eeprom.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793
  1. /*
  2. * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
  3. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  4. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  5. *
  6. * Permission to use, copy, modify, and distribute this software for any
  7. * purpose with or without fee is hereby granted, provided that the above
  8. * copyright notice and this permission notice appear in all copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17. *
  18. */
  19. /*************************************\
  20. * EEPROM access functions and helpers *
  21. \*************************************/
  22. #include <linux/slab.h>
  23. #include "ath5k.h"
  24. #include "reg.h"
  25. #include "debug.h"
  26. /******************\
  27. * Helper functions *
  28. \******************/
  29. /*
  30. * Translate binary channel representation in EEPROM to frequency
  31. */
  32. static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  33. unsigned int mode)
  34. {
  35. u16 val;
  36. if (bin == AR5K_EEPROM_CHANNEL_DIS)
  37. return bin;
  38. if (mode == AR5K_EEPROM_MODE_11A) {
  39. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  40. val = (5 * bin) + 4800;
  41. else
  42. val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  43. (bin * 10) + 5100;
  44. } else {
  45. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  46. val = bin + 2300;
  47. else
  48. val = bin + 2400;
  49. }
  50. return val;
  51. }
  52. /*********\
  53. * Parsers *
  54. \*********/
  55. /*
  56. * Initialize eeprom & capabilities structs
  57. */
  58. static int
  59. ath5k_eeprom_init_header(struct ath5k_hw *ah)
  60. {
  61. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  62. u16 val;
  63. u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
  64. /*
  65. * Read values from EEPROM and store them in the capability structure
  66. */
  67. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  68. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  69. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  70. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  71. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  72. /* Return if we have an old EEPROM */
  73. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  74. return 0;
  75. /*
  76. * Validate the checksum of the EEPROM date. There are some
  77. * devices with invalid EEPROMs.
  78. */
  79. AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
  80. if (val) {
  81. eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
  82. AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
  83. AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
  84. eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
  85. /*
  86. * Fail safe check to prevent stupid loops due
  87. * to busted EEPROMs. XXX: This value is likely too
  88. * big still, waiting on a better value.
  89. */
  90. if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
  91. ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
  92. "%d (0x%04x) max expected: %d (0x%04x)\n",
  93. eep_max, eep_max,
  94. 3 * AR5K_EEPROM_INFO_MAX,
  95. 3 * AR5K_EEPROM_INFO_MAX);
  96. return -EIO;
  97. }
  98. }
  99. for (cksum = 0, offset = 0; offset < eep_max; offset++) {
  100. AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
  101. cksum ^= val;
  102. }
  103. if (cksum != AR5K_EEPROM_INFO_CKSUM) {
  104. ATH5K_ERR(ah, "Invalid EEPROM "
  105. "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
  106. cksum, eep_max,
  107. eep_max == AR5K_EEPROM_INFO_MAX ?
  108. "default size" : "custom size");
  109. return -EIO;
  110. }
  111. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
  112. ee_ant_gain);
  113. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
  114. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
  115. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
  116. /* XXX: Don't know which versions include these two */
  117. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
  118. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
  119. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
  120. if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
  121. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
  122. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
  123. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
  124. }
  125. }
  126. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
  127. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
  128. ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
  129. ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
  130. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
  131. ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
  132. ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
  133. }
  134. AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
  135. if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
  136. ee->ee_is_hb63 = true;
  137. else
  138. ee->ee_is_hb63 = false;
  139. AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
  140. ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
  141. ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
  142. /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
  143. * and enable serdes programming if needed.
  144. *
  145. * XXX: Serdes values seem to be fixed so
  146. * no need to read them here, we write them
  147. * during ath5k_hw_init */
  148. AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
  149. ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
  150. true : false;
  151. return 0;
  152. }
  153. /*
  154. * Read antenna infos from eeprom
  155. */
  156. static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
  157. unsigned int mode)
  158. {
  159. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  160. u32 o = *offset;
  161. u16 val;
  162. int i = 0;
  163. AR5K_EEPROM_READ(o++, val);
  164. ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
  165. ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
  166. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  167. AR5K_EEPROM_READ(o++, val);
  168. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  169. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  170. ee->ee_ant_control[mode][i++] = val & 0x3f;
  171. AR5K_EEPROM_READ(o++, val);
  172. ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
  173. ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
  174. ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
  175. AR5K_EEPROM_READ(o++, val);
  176. ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
  177. ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
  178. ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
  179. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  180. AR5K_EEPROM_READ(o++, val);
  181. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  182. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  183. ee->ee_ant_control[mode][i++] = val & 0x3f;
  184. /* Get antenna switch tables */
  185. ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
  186. (ee->ee_ant_control[mode][0] << 4);
  187. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
  188. ee->ee_ant_control[mode][1] |
  189. (ee->ee_ant_control[mode][2] << 6) |
  190. (ee->ee_ant_control[mode][3] << 12) |
  191. (ee->ee_ant_control[mode][4] << 18) |
  192. (ee->ee_ant_control[mode][5] << 24);
  193. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
  194. ee->ee_ant_control[mode][6] |
  195. (ee->ee_ant_control[mode][7] << 6) |
  196. (ee->ee_ant_control[mode][8] << 12) |
  197. (ee->ee_ant_control[mode][9] << 18) |
  198. (ee->ee_ant_control[mode][10] << 24);
  199. /* return new offset */
  200. *offset = o;
  201. return 0;
