ipmr.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585
  1. /*
  2. * IP multicast routing support for mrouted 3.6/3.8
  3. *
  4. * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
  5. * Linux Consultancy and Custom Driver Development
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Fixes:
  13. * Michael Chastain : Incorrect size of copying.
  14. * Alan Cox : Added the cache manager code
  15. * Alan Cox : Fixed the clone/copy bug and device race.
  16. * Mike McLagan : Routing by source
  17. * Malcolm Beattie : Buffer handling fixes.
  18. * Alexey Kuznetsov : Double buffer free and other fixes.
  19. * SVR Anand : Fixed several multicast bugs and problems.
  20. * Alexey Kuznetsov : Status, optimisations and more.
  21. * Brad Parker : Better behaviour on mrouted upcall
  22. * overflow.
  23. * Carlos Picoto : PIMv1 Support
  24. * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
  25. * Relax this requirement to work with older peers.
  26. *
  27. */
  28. #include <asm/uaccess.h>
  29. #include <linux/types.h>
  30. #include <linux/capability.h>
  31. #include <linux/errno.h>
  32. #include <linux/timer.h>
  33. #include <linux/mm.h>
  34. #include <linux/kernel.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/stat.h>
  37. #include <linux/socket.h>
  38. #include <linux/in.h>
  39. #include <linux/inet.h>
  40. #include <linux/netdevice.h>
  41. #include <linux/inetdevice.h>
  42. #include <linux/igmp.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/mroute.h>
  46. #include <linux/init.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/slab.h>
  49. #include <net/net_namespace.h>
  50. #include <net/ip.h>
  51. #include <net/protocol.h>
  52. #include <linux/skbuff.h>
  53. #include <net/route.h>
  54. #include <net/sock.h>
  55. #include <net/icmp.h>
  56. #include <net/udp.h>
  57. #include <net/raw.h>
  58. #include <linux/notifier.h>
  59. #include <linux/if_arp.h>
  60. #include <linux/netfilter_ipv4.h>
  61. #include <linux/compat.h>
  62. #include <linux/export.h>
  63. #include <net/ipip.h>
  64. #include <net/checksum.h>
  65. #include <net/netlink.h>
  66. #include <net/fib_rules.h>
  67. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  68. #define CONFIG_IP_PIMSM 1
  69. #endif
  70. struct mr_table {
  71. struct list_head list;
  72. #ifdef CONFIG_NET_NS
  73. struct net *net;
  74. #endif
  75. u32 id;
  76. struct sock __rcu *mroute_sk;
  77. struct timer_list ipmr_expire_timer;
  78. struct list_head mfc_unres_queue;
  79. struct list_head mfc_cache_array[MFC_LINES];
  80. struct vif_device vif_table[MAXVIFS];
  81. int maxvif;
  82. atomic_t cache_resolve_queue_len;
  83. int mroute_do_assert;
  84. int mroute_do_pim;
  85. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  86. int mroute_reg_vif_num;
  87. #endif
  88. };
  89. #include <linux/nospec.h>
  90. struct ipmr_rule {
  91. struct fib_rule common;
  92. };
  93. struct ipmr_result {
  94. struct mr_table *mrt;
  95. };
  96. /* Big lock, protecting vif table, mrt cache and mroute socket state.
  97. * Note that the changes are semaphored via rtnl_lock.
  98. */
  99. static DEFINE_RWLOCK(mrt_lock);
  100. /*
  101. * Multicast router control variables
  102. */
  103. #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
  104. /* Special spinlock for queue of unresolved entries */
  105. static DEFINE_SPINLOCK(mfc_unres_lock);
  106. /* We return to original Alan's scheme. Hash table of resolved
  107. * entries is changed only in process context and protected
  108. * with weak lock mrt_lock. Queue of unresolved entries is protected
  109. * with strong spinlock mfc_unres_lock.
  110. *
  111. * In this case data path is free of exclusive locks at all.
