xonar_dg.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620
  1. /*
  2. * card driver for the Xonar DG
  3. *
  4. * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
  5. *
  6. *
  7. * This driver is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License, version 2.
  9. *
  10. * This driver is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this driver; if not, see <http://www.gnu.org/licenses/>.
  17. */
  18. /*
  19. * Xonar DG
  20. * --------
  21. *
  22. * CMI8788:
  23. *
  24. * SPI 0 -> CS4245
  25. *
  26. * I²S 1 -> CS4245
  27. * I²S 2 -> CS4361 (center/LFE)
  28. * I²S 3 -> CS4361 (surround)
  29. * I²S 4 -> CS4361 (front)
  30. *
  31. * GPIO 3 <- ?
  32. * GPIO 4 <- headphone detect
  33. * GPIO 5 -> route input jack to line-in (0) or mic-in (1)
  34. * GPIO 6 -> route input jack to line-in (0) or mic-in (1)
  35. * GPIO 7 -> enable rear headphone amp
  36. * GPIO 8 -> enable output to speakers
  37. *
  38. * CS4245:
  39. *
  40. * input 1 <- aux
  41. * input 2 <- front mic
  42. * input 4 <- line/mic
  43. * DAC out -> headphones
  44. * aux out -> front panel headphones
  45. */
  46. #include <linux/pci.h>
  47. #include <linux/delay.h>
  48. #include <sound/control.h>
  49. #include <sound/core.h>
  50. #include <sound/info.h>
  51. #include <sound/pcm.h>
  52. #include <sound/tlv.h>
  53. #include "oxygen.h"
  54. #include "xonar_dg.h"
  55. #include "cs4245.h"
  56. #define GPIO_MAGIC 0x0008
  57. #define GPIO_HP_DETECT 0x0010
  58. #define GPIO_INPUT_ROUTE 0x0060
  59. #define GPIO_HP_REAR 0x0080
  60. #define GPIO_OUTPUT_ENABLE 0x0100
  61. struct dg {
  62. unsigned int output_sel;
  63. s8 input_vol[4][2];
  64. unsigned int input_sel;
  65. u8 hp_vol_att;
  66. u8 cs4245_regs[0x11];
  67. };
  68. static void cs4245_write(struct oxygen *chip, unsigned int reg, u8 value)
  69. {
  70. struct dg *data = chip->model_data;
  71. oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
  72. OXYGEN_SPI_DATA_LENGTH_3 |
  73. OXYGEN_SPI_CLOCK_1280 |
  74. (0 << OXYGEN_SPI_CODEC_SHIFT) |
  75. OXYGEN_SPI_CEN_LATCH_CLOCK_HI,
  76. CS4245_SPI_ADDRESS |
  77. CS4245_SPI_WRITE |
  78. (reg << 8) | value);
  79. data->cs4245_regs[reg] = value;
  80. }
  81. static void cs4245_write_cached(struct oxygen *chip, unsigned int reg, u8 value)
  82. {
  83. struct dg *data = chip->model_data;
  84. if (value != data->cs4245_regs[reg])
  85. cs4245_write(chip, reg, value);
  86. }
  87. static void cs4245_registers_init(struct oxygen *chip)
  88. {
  89. struct dg *data = chip->model_data;
  90. cs4245_write(chip, CS4245_POWER_CTRL, CS4245_PDN);
  91. cs4245_write(chip, CS4245_DAC_CTRL_1,
  92. data->cs4245_regs[CS4245_DAC_CTRL_1]);
  93. cs4245_write(chip, CS4245_ADC_CTRL,
  94. data->cs4245_regs[CS4245_ADC_CTRL]);
  95. cs4245_write(chip, CS4245_SIGNAL_SEL,
  96. data->cs4245_regs[CS4245_SIGNAL_SEL]);
  97. cs4245_write(chip, CS4245_PGA_B_CTRL,
  98. data->cs4245_regs[CS4245_PGA_B_CTRL]);
  99. cs4245_write(chip, CS4245_PGA_A_CTRL,
  100. data->cs4245_regs[CS4245_PGA_A_CTRL]);