  202. }
  203. /*
  204. * Read supported modes and some mode-specific calibration data
  205. * from eeprom
  206. */
  207. static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
  208. unsigned int mode)
  209. {
  210. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  211. u32 o = *offset;
  212. u16 val;
  213. ee->ee_n_piers[mode] = 0;
  214. AR5K_EEPROM_READ(o++, val);
  215. ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
  216. switch (mode) {
  217. case AR5K_EEPROM_MODE_11A:
  218. ee->ee_ob[mode][3] = (val >> 5) & 0x7;
  219. ee->ee_db[mode][3] = (val >> 2) & 0x7;
  220. ee->ee_ob[mode][2] = (val << 1) & 0x7;
  221. AR5K_EEPROM_READ(o++, val);
  222. ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
  223. ee->ee_db[mode][2] = (val >> 12) & 0x7;
  224. ee->ee_ob[mode][1] = (val >> 9) & 0x7;
  225. ee->ee_db[mode][1] = (val >> 6) & 0x7;
  226. ee->ee_ob[mode][0] = (val >> 3) & 0x7;
  227. ee->ee_db[mode][0] = val & 0x7;
  228. break;
  229. case AR5K_EEPROM_MODE_11G:
  230. case AR5K_EEPROM_MODE_11B:
  231. ee->ee_ob[mode][1] = (val >> 4) & 0x7;
  232. ee->ee_db[mode][1] = val & 0x7;
  233. break;
  234. }
  235. AR5K_EEPROM_READ(o++, val);
  236. ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
  237. ee->ee_thr_62[mode] = val & 0xff;
  238. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  239. ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
  240. AR5K_EEPROM_READ(o++, val);
  241. ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
  242. ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
  243. AR5K_EEPROM_READ(o++, val);
  244. ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
  245. if ((val & 0xff) & 0x80)
  246. ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
  247. else
  248. ee->ee_noise_floor_thr[mode] = val & 0xff;
  249. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  250. ee->ee_noise_floor_thr[mode] =
  251. mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
  252. AR5K_EEPROM_READ(o++, val);
  253. ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
  254. ee->ee_x_gain[mode] = (val >> 1) & 0xf;
  255. ee->ee_xpd[mode] = val & 0x1;
  256. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  257. mode != AR5K_EEPROM_MODE_11B)
  258. ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
  259. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
  260. AR5K_EEPROM_READ(o++, val);
  261. ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
  262. if (mode == AR5K_EEPROM_MODE_11A)
  263. ee->ee_xr_power[mode] = val & 0x3f;
  264. else {
  265. /* b_DB_11[bg] and b_OB_11[bg] */
  266. ee->ee_ob[mode][0] = val & 0x7;
  267. ee->ee_db[mode][0] = (val >> 3) & 0x7;
  268. }
  269. }
  270. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
  271. ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
  272. ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
  273. } else {
  274. ee->ee_i_gain[mode] = (val >> 13) & 0x7;
  275. AR5K_EEPROM_READ(o++, val);
  276. ee->ee_i_gain[mode] |= (val << 3) & 0x38;
  277. if (mode == AR5K_EEPROM_MODE_11G) {
  278. ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
  279. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
  280. ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
  281. }
  282. }
  283. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  284. mode == AR5K_EEPROM_MODE_11A) {
  285. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  286. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  287. }
  288. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
  289. goto done;
  290. /* Note: >= v5 have bg freq piers on another location
  291. * so these freq piers are ignored for >= v5 (should be 0xff
  292. * anyway) */
  293. switch (mode) {
  294. case AR5K_EEPROM_MODE_11A:
  295. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
  296. break;
  297. AR5K_EEPROM_READ(o++, val);
  298. ee->ee_margin_tx_rx[mode] = val & 0x3f;
  299. break;
  300. case AR5K_EEPROM_MODE_11B:
  301. AR5K_EEPROM_READ(o++, val);
  302. ee->ee_pwr_cal_b[0].freq =
  303. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  304. if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  305. ee->ee_n_piers[mode]++;
  306. ee->ee_pwr_cal_b[1].freq =
  307. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  308. if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  309. ee->ee_n_piers[mode]++;
  310. AR5K_EEPROM_READ(o++, val);
  311. ee->ee_pwr_cal_b[2].freq =
  312. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  313. if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  314. ee->ee_n_piers[mode]++;
  315. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  316. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  317. break;
  318. case AR5K_EEPROM_MODE_11G:
  319. AR5K_EEPROM_READ(o++, val);
  320. ee->ee_pwr_cal_g[0].freq =
  321. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  322. if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  323. ee->ee_n_piers[mode]++;
  324. ee->ee_pwr_cal_g[1].freq =
  325. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  326. if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  327. ee->ee_n_piers[mode]++;
  328. AR5K_EEPROM_READ(o++, val);
  329. ee->ee_turbo_max_power[mode] = val & 0x7f;
  330. ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
  331. AR5K_EEPROM_READ(o++, val);
  332. ee->ee_pwr_cal_g[2].freq =
  333. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  334. if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  335. ee->ee_n_piers[mode]++;
  336. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  337. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  338. AR5K_EEPROM_READ(o++, val);
  339. ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
  340. ee->ee_q_cal[mode] = val & 0x1f;
  341. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
  342. AR5K_EEPROM_READ(o++, val);
  343. ee->ee_cck_ofdm_gain_delta = val & 0xff;
  344. }
  345. break;
  346. }
  347. /*
  348. * Read turbo mode information on newer EEPROM versions
  349. */
  350. if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
  351. goto done;
  352. switch (mode) {
  353. case AR5K_EEPROM_MODE_11A:
  354. ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
  355. ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
  356. AR5K_EEPROM_READ(o++, val);
  357. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
  358. ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
  359. ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
  360. AR5K_EEPROM_READ(o++, val);
  361. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
  362. ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
  363. if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
  364. ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
  365. break;
  366. case AR5K_EEPROM_MODE_11G:
  367. ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
  368. ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
  369. AR5K_EEPROM_READ(o++, val);
  370. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
  371. ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
  372. ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
  373. AR5K_EEPROM_READ(o++, val);
  374. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
  375. ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
  376. break;
  377. }
  378. done:
  379. /* return new offset */
  380. *offset = o;
  381. return 0;
  382. }
  383. /* Read mode-specific data (except power calibration data) */
  384. static int
  385. ath5k_eeprom_init_modes(struct ath5k_hw *ah)
  386. {
  387. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  388. u32 mode_offset[3];
  389. unsigned int mode;
  390. u32 offset;
  391. int ret;
  392. /*
  393. * Get values for all modes
  394. */