  112. */
  113. static struct kmem_cache *mrt_cachep __read_mostly;
  114. static struct mr_table *ipmr_new_table(struct net *net, u32 id);
  115. static void ipmr_free_table(struct mr_table *mrt);
  116. static int ip_mr_forward(struct net *net, struct mr_table *mrt,
  117. struct sk_buff *skb, struct mfc_cache *cache,
  118. int local);
  119. static int ipmr_cache_report(struct mr_table *mrt,
  120. struct sk_buff *pkt, vifi_t vifi, int assert);
  121. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  122. struct mfc_cache *c, struct rtmsg *rtm);
  123. static void mroute_clean_tables(struct mr_table *mrt);
  124. static void ipmr_expire_process(unsigned long arg);
  125. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  126. #define ipmr_for_each_table(mrt, net) \
  127. list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
  128. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  129. {
  130. struct mr_table *mrt;
  131. ipmr_for_each_table(mrt, net) {
  132. if (mrt->id == id)
  133. return mrt;
  134. }
  135. return NULL;
  136. }
  137. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  138. struct mr_table **mrt)
  139. {
  140. int err;
  141. struct ipmr_result res;
  142. struct fib_lookup_arg arg = {
  143. .result = &res,
  144. .flags = FIB_LOOKUP_NOREF,
  145. };
  146. err = fib_rules_lookup(net->ipv4.mr_rules_ops,
  147. flowi4_to_flowi(flp4), 0, &arg);
  148. if (err < 0)
  149. return err;
  150. *mrt = res.mrt;
  151. return 0;
  152. }
  153. static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
  154. int flags, struct fib_lookup_arg *arg)
  155. {
  156. struct ipmr_result *res = arg->result;
  157. struct mr_table *mrt;
  158. switch (rule->action) {
  159. case FR_ACT_TO_TBL:
  160. break;
  161. case FR_ACT_UNREACHABLE:
  162. return -ENETUNREACH;
  163. case FR_ACT_PROHIBIT:
  164. return -EACCES;
  165. case FR_ACT_BLACKHOLE:
  166. default:
  167. return -EINVAL;
  168. }
  169. mrt = ipmr_get_table(rule->fr_net, rule->table);
  170. if (mrt == NULL)
  171. return -EAGAIN;
  172. res->mrt = mrt;
  173. return 0;
  174. }
  175. static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
  176. {
  177. return 1;
  178. }
  179. static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
  180. FRA_GENERIC_POLICY,
  181. };
  182. static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
  183. struct fib_rule_hdr *frh, struct nlattr **tb)
  184. {
  185. return 0;
  186. }
  187. static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
  188. struct nlattr **tb)
  189. {
  190. return 1;
  191. }
  192. static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
  193. struct fib_rule_hdr *frh)
  194. {
  195. frh->dst_len = 0;
  196. frh->src_len = 0;
  197. frh->tos = 0;
  198. return 0;
  199. }
  200. static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
  201. .family = RTNL_FAMILY_IPMR,
  202. .rule_size = sizeof(struct ipmr_rule),
  203. .addr_size = sizeof(u32),
  204. .action = ipmr_rule_action,
  205. .match = ipmr_rule_match,
  206. .configure = ipmr_rule_configure,
  207. .compare = ipmr_rule_compare,
  208. .default_pref = fib_default_rule_pref,
  209. .fill = ipmr_rule_fill,
  210. .nlgroup = RTNLGRP_IPV4_RULE,
  211. .policy = ipmr_rule_policy,
  212. .owner = THIS_MODULE,
  213. };
  214. static int __net_init ipmr_rules_init(struct net *net)
  215. {
  216. struct fib_rules_ops *ops;
  217. struct mr_table *mrt;
  218. int err;
  219. ops = fib_rules_register(&ipmr_rules_ops_template, net);
  220. if (IS_ERR(ops))
  221. return PTR_ERR(ops);
  222. INIT_LIST_HEAD(&net->ipv4.mr_tables);
  223. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  224. if (mrt == NULL) {
  225. err = -ENOMEM;
  226. goto err1;
  227. }
