omap-mcbsp.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818
  1. /*
  2. * omap-mcbsp.c -- OMAP ALSA SoC DAI driver using McBSP port
  3. *
  4. * Copyright (C) 2008 Nokia Corporation
  5. *
  6. * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
  7. * Peter Ujfalusi <peter.ujfalusi@ti.com>
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * version 2 as published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
  21. * 02110-1301 USA
  22. *
  23. */
  24. #include <linux/init.h>
  25. #include <linux/module.h>
  26. #include <linux/device.h>
  27. #include <linux/pm_runtime.h>
  28. #include <sound/core.h>
  29. #include <sound/pcm.h>
  30. #include <sound/pcm_params.h>
  31. #include <sound/initval.h>
  32. #include <sound/soc.h>
  33. #include <plat/dma.h>
  34. #include <plat/mcbsp.h>
  35. #include "mcbsp.h"
  36. #include "omap-mcbsp.h"
  37. #include "omap-pcm.h"
  38. #define OMAP_MCBSP_RATES (SNDRV_PCM_RATE_8000_96000)
  39. #define OMAP_MCBSP_SOC_SINGLE_S16_EXT(xname, xmin, xmax, \
  40. xhandler_get, xhandler_put) \
  41. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  42. .info = omap_mcbsp_st_info_volsw, \
  43. .get = xhandler_get, .put = xhandler_put, \
  44. .private_value = (unsigned long) &(struct soc_mixer_control) \
  45. {.min = xmin, .max = xmax} }
  46. enum {
  47. OMAP_MCBSP_WORD_8 = 0,
  48. OMAP_MCBSP_WORD_12,
  49. OMAP_MCBSP_WORD_16,
  50. OMAP_MCBSP_WORD_20,
  51. OMAP_MCBSP_WORD_24,
  52. OMAP_MCBSP_WORD_32,
  53. };
  54. /*
  55. * Stream DMA parameters. DMA request line and port address are set runtime
  56. * since they are different between OMAP1 and later OMAPs
  57. */
  58. static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream)
  59. {
  60. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  61. struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
  62. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
  63. struct omap_pcm_dma_data *dma_data;
  64. int words;
  65. dma_data = snd_soc_dai_get_dma_data(rtd->cpu_dai, substream);
  66. /* TODO: Currently, MODE_ELEMENT == MODE_FRAME */
  67. if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD)
  68. /*
  69. * Configure McBSP threshold based on either:
  70. * packet_size, when the sDMA is in packet mode, or
  71. * based on the period size.
  72. */
  73. if (dma_data->packet_size)
  74. words = dma_data->packet_size;
  75. else
  76. words = snd_pcm_lib_period_bytes(substream) /
  77. (mcbsp->wlen / 8);
  78. else
  79. words = 1;
  80. /* Configure McBSP internal buffer usage */
  81. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  82. omap_mcbsp_set_tx_threshold(mcbsp, words);
  83. else
  84. omap_mcbsp_set_rx_threshold(mcbsp, words);
  85. }
  86. static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
  87. struct snd_pcm_hw_rule *rule)
  88. {
  89. struct snd_interval *buffer_size = hw_param_interval(params,
  90. SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
  91. struct snd_interval *channels = hw_param_interval(params,
  92. SNDRV_PCM_HW_PARAM_CHANNELS);
  93. struct omap_mcbsp *mcbsp = rule->private;
  94. struct snd_interval frames;
  95. int size;
  96. snd_interval_any(&frames);
  97. size = mcbsp->pdata->buffer_size;
  98. frames.min = size / channels->min;
  99. frames.integer = 1;
  100. return snd_interval_refine(buffer_size, &frames);
  101. }
  102. static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
  103. struct snd_soc_dai *cpu_dai)
  104. {
  105. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
  106. int err = 0;
  107. if (!cpu_dai->active)
  108. err = omap_mcbsp_request(mcbsp);
  109. /*
  110. * OMAP3 McBSP FIFO is word structured.
  111. * McBSP2 has 1024 + 256 = 1280 word long buffer,
  112. * McBSP1,3,4,5 has 128 word long buffer
  113. * This means that the size of the FIFO depends on the sample format.