  395. mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
  396. mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
  397. mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
  398. ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
  399. AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
  400. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  401. offset = mode_offset[mode];
  402. ret = ath5k_eeprom_read_ants(ah, &offset, mode);
  403. if (ret)
  404. return ret;
  405. ret = ath5k_eeprom_read_modes(ah, &offset, mode);
  406. if (ret)
  407. return ret;
  408. }
  409. /* override for older eeprom versions for better performance */
  410. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
  411. ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
  412. ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
  413. ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
  414. }
  415. return 0;
  416. }
  417. /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
  418. * frequency mask) */
  419. static inline int
  420. ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
  421. struct ath5k_chan_pcal_info *pc, unsigned int mode)
  422. {
  423. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  424. int o = *offset;
  425. int i = 0;
  426. u8 freq1, freq2;
  427. u16 val;
  428. ee->ee_n_piers[mode] = 0;
  429. while (i < max) {
  430. AR5K_EEPROM_READ(o++, val);
  431. freq1 = val & 0xff;
  432. if (!freq1)
  433. break;
  434. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  435. freq1, mode);
  436. ee->ee_n_piers[mode]++;
  437. freq2 = (val >> 8) & 0xff;
  438. if (!freq2)
  439. break;
  440. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  441. freq2, mode);
  442. ee->ee_n_piers[mode]++;
  443. }
  444. /* return new offset */
  445. *offset = o;
  446. return 0;
  447. }
  448. /* Read frequency piers for 802.11a */
  449. static int
  450. ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
  451. {
  452. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  453. struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
  454. int i;
  455. u16 val;
  456. u8 mask;
  457. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  458. ath5k_eeprom_read_freq_list(ah, &offset,
  459. AR5K_EEPROM_N_5GHZ_CHAN, pcal,
  460. AR5K_EEPROM_MODE_11A);
  461. } else {
  462. mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
  463. AR5K_EEPROM_READ(offset++, val);
  464. pcal[0].freq = (val >> 9) & mask;
  465. pcal[1].freq = (val >> 2) & mask;
  466. pcal[2].freq = (val << 5) & mask;
  467. AR5K_EEPROM_READ(offset++, val);
  468. pcal[2].freq |= (val >> 11) & 0x1f;
  469. pcal[3].freq = (val >> 4) & mask;
  470. pcal[4].freq = (val << 3) & mask;
  471. AR5K_EEPROM_READ(offset++, val);
  472. pcal[4].freq |= (val >> 13) & 0x7;
  473. pcal[5].freq = (val >> 6) & mask;
  474. pcal[6].freq = (val << 1) & mask;
  475. AR5K_EEPROM_READ(offset++, val);
  476. pcal[6].freq |= (val >> 15) & 0x1;
  477. pcal[7].freq = (val >> 8) & mask;
  478. pcal[8].freq = (val >> 1) & mask;
  479. pcal[9].freq = (val << 6) & mask;
  480. AR5K_EEPROM_READ(offset++, val);
  481. pcal[9].freq |= (val >> 10) & 0x3f;
  482. /* Fixed number of piers */
  483. ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
  484. for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
  485. pcal[i].freq = ath5k_eeprom_bin2freq(ee,
  486. pcal[i].freq, AR5K_EEPROM_MODE_11A);
  487. }
  488. }
  489. return 0;
  490. }
  491. /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
  492. static inline int
  493. ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
  494. {
  495. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  496. struct ath5k_chan_pcal_info *pcal;
  497. switch (mode) {
  498. case AR5K_EEPROM_MODE_11B:
  499. pcal = ee->ee_pwr_cal_b;
  500. break;
  501. case AR5K_EEPROM_MODE_11G:
  502. pcal = ee->ee_pwr_cal_g;
  503. break;
  504. default:
  505. return -EINVAL;
  506. }
  507. ath5k_eeprom_read_freq_list(ah, &offset,
  508. AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
  509. mode);
  510. return 0;
  511. }
  512. /*
  513. * Read power calibration for RF5111 chips
  514. *
  515. * For RF5111 we have an XPD -eXternal Power Detector- curve
  516. * for each calibrated channel. Each curve has 0,5dB Power steps
  517. * on x axis and PCDAC steps (offsets) on y axis and looks like an
  518. * exponential function. To recreate the curve we read 11 points
  519. * here and interpolate later.
  520. */
  521. /* Used to match PCDAC steps with power values on RF5111 chips
  522. * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
  523. * steps that match with the power values we read from eeprom. On
  524. * older eeprom versions (< 3.2) these steps are equally spaced at
  525. * 10% of the pcdac curve -until the curve reaches its maximum-
  526. * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
  527. * these 11 steps are spaced in a different way. This function returns
  528. * the pcdac steps based on eeprom version and curve min/max so that we
  529. * can have pcdac/pwr points.
  530. */
  531. static inline void
  532. ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
  533. {
  534. static const u16 intercepts3[] = {
  535. 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
  536. };
  537. static const u16 intercepts3_2[] = {
  538. 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
  539. };
  540. const u16 *ip;
  541. int i;
  542. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
  543. ip = intercepts3_2;
  544. else
  545. ip = intercepts3;
  546. for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
  547. vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
  548. }
  549. static int
  550. ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
  551. {
  552. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  553. struct ath5k_chan_pcal_info *chinfo;
  554. u8 pier, pdg;
  555. switch (mode) {
  556. case AR5K_EEPROM_MODE_11A:
  557. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  558. return 0;
  559. chinfo = ee->ee_pwr_cal_a;
  560. break;
  561. case AR5K_EEPROM_MODE_11B:
  562. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  563. return 0;
  564. chinfo = ee->ee_pwr_cal_b;
  565. break;
  566. case AR5K_EEPROM_MODE_11G:
  567. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  568. return 0;
  569. chinfo = ee->ee_pwr_cal_g;
  570. break;
  571. default:
  572. return -EINVAL;
  573. }
  574. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  575. if (!chinfo[pier].pd_curves)
  576. continue;
  577. for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
  578. struct ath5k_pdgain_info *pd =
  579. &chinfo[pier].pd_curves[pdg];
  580. kfree(pd->pd_step);
  581. kfree(pd->pd_pwr);
  582. }
  583. kfree(chinfo[pier].pd_curves);
  584. }
  585. return 0;
  586. }
  587. /* Convert RF5111 specific data to generic raw data
  588. * used by interpolation code */
  589. static int
  590. ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
  591. struct ath5k_chan_pcal_info *chinfo)
  592. {
  593. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  594. struct ath5k_chan_pcal_info_rf5111 *pcinfo;
  595. struct ath5k_pdgain_info *pd;
  596. u8 pier, point, idx;
  597. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  598. /* Fill raw data for each calibration pier */
  599. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  600. pcinfo = &chinfo[pier].rf5111_info;
  601. /* Allocate pd_curves for this cal pier */
  602. chinfo[pier].pd_curves =
  603. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  604. sizeof(struct ath5k_pdgain_info),
  605. GFP_KERNEL);
  606. if (!chinfo[pier].pd_curves)
  607. goto err_out;
  608. /* Only one curve for RF5111
  609. * find out which one and place
  610. * in pd_curves.
