN_SEL, true);
- /* We programmed gain_F parameters, switch back
- * to active state */
- ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
- }
- /* Bank 6/7 setup */
- ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
- AR5K_RF_PWD_XPD, true);
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
- AR5K_RF_XPD_GAIN, true);
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
- AR5K_RF_GAIN_I, true);
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
- AR5K_RF_PLO_SEL, true);
- /* Tweak power detectors for half/quarter rate support */
- if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
- ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
- u8 wait_i;
- ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
- AR5K_RF_WAIT_S, true);
- wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
- 0x1f : 0x10;
- ath5k_hw_rfb_op(ah, rf_regs, wait_i,
- AR5K_RF_WAIT_I, true);
- ath5k_hw_rfb_op(ah, rf_regs, 3,
- AR5K_RF_MAX_TIME, true);
- }
- }
- if (ah->ah_radio == AR5K_RF5112) {
- /* Set gain_F settings according to current step */
- if (channel->hw_value != AR5K_MODE_11B) {
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
- AR5K_RF_MIXGAIN_OVR, true);
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
- AR5K_RF_PWD_138, true);
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
- AR5K_RF_PWD_137, true);
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
- AR5K_RF_PWD_136, true);
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
- AR5K_RF_PWD_132, true);
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
- AR5K_RF_PWD_131, true);
- ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
- AR5K_RF_PWD_130, true);
- /* We programmed gain_F parameters, switch back
- * to active state */
- ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
- }
- /* Bank 6/7 setup */
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
- AR5K_RF_XPD_SEL, true);
- if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
- /* Rev. 1 supports only one xpd */
- ath5k_hw_rfb_op(ah, rf_regs,
- ee->ee_x_gain[ee_mode],
- AR5K_RF_XPD_GAIN, true);
- } else {
- u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
- if (ee->ee_pd_gains[ee_mode] > 1) {
- ath5k_hw_rfb_op(ah, rf_regs,
- pdg_curve_to_idx[0],
- AR5K_RF_PD_GAIN_LO, true);
- ath5k_hw_rfb_op(ah, rf_regs,
- pdg_curve_to_idx[1],
- AR5K_RF_PD_GAIN_HI, true);
- } else {
- ath5k_hw_rfb_op(ah, rf_regs,
- pdg_curve_to_idx[0],
- AR5K_RF_PD_GAIN_LO, true);
- ath5k_hw_rfb_op(ah, rf_regs,
- pdg_curve_to_idx[0],
- AR5K_RF_PD_GAIN_HI, true);
- }
- /* Lower synth voltage on Rev 2 */
- if (ah->ah_radio == AR5K_RF5112 &&
- (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
- ath5k_hw_rfb_op(ah, rf_regs, 2,
- AR5K_RF_HIGH_VC_CP, true);
- ath5k_hw_rfb_op(ah, rf_regs, 2,
- AR5K_RF_MID_VC_CP, true);
- ath5k_hw_rfb_op(ah, rf_regs, 2,
- AR5K_RF_LOW_VC_CP, true);
- ath5k_hw_rfb_op(ah, rf_regs, 2,
- AR5K_RF_PUSH_UP, true);
- }
- /* Decrease power consumption on 5213+ BaseBand */
- if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
- ath5k_hw_rfb_op(ah, rf_regs, 1,
- AR5K_RF_PAD2GND, true);
- ath5k_hw_rfb_op(ah, rf_regs, 1,
- AR5K_RF_XB2_LVL, true);
- ath5k_hw_rfb_op(ah, rf_regs, 1,
- AR5K_RF_XB5_LVL, true);
- ath5k_hw_rfb_op(ah, rf_regs, 1,
- AR5K_RF_PWD_167, true);
- ath5k_hw_rfb_op(ah, rf_regs, 1,
- AR5K_RF_PWD_166, true);
- }
- }
- ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
- AR5K_RF_GAIN_I, true);
- /* Tweak power detector for half/quarter rates */
- if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
- ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
- u8 pd_delay;
- pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
- 0xf : 0x8;
- ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
- AR5K_RF_PD_PERIOD_A, true);
- ath5k_hw_rfb_op(ah, rf_regs, 0xf,
- AR5K_RF_PD_DELAY_A, true);
- }
- }
- if (ah->ah_radio == AR5K_RF5413 &&
- channel->band == IEEE80211_BAND_2GHZ) {
- ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
- true);
- /* Set optimum value for early revisions (on pci-e chips) */
- if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
- ah->ah_mac_srev < AR5K_SREV_AR5413)
- ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
- AR5K_RF_PWD_ICLOBUF_2G, true);
- }
- /* Write RF banks on hw */
- for (i = 0; i < ah->ah_rf_banks_size; i++) {
- AR5K_REG_WAIT(i);
- ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
- }
- return 0;
- }
- /**************************\
- PHY/RF channel functions
- \**************************/
- /**
- * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
- * @channel: The &struct ieee80211_channel
- *
- * Map channel frequency to IEEE channel number and convert it
- * to an internal channel value used by the RF5110 chipset.
- */
- static u32
- ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
- {
- u32 athchan;
- athchan = (ath5k_hw_bitswap(
- (ieee80211_frequency_to_channel(
- channel->center_freq) - 24) / 2, 5)
- << 1) | (1 << 6) | 0x1;
- return athchan;
- }
- /**
- * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- */
- static int
- ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
- {
- u32 data;
- /*
- * Set the channel and wait
- */
- data = ath5k_hw_rf5110_chan2athchan(channel);
- ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
- ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
- usleep_range(1000, 1500);
- return 0;
- }
- /**
- * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
- * @ieee: IEEE channel number
- * @athchan: The &struct ath5k_athchan_2ghz
- *
- * In order to enable the RF2111 frequency converter on RF5111/2111 setups
- * we need to add some offsets and extra flags to the data values we pass
- * on to the PHY. So for every 2GHz channel this function gets called
- * to do the conversion.
- */
- static int
- ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
- struct ath5k_athchan_2ghz *athchan)
- {
- int channel;
- /* Cast this value to catch negative channel numbers (>= -19) */
- channel = (int)ieee;
- /*
- * Map 2GHz IEEE channel to 5GHz Atheros channel
- */
- if (channel <= 13) {
- athchan->a2_athchan = 115 + channel;
- athchan->a2_flags = 0x46;
- } else if (channel == 14) {
- athchan->a2_athchan = 124;
- athchan->a2_flags = 0x44;
- } else if (channel >= 15 && channel <= 26) {
- athchan->a2_athchan = ((channel - 14) * 4) + 132;
- athchan->a2_flags = 0x46;
- } else
- return -EINVAL;
- return 0;
- }
- /**
- * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- */
- static int
- ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
- {
- struct ath5k_athchan_2ghz ath5k_channel_2ghz;
- unsigned int ath5k_channel =
- ieee80211_frequency_to_channel(channel->center_freq);
- u32 data0, data1, clock;
- int ret;
- /*
- * Set the channel on the RF5111 radio
- */
- data0 = data1 = 0;
- if (channel->band == IEEE80211_BAND_2GHZ) {
- /* Map 2GHz channel to 5GHz Atheros channel ID */
- ret = ath5k_hw_rf5111_chan2athchan(
- ieee80211_frequency_to_channel(channel->center_freq),
- &ath5k_channel_2ghz);
- if (ret)
- return ret;
- ath5k_channel = ath5k_channel_2ghz.a2_athchan;
- data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
- << 5) | (1 << 4);
- }
- if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
- clock = 1;
- data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
- (clock << 1) | (1 << 10) | 1;
- } else {
- clock = 0;
- data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
- << 2) | (clock << 1) | (1 << 10) | 1;
- }
- ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
- AR5K_RF_BUFFER);
- ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
- AR5K_RF_BUFFER_CONTROL_3);
- return 0;
- }
- /**
- * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- *
- * On RF5112/2112 and newer we don't need to do any conversion.
- * We pass the frequency value after a few modifications to the
- * chip directly.
- *
- * NOTE: Make sure channel frequency given is within our range or else
- * we might damage the chip ! Use ath5k_channel_ok before calling this one.
- */
- static int
- ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
- {
- u32 data, data0, data1, data2;
- u16 c;
- data = data0 = data1 = data2 = 0;
- c = channel->center_freq;
- /* My guess based on code:
- * 2GHz RF has 2 synth modes, one with a Local Oscillator
- * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
- * (3040/2). data0 is used to set the PLL divider and data1
- * selects synth mode. */
- if (c < 4800) {
- /* Channel 14 and all frequencies with 2Hz spacing
- * below/above (non-standard channels) */
- if (!((c - 2224) % 5)) {
- /* Same as (c - 2224) / 5 */
- data0 = ((2 * (c - 704)) - 3040) / 10;
- data1 = 1;
- /* Channel 1 and all frequencies with 5Hz spacing
- * below/above (standard channels without channel 14) */
- } else if (!((c - 2192) % 5)) {
- /* Same as (c - 2192) / 5 */
- data0 = ((2 * (c - 672)) - 3040) / 10;
- data1 = 0;
- } else
- return -EINVAL;
- data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
- /* This is more complex, we have a single synthesizer with
- * 4 reference clock settings (?) based on frequency spacing
- * and set using data2. LO is at 4800Hz and data0 is again used
- * to set some divider.