  114. * For example on McBSP3:
  115. * 16bit samples: size is 128 * 2 = 256 bytes
  116. * 32bit samples: size is 128 * 4 = 512 bytes
  117. * It is simpler to place constraint for buffer and period based on
  118. * channels.
  119. * McBSP3 as example again (16 or 32 bit samples):
  120. * 1 channel (mono): size is 128 frames (128 words)
  121. * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
  122. * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
  123. */
  124. if (mcbsp->pdata->buffer_size) {
  125. /*
  126. * Rule for the buffer size. We should not allow
  127. * smaller buffer than the FIFO size to avoid underruns
  128. */
  129. snd_pcm_hw_rule_add(substream->runtime, 0,
  130. SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
  131. omap_mcbsp_hwrule_min_buffersize,
  132. mcbsp,
  133. SNDRV_PCM_HW_PARAM_CHANNELS, -1);
  134. /* Make sure, that the period size is always even */
  135. snd_pcm_hw_constraint_step(substream->runtime, 0,
  136. SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
  137. }
  138. return err;
  139. }
  140. static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
  141. struct snd_soc_dai *cpu_dai)
  142. {
  143. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
  144. if (!cpu_dai->active) {
  145. omap_mcbsp_free(mcbsp);
  146. mcbsp->configured = 0;
  147. }
  148. }
  149. static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
  150. struct snd_soc_dai *cpu_dai)
  151. {
  152. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
  153. int err = 0, play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
  154. switch (cmd) {
  155. case SNDRV_PCM_TRIGGER_START:
  156. case SNDRV_PCM_TRIGGER_RESUME:
  157. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  158. mcbsp->active++;
  159. omap_mcbsp_start(mcbsp, play, !play);
  160. break;
  161. case SNDRV_PCM_TRIGGER_STOP:
  162. case SNDRV_PCM_TRIGGER_SUSPEND:
  163. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  164. omap_mcbsp_stop(mcbsp, play, !play);
  165. mcbsp->active--;
  166. break;
  167. default:
  168. err = -EINVAL;
  169. }
  170. return err;
  171. }
  172. static snd_pcm_sframes_t omap_mcbsp_dai_delay(
  173. struct snd_pcm_substream *substream,
  174. struct snd_soc_dai *dai)
  175. {
  176. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  177. struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
  178. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
  179. u16 fifo_use;
  180. snd_pcm_sframes_t delay;
  181. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  182. fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
  183. else
  184. fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
  185. /*
  186. * Divide the used locations with the channel count to get the
  187. * FIFO usage in samples (don't care about partial samples in the
  188. * buffer).
  189. */
  190. delay = fifo_use / substream->runtime->channels;
  191. return delay;
  192. }
  193. static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
  194. struct snd_pcm_hw_params *params,
  195. struct snd_soc_dai *cpu_dai)
  196. {
  197. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
  198. struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
  199. struct omap_pcm_dma_data *dma_data;
  200. int wlen, channels, wpf, sync_mode = OMAP_DMA_SYNC_ELEMENT;
  201. int pkt_size = 0;
  202. unsigned int format, div, framesize, master;
  203. dma_data = &mcbsp->dma_data[substream->stream];
  204. switch (params_format(params)) {
  205. case SNDRV_PCM_FORMAT_S16_LE:
  206. dma_data->data_type = OMAP_DMA_DATA_TYPE_S16;
  207. wlen = 16;
  208. break;
  209. case SNDRV_PCM_FORMAT_S32_LE:
  210. dma_data->data_type = OMAP_DMA_DATA_TYPE_S32;
  211. wlen = 32;
  212. break;
  213. default:
  214. return -EINVAL;
  215. }
  216. if (mcbsp->pdata->buffer_size) {
  217. dma_data->set_threshold = omap_mcbsp_set_threshold;
  218. /* TODO: Currently, MODE_ELEMENT == MODE_FRAME */
  219. if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
  220. int period_words, max_thrsh;
  221. period_words = params_period_bytes(params) / (wlen / 8);
  222. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  223. max_thrsh = mcbsp->max_tx_thres;
  224. else
  225. max_thrsh = mcbsp->max_rx_thres;
  226. /*
  227. * If the period contains less or equal number of words,
  228. * we are using the original threshold mode setup:
  229. * McBSP threshold = sDMA frame size = period_size
  230. * Otherwise we switch to sDMA packet mode:
  231. * McBSP threshold = sDMA packet size
  232. * sDMA frame size = period size
  233. */
  234. if (period_words > max_thrsh) {
  235. int divider = 0;
  236. /*
  237. * Look for the biggest threshold value, which
  238. * divides the period size evenly.