  101. cs4245_write(chip, CS4245_ANALOG_IN,
  102. data->cs4245_regs[CS4245_ANALOG_IN]);
  103. cs4245_write(chip, CS4245_DAC_A_CTRL,
  104. data->cs4245_regs[CS4245_DAC_A_CTRL]);
  105. cs4245_write(chip, CS4245_DAC_B_CTRL,
  106. data->cs4245_regs[CS4245_DAC_B_CTRL]);
  107. cs4245_write(chip, CS4245_DAC_CTRL_2,
  108. CS4245_DAC_SOFT | CS4245_DAC_ZERO | CS4245_INVERT_DAC);
  109. cs4245_write(chip, CS4245_INT_MASK, 0);
  110. cs4245_write(chip, CS4245_POWER_CTRL, 0);
  111. }
  112. static void cs4245_init(struct oxygen *chip)
  113. {
  114. struct dg *data = chip->model_data;
  115. data->cs4245_regs[CS4245_DAC_CTRL_1] =
  116. CS4245_DAC_FM_SINGLE | CS4245_DAC_DIF_LJUST;
  117. data->cs4245_regs[CS4245_ADC_CTRL] =
  118. CS4245_ADC_FM_SINGLE | CS4245_ADC_DIF_LJUST;
  119. data->cs4245_regs[CS4245_SIGNAL_SEL] =
  120. CS4245_A_OUT_SEL_HIZ | CS4245_ASYNCH;
  121. data->cs4245_regs[CS4245_PGA_B_CTRL] = 0;
  122. data->cs4245_regs[CS4245_PGA_A_CTRL] = 0;
  123. data->cs4245_regs[CS4245_ANALOG_IN] =
  124. CS4245_PGA_SOFT | CS4245_PGA_ZERO | CS4245_SEL_INPUT_4;
  125. data->cs4245_regs[CS4245_DAC_A_CTRL] = 0;
  126. data->cs4245_regs[CS4245_DAC_B_CTRL] = 0;
  127. cs4245_registers_init(chip);
  128. snd_component_add(chip->card, "CS4245");
  129. }
  130. static void dg_output_enable(struct oxygen *chip)
  131. {
  132. msleep(2500);
  133. oxygen_set_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
  134. }
  135. static void dg_init(struct oxygen *chip)
  136. {
  137. struct dg *data = chip->model_data;
  138. data->output_sel = 0;
  139. data->input_sel = 3;
  140. data->hp_vol_att = 2 * 16;
  141. cs4245_init(chip);
  142. oxygen_clear_bits16(chip, OXYGEN_GPIO_CONTROL,
  143. GPIO_MAGIC | GPIO_HP_DETECT);
  144. oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL,
  145. GPIO_INPUT_ROUTE | GPIO_HP_REAR | GPIO_OUTPUT_ENABLE);
  146. oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA,
  147. GPIO_INPUT_ROUTE | GPIO_HP_REAR);
  148. dg_output_enable(chip);
  149. }
  150. static void dg_cleanup(struct oxygen *chip)
  151. {
  152. oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
  153. }
  154. static void dg_suspend(struct oxygen *chip)
  155. {
  156. dg_cleanup(chip);
  157. }
  158. static void dg_resume(struct oxygen *chip)
  159. {
  160. cs4245_registers_init(chip);
  161. dg_output_enable(chip);
  162. }
  163. static void set_cs4245_dac_params(struct oxygen *chip,
  164. struct snd_pcm_hw_params *params)
  165. {
  166. struct dg *data = chip->model_data;
  167. u8 value;
  168. value = data->cs4245_regs[CS4245_DAC_CTRL_1] & ~CS4245_DAC_FM_MASK;
  169. if (params_rate(params) <= 50000)
  170. value |= CS4245_DAC_FM_SINGLE;
  171. else if (params_rate(params) <= 100000)
  172. value |= CS4245_DAC_FM_DOUBLE;
  173. else
  174. value |= CS4245_DAC_FM_QUAD;
  175. cs4245_write_cached(chip, CS4245_DAC_CTRL_1, value);
  176. }
  177. static void set_cs4245_adc_params(struct oxygen *chip,
  178. struct snd_pcm_hw_params *params)
  179. {
  180. struct dg *data = chip->model_data;
  181. u8 value;