- *
- * NOTE: There is an old atheros presentation at Stanford
- * that mentions a method called dual direct conversion
- * with 1GHz sliding IF for RF5110. Maybe that's what we
- * have here, or an updated version. */
- } else if ((c % 5) != 2 || c > 5435) {
- if (!(c % 20) && c >= 5120) {
- data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
- data2 = ath5k_hw_bitswap(3, 2);
- } else if (!(c % 10)) {
- data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
- data2 = ath5k_hw_bitswap(2, 2);
- } else if (!(c % 5)) {
- data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
- data2 = ath5k_hw_bitswap(1, 2);
- } else
- return -EINVAL;
- } else {
- data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
- data2 = ath5k_hw_bitswap(0, 2);
- }
- data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
- ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
- ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
- return 0;
- }
- /**
- * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- *
- * AR2425/2417 have a different 2GHz RF so code changes
- * a little bit from RF5112.
- */
- static int
- ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
- {
- u32 data, data0, data2;
- u16 c;
- data = data0 = data2 = 0;
- c = channel->center_freq;
- if (c < 4800) {
- data0 = ath5k_hw_bitswap((c - 2272), 8);
- data2 = 0;
- /* ? 5GHz ? */
- } else if ((c % 5) != 2 || c > 5435) {
- if (!(c % 20) && c < 5120)
- data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
- else if (!(c % 10))
- data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
- else if (!(c % 5))
- data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
- else
- return -EINVAL;
- data2 = ath5k_hw_bitswap(1, 2);
- } else {
- data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
- data2 = ath5k_hw_bitswap(0, 2);
- }
- data = (data0 << 4) | data2 << 2 | 0x1001;
- ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
- ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
- return 0;
- }
- /**
- * ath5k_hw_channel() - Set a channel on the radio chip
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- *
- * This is the main function called to set a channel on the
- * radio chip based on the radio chip version.
- */
- static int
- ath5k_hw_channel(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
- {
- int ret;
- /*
- * Check bounds supported by the PHY (we don't care about regulatory
- * restrictions at this point).
- */
- if (!ath5k_channel_ok(ah, channel)) {
- ATH5K_ERR(ah,
- "channel frequency (%u MHz) out of supported "
- "band range\n",
- channel->center_freq);
- return -EINVAL;
- }
- /*
- * Set the channel and wait
- */
- switch (ah->ah_radio) {
- case AR5K_RF5110:
- ret = ath5k_hw_rf5110_channel(ah, channel);
- break;
- case AR5K_RF5111:
- ret = ath5k_hw_rf5111_channel(ah, channel);
- break;
- case AR5K_RF2317:
- case AR5K_RF2425:
- ret = ath5k_hw_rf2425_channel(ah, channel);
- break;
- default:
- ret = ath5k_hw_rf5112_channel(ah, channel);
- break;
- }
- if (ret)
- return ret;
- /* Set JAPAN setting for channel 14 */
- if (channel->center_freq == 2484) {
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
- AR5K_PHY_CCKTXCTL_JAPAN);
- } else {
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
- AR5K_PHY_CCKTXCTL_WORLD);
- }
- ah->ah_current_channel = channel;
- return 0;
- }
- /*****************\
- PHY calibration
- \*****************/
- /**
- * DOC: PHY Calibration routines
- *
- * Noise floor calibration: When we tell the hardware to
- * perform a noise floor calibration by setting the
- * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
- * sample-and-hold the minimum noise level seen at the antennas.
- * This value is then stored in a ring buffer of recently measured
- * noise floor values so we have a moving window of the last few
- * samples. The median of the values in the history is then loaded
- * into the hardware for its own use for RSSI and CCA measurements.
- * This type of calibration doesn't interfere with traffic.
- *
- * AGC calibration: When we tell the hardware to perform
- * an AGC (Automatic Gain Control) calibration by setting the
- * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
- * a calibration on the DC offsets of ADCs. During this period
- * rx/tx gets disabled so we have to deal with it on the driver
- * part.
- *
- * I/Q calibration: When we tell the hardware to perform
- * an I/Q calibration, it tries to correct I/Q imbalance and
- * fix QAM constellation by sampling data from rxed frames.
- * It doesn't interfere with traffic.
- *
- * For more infos on AGC and I/Q calibration check out patent doc
- * #03/094463.
- */
- /**
- * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
- * @ah: The &struct ath5k_hw
- */
- static s32
- ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
- {
- s32 val;
- val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
- return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
- }
- /**
- * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
- * @ah: The &struct ath5k_hw
- */
- void
- ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
- {
- int i;
- ah->ah_nfcal_hist.index = 0;
- for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
- ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
- }
- /**
- * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
- * @ah: The &struct ath5k_hw
- * @noise_floor: The NF we got from hw
- */
- static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
- {
- struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
- hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
- hist->nfval[hist->index] = noise_floor;
- }
- /**
- * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
- * @ah: The &struct ath5k_hw
- */
- static s16
- ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
- {
- s16 sort[ATH5K_NF_CAL_HIST_MAX];
- s16 tmp;
- int i, j;
- memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
- for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
- for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
- if (sort[j] > sort[j - 1]) {
- tmp = sort[j];
- sort[j] = sort[j - 1];
- sort[j - 1] = tmp;
- }
- }
- }
- for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
- ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
- "cal %d:%d\n", i, sort[i]);
- }
- return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
- }
- /**
- * ath5k_hw_update_noise_floor() - Update NF on hardware
- * @ah: The &struct ath5k_hw
- *
- * This is the main function we call to perform a NF calibration,
- * it reads NF from hardware, calculates the median and updates
- * NF on hw.
- */
- void
- ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
- {
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
- u32 val;
- s16 nf, threshold;
- u8 ee_mode;
- /* keep last value if calibration hasn't completed */
- if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
- ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
- "NF did not complete in calibration window\n");
- return;
- }
- ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
- ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
- /* completed NF calibration, test threshold */
- nf = ath5k_hw_read_measured_noise_floor(ah);
- threshold = ee->ee_noise_floor_thr[ee_mode];
- if (nf > threshold) {
- ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
- "noise floor failure detected; "
- "read %d, threshold %d\n",
- nf, threshold);
- nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
- }
- ath5k_hw_update_nfcal_hist(ah, nf);
- nf = ath5k_hw_get_median_noise_floor(ah);
- /* load noise floor (in .5 dBm) so the hardware will use it */
- val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
- val |= (nf * 2) & AR5K_PHY_NF_M;
- ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
- AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
- ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
- ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
- 0, false);
- /*
- * Load a high max CCA Power value (-50 dBm in .5 dBm units)
- * so that we're not capped by the median we just loaded.
- * This will be used as the initial value for the next noise
- * floor calibration.
- */
- val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
- ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
- AR5K_PHY_AGCCTL_NF_EN |
- AR5K_PHY_AGCCTL_NF_NOUPDATE |
- AR5K_PHY_AGCCTL_NF);
- ah->ah_noise_floor = nf;
- ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
- ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
- "noise floor calibrated: %d\n", nf);
- }
- /**
- * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- *
- * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
- */
- static int
- ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
- {
- u32 phy_sig, phy_agc, phy_sat, beacon;
- int ret;
- if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
- return 0;
- /*
- * Disable beacons and RX/TX queues, wait
- */
- AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
- AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
- beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
- ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
- usleep_range(2000, 2500);
- /*
- * Set the channel (with AGC turned off)
- */
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
- udelay(10);
- ret = ath5k_hw_channel(ah, channel);
- /*
- * Activate PHY and wait
- */
- ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
- usleep_range(1000, 1500);
- AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
- if (ret)
- return ret;
- /*
- * Calibrate the radio chip
- */
- /* Remember normal state */
- phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
- phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
- phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
- /* Update radio registers */
- ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
- AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
- ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
- AR5K_PHY_AGCCOARSE_LO)) |
- AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
- AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
- ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
- AR5K_PHY_ADCSAT_THR)) |
- AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
- AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
- udelay(20);
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
- udelay(10);
- ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
- AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
- usleep_range(1000, 1500);
- /*
- * Enable calibration and wait until completion
- */
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
- ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
- AR5K_PHY_AGCCTL_CAL, 0, false);
- /* Reset to normal state */
- ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
- ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
- ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
- if (ret) {
- ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
- channel->center_freq);
- return ret;
- }
- /*
- * Re-enable RX/TX and beacons
- */
- AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
- AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
- ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
- return 0;
- }
- /**
- * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
- * @ah: The &struct ath5k_hw
- */
- static int
- ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
- {
- u32 i_pwr, q_pwr;
- s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
- int i;
- /* Skip if I/Q calibration is not needed or if it's still running */
- if (!ah->ah_iq_cal_needed)
- return -EINVAL;
- else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
- ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
- "I/Q calibration still running");
- return -EBUSY;
- }
- /* Calibration has finished, get the results and re-run */
- /* Work around for empty results which can apparently happen on 5212:
- * Read registers up to 10 times until we get both i_pr and q_pwr */
- for (i = 0; i <= 10; i++) {
- iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
- i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
- q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
- ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
- "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
- if (i_pwr && q_pwr)
- break;
- }
- i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
- if (ah->ah_version == AR5K_AR5211)
- q_coffd = q_pwr >> 6;
- else
- q_coffd = q_pwr >> 7;
- /* In case i_coffd became zero, cancel calibration
- * not only it's too small, it'll also result a divide
- * by zero later on. */
- if (i_coffd == 0 || q_coffd < 2)
- return -ECANCELED;
- /* Protect against loss of sign bits */
- i_coff = (-iq_corr) / i_coffd;
- i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
- if (ah->ah_version == AR5K_AR5211)
- q_coff = (i_pwr / q_coffd) - 64;
- else
- q_coff = (i_pwr / q_coffd) - 128;
- q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
- ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
- "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
- i_coff, q_coff, i_coffd, q_coffd);
- /* Commit new I/Q values (set enable bit last to match HAL sources) */
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
- /* Re-enable calibration -if we don't we'll commit
- * the same values again and again */
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
- AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
- return 0;
- }
- /**
- * ath5k_hw_phy_calibrate() - Perform a PHY calibration
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- *
- * The main function we call from above to perform
- * a short or full PHY calibration based on RF chip
- * and current channel
- */
- int
- ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
- {
- int ret;
- if (ah->ah_radio == AR5K_RF5110)
- return ath5k_hw_rf5110_calibrate(ah, channel);
- ret = ath5k_hw_rf511x_iq_calibrate(ah);
- if (ret) {
- ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
- "No I/Q correction performed (%uMHz)\n",
- channel->center_freq);
- /* Happens all the time if there is not much
- * traffic, consider it normal behaviour. */
- ret = 0;
- }
- /* On full calibration request a PAPD probe for
- * gainf calibration if needed */
- if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
- (ah->ah_radio == AR5K_RF5111 ||
- ah->ah_radio == AR5K_RF5112) &&
- channel->hw_value != AR5K_MODE_11B)
- ath5k_hw_request_rfgain_probe(ah);
- /* Update noise floor */
- if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
- ath5k_hw_update_noise_floor(ah);
- return ret;
- }
- /***************************\
- * Spur mitigation functions *
- \***************************/
- /**
- * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- *
- * This function gets called during PHY initialization to
- * configure the spur filter for the given channel. Spur is noise
- * generated due to "reflection" effects, for more information on this
- * method check out patent US7643810
- */
- static void
- ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
- {
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
- u32 mag_mask[4] = {0, 0, 0, 0};
- u32 pilot_mask[2] = {0, 0};
- /* Note: fbin values are scaled up by 2 */
- u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
- s32 spur_delta_phase, spur_freq_sigma_delta;
- s32 spur_offset, num_symbols_x16;
- u8 num_symbol_offsets, i, freq_band;
- /* Convert current frequency to fbin value (the same way channels
- * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
- * up by 2 so we can compare it later */
- if (channel->band == IEEE80211_BAND_2GHZ) {
- chan_fbin = (channel->center_freq - 2300) * 10;
- freq_band = AR5K_EEPROM_BAND_2GHZ;
- } else {
- chan_fbin = (channel->center_freq - 4900) * 10;
- freq_band = AR5K_EEPROM_BAND_5GHZ;
- }
- /* Check if any spur_chan_fbin from EEPROM is
- * within our current channel's spur detection range */
- spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
- spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
- /* XXX: Half/Quarter channels ?*/
- if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
- spur_detection_window *= 2;
- for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
- spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
- /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
- * so it's zero if we got nothing from EEPROM */
- if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
- spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
- break;
- }
- if ((chan_fbin - spur_detection_window <=
- (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
- (chan_fbin + spur_detection_window >=
- (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
- spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
- break;
- }
- }
- /* We need to enable spur filter for this channel */
- if (spur_chan_fbin) {
- spur_offset = spur_chan_fbin - chan_fbin;
- /*
- * Calculate deltas:
- * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
- * spur_delta_phase -> spur_offset / chip_freq << 11
- * Note: Both values have 100Hz resolution
- */
- switch (ah->ah_bwmode) {
- case AR5K_BWMODE_40MHZ:
- /* Both sample_freq and chip_freq are 80MHz */
- spur_delta_phase = (spur_offset << 16) / 25;
- spur_freq_sigma_delta = (spur_delta_phase >> 10);
- symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
- break;
- case AR5K_BWMODE_10MHZ:
- /* Both sample_freq and chip_freq are 20MHz (?) */
- spur_delta_phase = (spur_offset << 18) / 25;
- spur_freq_sigma_delta = (spur_delta_phase >> 10);
- symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
- case AR5K_BWMODE_5MHZ:
- /* Both sample_freq and chip_freq are 10MHz (?) */
- spur_delta_phase = (spur_offset << 19) / 25;
- spur_freq_sigma_delta = (spur_delta_phase >> 10);
- symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
- default:
- if (channel->band == IEEE80211_BAND_5GHZ) {
- /* Both sample_freq and chip_freq are 40MHz */
- spur_delta_phase = (spur_offset << 17) / 25;
- spur_freq_sigma_delta =
- (spur_delta_phase >> 10);
- symbol_width =
- AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
- } else {
- /* sample_freq -> 40MHz chip_freq -> 44MHz
- * (for b compatibility) */
- spur_delta_phase = (spur_offset << 17) / 25;
- spur_freq_sigma_delta =
- (spur_offset << 8) / 55;
- symbol_width =
- AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
- }
- break;
- }
- /* Calculate pilot and magnitude masks */
- /* Scale up spur_offset by 1000 to switch to 100HZ resolution
- * and divide by symbol_width to find how many symbols we have
- * Note: number of symbols is scaled up by 16 */
- num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
- /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
- if (!(num_symbols_x16 & 0xF))
- /* _X_ */
- num_symbol_offsets = 3;
- else
- /* _xx_ */
- num_symbol_offsets = 4;
- for (i = 0; i < num_symbol_offsets; i++) {
- /* Calculate pilot mask */
- s32 curr_sym_off =
- (num_symbols_x16 / 16) + i + 25;
- /* Pilot magnitude mask seems to be a way to
- * declare the boundaries for our detection
- * window or something, it's 2 for the middle
- * value(s) where the symbol is expected to be
- * and 1 on the boundary values */
- u8 plt_mag_map =
- (i == 0 || i == (num_symbol_offsets - 1))
- ? 1 : 2;
- if (curr_sym_off >= 0 && curr_sym_off <= 32) {
- if (curr_sym_off <= 25)
- pilot_mask[0] |= 1 << curr_sym_off;
- else if (curr_sym_off >= 27)
- pilot_mask[0] |= 1 << (curr_sym_off - 1);
- } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
- pilot_mask[1] |= 1 << (curr_sym_off - 33);
- /* Calculate magnitude mask (for viterbi decoder) */
- if (curr_sym_off >= -1 && curr_sym_off <= 14)
- mag_mask[0] |=
- plt_mag_map << (curr_sym_off + 1) * 2;
- else if (curr_sym_off >= 15 && curr_sym_off <= 30)
- mag_mask[1] |=
- plt_mag_map << (curr_sym_off - 15) * 2;
- else if (curr_sym_off >= 31 && curr_sym_off <= 46)
- mag_mask[2] |=
- plt_mag_map << (curr_sym_off - 31) * 2;
- else if (curr_sym_off >= 47 && curr_sym_off <= 53)
- mag_mask[3] |=
- plt_mag_map << (curr_sym_off - 47) * 2;
- }
- /* Write settings on hw to enable spur filter */
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
- AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
- /* XXX: Self correlator also ? */
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
- AR5K_PHY_IQ_PILOT_MASK_EN |
- AR5K_PHY_IQ_CHAN_MASK_EN |
- AR5K_PHY_IQ_SPUR_FILT_EN);
- /* Set delta phase and freq sigma delta */
- ath5k_hw_reg_write(ah,
- AR5K_REG_SM(spur_delta_phase,
- AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
- AR5K_REG_SM(spur_freq_sigma_delta,
- AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
- AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
- AR5K_PHY_TIMING_11);
- /* Write pilot masks */
- ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
- AR5K_PHY_TIMING_8_PILOT_MASK_2,
- pilot_mask[1]);
- ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
- AR5K_PHY_TIMING_10_PILOT_MASK_2,
- pilot_mask[1]);
- /* Write magnitude masks */
- ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
- ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
- ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
- AR5K_PHY_BIN_MASK_CTL_MASK_4,
- mag_mask[3]);
- ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
- ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
- ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
- AR5K_PHY_BIN_MASK2_4_MASK_4,
- mag_mask[3]);
- } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
- AR5K_PHY_IQ_SPUR_FILT_EN) {
- /* Clean up spur mitigation settings and disable filter */
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
- AR5K_PHY_BIN_MASK_CTL_RATE, 0);
- AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
- AR5K_PHY_IQ_PILOT_MASK_EN |
- AR5K_PHY_IQ_CHAN_MASK_EN |
- AR5K_PHY_IQ_SPUR_FILT_EN);
- ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
- /* Clear pilot masks */
- ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
- AR5K_PHY_TIMING_8_PILOT_MASK_2,
- 0);
- ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
- AR5K_PHY_TIMING_10_PILOT_MASK_2,
- 0);
- /* Clear magnitude masks */
- ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
- ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
- ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
- AR5K_PHY_BIN_MASK_CTL_MASK_4,
- 0);
- ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
- ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
- ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
- AR5K_PHY_BIN_MASK2_4_MASK_4,
- 0);
- }
- }
- /*****************\
- * Antenna control *
- \*****************/
- /**
- * DOC: Antenna control
- *
- * Hw supports up to 14 antennas ! I haven't found any card that implements
- * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
- * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
- * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
- *
- * We can have a single antenna for RX and multiple antennas for TX.
- * RX antenna is our "default" antenna (usually antenna 1) set on
- * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
- * (0 for automatic selection, 1 - 14 antenna number).
- *
- * We can let hw do all the work doing fast antenna diversity for both
- * tx and rx or we can do things manually. Here are the options we have
- * (all are bits of STA_ID1 register):
- *
- * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
- * control descriptor, use the default antenna to transmit or else use the last
- * antenna on which we received an ACK.
- *
- * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
- * the antenna on which we got the ACK for that frame.
- *
- * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
- * one on the TX descriptor.
- *
- * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
- * (ACKs etc), or else use current antenna (the one we just used for TX).
- *
- * Using the above we support the following scenarios:
- *
- * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
- *
- * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
- *
- * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
- *
- * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
- *
- * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
- *
- * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
- *
- * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
- *
- * Also note that when setting antenna to F on tx descriptor card inverts
- * current tx antenna.