  239. */
  240. divider = period_words / max_thrsh;
  241. if (period_words % max_thrsh)
  242. divider++;
  243. while (period_words % divider &&
  244. divider < period_words)
  245. divider++;
  246. if (divider == period_words)
  247. return -EINVAL;
  248. pkt_size = period_words / divider;
  249. sync_mode = OMAP_DMA_SYNC_PACKET;
  250. } else {
  251. sync_mode = OMAP_DMA_SYNC_FRAME;
  252. }
  253. }
  254. }
  255. dma_data->sync_mode = sync_mode;
  256. dma_data->packet_size = pkt_size;
  257. snd_soc_dai_set_dma_data(cpu_dai, substream, dma_data);
  258. if (mcbsp->configured) {
  259. /* McBSP already configured by another stream */
  260. return 0;
  261. }
  262. regs->rcr2 &= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
  263. regs->xcr2 &= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
  264. regs->rcr1 &= ~(RFRLEN1(0x7f) | RWDLEN1(7));
  265. regs->xcr1 &= ~(XFRLEN1(0x7f) | XWDLEN1(7));
  266. format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
  267. wpf = channels = params_channels(params);
  268. if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
  269. format == SND_SOC_DAIFMT_LEFT_J)) {
  270. /* Use dual-phase frames */
  271. regs->rcr2 |= RPHASE;
  272. regs->xcr2 |= XPHASE;
  273. /* Set 1 word per (McBSP) frame for phase1 and phase2 */
  274. wpf--;
  275. regs->rcr2 |= RFRLEN2(wpf - 1);
  276. regs->xcr2 |= XFRLEN2(wpf - 1);
  277. }
  278. regs->rcr1 |= RFRLEN1(wpf - 1);
  279. regs->xcr1 |= XFRLEN1(wpf - 1);
  280. switch (params_format(params)) {
  281. case SNDRV_PCM_FORMAT_S16_LE:
  282. /* Set word lengths */
  283. regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_16);
  284. regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_16);
  285. regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_16);
  286. regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_16);
  287. break;
  288. case SNDRV_PCM_FORMAT_S32_LE:
  289. /* Set word lengths */
  290. regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_32);
  291. regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_32);
  292. regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_32);
  293. regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_32);
  294. break;
  295. default:
  296. /* Unsupported PCM format */
  297. return -EINVAL;
  298. }
  299. /* In McBSP master modes, FRAME (i.e. sample rate) is generated
  300. * by _counting_ BCLKs. Calculate frame size in BCLKs */
  301. master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
  302. if (master == SND_SOC_DAIFMT_CBS_CFS) {
  303. div = mcbsp->clk_div ? mcbsp->clk_div : 1;
  304. framesize = (mcbsp->in_freq / div) / params_rate(params);
  305. if (framesize < wlen * channels) {
  306. printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
  307. "channels\n", __func__);
  308. return -EINVAL;
  309. }
  310. } else
  311. framesize = wlen * channels;
  312. /* Set FS period and length in terms of bit clock periods */
  313. regs->srgr2 &= ~FPER(0xfff);
  314. regs->srgr1 &= ~FWID(0xff);
  315. switch (format) {
  316. case SND_SOC_DAIFMT_I2S:
  317. case SND_SOC_DAIFMT_LEFT_J:
  318. regs->srgr2 |= FPER(framesize - 1);
  319. regs->srgr1 |= FWID((framesize >> 1) - 1);
  320. break;
  321. case SND_SOC_DAIFMT_DSP_A:
  322. case SND_SOC_DAIFMT_DSP_B:
  323. regs->srgr2 |= FPER(framesize - 1);
  324. regs->srgr1 |= FWID(0);
  325. break;
  326. }
  327. omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
  328. mcbsp->wlen = wlen;
  329. mcbsp->configured = 1;
  330. return 0;
  331. }
  332. /*
  333. * This must be called before _set_clkdiv and _set_sysclk since McBSP register
  334. * cache is initialized here
  335. */
  336. static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
  337. unsigned int fmt)
  338. {
  339. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
  340. struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
  341. bool inv_fs = false;
  342. if (mcbsp->configured)
  343. return 0;
  344. mcbsp->fmt = fmt;
  345. memset(regs, 0, sizeof(*regs));
  346. /* Generic McBSP register settings */
  347. regs->spcr2 |= XINTM(3) | FREE;
  348. regs->spcr1 |= RINTM(3);
  349. /* RFIG and XFIG are not defined in 34xx */
  350. if (!cpu_is_omap34xx() && !cpu_is_omap44xx()) {
  351. regs->rcr2 |= RFIG;
  352. regs->xcr2 |= XFIG;
  353. }
  354. if (cpu_is_omap2430() || cpu_is_omap34xx() || cpu_is_omap44xx()) {
  355. regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
  356. regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
  357. }
  358. switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
  359. case SND_SOC_DAIFMT_I2S:
  360. /* 1-bit data delay */
  361. regs->rcr2 |= RDATDLY(1);
  362. regs->xcr2 |= XDATDLY(1);
  363. break;
  364. case SND_SOC_DAIFMT_LEFT_J:
  365. /* 0-bit data delay */
  366. regs->rcr2 |= RDATDLY(0);
  367. regs->xcr2 |= XDATDLY(0);
  368. regs->spcr1 |= RJUST(2);
  369. /* Invert FS polarity configuration */
  370. inv_fs = true;
  371. break;
  372. case SND_SOC_DAIFMT_DSP_A:
  373. /* 1-bit data delay */
  374. regs->rcr2 |= RDATDLY(1);
  375. regs->xcr2 |= XDATDLY(1);
  376. /* Invert FS polarity configuration */
  377. inv_fs = true;
  378. break;
  379. case SND_SOC_DAIFMT_DSP_B:
  380. /* 0-bit data delay */
  381. regs->rcr2 |= RDATDLY(0);
  382. regs->xcr2 |= XDATDLY(0);
  383. /* Invert FS polarity configuration */
  384. inv_fs = true;
  385. break;
  386. default:
  387. /* Unsupported data format */
  388. return -EINVAL;
  389. }
  390. switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
  391. case SND_SOC_DAIFMT_CBS_CFS:
  392. /* McBSP master. Set FS and bit clocks as outputs */
  393. regs->pcr0 |= FSXM | FSRM |
  394. CLKXM | CLKRM;
  395. /* Sample rate generator drives the FS */
  396. regs->srgr2 |= FSGM;
  397. break;
  398. case SND_SOC_DAIFMT_CBM_CFM:
  399. /* McBSP slave */
  400. break;
  401. default:
  402. /* Unsupported master/slave configuration */
  403. return -EINVAL;
  404. }
  405. /* Set bit clock (CLKX/CLKR) and FS polarities */
  406. switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
  407. case SND_SOC_DAIFMT_NB_NF:
  408. /*
  409. * Normal BCLK + FS.
  410. * FS active low. TX data driven on falling edge of bit clock
  411. * and RX data sampled on rising edge of bit clock.