  228. err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
  229. if (err < 0)
  230. goto err2;
  231. net->ipv4.mr_rules_ops = ops;
  232. return 0;
  233. err2:
  234. kfree(mrt);
  235. err1:
  236. fib_rules_unregister(ops);
  237. return err;
  238. }
  239. static void __net_exit ipmr_rules_exit(struct net *net)
  240. {
  241. struct mr_table *mrt, *next;
  242. list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
  243. list_del(&mrt->list);
  244. ipmr_free_table(mrt);
  245. }
  246. fib_rules_unregister(net->ipv4.mr_rules_ops);
  247. }
  248. #else
  249. #define ipmr_for_each_table(mrt, net) \
  250. for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
  251. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  252. {
  253. return net->ipv4.mrt;
  254. }
  255. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  256. struct mr_table **mrt)
  257. {
  258. *mrt = net->ipv4.mrt;
  259. return 0;
  260. }
  261. static int __net_init ipmr_rules_init(struct net *net)
  262. {
  263. net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  264. return net->ipv4.mrt ? 0 : -ENOMEM;
  265. }
  266. static void __net_exit ipmr_rules_exit(struct net *net)
  267. {
  268. ipmr_free_table(net->ipv4.mrt);
  269. }
  270. #endif
  271. static struct mr_table *ipmr_new_table(struct net *net, u32 id)
  272. {
  273. struct mr_table *mrt;
  274. unsigned int i;
  275. mrt = ipmr_get_table(net, id);
  276. if (mrt != NULL)
  277. return mrt;
  278. mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
  279. if (mrt == NULL)
  280. return NULL;
  281. write_pnet(&mrt->net, net);
  282. mrt->id = id;
  283. /* Forwarding cache */
  284. for (i = 0; i < MFC_LINES; i++)
  285. INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
  286. INIT_LIST_HEAD(&mrt->mfc_unres_queue);
  287. setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
  288. (unsigned long)mrt);
  289. #ifdef CONFIG_IP_PIMSM
  290. mrt->mroute_reg_vif_num = -1;
  291. #endif
  292. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  293. list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
  294. #endif
  295. return mrt;
  296. }
  297. static void ipmr_free_table(struct mr_table *mrt)
  298. {
  299. del_timer_sync(&mrt->ipmr_expire_timer);
  300. mroute_clean_tables(mrt);
  301. kfree(mrt);
  302. }
  303. /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
  304. static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
  305. {
  306. struct net *net = dev_net(dev);
  307. dev_close(dev);
  308. dev = __dev_get_by_name(net, "tunl0");
  309. if (dev) {
  310. const struct net_device_ops *ops = dev->netdev_ops;
  311. struct ifreq ifr;
  312. struct ip_tunnel_parm p;
  313. memset(&p, 0, sizeof(p));
  314. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  315. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  316. p.iph.version = 4;
  317. p.iph.ihl = 5;
  318. p.iph.protocol = IPPROTO_IPIP;
  319. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  320. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  321. if (ops->ndo_do_ioctl) {
  322. mm_segment_t oldfs = get_fs();
  323. set_fs(KERNEL_DS);
  324. ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
  325. set_fs(oldfs);
  326. }
  327. }
  328. }
  329. static
  330. struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
  331. {
  332. struct net_device *dev;
  333. dev = __dev_get_by_name(net, "tunl0");
  334. if (dev) {
  335. const struct net_device_ops *ops = dev->netdev_ops;
  336. int err;
  337. struct ifreq ifr;
  338. struct ip_tunnel_parm p;
  339. struct in_device *in_dev;
  340. memset(&p, 0, sizeof(p));
  341. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  342. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  343. p.iph.version = 4;