- */
- /**
- * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
- * @ah: The &struct ath5k_hw
- * @ant: Antenna number
- */
- static void
- ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
- {
- if (ah->ah_version != AR5K_AR5210)
- ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
- }
- /**
- * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity
- * @ah: The &struct ath5k_hw
- * @ee_mode: One of enum ath5k_driver_mode
- * @enable: True to enable, false to disable
- */
- static void
- ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
- {
- switch (ee_mode) {
- case AR5K_EEPROM_MODE_11G:
- /* XXX: This is set to
- * disabled on initvals !!! */
- case AR5K_EEPROM_MODE_11A:
- if (enable)
- AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
- AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
- else
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
- AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
- break;
- case AR5K_EEPROM_MODE_11B:
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
- AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
- break;
- default:
- return;
- }
- if (enable) {
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
- AR5K_PHY_RESTART_DIV_GC, 4);
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
- AR5K_PHY_FAST_ANT_DIV_EN);
- } else {
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
- AR5K_PHY_RESTART_DIV_GC, 0);
- AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
- AR5K_PHY_FAST_ANT_DIV_EN);
- }
- }
- /**
- * ath5k_hw_set_antenna_switch() - Set up antenna switch table
- * @ah: The &struct ath5k_hw
- * @ee_mode: One of enum ath5k_driver_mode
- *
- * Switch table comes from EEPROM and includes information on controlling
- * the 2 antenna RX attenuators
- */
- void
- ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
- {
- u8 ant0, ant1;
- /*
- * In case a fixed antenna was set as default
- * use the same switch table twice.
- */
- if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
- ant0 = ant1 = AR5K_ANT_SWTABLE_A;
- else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
- ant0 = ant1 = AR5K_ANT_SWTABLE_B;
- else {
- ant0 = AR5K_ANT_SWTABLE_A;
- ant1 = AR5K_ANT_SWTABLE_B;
- }
- /* Set antenna idle switch table */
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
- AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
- (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
- AR5K_PHY_ANT_CTL_TXRX_EN));
- /* Set antenna switch tables */
- ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
- AR5K_PHY_ANT_SWITCH_TABLE_0);
- ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
- AR5K_PHY_ANT_SWITCH_TABLE_1);
- }
- /**
- * ath5k_hw_set_antenna_mode() - Set antenna operating mode
- * @ah: The &struct ath5k_hw
- * @ant_mode: One of enum ath5k_ant_mode
- */
- void
- ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
- {
- struct ieee80211_channel *channel = ah->ah_current_channel;
- bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
- bool use_def_for_sg;
- int ee_mode;
- u8 def_ant, tx_ant;
- u32 sta_id1 = 0;
- /* if channel is not initialized yet we can't set the antennas
- * so just store the mode. it will be set on the next reset */
- if (channel == NULL) {
- ah->ah_ant_mode = ant_mode;
- return;
- }
- def_ant = ah->ah_def_ant;
- ee_mode = ath5k_eeprom_mode_from_channel(channel);
- if (ee_mode < 0) {
- ATH5K_ERR(ah,
- "invalid channel: %d\n", channel->center_freq);
- return;
- }
- switch (ant_mode) {
- case AR5K_ANTMODE_DEFAULT:
- tx_ant = 0;
- use_def_for_tx = false;
- update_def_on_tx = false;
- use_def_for_rts = false;
- use_def_for_sg = false;
- fast_div = true;
- break;
- case AR5K_ANTMODE_FIXED_A:
- def_ant = 1;
- tx_ant = 1;
- use_def_for_tx = true;
- update_def_on_tx = false;
- use_def_for_rts = true;
- use_def_for_sg = true;
- fast_div = false;
- break;
- case AR5K_ANTMODE_FIXED_B:
- def_ant = 2;
- tx_ant = 2;
- use_def_for_tx = true;
- update_def_on_tx = false;
- use_def_for_rts = true;
- use_def_for_sg = true;
- fast_div = false;
- break;
- case AR5K_ANTMODE_SINGLE_AP:
- def_ant = 1; /* updated on tx */
- tx_ant = 0;
- use_def_for_tx = true;
- update_def_on_tx = true;
- use_def_for_rts = true;
- use_def_for_sg = true;
- fast_div = true;
- break;
- case AR5K_ANTMODE_SECTOR_AP:
- tx_ant = 1; /* variable */
- use_def_for_tx = false;
- update_def_on_tx = false;
- use_def_for_rts = true;
- use_def_for_sg = false;
- fast_div = false;
- break;
- case AR5K_ANTMODE_SECTOR_STA:
- tx_ant = 1; /* variable */
- use_def_for_tx = true;
- update_def_on_tx = false;
- use_def_for_rts = true;
- use_def_for_sg = false;
- fast_div = true;
- break;
- case AR5K_ANTMODE_DEBUG:
- def_ant = 1;
- tx_ant = 2;
- use_def_for_tx = false;
- update_def_on_tx = false;
- use_def_for_rts = false;
- use_def_for_sg = false;
- fast_div = false;
- break;
- default:
- return;
- }
- ah->ah_tx_ant = tx_ant;
- ah->ah_ant_mode = ant_mode;
- ah->ah_def_ant = def_ant;
- sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
- sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
- sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
- sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
- AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
- if (sta_id1)
- AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
- ath5k_hw_set_antenna_switch(ah, ee_mode);
- /* Note: set diversity before default antenna
- * because it won't work correctly */
- ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
- ath5k_hw_set_def_antenna(ah, def_ant);
- }
- /****************\
- * TX power setup *
- \****************/
- /*
- * Helper functions
- */
- /**
- * ath5k_get_interpolated_value() - Get interpolated Y val between two points
- * @target: X value of the middle point
- * @x_left: X value of the left point
- * @x_right: X value of the right point
- * @y_left: Y value of the left point
- * @y_right: Y value of the right point
- */
- static s16
- ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
- s16 y_left, s16 y_right)
- {
- s16 ratio, result;
- /* Avoid divide by zero and skip interpolation
- * if we have the same point */
- if ((x_left == x_right) || (y_left == y_right))
- return y_left;
- /*
- * Since we use ints and not fps, we need to scale up in
- * order to get a sane ratio value (or else we 'll eg. get
- * always 1 instead of 1.25, 1.75 etc). We scale up by 100
- * to have some accuracy both for 0.5 and 0.25 steps.
- */
- ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
- /* Now scale down to be in range */
- result = y_left + (ratio * (target - x_left) / 100);
- return result;
- }
- /**
- * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
- * linear PCDAC curve
- * @stepL: Left array with y values (pcdac steps)
- * @stepR: Right array with y values (pcdac steps)
- * @pwrL: Left array with x values (power steps)
- * @pwrR: Right array with x values (power steps)
- *
- * Since we have the top of the curve and we draw the line below
- * until we reach 1 (1 pcdac step) we need to know which point
- * (x value) that is so that we don't go below x axis and have negative
- * pcdac values when creating the curve, or fill the table with zeros.
- */
- static s16
- ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
- const s16 *pwrL, const s16 *pwrR)
- {
- s8 tmp;
- s16 min_pwrL, min_pwrR;
- s16 pwr_i;
- /* Some vendors write the same pcdac value twice !!! */
- if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
- return max(pwrL[0], pwrR[0]);
- if (pwrL[0] == pwrL[1])
- min_pwrL = pwrL[0];
- else {
- pwr_i = pwrL[0];
- do {
- pwr_i--;
- tmp = (s8) ath5k_get_interpolated_value(pwr_i,
- pwrL[0], pwrL[1],
- stepL[0], stepL[1]);
- } while (tmp > 1);
- min_pwrL = pwr_i;
- }
- if (pwrR[0] == pwrR[1])
- min_pwrR = pwrR[0];
- else {
- pwr_i = pwrR[0];
- do {
- pwr_i--;
- tmp = (s8) ath5k_get_interpolated_value(pwr_i,
- pwrR[0], pwrR[1],
- stepR[0], stepR[1]);
- } while (tmp > 1);
- min_pwrR = pwr_i;
- }
- /* Keep the right boundary so that it works for both curves */
- return max(min_pwrL, min_pwrR);
- }
- /**
- * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
- * @pmin: Minimum power value (xmin)
- * @pmax: Maximum power value (xmax)
- * @pwr: Array of power steps (x values)
- * @vpd: Array of matching PCDAC/PDADC steps (y values)
- * @num_points: Number of provided points
- * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
- * @type: One of enum ath5k_powertable_type (eeprom.h)
- *
- * Interpolate (pwr,vpd) points to create a Power to PDADC or a
- * Power to PCDAC curve.
- *
- * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
- * steps (offsets) on y axis. Power can go up to 31.5dB and max
- * PCDAC/PDADC step for each curve is 64 but we can write more than
- * one curves on hw so we can go up to 128 (which is the max step we
- * can write on the final table).
- *
- * We write y values (PCDAC/PDADC steps) on hw.
- */
- static void
- ath5k_create_power_curve(s16 pmin, s16 pmax,
- const s16 *pwr, const u8 *vpd,
- u8 num_points,
- u8 *vpd_table, u8 type)
- {
- u8 idx[2] = { 0, 1 };
- s16 pwr_i = 2 * pmin;
- int i;
- if (num_points < 2)
- return;
- /* We want the whole line, so adjust boundaries
- * to cover the entire power range. Note that
- * power values are already 0.25dB so no need
- * to multiply pwr_i by 2 */
- if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
- pwr_i = pmin;
- pmin = 0;
- pmax = 63;
- }
- /* Find surrounding turning points (TPs)
- * and interpolate between them */
- for (i = 0; (i <= (u16) (pmax - pmin)) &&
- (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
- /* We passed the right TP, move to the next set of TPs
- * if we pass the last TP, extrapolate above using the last
- * two TPs for ratio */
- if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
- idx[0]++;
- idx[1]++;
- }
- vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
- pwr[idx[0]], pwr[idx[1]],
- vpd[idx[0]], vpd[idx[1]]);
- /* Increase by 0.5dB
- * (0.25 dB units) */
- pwr_i += 2;
- }
- }
- /**
- * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
- * for a given channel.