  182. value = data->cs4245_regs[CS4245_ADC_CTRL] & ~CS4245_ADC_FM_MASK;
  183. if (params_rate(params) <= 50000)
  184. value |= CS4245_ADC_FM_SINGLE;
  185. else if (params_rate(params) <= 100000)
  186. value |= CS4245_ADC_FM_DOUBLE;
  187. else
  188. value |= CS4245_ADC_FM_QUAD;
  189. cs4245_write_cached(chip, CS4245_ADC_CTRL, value);
  190. }
  191. static inline unsigned int shift_bits(unsigned int value,
  192. unsigned int shift_from,
  193. unsigned int shift_to,
  194. unsigned int mask)
  195. {
  196. if (shift_from < shift_to)
  197. return (value << (shift_to - shift_from)) & mask;
  198. else
  199. return (value >> (shift_from - shift_to)) & mask;
  200. }
  201. static unsigned int adjust_dg_dac_routing(struct oxygen *chip,
  202. unsigned int play_routing)
  203. {
  204. return (play_routing & OXYGEN_PLAY_DAC0_SOURCE_MASK) |
  205. shift_bits(play_routing,
  206. OXYGEN_PLAY_DAC2_SOURCE_SHIFT,
  207. OXYGEN_PLAY_DAC1_SOURCE_SHIFT,
  208. OXYGEN_PLAY_DAC1_SOURCE_MASK) |
  209. shift_bits(play_routing,
  210. OXYGEN_PLAY_DAC1_SOURCE_SHIFT,
  211. OXYGEN_PLAY_DAC2_SOURCE_SHIFT,
  212. OXYGEN_PLAY_DAC2_SOURCE_MASK) |
  213. shift_bits(play_routing,
  214. OXYGEN_PLAY_DAC0_SOURCE_SHIFT,
  215. OXYGEN_PLAY_DAC3_SOURCE_SHIFT,
  216. OXYGEN_PLAY_DAC3_SOURCE_MASK);
  217. }
  218. static int output_switch_info(struct snd_kcontrol *ctl,
  219. struct snd_ctl_elem_info *info)
  220. {
  221. static const char *const names[3] = {
  222. "Speakers", "Headphones", "FP Headphones"
  223. };
  224. return snd_ctl_enum_info(info, 1, 3, names);
  225. }
  226. static int output_switch_get(struct snd_kcontrol *ctl,
  227. struct snd_ctl_elem_value *value)
  228. {
  229. struct oxygen *chip = ctl->private_data;
  230. struct dg *data = chip->model_data;
  231. mutex_lock(&chip->mutex);
  232. value->value.enumerated.item[0] = data->output_sel;
  233. mutex_unlock(&chip->mutex);
  234. return 0;
  235. }
  236. static int output_switch_put(struct snd_kcontrol *ctl,
  237. struct snd_ctl_elem_value *value)
  238. {
  239. struct oxygen *chip = ctl->private_data;
  240. struct dg *data = chip->model_data;
  241. u8 reg;
  242. int changed;
  243. if (value->value.enumerated.item[0] > 2)
  244. return -EINVAL;
  245. mutex_lock(&chip->mutex);
  246. changed = value->value.enumerated.item[0] != data->output_sel;
  247. if (changed) {
  248. data->output_sel = value->value.enumerated.item[0];
  249. reg = data->cs4245_regs[CS4245_SIGNAL_SEL] &
  250. ~CS4245_A_OUT_SEL_MASK;
  251. reg |= data->output_sel == 2 ?
  252. CS4245_A_OUT_SEL_DAC : CS4245_A_OUT_SEL_HIZ;
  253. cs4245_write_cached(chip, CS4245_SIGNAL_SEL, reg);
  254. cs4245_write_cached(chip, CS4245_DAC_A_CTRL,
  255. data->output_sel ? data->hp_vol_att : 0);
  256. cs4245_write_cached(chip, CS4245_DAC_B_CTRL,
  257. data->output_sel ? data->hp_vol_att : 0);
  258. oxygen_write16_masked(chip, OXYGEN_GPIO_DATA,
  259. data->output_sel == 1 ? GPIO_HP_REAR : 0,
  260. GPIO_HP_REAR);
  261. oxygen_write8_masked(chip, OXYGEN_PLAY_ROUTING,
  262. data->output_sel == 0 ?