  412. */
  413. regs->pcr0 |= FSXP | FSRP |
  414. CLKXP | CLKRP;
  415. break;
  416. case SND_SOC_DAIFMT_NB_IF:
  417. regs->pcr0 |= CLKXP | CLKRP;
  418. break;
  419. case SND_SOC_DAIFMT_IB_NF:
  420. regs->pcr0 |= FSXP | FSRP;
  421. break;
  422. case SND_SOC_DAIFMT_IB_IF:
  423. break;
  424. default:
  425. return -EINVAL;
  426. }
  427. if (inv_fs == true)
  428. regs->pcr0 ^= FSXP | FSRP;
  429. return 0;
  430. }
  431. static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
  432. int div_id, int div)
  433. {
  434. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
  435. struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
  436. if (div_id != OMAP_MCBSP_CLKGDV)
  437. return -ENODEV;
  438. mcbsp->clk_div = div;
  439. regs->srgr1 &= ~CLKGDV(0xff);
  440. regs->srgr1 |= CLKGDV(div - 1);
  441. return 0;
  442. }
  443. static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
  444. int clk_id, unsigned int freq,
  445. int dir)
  446. {
  447. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
  448. struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
  449. int err = 0;
  450. if (mcbsp->active) {
  451. if (freq == mcbsp->in_freq)
  452. return 0;
  453. else
  454. return -EBUSY;
  455. }
  456. if (clk_id == OMAP_MCBSP_SYSCLK_CLK ||
  457. clk_id == OMAP_MCBSP_SYSCLK_CLKS_FCLK ||
  458. clk_id == OMAP_MCBSP_SYSCLK_CLKS_EXT ||
  459. clk_id == OMAP_MCBSP_SYSCLK_CLKX_EXT ||
  460. clk_id == OMAP_MCBSP_SYSCLK_CLKR_EXT) {
  461. mcbsp->in_freq = freq;
  462. regs->srgr2 &= ~CLKSM;
  463. regs->pcr0 &= ~SCLKME;
  464. } else if (cpu_class_is_omap1()) {
  465. /*
  466. * McBSP CLKR/FSR signal muxing functions are only available on
  467. * OMAP2 or newer versions
  468. */
  469. return -EINVAL;
  470. }
  471. switch (clk_id) {
  472. case OMAP_MCBSP_SYSCLK_CLK:
  473. regs->srgr2 |= CLKSM;
  474. break;
  475. case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
  476. if (cpu_class_is_omap1()) {
  477. err = -EINVAL;
  478. break;
  479. }
  480. err = omap2_mcbsp_set_clks_src(mcbsp,
  481. MCBSP_CLKS_PRCM_SRC);
  482. break;
  483. case OMAP_MCBSP_SYSCLK_CLKS_EXT:
  484. if (cpu_class_is_omap1()) {
  485. err = 0;
  486. break;
  487. }
  488. err = omap2_mcbsp_set_clks_src(mcbsp,
  489. MCBSP_CLKS_PAD_SRC);
  490. break;
  491. case OMAP_MCBSP_SYSCLK_CLKX_EXT:
  492. regs->srgr2 |= CLKSM;
  493. case OMAP_MCBSP_SYSCLK_CLKR_EXT:
  494. regs->pcr0 |= SCLKME;
  495. break;
  496. case OMAP_MCBSP_CLKR_SRC_CLKR:
  497. err = omap_mcbsp_6pin_src_mux(mcbsp, CLKR_SRC_CLKR);
  498. break;
  499. case OMAP_MCBSP_CLKR_SRC_CLKX:
  500. err = omap_mcbsp_6pin_src_mux(mcbsp, CLKR_SRC_CLKX);
  501. break;
  502. case OMAP_MCBSP_FSR_SRC_FSR:
  503. err = omap_mcbsp_6pin_src_mux(mcbsp, FSR_SRC_FSR);
  504. break;
  505. case OMAP_MCBSP_FSR_SRC_FSX:
  506. err = omap_mcbsp_6pin_src_mux(mcbsp, FSR_SRC_FSX);
  507. break;
  508. default:
  509. err = -ENODEV;
  510. }
  511. return err;
  512. }
  513. static const struct snd_soc_dai_ops mcbsp_dai_ops = {
  514. .startup = omap_mcbsp_dai_startup,
  515. .shutdown = omap_mcbsp_dai_shutdown,
  516. .trigger = omap_mcbsp_dai_trigger,
  517. .delay = omap_mcbsp_dai_delay,
  518. .hw_params = omap_mcbsp_dai_hw_params,
  519. .set_fmt = omap_mcbsp_dai_set_dai_fmt,
  520. .set_clkdiv = omap_mcbsp_dai_set_clkdiv,
  521. .set_sysclk = omap_mcbsp_dai_set_dai_sysclk,
  522. };
  523. static int omap_mcbsp_probe(struct snd_soc_dai *dai)
  524. {