  344. p.iph.ihl = 5;
  345. p.iph.protocol = IPPROTO_IPIP;
  346. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  347. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  348. if (ops->ndo_do_ioctl) {
  349. mm_segment_t oldfs = get_fs();
  350. set_fs(KERNEL_DS);
  351. err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
  352. set_fs(oldfs);
  353. } else {
  354. err = -EOPNOTSUPP;
  355. }
  356. dev = NULL;
  357. if (err == 0 &&
  358. (dev = __dev_get_by_name(net, p.name)) != NULL) {
  359. dev->flags |= IFF_MULTICAST;
  360. in_dev = __in_dev_get_rtnl(dev);
  361. if (in_dev == NULL)
  362. goto failure;
  363. ipv4_devconf_setall(in_dev);
  364. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  365. if (dev_open(dev))
  366. goto failure;
  367. dev_hold(dev);
  368. }
  369. }
  370. return dev;
  371. failure:
  372. /* allow the register to be completed before unregistering. */
  373. rtnl_unlock();
  374. rtnl_lock();
  375. unregister_netdevice(dev);
  376. return NULL;
  377. }
  378. #ifdef CONFIG_IP_PIMSM
  379. static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
  380. {
  381. struct net *net = dev_net(dev);
  382. struct mr_table *mrt;
  383. struct flowi4 fl4 = {
  384. .flowi4_oif = dev->ifindex,
  385. .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
  386. .flowi4_mark = skb->mark,
  387. };
  388. int err;
  389. err = ipmr_fib_lookup(net, &fl4, &mrt);
  390. if (err < 0) {
  391. kfree_skb(skb);
  392. return err;
  393. }
  394. read_lock(&mrt_lock);
  395. dev->stats.tx_bytes += skb->len;
  396. dev->stats.tx_packets++;
  397. ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
  398. read_unlock(&mrt_lock);
  399. kfree_skb(skb);
  400. return NETDEV_TX_OK;
  401. }
  402. static const struct net_device_ops reg_vif_netdev_ops = {
  403. .ndo_start_xmit = reg_vif_xmit,
  404. };
  405. static void reg_vif_setup(struct net_device *dev)
  406. {
  407. dev->type = ARPHRD_PIMREG;
  408. dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
  409. dev->flags = IFF_NOARP;
  410. dev->netdev_ops = &reg_vif_netdev_ops,
  411. dev->destructor = free_netdev;
  412. dev->features |= NETIF_F_NETNS_LOCAL;
  413. }
  414. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  415. {
  416. struct net_device *dev;
  417. struct in_device *in_dev;
  418. char name[IFNAMSIZ];
  419. if (mrt->id == RT_TABLE_DEFAULT)
  420. sprintf(name, "pimreg");
  421. else
  422. sprintf(name, "pimreg%u", mrt->id);
  423. dev = alloc_netdev(0, name, reg_vif_setup);
  424. if (dev == NULL)
  425. return NULL;
  426. dev_net_set(dev, net);
  427. if (register_netdevice(dev)) {
  428. free_netdev(dev);
  429. return NULL;
  430. }
  431. dev->iflink = 0;
  432. rcu_read_lock();
  433. in_dev = __in_dev_get_rcu(dev);
  434. if (!in_dev) {
  435. rcu_read_unlock();
  436. goto failure;
  437. }
  438. ipv4_devconf_setall(in_dev);
  439. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  440. rcu_read_unlock();
  441. if (dev_open(dev))
  442. goto failure;
  443. dev_hold(dev);
  444. return dev;
  445. failure:
  446. /* allow the register to be completed before unregistering. */
  447. rtnl_unlock();
  448. rtnl_lock();
  449. unregister_netdevice(dev);
  450. return NULL;
  451. }
  452. #endif
  453. /*
  454. * Delete a VIF entry
  455. * @notify: Set to 1, if the caller is a notifier_call
  456. */
  457. static int vif_delete(struct mr_table *mrt, int vifi, int notify,
  458. struct list_head *head)
  459. {
  460. struct vif_device *v;
  461. struct net_device *dev;
  462. struct in_device *in_dev;
  463. if (vifi < 0 || vifi >= mrt->maxvif)
  464. return -EADDRNOTAVAIL;
  465. v = &mrt->vif_table[vifi];
  466. write_lock_bh(&mrt_lock);