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
- * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
- *
- * Get the surrounding per-channel power calibration piers
- * for a given frequency so that we can interpolate between
- * them and come up with an appropriate dataset for our current
- * channel.
- */
- static void
- ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
- struct ieee80211_channel *channel,
- struct ath5k_chan_pcal_info **pcinfo_l,
- struct ath5k_chan_pcal_info **pcinfo_r)
- {
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
- struct ath5k_chan_pcal_info *pcinfo;
- u8 idx_l, idx_r;
- u8 mode, max, i;
- u32 target = channel->center_freq;
- idx_l = 0;
- idx_r = 0;
- switch (channel->hw_value) {
- case AR5K_EEPROM_MODE_11A:
- pcinfo = ee->ee_pwr_cal_a;
- mode = AR5K_EEPROM_MODE_11A;
- break;
- case AR5K_EEPROM_MODE_11B:
- pcinfo = ee->ee_pwr_cal_b;
- mode = AR5K_EEPROM_MODE_11B;
- break;
- case AR5K_EEPROM_MODE_11G:
- default:
- pcinfo = ee->ee_pwr_cal_g;
- mode = AR5K_EEPROM_MODE_11G;
- break;
- }
- max = ee->ee_n_piers[mode] - 1;
- /* Frequency is below our calibrated
- * range. Use the lowest power curve
- * we have */
- if (target < pcinfo[0].freq) {
- idx_l = idx_r = 0;
- goto done;
- }
- /* Frequency is above our calibrated
- * range. Use the highest power curve
- * we have */
- if (target > pcinfo[max].freq) {
- idx_l = idx_r = max;
- goto done;
- }
- /* Frequency is inside our calibrated
- * channel range. Pick the surrounding
- * calibration piers so that we can
- * interpolate */
- for (i = 0; i <= max; i++) {
- /* Frequency matches one of our calibration
- * piers, no need to interpolate, just use
- * that calibration pier */
- if (pcinfo[i].freq == target) {
- idx_l = idx_r = i;
- goto done;
- }
- /* We found a calibration pier that's above
- * frequency, use this pier and the previous
- * one to interpolate */
- if (target < pcinfo[i].freq) {
- idx_r = i;
- idx_l = idx_r - 1;
- goto done;
- }
- }
- done:
- *pcinfo_l = &pcinfo[idx_l];
- *pcinfo_r = &pcinfo[idx_r];
- }
- /**
- * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
- * calibration data
- * @ah: The &struct ath5k_hw *ah,
- * @channel: The &struct ieee80211_channel
- * @rates: The &struct ath5k_rate_pcal_info to fill
- *
- * Get the surrounding per-rate power calibration data
- * for a given frequency and interpolate between power
- * values to set max target power supported by hw for
- * each rate on this frequency.
- */
- static void
- ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
- struct ieee80211_channel *channel,
- struct ath5k_rate_pcal_info *rates)
- {
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
- struct ath5k_rate_pcal_info *rpinfo;
- u8 idx_l, idx_r;
- u8 mode, max, i;
- u32 target = channel->center_freq;
- idx_l = 0;
- idx_r = 0;
- switch (channel->hw_value) {
- case AR5K_MODE_11A:
- rpinfo = ee->ee_rate_tpwr_a;
- mode = AR5K_EEPROM_MODE_11A;
- break;
- case AR5K_MODE_11B:
- rpinfo = ee->ee_rate_tpwr_b;
- mode = AR5K_EEPROM_MODE_11B;
- break;
- case AR5K_MODE_11G:
- default:
- rpinfo = ee->ee_rate_tpwr_g;
- mode = AR5K_EEPROM_MODE_11G;
- break;
- }
- max = ee->ee_rate_target_pwr_num[mode] - 1;
- /* Get the surrounding calibration
- * piers - same as above */
- if (target < rpinfo[0].freq) {
- idx_l = idx_r = 0;
- goto done;
- }
- if (target > rpinfo[max].freq) {
- idx_l = idx_r = max;
- goto done;
- }
- for (i = 0; i <= max; i++) {
- if (rpinfo[i].freq == target) {
- idx_l = idx_r = i;
- goto done;
- }
- if (target < rpinfo[i].freq) {
- idx_r = i;
- idx_l = idx_r - 1;
- goto done;
- }
- }
- done:
- /* Now interpolate power value, based on the frequency */
- rates->freq = target;
- rates->target_power_6to24 =
- ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
- rpinfo[idx_r].freq,
- rpinfo[idx_l].target_power_6to24,
- rpinfo[idx_r].target_power_6to24);
- rates->target_power_36 =
- ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
- rpinfo[idx_r].freq,
- rpinfo[idx_l].target_power_36,
- rpinfo[idx_r].target_power_36);
- rates->target_power_48 =
- ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
- rpinfo[idx_r].freq,
- rpinfo[idx_l].target_power_48,
- rpinfo[idx_r].target_power_48);
- rates->target_power_54 =
- ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
- rpinfo[idx_r].freq,
- rpinfo[idx_l].target_power_54,
- rpinfo[idx_r].target_power_54);
- }
- /**
- * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
- * @ah: the &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- *
- * Get the max edge power for this channel if
- * we have such data from EEPROM's Conformance Test
- * Limits (CTL), and limit max power if needed.
- */
- static void
- ath5k_get_max_ctl_power(struct ath5k_hw *ah,
- struct ieee80211_channel *channel)
- {
- struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
- struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
- u8 *ctl_val = ee->ee_ctl;
- s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
- s16 edge_pwr = 0;
- u8 rep_idx;
- u8 i, ctl_mode;
- u8 ctl_idx = 0xFF;
- u32 target = channel->center_freq;
- ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
- switch (channel->hw_value) {
- case AR5K_MODE_11A:
- if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
- ctl_mode |= AR5K_CTL_TURBO;
- else
- ctl_mode |= AR5K_CTL_11A;
- break;
- case AR5K_MODE_11G:
- if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
- ctl_mode |= AR5K_CTL_TURBOG;
- else
- ctl_mode |= AR5K_CTL_11G;
- break;
- case AR5K_MODE_11B:
- ctl_mode |= AR5K_CTL_11B;
- break;
- default:
- return;
- }
- for (i = 0; i < ee->ee_ctls; i++) {
- if (ctl_val[i] == ctl_mode) {
- ctl_idx = i;
- break;
- }
- }
- /* If we have a CTL dataset available grab it and find the
- * edge power for our frequency */
- if (ctl_idx == 0xFF)
- return;
- /* Edge powers are sorted by frequency from lower
- * to higher. Each CTL corresponds to 8 edge power
- * measurements. */
- rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
- /* Don't do boundaries check because we
- * might have more that one bands defined
- * for this mode */
- /* Get the edge power that's closer to our
- * frequency */
- for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
- rep_idx += i;
- if (target <= rep[rep_idx].freq)
- edge_pwr = (s16) rep[rep_idx].edge;
- }
- if (edge_pwr)
- ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
- }
- /*
- * Power to PCDAC table functions
- */
- /**
- * DOC: Power to PCDAC table functions
- *
- * For RF5111 we have an XPD -eXternal Power Detector- curve
- * for each calibrated channel. Each curve has 0,5dB Power steps
- * on x axis and PCDAC steps (offsets) on y axis and looks like an
- * exponential function. To recreate the curve we read 11 points
- * from eeprom (eeprom.c) and interpolate here.
- *
- * For RF5112 we have 4 XPD -eXternal Power Detector- curves
- * for each calibrated channel on 0, -6, -12 and -18dBm but we only
- * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
- * power steps on x axis and PCDAC steps on y axis and looks like a
- * linear function. To recreate the curve and pass the power values
- * on hw, we get 4 points for xpd 0 (lower gain -> max power)
- * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
- * and interpolate here.
- *
- * For a given channel we get the calibrated points (piers) for it or
- * -if we don't have calibration data for this specific channel- from the
- * available surrounding channels we have calibration data for, after we do a
- * linear interpolation between them. Then since we have our calibrated points
- * for this channel, we do again a linear interpolation between them to get the
- * whole curve.
- *
- * We finally write the Y values of the curve(s) (the PCDAC values) on hw
- */
- /**
- * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
- * @ah: The &struct ath5k_hw
- * @table_min: Minimum power (x min)
- * @table_max: Maximum power (x max)
- *
- * No further processing is needed for RF5111, the only thing we have to
- * do is fill the values below and above calibration range since eeprom data
- * may not cover the entire PCDAC table.