  525. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
  526. pm_runtime_enable(mcbsp->dev);
  527. return 0;
  528. }
  529. static int omap_mcbsp_remove(struct snd_soc_dai *dai)
  530. {
  531. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
  532. pm_runtime_disable(mcbsp->dev);
  533. return 0;
  534. }
  535. static struct snd_soc_dai_driver omap_mcbsp_dai = {
  536. .probe = omap_mcbsp_probe,
  537. .remove = omap_mcbsp_remove,
  538. .playback = {
  539. .channels_min = 1,
  540. .channels_max = 16,
  541. .rates = OMAP_MCBSP_RATES,
  542. .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
  543. },
  544. .capture = {
  545. .channels_min = 1,
  546. .channels_max = 16,
  547. .rates = OMAP_MCBSP_RATES,
  548. .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
  549. },
  550. .ops = &mcbsp_dai_ops,
  551. };
  552. static int omap_mcbsp_st_info_volsw(struct snd_kcontrol *kcontrol,
  553. struct snd_ctl_elem_info *uinfo)
  554. {
  555. struct soc_mixer_control *mc =
  556. (struct soc_mixer_control *)kcontrol->private_value;
  557. int max = mc->max;
  558. int min = mc->min;
  559. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  560. uinfo->count = 1;
  561. uinfo->value.integer.min = min;
  562. uinfo->value.integer.max = max;
  563. return 0;
  564. }
  565. #define OMAP_MCBSP_ST_SET_CHANNEL_VOLUME(channel) \
  566. static int \
  567. omap_mcbsp_set_st_ch##channel##_volume(struct snd_kcontrol *kc, \
  568. struct snd_ctl_elem_value *uc) \
  569. { \
  570. struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kc); \
  571. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); \
  572. struct soc_mixer_control *mc = \
  573. (struct soc_mixer_control *)kc->private_value; \
  574. int max = mc->max; \
  575. int min = mc->min; \
  576. int val = uc->value.integer.value[0]; \
  577. \
  578. if (val < min || val > max) \
  579. return -EINVAL; \
  580. \
  581. /* OMAP McBSP implementation uses index values 0..4 */ \
  582. return omap_st_set_chgain(mcbsp, channel, val); \
  583. }
  584. #define OMAP_MCBSP_ST_GET_CHANNEL_VOLUME(channel) \
  585. static int \
  586. omap_mcbsp_get_st_ch##channel##_volume(struct snd_kcontrol *kc, \
  587. struct snd_ctl_elem_value *uc) \
  588. { \
  589. struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kc); \
  590. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); \
  591. s16 chgain; \
  592. \
  593. if (omap_st_get_chgain(mcbsp, channel, &chgain)) \
  594. return -EAGAIN; \
  595. \
  596. uc->value.integer.value[0] = chgain; \
  597. return 0; \
  598. }
  599. OMAP_MCBSP_ST_SET_CHANNEL_VOLUME(0)
  600. OMAP_MCBSP_ST_SET_CHANNEL_VOLUME(1)
  601. OMAP_MCBSP_ST_GET_CHANNEL_VOLUME(0)
  602. OMAP_MCBSP_ST_GET_CHANNEL_VOLUME(1)
  603. static int omap_mcbsp_st_put_mode(struct snd_kcontrol *kcontrol,
  604. struct snd_ctl_elem_value *ucontrol)
  605. {
  606. struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
  607. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
  608. u8 value = ucontrol->value.integer.value[0];
  609. if (value == omap_st_is_enabled(mcbsp))
  610. return 0;
  611. if (value)
  612. omap_st_enable(mcbsp);
  613. else
  614. omap_st_disable(mcbsp);
  615. return 1;
  616. }
  617. static int omap_mcbsp_st_get_mode(struct snd_kcontrol *kcontrol,
  618. struct snd_ctl_elem_value *ucontrol)
  619. {
  620. struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
  621. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