  467. dev = v->dev;
  468. v->dev = NULL;
  469. if (!dev) {
  470. write_unlock_bh(&mrt_lock);
  471. return -EADDRNOTAVAIL;
  472. }
  473. #ifdef CONFIG_IP_PIMSM
  474. if (vifi == mrt->mroute_reg_vif_num)
  475. mrt->mroute_reg_vif_num = -1;
  476. #endif
  477. if (vifi + 1 == mrt->maxvif) {
  478. int tmp;
  479. for (tmp = vifi - 1; tmp >= 0; tmp--) {
  480. if (VIF_EXISTS(mrt, tmp))
  481. break;
  482. }
  483. mrt->maxvif = tmp+1;
  484. }
  485. write_unlock_bh(&mrt_lock);
  486. dev_set_allmulti(dev, -1);
  487. in_dev = __in_dev_get_rtnl(dev);
  488. if (in_dev) {
  489. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
  490. ip_rt_multicast_event(in_dev);
  491. }
  492. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
  493. unregister_netdevice_queue(dev, head);
  494. dev_put(dev);
  495. return 0;
  496. }
  497. static void ipmr_cache_free_rcu(struct rcu_head *head)
  498. {
  499. struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
  500. kmem_cache_free(mrt_cachep, c);
  501. }
  502. static inline void ipmr_cache_free(struct mfc_cache *c)
  503. {
  504. call_rcu(&c->rcu, ipmr_cache_free_rcu);
  505. }
  506. /* Destroy an unresolved cache entry, killing queued skbs
  507. * and reporting error to netlink readers.
  508. */
  509. static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
  510. {
  511. struct net *net = read_pnet(&mrt->net);
  512. struct sk_buff *skb;
  513. struct nlmsgerr *e;
  514. atomic_dec(&mrt->cache_resolve_queue_len);
  515. while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
  516. if (ip_hdr(skb)->version == 0) {
  517. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  518. nlh->nlmsg_type = NLMSG_ERROR;
  519. nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
  520. skb_trim(skb, nlh->nlmsg_len);
  521. e = NLMSG_DATA(nlh);
  522. e->error = -ETIMEDOUT;
  523. memset(&e->msg, 0, sizeof(e->msg));
  524. rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
  525. } else {
  526. kfree_skb(skb);
  527. }
  528. }
  529. ipmr_cache_free(c);
  530. }
  531. /* Timer process for the unresolved queue. */
  532. static void ipmr_expire_process(unsigned long arg)
  533. {
  534. struct mr_table *mrt = (struct mr_table *)arg;
  535. unsigned long now;
  536. unsigned long expires;
  537. struct mfc_cache *c, *next;
  538. if (!spin_trylock(&mfc_unres_lock)) {
  539. mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
  540. return;
  541. }
  542. if (list_empty(&mrt->mfc_unres_queue))
  543. goto out;
  544. now = jiffies;
  545. expires = 10*HZ;
  546. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  547. if (time_after(c->mfc_un.unres.expires, now)) {
  548. unsigned long interval = c->mfc_un.unres.expires - now;
  549. if (interval < expires)
  550. expires = interval;
  551. continue;
  552. }
  553. list_del(&c->list);
  554. ipmr_destroy_unres(mrt, c);
  555. }
  556. if (!list_empty(&mrt->mfc_unres_queue))
  557. mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
  558. out:
  559. spin_unlock(&mfc_unres_lock);
  560. }
  561. /* Fill oifs list. It is called under write locked mrt_lock. */
  562. static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
  563. unsigned char *ttls)
  564. {
  565. int vifi;
  566. cache->mfc_un.res.minvif = MAXVIFS;
  567. cache->mfc_un.res.maxvif = 0;
  568. memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
  569. for (vifi = 0; vifi < mrt->maxvif; vifi++) {
  570. if (VIF_EXISTS(mrt, vifi) &&
  571. ttls[vifi] && ttls[vifi] < 255) {
  572. cache->mfc_un.res.ttls[vifi] = ttls[vifi];
  573. if (cache->mfc_un.res.minvif > vifi)
  574. cache->mfc_un.res.minvif = vifi;
  575. if (cache->mfc_un.res.maxvif <= vifi)
  576. cache->mfc_un.res.maxvif = vifi + 1;