- */
- static void
- ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
- s16 *table_max)
- {
- u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
- u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
- u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
- s16 min_pwr, max_pwr;
- /* Get table boundaries */
- min_pwr = table_min[0];
- pcdac_0 = pcdac_tmp[0];
- max_pwr = table_max[0];
- pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
- /* Extrapolate below minimum using pcdac_0 */
- pcdac_i = 0;
- for (i = 0; i < min_pwr; i++)
- pcdac_out[pcdac_i++] = pcdac_0;
- /* Copy values from pcdac_tmp */
- pwr_idx = min_pwr;
- for (i = 0; pwr_idx <= max_pwr &&
- pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
- pcdac_out[pcdac_i++] = pcdac_tmp[i];
- pwr_idx++;
- }
- /* Extrapolate above maximum */
- while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
- pcdac_out[pcdac_i++] = pcdac_n;
- }
- /**
- * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
- * @ah: The &struct ath5k_hw
- * @table_min: Minimum power (x min)
- * @table_max: Maximum power (x max)
- * @pdcurves: Number of pd curves
- *
- * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
- * RFX112 can have up to 2 curves (one for low txpower range and one for
- * higher txpower range). We need to put them both on pcdac_out and place
- * them in the correct location. In case we only have one curve available
- * just fit it on pcdac_out (it's supposed to cover the entire range of
- * available pwr levels since it's always the higher power curve). Extrapolate
- * below and above final table if needed.
- */
- static void
- ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
- s16 *table_max, u8 pdcurves)
- {
- u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
- u8 *pcdac_low_pwr;
- u8 *pcdac_high_pwr;
- u8 *pcdac_tmp;
- u8 pwr;
- s16 max_pwr_idx;
- s16 min_pwr_idx;
- s16 mid_pwr_idx = 0;
- /* Edge flag turns on the 7nth bit on the PCDAC
- * to declare the higher power curve (force values
- * to be greater than 64). If we only have one curve
- * we don't need to set this, if we have 2 curves and
- * fill the table backwards this can also be used to
- * switch from higher power curve to lower power curve */
- u8 edge_flag;
- int i;
- /* When we have only one curve available
- * that's the higher power curve. If we have
- * two curves the first is the high power curve
- * and the next is the low power curve. */
- if (pdcurves > 1) {
- pcdac_low_pwr = ah->ah_txpower.tmpL[1];
- pcdac_high_pwr = ah->ah_txpower.tmpL[0];
- mid_pwr_idx = table_max[1] - table_min[1] - 1;
- max_pwr_idx = (table_max[0] - table_min[0]) / 2;
- /* If table size goes beyond 31.5dB, keep the
- * upper 31.5dB range when setting tx power.
- * Note: 126 = 31.5 dB in quarter dB steps */
- if (table_max[0] - table_min[1] > 126)
- min_pwr_idx = table_max[0] - 126;
- else
- min_pwr_idx = table_min[1];
- /* Since we fill table backwards
- * start from high power curve */
- pcdac_tmp = pcdac_high_pwr;
- edge_flag = 0x40;
- } else {
- pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
- pcdac_high_pwr = ah->ah_txpower.tmpL[0];
- min_pwr_idx = table_min[0];
- max_pwr_idx = (table_max[0] - table_min[0]) / 2;
- pcdac_tmp = pcdac_high_pwr;
- edge_flag = 0;
- }
- /* This is used when setting tx power*/
- ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
- /* Fill Power to PCDAC table backwards */
- pwr = max_pwr_idx;
- for (i = 63; i >= 0; i--) {
- /* Entering lower power range, reset
- * edge flag and set pcdac_tmp to lower
- * power curve.*/
- if (edge_flag == 0x40 &&
- (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
- edge_flag = 0x00;
- pcdac_tmp = pcdac_low_pwr;
- pwr = mid_pwr_idx / 2;
- }
- /* Don't go below 1, extrapolate below if we have
- * already switched to the lower power curve -or
- * we only have one curve and edge_flag is zero
- * anyway */
- if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
- while (i >= 0) {
- pcdac_out[i] = pcdac_out[i + 1];
- i--;
- }
- break;
- }
- pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
- /* Extrapolate above if pcdac is greater than
- * 126 -this can happen because we OR pcdac_out
- * value with edge_flag on high power curve */
- if (pcdac_out[i] > 126)
- pcdac_out[i] = 126;
- /* Decrease by a 0.5dB step */
- pwr--;
- }
- }
- /**
- * ath5k_write_pcdac_table() - Write the PCDAC values on hw
- * @ah: The &struct ath5k_hw
- */
- static void
- ath5k_write_pcdac_table(struct ath5k_hw *ah)
- {
- u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
- int i;
- /*
- * Write TX power values
- */
- for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
- ath5k_hw_reg_write(ah,
- (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
- (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
- AR5K_PHY_PCDAC_TXPOWER(i));
- }
- }
- /*
- * Power to PDADC table functions
- */
- /**
- * DOC: Power to PDADC table functions
- *
- * For RF2413 and later we have a Power to PDADC table (Power Detector)
- * instead of a PCDAC (Power Control) and 4 pd gain curves for each
- * calibrated channel. Each curve has power on x axis in 0.5 db steps and
- * PDADC steps on y axis and looks like an exponential function like the
- * RF5111 curve.
- *
- * To recreate the curves we read the points from eeprom (eeprom.c)
- * and interpolate here. Note that in most cases only 2 (higher and lower)
- * curves are used (like RF5112) but vendors have the opportunity to include
- * all 4 curves on eeprom. The final curve (higher power) has an extra
- * point for better accuracy like RF5112.
- *
- * The process is similar to what we do above for RF5111/5112
- */
- /**
- * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
- * @ah: The &struct ath5k_hw
- * @pwr_min: Minimum power (x min)
- * @pwr_max: Maximum power (x max)
- * @pdcurves: Number of available curves
- *
- * Combine the various pd curves and create the final Power to PDADC table
- * We can have up to 4 pd curves, we need to do a similar process
- * as we do for RF5112. This time we don't have an edge_flag but we
- * set the gain boundaries on a separate register.
- */
- static void
- ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
- s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
- {
- u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
- u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
- u8 *pdadc_tmp;
- s16 pdadc_0;
- u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
- u8 pd_gain_overlap;
- /* Note: Register value is initialized on initvals
- * there is no feedback from hw.
- * XXX: What about pd_gain_overlap from EEPROM ? */
- pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
- AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
- /* Create final PDADC table */
- for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
- pdadc_tmp = ah->ah_txpower.tmpL[pdg];
- if (pdg == pdcurves - 1)
- /* 2 dB boundary stretch for last
- * (higher power) curve */
- gain_boundaries[pdg] = pwr_max[pdg] + 4;
- else
- /* Set gain boundary in the middle
- * between this curve and the next one */
- gain_boundaries[pdg] =
- (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
- /* Sanity check in case our 2 db stretch got out of
- * range. */
- if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
- gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
- /* For the first curve (lower power)
- * start from 0 dB */
- if (pdg == 0)
- pdadc_0 = 0;
- else
- /* For the other curves use the gain overlap */
- pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
- pd_gain_overlap;
- /* Force each power step to be at least 0.5 dB */
- if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
- pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
- else
- pwr_step = 1;
- /* If pdadc_0 is negative, we need to extrapolate
- * below this pdgain by a number of pwr_steps */
- while ((pdadc_0 < 0) && (pdadc_i < 128)) {
- s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
- pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
- pdadc_0++;
- }
- /* Set last pwr level, using gain boundaries */
- pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
- /* Limit it to be inside pwr range */
- table_size = pwr_max[pdg] - pwr_min[pdg];
- max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
- /* Fill pdadc_out table */
- while (pdadc_0 < max_idx && pdadc_i < 128)
- pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
- /* Need to extrapolate above this pdgain? */
- if (pdadc_n <= max_idx)
- continue;
- /* Force each power step to be at least 0.5 dB */
- if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
- pwr_step = pdadc_tmp[table_size - 1] -
- pdadc_tmp[table_size - 2];
- else
- pwr_step = 1;
- /* Extrapolate above */
- while ((pdadc_0 < (s16) pdadc_n) &&
- (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
- s16 tmp = pdadc_tmp[table_size - 1] +
- (pdadc_0 - max_idx) * pwr_step;
- pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
- pdadc_0++;
- }
- }
- while (pdg < AR5K_EEPROM_N_PD_GAINS) {
- gain_boundaries[pdg] = gain_boundaries[pdg - 1];
- pdg++;
- }
- while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
- pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
- pdadc_i++;
- }
- /* Set gain boundaries */
- ath5k_hw_reg_write(ah,
- AR5K_REG_SM(pd_gain_overlap,
- AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
- AR5K_REG_SM(gain_boundaries[0],
- AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
- AR5K_REG_SM(gain_boundaries[1],
- AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
- AR5K_REG_SM(gain_boundaries[2],
- AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
- AR5K_REG_SM(gain_boundaries[3],
- AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
- AR5K_PHY_TPC_RG5);
- /* Used for setting rate power table */
- ah->ah_txpower.txp_min_idx = pwr_min[0];
- }
- /**
- * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
- * @ah: The &struct ath5k_hw
- * @ee_mode: One of enum ath5k_driver_mode
- */
- static void
- ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
- {
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
- u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
- u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
- u8 pdcurves = ee->ee_pd_gains[ee_mode];
- u32 reg;
- u8 i;
- /* Select the right pdgain curves */
- /* Clear current settings */
- reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
- reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
- AR5K_PHY_TPC_RG1_PDGAIN_2 |
- AR5K_PHY_TPC_RG1_PDGAIN_3 |
- AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
- /*
- * Use pd_gains curve from eeprom
- *
- * This overrides the default setting from initvals
- * in case some vendors (e.g. Zcomax) don't use the default
- * curves. If we don't honor their settings we 'll get a
- * 5dB (1 * gain overlap ?) drop.