  263. OXYGEN_PLAY_MUTE01 :
  264. OXYGEN_PLAY_MUTE23 |
  265. OXYGEN_PLAY_MUTE45 |
  266. OXYGEN_PLAY_MUTE67,
  267. OXYGEN_PLAY_MUTE01 |
  268. OXYGEN_PLAY_MUTE23 |
  269. OXYGEN_PLAY_MUTE45 |
  270. OXYGEN_PLAY_MUTE67);
  271. }
  272. mutex_unlock(&chip->mutex);
  273. return changed;
  274. }
  275. static int hp_volume_offset_info(struct snd_kcontrol *ctl,
  276. struct snd_ctl_elem_info *info)
  277. {
  278. static const char *const names[3] = {
  279. "< 64 ohms", "64-150 ohms", "150-300 ohms"
  280. };
  281. return snd_ctl_enum_info(info, 1, 3, names);
  282. }
  283. static int hp_volume_offset_get(struct snd_kcontrol *ctl,
  284. struct snd_ctl_elem_value *value)
  285. {
  286. struct oxygen *chip = ctl->private_data;
  287. struct dg *data = chip->model_data;
  288. mutex_lock(&chip->mutex);
  289. if (data->hp_vol_att > 2 * 7)
  290. value->value.enumerated.item[0] = 0;
  291. else if (data->hp_vol_att > 0)
  292. value->value.enumerated.item[0] = 1;
  293. else
  294. value->value.enumerated.item[0] = 2;
  295. mutex_unlock(&chip->mutex);
  296. return 0;
  297. }
  298. static int hp_volume_offset_put(struct snd_kcontrol *ctl,
  299. struct snd_ctl_elem_value *value)
  300. {
  301. static const s8 atts[3] = { 2 * 16, 2 * 7, 0 };
  302. struct oxygen *chip = ctl->private_data;
  303. struct dg *data = chip->model_data;
  304. s8 att;
  305. int changed;
  306. if (value->value.enumerated.item[0] > 2)
  307. return -EINVAL;
  308. att = atts[value->value.enumerated.item[0]];
  309. mutex_lock(&chip->mutex);
  310. changed = att != data->hp_vol_att;
  311. if (changed) {
  312. data->hp_vol_att = att;
  313. if (data->output_sel) {
  314. cs4245_write_cached(chip, CS4245_DAC_A_CTRL, att);
  315. cs4245_write_cached(chip, CS4245_DAC_B_CTRL, att);
  316. }
  317. }
  318. mutex_unlock(&chip->mutex);
  319. return changed;
  320. }
  321. static int input_vol_info(struct snd_kcontrol *ctl,
  322. struct snd_ctl_elem_info *info)
  323. {
  324. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  325. info->count = 2;
  326. info->value.integer.min = 2 * -12;
  327. info->value.integer.max = 2 * 12;
  328. return 0;
  329. }
  330. static int input_vol_get(struct snd_kcontrol *ctl,
  331. struct snd_ctl_elem_value *value)
  332. {
  333. struct oxygen *chip = ctl->private_data;
  334. struct dg *data = chip->model_data;
  335. unsigned int idx = ctl->private_value;
  336. mutex_lock(&chip->mutex);
  337. value->value.integer.value[0] = data->input_vol[idx][0];
  338. value->value.integer.value[1] = data->input_vol[idx][1];
  339. mutex_unlock(&chip->mutex);
  340. return 0;
  341. }
  342. static int input_vol_put(struct snd_kcontrol *ctl,
  343. struct snd_ctl_elem_value *value)
  344. {
  345. struct oxygen *chip = ctl->private_data;
  346. struct dg *data = chip->model_data;
  347. unsigned int idx = ctl->private_value;
  348. int changed = 0;
  349. if (value->value.integer.value[0] < 2 * -12 ||
  350. value->value.integer.value[0] > 2 * 12 ||
  351. value->value.integer.value[1] < 2 * -12 ||
  352. value->value.integer.value[1] > 2 * 12)
  353. return -EINVAL;
  354. mutex_lock(&chip->mutex);
  355. changed = data->input_vol[idx][0] != value->value.integer.value[0] ||
  356. data->input_vol[idx][1] != value->value.integer.value[1];
  357. if (changed) {