  622. ucontrol->value.integer.value[0] = omap_st_is_enabled(mcbsp);
  623. return 0;
  624. }
  625. static const struct snd_kcontrol_new omap_mcbsp2_st_controls[] = {
  626. SOC_SINGLE_EXT("McBSP2 Sidetone Switch", 1, 0, 1, 0,
  627. omap_mcbsp_st_get_mode, omap_mcbsp_st_put_mode),
  628. OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP2 Sidetone Channel 0 Volume",
  629. -32768, 32767,
  630. omap_mcbsp_get_st_ch0_volume,
  631. omap_mcbsp_set_st_ch0_volume),
  632. OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP2 Sidetone Channel 1 Volume",
  633. -32768, 32767,
  634. omap_mcbsp_get_st_ch1_volume,
  635. omap_mcbsp_set_st_ch1_volume),
  636. };
  637. static const struct snd_kcontrol_new omap_mcbsp3_st_controls[] = {
  638. SOC_SINGLE_EXT("McBSP3 Sidetone Switch", 2, 0, 1, 0,
  639. omap_mcbsp_st_get_mode, omap_mcbsp_st_put_mode),
  640. OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP3 Sidetone Channel 0 Volume",
  641. -32768, 32767,
  642. omap_mcbsp_get_st_ch0_volume,
  643. omap_mcbsp_set_st_ch0_volume),
  644. OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP3 Sidetone Channel 1 Volume",
  645. -32768, 32767,
  646. omap_mcbsp_get_st_ch1_volume,
  647. omap_mcbsp_set_st_ch1_volume),
  648. };
  649. int omap_mcbsp_st_add_controls(struct snd_soc_pcm_runtime *rtd)
  650. {
  651. struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
  652. struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
  653. if (!mcbsp->st_data)
  654. return -ENODEV;
  655. switch (cpu_dai->id) {
  656. case 2: /* McBSP 2 */
  657. return snd_soc_add_dai_controls(cpu_dai,
  658. omap_mcbsp2_st_controls,
  659. ARRAY_SIZE(omap_mcbsp2_st_controls));
  660. case 3: /* McBSP 3 */
  661. return snd_soc_add_dai_controls(cpu_dai,
  662. omap_mcbsp3_st_controls,
  663. ARRAY_SIZE(omap_mcbsp3_st_controls));
  664. default:
  665. break;
  666. }
  667. return -EINVAL;
  668. }
  669. EXPORT_SYMBOL_GPL(omap_mcbsp_st_add_controls);
  670. static __devinit int asoc_mcbsp_probe(struct platform_device *pdev)
  671. {
  672. struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
  673. struct omap_mcbsp *mcbsp;
  674. int ret;
  675. if (!pdata) {
  676. dev_err(&pdev->dev, "missing platform data.\n");
  677. return -EINVAL;
  678. }
  679. mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
  680. if (!mcbsp)
  681. return -ENOMEM;
  682. mcbsp->id = pdev->id;
  683. mcbsp->pdata = pdata;
  684. mcbsp->dev = &pdev->dev;
  685. platform_set_drvdata(pdev, mcbsp);
  686. ret = omap_mcbsp_init(pdev);
  687. if (!ret)
  688. return snd_soc_register_dai(&pdev->dev, &omap_mcbsp_dai);
  689. return ret;
  690. }
  691. static int __devexit asoc_mcbsp_remove(struct platform_device *pdev)
  692. {
  693. struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
  694. snd_soc_unregister_dai(&pdev->dev);
  695. if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
  696. mcbsp->pdata->ops->free(mcbsp->id);
  697. omap_mcbsp_sysfs_remove(mcbsp);
  698. clk_put(mcbsp->fclk);
  699. platform_set_drvdata(pdev, NULL);
  700. return 0;
  701. }
  702. static struct platform_driver asoc_mcbsp_driver = {
  703. .driver = {
  704. .name = "omap-mcbsp",
  705. .owner = THIS_MODULE,
  706. },
  707. .probe = asoc_mcbsp_probe,
  708. .remove = __devexit_p(asoc_mcbsp_remove),
  709. };
  710. module_platform_driver(asoc_mcbsp_driver);
  711. MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
  712. MODULE_DESCRIPTION("OMAP I2S SoC Interface");
  713. MODULE_LICENSE("GPL");