- */
- reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
- switch (pdcurves) {
- case 3:
- reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
- /* Fall through */
- case 2:
- reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
- /* Fall through */
- case 1:
- reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
- break;
- }
- ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
- /*
- * Write TX power values
- */
- for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
- u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
- ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
- }
- }
- /*
- * Common code for PCDAC/PDADC tables
- */
- /**
- * ath5k_setup_channel_powertable() - Set up power table for this channel
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- * @ee_mode: One of enum ath5k_driver_mode
- * @type: One of enum ath5k_powertable_type (eeprom.h)
- *
- * This is the main function that uses all of the above
- * to set PCDAC/PDADC table on hw for the current channel.
- * This table is used for tx power calibration on the baseband,
- * without it we get weird tx power levels and in some cases
- * distorted spectral mask
- */
- static int
- ath5k_setup_channel_powertable(struct ath5k_hw *ah,
- struct ieee80211_channel *channel,
- u8 ee_mode, u8 type)
- {
- struct ath5k_pdgain_info *pdg_L, *pdg_R;
- struct ath5k_chan_pcal_info *pcinfo_L;
- struct ath5k_chan_pcal_info *pcinfo_R;
- struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
- u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
- s16 table_min[AR5K_EEPROM_N_PD_GAINS];
- s16 table_max[AR5K_EEPROM_N_PD_GAINS];
- u8 *tmpL;
- u8 *tmpR;
- u32 target = channel->center_freq;
- int pdg, i;
- /* Get surrounding freq piers for this channel */
- ath5k_get_chan_pcal_surrounding_piers(ah, channel,
- &pcinfo_L,
- &pcinfo_R);
- /* Loop over pd gain curves on
- * surrounding freq piers by index */
- for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
- /* Fill curves in reverse order
- * from lower power (max gain)
- * to higher power. Use curve -> idx
- * backmapping we did on eeprom init */
- u8 idx = pdg_curve_to_idx[pdg];
- /* Grab the needed curves by index */
- pdg_L = &pcinfo_L->pd_curves[idx];
- pdg_R = &pcinfo_R->pd_curves[idx];
- /* Initialize the temp tables */
- tmpL = ah->ah_txpower.tmpL[pdg];
- tmpR = ah->ah_txpower.tmpR[pdg];
- /* Set curve's x boundaries and create
- * curves so that they cover the same
- * range (if we don't do that one table
- * will have values on some range and the
- * other one won't have any so interpolation
- * will fail) */
- table_min[pdg] = min(pdg_L->pd_pwr[0],
- pdg_R->pd_pwr[0]) / 2;
- table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
- pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
- /* Now create the curves on surrounding channels
- * and interpolate if needed to get the final
- * curve for this gain on this channel */
- switch (type) {
- case AR5K_PWRTABLE_LINEAR_PCDAC:
- /* Override min/max so that we don't loose
- * accuracy (don't divide by 2) */
- table_min[pdg] = min(pdg_L->pd_pwr[0],
- pdg_R->pd_pwr[0]);
- table_max[pdg] =
- max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
- pdg_R->pd_pwr[pdg_R->pd_points - 1]);
- /* Override minimum so that we don't get
- * out of bounds while extrapolating
- * below. Don't do this when we have 2
- * curves and we are on the high power curve
- * because table_min is ok in this case */
- if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
- table_min[pdg] =
- ath5k_get_linear_pcdac_min(pdg_L->pd_step,
- pdg_R->pd_step,
- pdg_L->pd_pwr,
- pdg_R->pd_pwr);
- /* Don't go too low because we will
- * miss the upper part of the curve.
- * Note: 126 = 31.5dB (max power supported)
- * in 0.25dB units */
- if (table_max[pdg] - table_min[pdg] > 126)
- table_min[pdg] = table_max[pdg] - 126;
- }
- /* Fall through */
- case AR5K_PWRTABLE_PWR_TO_PCDAC:
- case AR5K_PWRTABLE_PWR_TO_PDADC:
- ath5k_create_power_curve(table_min[pdg],
- table_max[pdg],
- pdg_L->pd_pwr,
- pdg_L->pd_step,
- pdg_L->pd_points, tmpL, type);
- /* We are in a calibration
- * pier, no need to interpolate
- * between freq piers */
- if (pcinfo_L == pcinfo_R)
- continue;
- ath5k_create_power_curve(table_min[pdg],
- table_max[pdg],
- pdg_R->pd_pwr,
- pdg_R->pd_step,
- pdg_R->pd_points, tmpR, type);
- break;
- default:
- return -EINVAL;
- }
- /* Interpolate between curves
- * of surrounding freq piers to
- * get the final curve for this
- * pd gain. Re-use tmpL for interpolation
- * output */
- for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
- (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
- tmpL[i] = (u8) ath5k_get_interpolated_value(target,
- (s16) pcinfo_L->freq,
- (s16) pcinfo_R->freq,
- (s16) tmpL[i],
- (s16) tmpR[i]);
- }
- }
- /* Now we have a set of curves for this
- * channel on tmpL (x range is table_max - table_min
- * and y values are tmpL[pdg][]) sorted in the same
- * order as EEPROM (because we've used the backmapping).
- * So for RF5112 it's from higher power to lower power
- * and for RF2413 it's from lower power to higher power.
- * For RF5111 we only have one curve. */
- /* Fill min and max power levels for this
- * channel by interpolating the values on
- * surrounding channels to complete the dataset */
- ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
- (s16) pcinfo_L->freq,
- (s16) pcinfo_R->freq,
- pcinfo_L->min_pwr, pcinfo_R->min_pwr);
- ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
- (s16) pcinfo_L->freq,
- (s16) pcinfo_R->freq,
- pcinfo_L->max_pwr, pcinfo_R->max_pwr);
- /* Fill PCDAC/PDADC table */
- switch (type) {
- case AR5K_PWRTABLE_LINEAR_PCDAC:
- /* For RF5112 we can have one or two curves
- * and each curve covers a certain power lvl
- * range so we need to do some more processing */
- ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
- ee->ee_pd_gains[ee_mode]);
- /* Set txp.offset so that we can
- * match max power value with max
- * table index */
- ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
- break;
- case AR5K_PWRTABLE_PWR_TO_PCDAC:
- /* We are done for RF5111 since it has only
- * one curve, just fit the curve on the table */
- ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
- /* No rate powertable adjustment for RF5111 */
- ah->ah_txpower.txp_min_idx = 0;
- ah->ah_txpower.txp_offset = 0;
- break;
- case AR5K_PWRTABLE_PWR_TO_PDADC:
- /* Set PDADC boundaries and fill
- * final PDADC table */
- ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
- ee->ee_pd_gains[ee_mode]);
- /* Set txp.offset, note that table_min
- * can be negative */
- ah->ah_txpower.txp_offset = table_min[0];
- break;
- default:
- return -EINVAL;
- }
- ah->ah_txpower.txp_setup = true;
- return 0;
- }
- /**
- * ath5k_write_channel_powertable() - Set power table for current channel on hw
- * @ah: The &struct ath5k_hw
- * @ee_mode: One of enum ath5k_driver_mode
- * @type: One of enum ath5k_powertable_type (eeprom.h)
- */
- static void
- ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
- {
- if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
- ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
- else
- ath5k_write_pcdac_table(ah);
- }
- /**
- * DOC: Per-rate tx power setting
- *
- * This is the code that sets the desired tx power limit (below
- * maximum) on hw for each rate (we also have TPC that sets
- * power per packet type). We do that by providing an index on the
- * PCDAC/PDADC table we set up above, for each rate.
- *
- * For now we only limit txpower based on maximum tx power
- * supported by hw (what's inside rate_info) + conformance test
- * limits. We need to limit this even more, based on regulatory domain
- * etc to be safe. Normally this is done from above so we don't care
- * here, all we care is that the tx power we set will be O.K.
- * for the hw (e.g. won't create noise on PA etc).
- *
- * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
- * x values) and is indexed as follows:
- * rates[0] - rates[7] -> OFDM rates
- * rates[8] - rates[14] -> CCK rates
- * rates[15] -> XR rates (they all have the same power)
- */
- /**
- * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
- * @ah: The &struct ath5k_hw
- * @max_pwr: The maximum tx power requested in 0.5dB steps
- * @rate_info: The &struct ath5k_rate_pcal_info to fill
- * @ee_mode: One of enum ath5k_driver_mode
- */
- static void
- ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
- struct ath5k_rate_pcal_info *rate_info,
- u8 ee_mode)
- {
- unsigned int i;
- u16 *rates;
- /* max_pwr is power level we got from driver/user in 0.5dB
- * units, switch to 0.25dB units so we can compare */
- max_pwr *= 2;
- max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
- /* apply rate limits */
- rates = ah->ah_txpower.txp_rates_power_table;
- /* OFDM rates 6 to 24Mb/s */
- for (i = 0; i < 5; i++)
- rates[i] = min(max_pwr, rate_info->target_power_6to24);
- /* Rest OFDM rates */
- rates[5] = min(rates[0], rate_info->target_power_36);
- rates[6] = min(rates[0], rate_info->target_power_48);
- rates[7] = min(rates[0], rate_info->target_power_54);
- /* CCK rates */
- /* 1L */
- rates[8] = min(rates[0], rate_info->target_power_6to24);
- /* 2L */
- rates[9] = min(rates[0], rate_info->target_power_36);
- /* 2S */
- rates[10] = min(rates[0], rate_info->target_power_36);
- /* 5L */
- rates[11] = min(rates[0], rate_info->target_power_48);
- /* 5S */
- rates[12] = min(rates[0], rate_info->target_power_48);
- /* 11L */
- rates[13] = min(rates[0], rate_info->target_power_54);
- /* 11S */
- rates[14] = min(rates[0], rate_info->target_power_54);
- /* XR rates */
- rates[15] = min(rates[0], rate_info->target_power_6to24);
- /* CCK rates have different peak to average ratio
- * so we have to tweak their power so that gainf
- * correction works ok. For this we use OFDM to
- * CCK delta from eeprom */
- if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
- (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
- for (i = 8; i <= 15; i++)
- rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
- /* Now that we have all rates setup use table offset to
- * match the power range set by user with the power indices
- * on PCDAC/PDADC table */
- for (i = 0; i < 16; i++) {
- rates[i] += ah->ah_txpower.txp_offset;
- /* Don't get out of bounds */
- if (rates[i] > 63)
- rates[i] = 63;
- }
- /* Min/max in 0.25dB units */
- ah->ah_txpower.txp_min_pwr = 2 * rates[7];
- ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
- ah->ah_txpower.txp_ofdm = rates[7];
- }
- /**
- * ath5k_hw_txpower() - Set transmission power limit for a given channel
- * @ah: The &struct ath5k_hw
- * @channel: The &struct ieee80211_channel
- * @txpower: Requested tx power in 0.5dB steps
- *
- * Combines all of the above to set the requested tx power limit
- * on hw.