  358. data->input_vol[idx][0] = value->value.integer.value[0];
  359. data->input_vol[idx][1] = value->value.integer.value[1];
  360. if (idx == data->input_sel) {
  361. cs4245_write_cached(chip, CS4245_PGA_A_CTRL,
  362. data->input_vol[idx][0]);
  363. cs4245_write_cached(chip, CS4245_PGA_B_CTRL,
  364. data->input_vol[idx][1]);
  365. }
  366. }
  367. mutex_unlock(&chip->mutex);
  368. return changed;
  369. }
  370. static DECLARE_TLV_DB_SCALE(cs4245_pga_db_scale, -1200, 50, 0);
  371. static int input_sel_info(struct snd_kcontrol *ctl,
  372. struct snd_ctl_elem_info *info)
  373. {
  374. static const char *const names[4] = {
  375. "Mic", "Aux", "Front Mic", "Line"
  376. };
  377. return snd_ctl_enum_info(info, 1, 4, names);
  378. }
  379. static int input_sel_get(struct snd_kcontrol *ctl,
  380. struct snd_ctl_elem_value *value)
  381. {
  382. struct oxygen *chip = ctl->private_data;
  383. struct dg *data = chip->model_data;
  384. mutex_lock(&chip->mutex);
  385. value->value.enumerated.item[0] = data->input_sel;
  386. mutex_unlock(&chip->mutex);
  387. return 0;
  388. }
  389. static int input_sel_put(struct snd_kcontrol *ctl,
  390. struct snd_ctl_elem_value *value)
  391. {
  392. static const u8 sel_values[4] = {
  393. CS4245_SEL_MIC,
  394. CS4245_SEL_INPUT_1,
  395. CS4245_SEL_INPUT_2,
  396. CS4245_SEL_INPUT_4
  397. };
  398. struct oxygen *chip = ctl->private_data;
  399. struct dg *data = chip->model_data;
  400. int changed;
  401. if (value->value.enumerated.item[0] > 3)
  402. return -EINVAL;
  403. mutex_lock(&chip->mutex);
  404. changed = value->value.enumerated.item[0] != data->input_sel;
  405. if (changed) {
  406. data->input_sel = value->value.enumerated.item[0];
  407. cs4245_write(chip, CS4245_ANALOG_IN,
  408. (data->cs4245_regs[CS4245_ANALOG_IN] &
  409. ~CS4245_SEL_MASK) |
  410. sel_values[data->input_sel]);
  411. cs4245_write_cached(chip, CS4245_PGA_A_CTRL,
  412. data->input_vol[data->input_sel][0]);
  413. cs4245_write_cached(chip, CS4245_PGA_B_CTRL,
  414. data->input_vol[data->input_sel][1]);
  415. oxygen_write16_masked(chip, OXYGEN_GPIO_DATA,
  416. data->input_sel ? 0 : GPIO_INPUT_ROUTE,
  417. GPIO_INPUT_ROUTE);
  418. }
  419. mutex_unlock(&chip->mutex);
  420. return changed;
  421. }
  422. static int hpf_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  423. {
  424. static const char *const names[2] = { "Active", "Frozen" };
  425. return snd_ctl_enum_info(info, 1, 2, names);
  426. }
  427. static int hpf_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  428. {
  429. struct oxygen *chip = ctl->private_data;
  430. struct dg *data = chip->model_data;
  431. value->value.enumerated.item[0] =
  432. !!(data->cs4245_regs[CS4245_ADC_CTRL] & CS4245_HPF_FREEZE);
  433. return 0;
  434. }
  435. static int hpf_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  436. {
  437. struct oxygen *chip = ctl->private_data;
  438. struct dg *data = chip->model_data;
  439. u8 reg;
  440. int changed;
  441. mutex_lock(&chip->mutex);
  442. reg = data->cs4245_regs[CS4245_ADC_CTRL] & ~CS4245_HPF_FREEZE;
  443. if (value->value.enumerated.item[0])
  444. reg |= CS4245_HPF_FREEZE;
  445. changed = reg != data->cs4245_regs[CS4245_ADC_CTRL];
  446. if (changed)
  447. cs4245_write(chip, CS4245_ADC_CTRL, reg);
  448. mutex_unlock(&chip->mutex);
  449. return changed;