  577. }
  578. }
  579. }
  580. static int vif_add(struct net *net, struct mr_table *mrt,
  581. struct vifctl *vifc, int mrtsock)
  582. {
  583. int vifi = vifc->vifc_vifi;
  584. struct vif_device *v = &mrt->vif_table[vifi];
  585. struct net_device *dev;
  586. struct in_device *in_dev;
  587. int err;
  588. /* Is vif busy ? */
  589. if (VIF_EXISTS(mrt, vifi))
  590. return -EADDRINUSE;
  591. switch (vifc->vifc_flags) {
  592. #ifdef CONFIG_IP_PIMSM
  593. case VIFF_REGISTER:
  594. /*
  595. * Special Purpose VIF in PIM
  596. * All the packets will be sent to the daemon
  597. */
  598. if (mrt->mroute_reg_vif_num >= 0)
  599. return -EADDRINUSE;
  600. dev = ipmr_reg_vif(net, mrt);
  601. if (!dev)
  602. return -ENOBUFS;
  603. err = dev_set_allmulti(dev, 1);
  604. if (err) {
  605. unregister_netdevice(dev);
  606. dev_put(dev);
  607. return err;
  608. }
  609. break;
  610. #endif
  611. case VIFF_TUNNEL:
  612. dev = ipmr_new_tunnel(net, vifc);
  613. if (!dev)
  614. return -ENOBUFS;
  615. err = dev_set_allmulti(dev, 1);
  616. if (err) {
  617. ipmr_del_tunnel(dev, vifc);
  618. dev_put(dev);
  619. return err;
  620. }
  621. break;
  622. case VIFF_USE_IFINDEX:
  623. case 0:
  624. if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
  625. dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
  626. if (dev && __in_dev_get_rtnl(dev) == NULL) {
  627. dev_put(dev);
  628. return -EADDRNOTAVAIL;
  629. }
  630. } else {
  631. dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
  632. }
  633. if (!dev)
  634. return -EADDRNOTAVAIL;
  635. err = dev_set_allmulti(dev, 1);
  636. if (err) {
  637. dev_put(dev);
  638. return err;
  639. }
  640. break;
  641. default:
  642. return -EINVAL;
  643. }
  644. in_dev = __in_dev_get_rtnl(dev);
  645. if (!in_dev) {
  646. dev_put(dev);
  647. return -EADDRNOTAVAIL;
  648. }
  649. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
  650. ip_rt_multicast_event(in_dev);
  651. /* Fill in the VIF structures */
  652. v->rate_limit = vifc->vifc_rate_limit;
  653. v->local = vifc->vifc_lcl_addr.s_addr;
  654. v->remote = vifc->vifc_rmt_addr.s_addr;
  655. v->flags = vifc->vifc_flags;
  656. if (!mrtsock)
  657. v->flags |= VIFF_STATIC;
  658. v->threshold = vifc->vifc_threshold;
  659. v->bytes_in = 0;
  660. v->bytes_out = 0;
  661. v->pkt_in = 0;
  662. v->pkt_out = 0;
  663. v->link = dev->ifindex;
  664. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
  665. v->link = dev->iflink;
  666. /* And finish update writing critical data */
  667. write_lock_bh(&mrt_lock);
  668. v->dev = dev;
  669. #ifdef CONFIG_IP_PIMSM
  670. if (v->flags & VIFF_REGISTER)
  671. mrt->mroute_reg_vif_num = vifi;
  672. #endif
  673. if (vifi+1 > mrt->maxvif)
  674. mrt->maxvif = vifi+1;
  675. write_unlock_bh(&mrt_lock);
  676. return 0;
  677. }
  678. /* called with rcu_read_lock() */
  679. static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
  680. __be32 origin,
  681. __be32 mcastgrp)
  682. {
  683. int line = MFC_HASH(mcastgrp, origin);
  684. struct mfc_cache *c;
  685. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
  686. if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
  687. return c;
  688. }
  689. return NULL;
  690. }
  691. /*
  692. * Allocate a multicast cache entry
  693. */
  694. static struct mfc_cache *ipmr_cache_alloc(void)
  695. {
  696. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
  697. if (c)
  698. c->mfc_un.res.minvif = MAXVIFS;
  699. return c;
  700. }
  701. static struct mfc_cache *ipmr_cache_alloc_unres(void)
  702. {
  703. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
  704. if (c) {
  705. skb_queue_head_init(&c->mfc_un.unres.unresolved);
  706. c->mfc_un.unres.expires = jiffies + 10*HZ;