- */
- static int
- ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
- u8 txpower)
- {
- struct ath5k_rate_pcal_info rate_info;
- struct ieee80211_channel *curr_channel = ah->ah_current_channel;
- int ee_mode;
- u8 type;
- int ret;
- if (txpower > AR5K_TUNE_MAX_TXPOWER) {
- ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
- return -EINVAL;
- }
- ee_mode = ath5k_eeprom_mode_from_channel(channel);
- if (ee_mode < 0) {
- ATH5K_ERR(ah,
- "invalid channel: %d\n", channel->center_freq);
- return -EINVAL;
- }
- /* Initialize TX power table */
- switch (ah->ah_radio) {
- case AR5K_RF5110:
- /* TODO */
- return 0;
- case AR5K_RF5111:
- type = AR5K_PWRTABLE_PWR_TO_PCDAC;
- break;
- case AR5K_RF5112:
- type = AR5K_PWRTABLE_LINEAR_PCDAC;
- break;
- case AR5K_RF2413:
- case AR5K_RF5413:
- case AR5K_RF2316:
- case AR5K_RF2317:
- case AR5K_RF2425:
- type = AR5K_PWRTABLE_PWR_TO_PDADC;
- break;
- default:
- return -EINVAL;
- }
- /*
- * If we don't change channel/mode skip tx powertable calculation
- * and use the cached one.
- */
- if (!ah->ah_txpower.txp_setup ||
- (channel->hw_value != curr_channel->hw_value) ||
- (channel->center_freq != curr_channel->center_freq)) {
- /* Reset TX power values */
- memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
- ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
- /* Calculate the powertable */
- ret = ath5k_setup_channel_powertable(ah, channel,
- ee_mode, type);
- if (ret)
- return ret;
- }
- /* Write table on hw */
- ath5k_write_channel_powertable(ah, ee_mode, type);
- /* Limit max power if we have a CTL available */
- ath5k_get_max_ctl_power(ah, channel);
- /* FIXME: Antenna reduction stuff */
- /* FIXME: Limit power on turbo modes */
- /* FIXME: TPC scale reduction */
- /* Get surrounding channels for per-rate power table
- * calibration */
- ath5k_get_rate_pcal_data(ah, channel, &rate_info);
- /* Setup rate power table */
- ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
- /* Write rate power table on hw */
- ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
- AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
- AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
- ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
- AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
- AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
- ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
- AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
- AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
- ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
- AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
- AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
- /* FIXME: TPC support */
- if (ah->ah_txpower.txp_tpc) {
- ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
- AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
- ath5k_hw_reg_write(ah,
- AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
- AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
- AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
- AR5K_TPC);
- } else {
- ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
- AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
- }
- return 0;
- }
- /**
- * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
- * @ah: The &struct ath5k_hw
- * @txpower: The requested tx power limit in 0.5dB steps
- *
- * This function provides access to ath5k_hw_txpower to the driver in
- * case user or an application changes it while PHY is running.
- */
- int
- ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
- {
- ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
- "changing txpower to %d\n", txpower);
- return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
- }
- /*************\
- Init function
- \*************/
- /**
- * ath5k_hw_phy_init() - Initialize PHY
- * @ah: The &struct ath5k_hw
- * @channel: The @struct ieee80211_channel
- * @mode: One of enum ath5k_driver_mode
- * @fast: Try a fast channel switch instead
- *
- * This is the main function used during reset to initialize PHY
- * or do a fast channel change if possible.
- *
- * NOTE: Do not call this one from the driver, it assumes PHY is in a
- * warm reset state !
- */
- int
- ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
- u8 mode, bool fast)
- {
- struct ieee80211_channel *curr_channel;
- int ret, i;
- u32 phy_tst1;
- ret = 0;
- /*
- * Sanity check for fast flag
- * Don't try fast channel change when changing modulation
- * mode/band. We check for chip compatibility on
- * ath5k_hw_reset.
- */
- curr_channel = ah->ah_current_channel;
- if (fast && (channel->hw_value != curr_channel->hw_value))
- return -EINVAL;
- /*
- * On fast channel change we only set the synth parameters
- * while PHY is running, enable calibration and skip the rest.
- */
- if (fast) {
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
- AR5K_PHY_RFBUS_REQ_REQUEST);
- for (i = 0; i < 100; i++) {
- if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
- break;
- udelay(5);
- }
- /* Failed */
- if (i >= 100)
- return -EIO;
- /* Set channel and wait for synth */
- ret = ath5k_hw_channel(ah, channel);
- if (ret)
- return ret;
- ath5k_hw_wait_for_synth(ah, channel);
- }
- /*
- * Set TX power
- *
- * Note: We need to do that before we set
- * RF buffer settings on 5211/5212+ so that we
- * properly set curve indices.
- */
- ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
- ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
- if (ret)
- return ret;
- /* Write OFDM timings on 5212*/
- if (ah->ah_version == AR5K_AR5212 &&
- channel->hw_value != AR5K_MODE_11B) {
- ret = ath5k_hw_write_ofdm_timings(ah, channel);
- if (ret)
- return ret;
- /* Spur info is available only from EEPROM versions
- * greater than 5.3, but the EEPROM routines will use
- * static values for older versions */
- if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
- ath5k_hw_set_spur_mitigation_filter(ah,
- channel);
- }
- /* If we used fast channel switching
- * we are done, release RF bus and
- * fire up NF calibration.
- *
- * Note: Only NF calibration due to
- * channel change, not AGC calibration
- * since AGC is still running !
- */
- if (fast) {
- /*
- * Release RF Bus grant
- */
- AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
- AR5K_PHY_RFBUS_REQ_REQUEST);
- /*
- * Start NF calibration
- */
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
- AR5K_PHY_AGCCTL_NF);
- return ret;
- }
- /*
- * For 5210 we do all initialization using
- * initvals, so we don't have to modify
- * any settings (5210 also only supports
- * a/aturbo modes)
- */
- if (ah->ah_version != AR5K_AR5210) {
- /*
- * Write initial RF gain settings
- * This should work for both 5111/5112
- */
- ret = ath5k_hw_rfgain_init(ah, channel->band);
- if (ret)
- return ret;
- usleep_range(1000, 1500);
- /*
- * Write RF buffer
- */
- ret = ath5k_hw_rfregs_init(ah, channel, mode);
- if (ret)
- return ret;
- /*Enable/disable 802.11b mode on 5111
- (enable 2111 frequency converter + CCK)*/
- if (ah->ah_radio == AR5K_RF5111) {
- if (mode == AR5K_MODE_11B)
- AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
- AR5K_TXCFG_B_MODE);
- else
- AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
- AR5K_TXCFG_B_MODE);
- }
- } else if (ah->ah_version == AR5K_AR5210) {
- usleep_range(1000, 1500);
- /* Disable phy and wait */
- ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
- usleep_range(1000, 1500);
- }
- /* Set channel on PHY */
- ret = ath5k_hw_channel(ah, channel);
- if (ret)
- return ret;
- /*
- * Enable the PHY and wait until completion
- * This includes BaseBand and Synthesizer
- * activation.
- */
- ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
- ath5k_hw_wait_for_synth(ah, channel);
- /*
- * Perform ADC test to see if baseband is ready
- * Set tx hold and check adc test register
- */
- phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
- ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
- for (i = 0; i <= 20; i++) {
- if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
- break;
- usleep_range(200, 250);
- }
- ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
- /*
- * Start automatic gain control calibration
- *
- * During AGC calibration RX path is re-routed to
- * a power detector so we don't receive anything.
- *
- * This method is used to calibrate some static offsets
- * used together with on-the fly I/Q calibration (the
- * one performed via ath5k_hw_phy_calibrate), which doesn't
- * interrupt rx path.
- *
- * While rx path is re-routed to the power detector we also
- * start a noise floor calibration to measure the
- * card's noise floor (the noise we measure when we are not
- * transmitting or receiving anything).
- *
- * If we are in a noisy environment, AGC calibration may time
- * out and/or noise floor calibration might timeout.
- */
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
- AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
- /* At the same time start I/Q calibration for QAM constellation
- * -no need for CCK- */
- ah->ah_iq_cal_needed = false;
- if (!(mode == AR5K_MODE_11B)) {
- ah->ah_iq_cal_needed = true;
- AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
- AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
- AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
- AR5K_PHY_IQ_RUN);
- }
- /* Wait for gain calibration to finish (we check for I/Q calibration
- * during ath5k_phy_calibrate) */
- if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
- AR5K_PHY_AGCCTL_CAL, 0, false)) {
- ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
- channel->center_freq);
- }
- /* Restore antenna mode */
- ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
- return ret;
- }
|