  611. * Note: ee_x_gain is reversed here */
  612. for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
  613. if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
  614. pdgain_idx[0] = idx;
  615. break;
  616. }
  617. }
  618. ee->ee_pd_gains[mode] = 1;
  619. pd = &chinfo[pier].pd_curves[idx];
  620. pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
  621. /* Allocate pd points for this curve */
  622. pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  623. sizeof(u8), GFP_KERNEL);
  624. if (!pd->pd_step)
  625. goto err_out;
  626. pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  627. sizeof(s16), GFP_KERNEL);
  628. if (!pd->pd_pwr)
  629. goto err_out;
  630. /* Fill raw dataset
  631. * (convert power to 0.25dB units
  632. * for RF5112 compatibility) */
  633. for (point = 0; point < pd->pd_points; point++) {
  634. /* Absolute values */
  635. pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
  636. /* Already sorted */
  637. pd->pd_step[point] = pcinfo->pcdac[point];
  638. }
  639. /* Set min/max pwr */
  640. chinfo[pier].min_pwr = pd->pd_pwr[0];
  641. chinfo[pier].max_pwr = pd->pd_pwr[10];
  642. }
  643. return 0;
  644. err_out:
  645. ath5k_eeprom_free_pcal_info(ah, mode);
  646. return -ENOMEM;
  647. }
  648. /* Parse EEPROM data */
  649. static int
  650. ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
  651. {
  652. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  653. struct ath5k_chan_pcal_info *pcal;
  654. int offset, ret;
  655. int i;
  656. u16 val;
  657. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  658. switch (mode) {
  659. case AR5K_EEPROM_MODE_11A:
  660. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  661. return 0;
  662. ret = ath5k_eeprom_init_11a_pcal_freq(ah,
  663. offset + AR5K_EEPROM_GROUP1_OFFSET);
  664. if (ret < 0)
  665. return ret;
  666. offset += AR5K_EEPROM_GROUP2_OFFSET;
  667. pcal = ee->ee_pwr_cal_a;
  668. break;
  669. case AR5K_EEPROM_MODE_11B:
  670. if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
  671. !AR5K_EEPROM_HDR_11G(ee->ee_header))
  672. return 0;
  673. pcal = ee->ee_pwr_cal_b;
  674. offset += AR5K_EEPROM_GROUP3_OFFSET;
  675. /* fixed piers */
  676. pcal[0].freq = 2412;
  677. pcal[1].freq = 2447;
  678. pcal[2].freq = 2484;
  679. ee->ee_n_piers[mode] = 3;
  680. break;
  681. case AR5K_EEPROM_MODE_11G:
  682. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  683. return 0;
  684. pcal = ee->ee_pwr_cal_g;
  685. offset += AR5K_EEPROM_GROUP4_OFFSET;
  686. /* fixed piers */
  687. pcal[0].freq = 2312;
  688. pcal[1].freq = 2412;
  689. pcal[2].freq = 2484;
  690. ee->ee_n_piers[mode] = 3;
  691. break;
  692. default:
  693. return -EINVAL;
  694. }
  695. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  696. struct ath5k_chan_pcal_info_rf5111 *cdata =
  697. &pcal[i].rf5111_info;
  698. AR5K_EEPROM_READ(offset++, val);
  699. cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
  700. cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
  701. cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
  702. AR5K_EEPROM_READ(offset++, val);
  703. cdata->pwr[0] |= ((val >> 14) & 0x3);
  704. cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  705. cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  706. cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
  707. AR5K_EEPROM_READ(offset++, val);
  708. cdata->pwr[3] |= ((val >> 12) & 0xf);
  709. cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
  710. cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
  711. AR5K_EEPROM_READ(offset++, val);
  712. cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
  713. cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
  714. cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
  715. AR5K_EEPROM_READ(offset++, val);
  716. cdata->pwr[8] |= ((val >> 14) & 0x3);
  717. cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  718. cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  719. ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
  720. cdata->pcdac_max, cdata->pcdac);
  721. }
  722. return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
  723. }
  724. /*
  725. * Read power calibration for RF5112 chips
  726. *
  727. * For RF5112 we have 4 XPD -eXternal Power Detector- curves
  728. * for each calibrated channel on 0, -6, -12 and -18dBm but we only
  729. * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
  730. * power steps on x axis and PCDAC steps on y axis and looks like a
  731. * linear function. To recreate the curve and pass the power values
  732. * on hw, we read 4 points for xpd 0 (lower gain -> max power)
  733. * and 3 points for xpd 3 (higher gain -> lower power) here and
  734. * interpolate later.
  735. *
  736. * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
  737. */
  738. /* Convert RF5112 specific data to generic raw data
  739. * used by interpolation code */
  740. static int
  741. ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
  742. struct ath5k_chan_pcal_info *chinfo)
  743. {
  744. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  745. struct ath5k_chan_pcal_info_rf5112 *pcinfo;
  746. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  747. unsigned int pier, pdg, point;
  748. /* Fill raw data for each calibration pier */
  749. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  750. pcinfo = &chinfo[pier].rf5112_info;
  751. /* Allocate pd_curves for this cal pier */
  752. chinfo[pier].pd_curves =
  753. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  754. sizeof(struct ath5k_pdgain_info),
  755. GFP_KERNEL);
  756. if (!chinfo[pier].pd_curves)
  757. goto err_out;
  758. /* Fill pd_curves */
  759. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  760. u8 idx = pdgain_idx[pdg];
  761. struct ath5k_pdgain_info *pd =
  762. &chinfo[pier].pd_curves[idx];
  763. /* Lowest gain curve (max power) */
  764. if (pdg == 0) {
  765. /* One more point for better accuracy */
  766. pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
  767. /* Allocate pd points for this curve */
  768. pd->pd_step = kcalloc(pd->pd_points,
  769. sizeof(u8), GFP_KERNEL);
  770. if (!pd->pd_step)
  771. goto err_out;
  772. pd->pd_pwr = kcalloc(pd->pd_points,
  773. sizeof(s16), GFP_KERNEL);
  774. if (!pd->pd_pwr)
  775. goto err_out;
  776. /* Fill raw dataset
  777. * (all power levels are in 0.25dB units) */
  778. pd->pd_step[0] = pcinfo->pcdac_x0[0];
  779. pd->pd_pwr[0] = pcinfo->pwr_x0[0];
  780. for (point = 1; point < pd->pd_points;
  781. point++) {
  782. /* Absolute values */
  783. pd->pd_pwr[point] =
  784. pcinfo->pwr_x0[point];
  785. /* Deltas */
  786. pd->pd_step[point] =
  787. pd->pd_step[point - 1] +
  788. pcinfo->pcdac_x0[point];
  789. }
  790. /* Set min power for this frequency */
  791. chinfo[pier].min_pwr = pd->pd_pwr[0];
  792. /* Highest gain curve (min power) */
  793. } else if (pdg == 1) {
  794. pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
  795. /* Allocate pd points for this curve */
  796. pd->pd_step = kcalloc(pd->pd_points,
  797. sizeof(u8), GFP_KERNEL);
  798. if (!pd->pd_step)
  799. goto err_out;
  800. pd->pd_pwr = kcalloc(pd->pd_points,
  801. sizeof(s16), GFP_KERNEL);
  802. if (!pd->pd_pwr)
  803. goto err_out;
  804. /* Fill raw dataset
  805. * (all power levels are in 0.25dB units) */
  806. for (point = 0; point < pd->pd_points;
  807. point++) {
  808. /* Absolute values */
  809. pd->pd_pwr[point] =
  810. pcinfo->pwr_x3[point];
  811. /* Fixed points */
  812. pd->pd_step[point] =
  813. pcinfo->pcdac_x3[point];
  814. }
  815. /* Since we have a higher gain curve
  816. * override min power */
  817. chinfo[pier].min_pwr = pd->pd_pwr[0];
  818. }
  819. }
  820. }
  821. return 0;
  822. err_out:
  823. ath5k_eeprom_free_pcal_info(ah, mode);
  824. return -ENOMEM;
  825. }
  826. /* Parse EEPROM data */
  827. static int
  828. ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
  829. {
  830. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  831. struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
  832. struct ath5k_chan_pcal_info *gen_chan_info;
  833. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  834. u32 offset;
  835. u8 i, c;
  836. u16 val;
  837. u8 pd_gains = 0;
  838. /* Count how many curves we have and
  839. * identify them (which one of the 4
  840. * available curves we have on each count).