  707. }
  708. return c;
  709. }
  710. /*
  711. * A cache entry has gone into a resolved state from queued
  712. */
  713. static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
  714. struct mfc_cache *uc, struct mfc_cache *c)
  715. {
  716. struct sk_buff *skb;
  717. struct nlmsgerr *e;
  718. /* Play the pending entries through our router */
  719. while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
  720. if (ip_hdr(skb)->version == 0) {
  721. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  722. if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
  723. nlh->nlmsg_len = skb_tail_pointer(skb) -
  724. (u8 *)nlh;
  725. } else {
  726. nlh->nlmsg_type = NLMSG_ERROR;
  727. nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
  728. skb_trim(skb, nlh->nlmsg_len);
  729. e = NLMSG_DATA(nlh);
  730. e->error = -EMSGSIZE;
  731. memset(&e->msg, 0, sizeof(e->msg));
  732. }
  733. rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
  734. } else {
  735. ip_mr_forward(net, mrt, skb, c, 0);
  736. }
  737. }
  738. }
  739. /*
  740. * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
  741. * expects the following bizarre scheme.
  742. *
  743. * Called under mrt_lock.
  744. */
  745. static int ipmr_cache_report(struct mr_table *mrt,
  746. struct sk_buff *pkt, vifi_t vifi, int assert)
  747. {
  748. struct sk_buff *skb;
  749. const int ihl = ip_hdrlen(pkt);
  750. struct igmphdr *igmp;
  751. struct igmpmsg *msg;
  752. struct sock *mroute_sk;
  753. int ret;
  754. #ifdef CONFIG_IP_PIMSM
  755. if (assert == IGMPMSG_WHOLEPKT)
  756. skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
  757. else
  758. #endif
  759. skb = alloc_skb(128, GFP_ATOMIC);
  760. if (!skb)
  761. return -ENOBUFS;
  762. #ifdef CONFIG_IP_PIMSM
  763. if (assert == IGMPMSG_WHOLEPKT) {
  764. /* Ugly, but we have no choice with this interface.
  765. * Duplicate old header, fix ihl, length etc.
  766. * And all this only to mangle msg->im_msgtype and
  767. * to set msg->im_mbz to "mbz" :-)
  768. */
  769. skb_push(skb, sizeof(struct iphdr));
  770. skb_reset_network_header(skb);
  771. skb_reset_transport_header(skb);
  772. msg = (struct igmpmsg *)skb_network_header(skb);
  773. memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
  774. msg->im_msgtype = IGMPMSG_WHOLEPKT;
  775. msg->im_mbz = 0;
  776. msg->im_vif = mrt->mroute_reg_vif_num;
  777. ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
  778. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
  779. sizeof(struct iphdr));
  780. } else
  781. #endif
  782. {
  783. /* Copy the IP header */
  784. skb->network_header = skb->tail;
  785. skb_put(skb, ihl);
  786. skb_copy_to_linear_data(skb, pkt->data, ihl);
  787. ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
  788. msg = (struct igmpmsg *)skb_network_header(skb);
  789. msg->im_vif = vifi;
  790. skb_dst_set(skb, dst_clone(skb_dst(pkt)));
  791. /* Add our header */
  792. igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
  793. igmp->type =
  794. msg->im_msgtype = assert;
  795. igmp->code = 0;
  796. ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
  797. skb->transport_header = skb->network_header;
  798. }
  799. rcu_read_lock();
  800. mroute_sk = rcu_dereference(mrt->mroute_sk);
  801. if (mroute_sk == NULL) {
  802. rcu_read_unlock();
  803. kfree_skb(skb);
  804. return -EINVAL;
  805. }
  806. /* Deliver to mrouted */
  807. ret = sock_queue_rcv_skb(mroute_sk, skb);
  808. rcu_read_unlock();
  809. if (ret < 0) {
  810. net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
  811. kfree_skb(skb);
  812. }
  813. return ret;
  814. }
  815. /*
  816. * Queue a packet for resolution. It gets locked cache entry!