  450. }
  451. #define INPUT_VOLUME(xname, index) { \
  452. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  453. .name = xname, \
  454. .info = input_vol_info, \
  455. .get = input_vol_get, \
  456. .put = input_vol_put, \
  457. .tlv = { .p = cs4245_pga_db_scale }, \
  458. .private_value = index, \
  459. }
  460. static const struct snd_kcontrol_new dg_controls[] = {
  461. {
  462. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  463. .name = "Analog Output Playback Enum",
  464. .info = output_switch_info,
  465. .get = output_switch_get,
  466. .put = output_switch_put,
  467. },
  468. {
  469. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  470. .name = "Headphones Impedance Playback Enum",
  471. .info = hp_volume_offset_info,
  472. .get = hp_volume_offset_get,
  473. .put = hp_volume_offset_put,
  474. },
  475. INPUT_VOLUME("Mic Capture Volume", 0),
  476. INPUT_VOLUME("Aux Capture Volume", 1),
  477. INPUT_VOLUME("Front Mic Capture Volume", 2),
  478. INPUT_VOLUME("Line Capture Volume", 3),
  479. {
  480. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  481. .name = "Capture Source",
  482. .info = input_sel_info,
  483. .get = input_sel_get,
  484. .put = input_sel_put,
  485. },
  486. {
  487. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  488. .name = "ADC High-pass Filter Capture Enum",
  489. .info = hpf_info,
  490. .get = hpf_get,
  491. .put = hpf_put,
  492. },
  493. };
  494. static int dg_control_filter(struct snd_kcontrol_new *template)
  495. {
  496. if (!strncmp(template->name, "Master Playback ", 16))
  497. return 1;
  498. return 0;
  499. }
  500. static int dg_mixer_init(struct oxygen *chip)
  501. {
  502. unsigned int i;
  503. int err;
  504. for (i = 0; i < ARRAY_SIZE(dg_controls); ++i) {
  505. err = snd_ctl_add(chip->card,
  506. snd_ctl_new1(&dg_controls[i], chip));
  507. if (err < 0)
  508. return err;
  509. }
  510. return 0;
  511. }
  512. static void dump_cs4245_registers(struct oxygen *chip,
  513. struct snd_info_buffer *buffer)
  514. {
  515. struct dg *data = chip->model_data;
  516. unsigned int i;
  517. snd_iprintf(buffer, "\nCS4245:");
  518. for (i = 1; i <= 0x10; ++i)
  519. snd_iprintf(buffer, " %02x", data->cs4245_regs[i]);
  520. snd_iprintf(buffer, "\n");
  521. }
  522. struct oxygen_model model_xonar_dg = {
  523. .shortname = "Xonar DG",
  524. .longname = "C-Media Oxygen HD Audio",
  525. .chip = "CMI8786",
  526. .init = dg_init,
  527. .control_filter = dg_control_filter,
  528. .mixer_init = dg_mixer_init,
  529. .cleanup = dg_cleanup,
  530. .suspend = dg_suspend,
  531. .resume = dg_resume,
  532. .set_dac_params = set_cs4245_dac_params,
  533. .set_adc_params = set_cs4245_adc_params,
  534. .adjust_dac_routing = adjust_dg_dac_routing,
  535. .dump_registers = dump_cs4245_registers,
  536. .model_data_size = sizeof(struct dg),
  537. .device_config = PLAYBACK_0_TO_I2S |
  538. PLAYBACK_1_TO_SPDIF |
  539. CAPTURE_0_FROM_I2S_1 |
  540. CAPTURE_1_FROM_SPDIF,
  541. .dac_channels_pcm = 6,
  542. .dac_channels_mixer = 0,
  543. .function_flags = OXYGEN_FUNCTION_SPI,
  544. .dac_mclks = OXYGEN_MCLKS(256, 128, 128),
  545. .adc_mclks = OXYGEN_MCLKS(256, 128, 128),
  546. .dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
  547. .adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
  548. };