  841. * Curves are stored from lower (x0) to
  842. * higher (x3) gain */
  843. for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
  844. /* ee_x_gain[mode] is x gain mask */
  845. if ((ee->ee_x_gain[mode] >> i) & 0x1)
  846. pdgain_idx[pd_gains++] = i;
  847. }
  848. ee->ee_pd_gains[mode] = pd_gains;
  849. if (pd_gains == 0 || pd_gains > 2)
  850. return -EINVAL;
  851. switch (mode) {
  852. case AR5K_EEPROM_MODE_11A:
  853. /*
  854. * Read 5GHz EEPROM channels
  855. */
  856. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  857. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  858. offset += AR5K_EEPROM_GROUP2_OFFSET;
  859. gen_chan_info = ee->ee_pwr_cal_a;
  860. break;
  861. case AR5K_EEPROM_MODE_11B:
  862. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  863. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  864. offset += AR5K_EEPROM_GROUP3_OFFSET;
  865. /* NB: frequency piers parsed during mode init */
  866. gen_chan_info = ee->ee_pwr_cal_b;
  867. break;
  868. case AR5K_EEPROM_MODE_11G:
  869. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  870. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  871. offset += AR5K_EEPROM_GROUP4_OFFSET;
  872. else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  873. offset += AR5K_EEPROM_GROUP2_OFFSET;
  874. /* NB: frequency piers parsed during mode init */
  875. gen_chan_info = ee->ee_pwr_cal_g;
  876. break;
  877. default:
  878. return -EINVAL;
  879. }
  880. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  881. chan_pcal_info = &gen_chan_info[i].rf5112_info;
  882. /* Power values in quarter dB
  883. * for the lower xpd gain curve
  884. * (0 dBm -> higher output power) */
  885. for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
  886. AR5K_EEPROM_READ(offset++, val);
  887. chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
  888. chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
  889. }
  890. /* PCDAC steps
  891. * corresponding to the above power
  892. * measurements */
  893. AR5K_EEPROM_READ(offset++, val);
  894. chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
  895. chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
  896. chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
  897. /* Power values in quarter dB
  898. * for the higher xpd gain curve
  899. * (18 dBm -> lower output power) */
  900. AR5K_EEPROM_READ(offset++, val);
  901. chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
  902. chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
  903. AR5K_EEPROM_READ(offset++, val);
  904. chan_pcal_info->pwr_x3[2] = (val & 0xff);
  905. /* PCDAC steps
  906. * corresponding to the above power
  907. * measurements (fixed) */
  908. chan_pcal_info->pcdac_x3[0] = 20;
  909. chan_pcal_info->pcdac_x3[1] = 35;
  910. chan_pcal_info->pcdac_x3[2] = 63;
  911. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
  912. chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
  913. /* Last xpd0 power level is also channel maximum */
  914. gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
  915. } else {
  916. chan_pcal_info->pcdac_x0[0] = 1;
  917. gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
  918. }
  919. }
  920. return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
  921. }
  922. /*
  923. * Read power calibration for RF2413 chips
  924. *
  925. * For RF2413 we have a Power to PDDAC table (Power Detector)
  926. * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
  927. * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
  928. * axis and looks like an exponential function like the RF5111 curve.
  929. *
  930. * To recreate the curves we read here the points and interpolate
  931. * later. Note that in most cases only 2 (higher and lower) curves are
  932. * used (like RF5112) but vendors have the opportunity to include all
  933. * 4 curves on eeprom. The final curve (higher power) has an extra
  934. * point for better accuracy like RF5112.
  935. */
  936. /* For RF2413 power calibration data doesn't start on a fixed location and
  937. * if a mode is not supported, its section is missing -not zeroed-.
  938. * So we need to calculate the starting offset for each section by using
  939. * these two functions */
  940. /* Return the size of each section based on the mode and the number of pd
  941. * gains available (maximum 4). */
  942. static inline unsigned int
  943. ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
  944. {
  945. static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
  946. unsigned int sz;
  947. sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
  948. sz *= ee->ee_n_piers[mode];
  949. return sz;
  950. }
  951. /* Return the starting offset for a section based on the modes supported
  952. * and each section's size. */
  953. static unsigned int
  954. ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
  955. {
  956. u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
  957. switch (mode) {
  958. case AR5K_EEPROM_MODE_11G:
  959. if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  960. offset += ath5k_pdgains_size_2413(ee,
  961. AR5K_EEPROM_MODE_11B) +
  962. AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  963. /* fall through */
  964. case AR5K_EEPROM_MODE_11B:
  965. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  966. offset += ath5k_pdgains_size_2413(ee,
  967. AR5K_EEPROM_MODE_11A) +
  968. AR5K_EEPROM_N_5GHZ_CHAN / 2;
  969. /* fall through */
  970. case AR5K_EEPROM_MODE_11A:
  971. break;
  972. default:
  973. break;
  974. }
  975. return offset;
  976. }
  977. /* Convert RF2413 specific data to generic raw data
  978. * used by interpolation code */
  979. static int
  980. ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
  981. struct ath5k_chan_pcal_info *chinfo)
  982. {
  983. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  984. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  985. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  986. unsigned int pier, pdg, point;
  987. /* Fill raw data for each calibration pier */
  988. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  989. pcinfo = &chinfo[pier].rf2413_info;
  990. /* Allocate pd_curves for this cal pier */
  991. chinfo[pier].pd_curves =
  992. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  993. sizeof(struct ath5k_pdgain_info),
  994. GFP_KERNEL);
  995. if (!chinfo[pier].pd_curves)
  996. goto err_out;
  997. /* Fill pd_curves */
  998. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  999. u8 idx = pdgain_idx[pdg];
  1000. struct ath5k_pdgain_info *pd =
  1001. &chinfo[pier].pd_curves[idx];
  1002. /* One more point for the highest power
  1003. * curve (lowest gain) */
  1004. if (pdg == ee->ee_pd_gains[mode] - 1)
  1005. pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
  1006. else
  1007. pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
  1008. /* Allocate pd points for this curve */
  1009. pd->pd_step = kcalloc(pd->pd_points,
  1010. sizeof(u8), GFP_KERNEL);
  1011. if (!pd->pd_step)
  1012. goto err_out;
  1013. pd->pd_pwr = kcalloc(pd->pd_points,
  1014. sizeof(s16), GFP_KERNEL);
  1015. if (!pd->pd_pwr)
  1016. goto err_out;
  1017. /* Fill raw dataset
  1018. * convert all pwr levels to
  1019. * quarter dB for RF5112 compatibility */
  1020. pd->pd_step[0] = pcinfo->pddac_i[pdg];
  1021. pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
  1022. for (point = 1; point < pd->pd_points; point++) {
  1023. pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
  1024. 2 * pcinfo->pwr[pdg][point - 1];
  1025. pd->pd_step[point] = pd->pd_step[point - 1] +
  1026. pcinfo->pddac[pdg][point - 1];
  1027. }
  1028. /* Highest gain curve -> min power */
  1029. if (pdg == 0)
  1030. chinfo[pier].min_pwr = pd->pd_pwr[0];
  1031. /* Lowest gain curve -> max power */
  1032. if (pdg == ee->ee_pd_gains[mode] - 1)
  1033. chinfo[pier].max_pwr =
  1034. pd->pd_pwr[pd->pd_points - 1];
  1035. }
  1036. }
  1037. return 0;
  1038. err_out:
  1039. ath5k_eeprom_free_pcal_info(ah, mode);
  1040. return -ENOMEM;
  1041. }
  1042. /* Parse EEPROM data */
  1043. static int
  1044. ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
  1045. {
  1046. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1047. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  1048. struct ath5k_chan_pcal_info *chinfo;
  1049. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  1050. u32 offset;
  1051. int idx, i;
  1052. u16 val;
  1053. u8 pd_gains = 0;
  1054. /* Count how many curves we have and
  1055. * identify them (which one of the 4
  1056. * available curves we have on each count).
  1057. * Curves are stored from higher to
  1058. * lower gain so we go backwards */
  1059. for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
  1060. /* ee_x_gain[mode] is x gain mask */
  1061. if ((ee->ee_x_gain[mode] >> idx) & 0x1)
  1062. pdgain_idx[pd_gains++] = idx;
  1063. }
  1064. ee->ee_pd_gains[mode] = pd_gains;
  1065. if (pd_gains == 0)
  1066. return -EINVAL;
  1067. offset = ath5k_cal_data_offset_2413(ee, mode);
  1068. switch (mode) {
  1069. case AR5K_EEPROM_MODE_11A:
  1070. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1071. return 0;
  1072. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  1073. offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
  1074. chinfo = ee->ee_pwr_cal_a;
  1075. break;
  1076. case AR5K_EEPROM_MODE_11B:
  1077. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1078. return 0;
  1079. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1080. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1081. chinfo = ee->ee_pwr_cal_b;
  1082. break;
  1083. case AR5K_EEPROM_MODE_11G:
  1084. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1085. return 0;
  1086. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1087. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1088. chinfo = ee->ee_pwr_cal_g;
  1089. break;
  1090. default:
  1091. return -EINVAL;
  1092. }
  1093. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  1094. pcinfo = &chinfo[i].rf2413_info;
  1095. /*
  1096. * Read pwr_i, pddac_i and the first
  1097. * 2 pd points (pwr, pddac)
  1098. */
  1099. AR5K_EEPROM_READ(offset++, val);
  1100. pcinfo->pwr_i[0] = val & 0x1f;
  1101. pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
  1102. pcinfo->pwr[0][0] = (val >> 12) & 0xf;
  1103. AR5K_EEPROM_READ(offset++, val);
  1104. pcinfo->pddac[0][0] = val & 0x3f;
  1105. pcinfo->pwr[0][1] = (val >> 6) & 0xf;
  1106. pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
  1107. AR5K_EEPROM_READ(offset++, val);
  1108. pcinfo->pwr[0][2] = val & 0xf;
  1109. pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
  1110. pcinfo->pwr[0][3] = 0;
  1111. pcinfo->pddac[0][3] = 0;
  1112. if (pd_gains > 1) {
  1113. /*
  1114. * Pd gain 0 is not the last pd gain
  1115. * so it only has 2 pd points.
  1116. * Continue with pd gain 1.
  1117. */
  1118. pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
  1119. pcinfo->pddac_i[1] = (val >> 15) & 0x1;
  1120. AR5K_EEPROM_READ(offset++, val);
  1121. pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
  1122. pcinfo->pwr[1][0] = (val >> 6) & 0xf;
  1123. pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
  1124. AR5K_EEPROM_READ(offset++, val);
  1125. pcinfo->pwr[1][1] = val & 0xf;
  1126. pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
  1127. pcinfo->pwr[1][2] = (val >> 10) & 0xf;
  1128. pcinfo->pddac[1][2] = (val >> 14) & 0x3;
  1129. AR5K_EEPROM_READ(offset++, val);
  1130. pcinfo->pddac[1][2] |= (val & 0xF) << 2;
  1131. pcinfo->pwr[1][3] = 0;
  1132. pcinfo->pddac[1][3] = 0;
  1133. } else if (pd_gains == 1) {
  1134. /*
  1135. * Pd gain 0 is the last one so
  1136. * read the extra point.
  1137. */
  1138. pcinfo->pwr[0][3] = (val >> 10) & 0xf;
  1139. pcinfo->pddac[0][3] = (val >> 14) & 0x3;
  1140. AR5K_EEPROM_READ(offset++, val);
  1141. pcinfo->pddac[0][3] |= (val & 0xF) << 2;
  1142. }
  1143. /*
  1144. * Proceed with the other pd_gains
  1145. * as above.
  1146. */
  1147. if (pd_gains > 2) {
  1148. pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
  1149. pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
  1150. AR5K_EEPROM_READ(offset++, val);
  1151. pcinfo->pwr[2][0] = (val >> 0) & 0xf;
  1152. pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
  1153. pcinfo->pwr[2][1] = (val >> 10) & 0xf;
  1154. pcinfo->pddac[2][1] = (val >> 14) & 0x3;
  1155. AR5K_EEPROM_READ(offset++, val);
  1156. pcinfo->pddac[2][1] |= (val & 0xF) << 2;
  1157. pcinfo->pwr[2][2] = (val >> 4) & 0xf;
  1158. pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
  1159. pcinfo->pwr[2][3] = 0;
  1160. pcinfo->pddac[2][3] = 0;
  1161. } else if (pd_gains == 2) {
  1162. pcinfo->pwr[1][3] = (val >> 4) & 0xf;
  1163. pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
  1164. }
  1165. if (pd_gains > 3) {
  1166. pcinfo->pwr_i[3] = (val >> 14) & 0x3;
  1167. AR5K_EEPROM_READ(offset++, val);
  1168. pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
  1169. pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
  1170. pcinfo->pwr[3][0] = (val >> 10) & 0xf;
  1171. pcinfo->pddac[3][0] = (val >> 14) & 0x3;
  1172. AR5K_EEPROM_READ(offset++, val);
  1173. pcinfo->pddac[3][0] |= (val & 0xF) << 2;
  1174. pcinfo->pwr[3][1] = (val >> 4) & 0xf;
  1175. pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
  1176. pcinfo->pwr[3][2] = (val >> 14) & 0x3;
  1177. AR5K_EEPROM_READ(offset++, val);
  1178. pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
  1179. pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
  1180. pcinfo->pwr[3][3] = (val >> 8) & 0xf;
  1181. pcinfo->pddac[3][3] = (val >> 12) & 0xF;
  1182. AR5K_EEPROM_READ(offset++, val);
  1183. pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
  1184. } else if (pd_gains == 3) {
  1185. pcinfo->pwr[2][3] = (val >> 14) & 0x3;
  1186. AR5K_EEPROM_READ(offset++, val);
  1187. pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
  1188. pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
  1189. }
  1190. }
  1191. return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
  1192. }
  1193. /*
  1194. * Read per rate target power (this is the maximum tx power
  1195. * supported by the card). This info is used when setting
  1196. * tx power, no matter the channel.
  1197. *
  1198. * This also works for v5 EEPROMs.
  1199. */
  1200. static int
  1201. ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
  1202. {
  1203. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1204. struct ath5k_rate_pcal_info *rate_pcal_info;
  1205. u8 *rate_target_pwr_num;
  1206. u32 offset;
  1207. u16 val;
  1208. int i;
  1209. offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
  1210. rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
  1211. switch (mode) {
  1212. case AR5K_EEPROM_MODE_11A:
  1213. offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
  1214. rate_pcal_info = ee->ee_rate_tpwr_a;
  1215. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
  1216. break;
  1217. case AR5K_EEPROM_MODE_11B:
  1218. offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
  1219. rate_pcal_info = ee->ee_rate_tpwr_b;
  1220. ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
  1221. break;
  1222. case AR5K_EEPROM_MODE_11G:
  1223. offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
  1224. rate_pcal_info = ee->ee_rate_tpwr_g;
  1225. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
  1226. break;
  1227. default:
  1228. return -EINVAL;
  1229. }
  1230. /* Different freq mask for older eeproms (<= v3.2) */
  1231. if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
  1232. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1233. AR5K_EEPROM_READ(offset++, val);
  1234. rate_pcal_info[i].freq =
  1235. ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
  1236. rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
  1237. rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
  1238. AR5K_EEPROM_READ(offset++, val);
  1239. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1240. val == 0) {
  1241. (*rate_target_pwr_num) = i;
  1242. break;
  1243. }
  1244. rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
  1245. rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
  1246. rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
  1247. }
  1248. } else {
  1249. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1250. AR5K_EEPROM_READ(offset++, val);
  1251. rate_pcal_info[i].freq =
  1252. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  1253. rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
  1254. rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
  1255. AR5K_EEPROM_READ(offset++, val);
  1256. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1257. val == 0) {
  1258. (*rate_target_pwr_num) = i;
  1259. break;
  1260. }
  1261. rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
  1262. rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
  1263. rate_pcal_info[i].target_power_54 = (val & 0x3f);
  1264. }
  1265. }
  1266. return 0;
  1267. }
  1268. /*
  1269. * Read per channel calibration info from EEPROM
  1270. *
  1271. * This info is used to calibrate the baseband power table. Imagine
  1272. * that for each channel there is a power curve that's hw specific
  1273. * (depends on amplifier etc) and we try to "correct" this curve using
  1274. * offsets we pass on to phy chip (baseband -> before amplifier) so that
  1275. * it can use accurate power values when setting tx power (takes amplifier's
  1276. * performance on each channel into account).
  1277. *
  1278. * EEPROM provides us with the offsets for some pre-calibrated channels
  1279. * and we have to interpolate to create the full table for these channels and
  1280. * also the table for any channel.
  1281. */
  1282. static int
  1283. ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
  1284. {
  1285. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1286. int (*read_pcal)(struct ath5k_hw *hw, int mode);
  1287. int mode;
  1288. int err;
  1289. if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
  1290. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
  1291. read_pcal = ath5k_eeprom_read_pcal_info_5112;
  1292. else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
  1293. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
  1294. read_pcal = ath5k_eeprom_read_pcal_info_2413;
  1295. else
  1296. read_pcal = ath5k_eeprom_read_pcal_info_5111;
  1297. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
  1298. mode++) {
  1299. err = read_pcal(ah, mode);
  1300. if (err)
  1301. return err;
  1302. err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
  1303. if (err < 0)
  1304. return err;
  1305. }
  1306. return 0;
  1307. }
  1308. /* Read conformance test limits used for regulatory control */
  1309. static int
  1310. ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
  1311. {
  1312. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1313. struct ath5k_edge_power *rep;
  1314. unsigned int fmask, pmask;
  1315. unsigned int ctl_mode;
  1316. int i, j;
  1317. u32 offset;
  1318. u16 val;
  1319. pmask = AR5K_EEPROM_POWER_M;
  1320. fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
  1321. offset = AR5K_EEPROM_CTL(ee->ee_version);
  1322. ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
  1323. for (i = 0; i < ee->ee_ctls; i += 2) {
  1324. AR5K_EEPROM_READ(offset++, val);
  1325. ee->ee_ctl[i] = (val >> 8) & 0xff;
  1326. ee->ee_ctl[i + 1] = val & 0xff;
  1327. }
  1328. offset = AR5K_EEPROM_GROUP8_OFFSET;
  1329. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
  1330. offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
  1331. AR5K_EEPROM_GROUP5_OFFSET;
  1332. else
  1333. offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
  1334. rep = ee->ee_ctl_pwr;
  1335. for (i = 0; i < ee->ee_ctls; i++) {
  1336. switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
  1337. case AR5K_CTL_11A:
  1338. case AR5K_CTL_TURBO:
  1339. ctl_mode = AR5K_EEPROM_MODE_11A;
  1340. break;
  1341. default:
  1342. ctl_mode = AR5K_EEPROM_MODE_11G;
  1343. break;
  1344. }
  1345. if (ee->ee_ctl[i] == 0) {
  1346. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
  1347. offset += 8;
  1348. else
  1349. offset += 7;
  1350. rep += AR5K_EEPROM_N_EDGES;
  1351. continue;
  1352. }
  1353. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  1354. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1355. AR5K_EEPROM_READ(offset++, val);
  1356. rep[j].freq = (val >> 8) & fmask;
  1357. rep[j + 1].freq = val & fmask;
  1358. }
  1359. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1360. AR5K_EEPROM_READ(offset++, val);
  1361. rep[j].edge = (val >> 8) & pmask;
  1362. rep[j].flag = (val >> 14) & 1;
  1363. rep[j + 1].edge = val & pmask;
  1364. rep[j + 1].flag = (val >> 6) & 1;
  1365. }
  1366. } else {
  1367. AR5K_EEPROM_READ(offset++, val);
  1368. rep[0].freq = (val >> 9) & fmask;
  1369. rep[1].freq = (val >> 2) & fmask;
  1370. rep[2].freq = (val << 5) & fmask;
  1371. AR5K_EEPROM_READ(offset++, val);
  1372. rep[2].freq |= (val >> 11) & 0x1f;
  1373. rep[3].freq = (val >> 4) & fmask;
  1374. rep[4].freq = (val << 3) & fmask;
  1375. AR5K_EEPROM_READ(offset++, val);
  1376. rep[4].freq |= (val >> 13) & 0x7;
  1377. rep[5].freq = (val >> 6) & fmask;
  1378. rep[6].freq = (val << 1) & fmask;
  1379. AR5K_EEPROM_READ(offset++, val);
  1380. rep[6].freq |= (val >> 15) & 0x1;
  1381. rep[7].freq = (val >> 8) & fmask;
  1382. rep[0].edge = (val >> 2) & pmask;
  1383. rep[1].edge = (val << 4) & pmask;
  1384. AR5K_EEPROM_READ(offset++, val);
  1385. rep[1].edge |= (val >> 12) & 0xf;
  1386. rep[2].edge = (val >> 6) & pmask;
  1387. rep[3].edge = val & pmask;
  1388. AR5K_EEPROM_READ(offset++, val);
  1389. rep[4].edge = (val >> 10) & pmask;
  1390. rep[5].edge = (val >> 4) & pmask;
  1391. rep[6].edge = (val << 2) & pmask;
  1392. AR5K_EEPROM_READ(offset++, val);
  1393. rep[6].edge |= (val >> 14) & 0x3;
  1394. rep[7].edge = (val >> 8) & pmask;
  1395. }
  1396. for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
  1397. rep[j].freq = ath5k_eeprom_bin2freq(ee,
  1398. rep[j].freq, ctl_mode);
  1399. }
  1400. rep += AR5K_EEPROM_N_EDGES;
  1401. }
  1402. return 0;
  1403. }
  1404. static int
  1405. ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
  1406. {
  1407. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1408. u32 offset;
  1409. u16 val;
  1410. int ret = 0, i;
  1411. offset = AR5K_EEPROM_CTL(ee->ee_version) +
  1412. AR5K_EEPROM_N_CTLS(ee->ee_version);
  1413. if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
  1414. /* No spur info for 5GHz */
  1415. ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
  1416. /* 2 channels for 2GHz (2464/2420) */
  1417. ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
  1418. ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
  1419. ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
  1420. } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
  1421. for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
  1422. AR5K_EEPROM_READ(offset, val);
  1423. ee->ee_spur_chans[i][0] = val;
  1424. AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
  1425. val);
  1426. ee->ee_spur_chans[i][1] = val;
  1427. offset++;
  1428. }
  1429. }
  1430. return ret;
  1431. }
  1432. /***********************\
  1433. * Init/Detach functions *
  1434. \***********************/
  1435. /*
  1436. * Initialize eeprom data structure
  1437. */
  1438. int
  1439. ath5k_eeprom_init(struct ath5k_hw *ah)
  1440. {
  1441. int err;
  1442. err = ath5k_eeprom_init_header(ah);
  1443. if (err < 0)
  1444. return err;
  1445. err = ath5k_eeprom_init_modes(ah);
  1446. if (err < 0)
  1447. return err;
  1448. err = ath5k_eeprom_read_pcal_info(ah);
  1449. if (err < 0)
  1450. return err;
  1451. err = ath5k_eeprom_read_ctl_info(ah);
  1452. if (err < 0)
  1453. return err;
  1454. err = ath5k_eeprom_read_spur_chans(ah);
  1455. if (err < 0)
  1456. return err;
  1457. return 0;
  1458. }
  1459. void
  1460. ath5k_eeprom_detach(struct ath5k_hw *ah)
  1461. {
  1462. u8 mode;
  1463. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
  1464. ath5k_eeprom_free_pcal_info(ah, mode);
  1465. }
  1466. int
  1467. ath5k_eeprom_mode_from_channel(struct ieee80211_channel *channel)
  1468. {
  1469. switch (channel->hw_value) {
  1470. case AR5K_MODE_11A:
  1471. return AR5K_EEPROM_MODE_11A;
  1472. case AR5K_MODE_11G:
  1473. return AR5K_EEPROM_MODE_11G;
  1474. case AR5K_MODE_11B:
  1475. return AR5K_EEPROM_MODE_11B;
  1476. default:
  1477. return -1;
  1478. }
  1479. }