  817. */
  818. static int
  819. ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
  820. {
  821. bool found = false;
  822. int err;
  823. struct mfc_cache *c;
  824. const struct iphdr *iph = ip_hdr(skb);
  825. spin_lock_bh(&mfc_unres_lock);
  826. list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
  827. if (c->mfc_mcastgrp == iph->daddr &&
  828. c->mfc_origin == iph->saddr) {
  829. found = true;
  830. break;
  831. }
  832. }
  833. if (!found) {
  834. /* Create a new entry if allowable */
  835. if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
  836. (c = ipmr_cache_alloc_unres()) == NULL) {
  837. spin_unlock_bh(&mfc_unres_lock);
  838. kfree_skb(skb);
  839. return -ENOBUFS;
  840. }
  841. /* Fill in the new cache entry */
  842. c->mfc_parent = -1;
  843. c->mfc_origin = iph->saddr;
  844. c->mfc_mcastgrp = iph->daddr;
  845. /* Reflect first query at mrouted. */
  846. err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
  847. if (err < 0) {
  848. /* If the report failed throw the cache entry
  849. out - Brad Parker
  850. */
  851. spin_unlock_bh(&mfc_unres_lock);
  852. ipmr_cache_free(c);
  853. kfree_skb(skb);
  854. return err;
  855. }
  856. atomic_inc(&mrt->cache_resolve_queue_len);
  857. list_add(&c->list, &mrt->mfc_unres_queue);
  858. if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
  859. mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
  860. }
  861. /* See if we can append the packet */
  862. if (c->mfc_un.unres.unresolved.qlen > 3) {
  863. kfree_skb(skb);
  864. err = -ENOBUFS;
  865. } else {
  866. skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
  867. err = 0;
  868. }
  869. spin_unlock_bh(&mfc_unres_lock);
  870. return err;
  871. }
  872. /*
  873. * MFC cache manipulation by user space mroute daemon
  874. */
  875. static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
  876. {
  877. int line;
  878. struct mfc_cache *c, *next;
  879. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  880. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
  881. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  882. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
  883. list_del_rcu(&c->list);
  884. ipmr_cache_free(c);
  885. return 0;
  886. }
  887. }
  888. return -ENOENT;
  889. }
  890. static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
  891. struct mfcctl *mfc, int mrtsock)
  892. {
  893. bool found = false;
  894. int line;
  895. struct mfc_cache *uc, *c;
  896. if (mfc->mfcc_parent >= MAXVIFS)
  897. return -ENFILE;
  898. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  899. list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
  900. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  901. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
  902. found = true;
  903. break;
  904. }
  905. }
  906. if (found) {
  907. write_lock_bh(&mrt_lock);
  908. c->mfc_parent = mfc->mfcc_parent;
  909. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  910. if (!mrtsock)
  911. c->mfc_flags |= MFC_STATIC;
  912. write_unlock_bh(&mrt_lock);
  913. return 0;
  914. }
  915. if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
  916. return -EINVAL;
  917. c = ipmr_cache_alloc();
  918. if (c == NULL)
  919. return -ENOMEM;
  920. c->mfc_origin = mfc->mfcc_origin.s_addr;
  921. c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
  922. c->mfc_parent = mfc->mfcc_parent;
  923. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  924. if (!mrtsock)
  925. c->mfc_flags |= MFC_STATIC;
  926. list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
  927. /*
  928. * Check to see if we resolved a queued list. If so we
  929. * need to send on the frames and tidy up.
  930. */
  931. found = false;
  932. spin_lock_bh(&mfc_unres_lock);
  933. list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
  934. if (uc->mfc_origin == c->mfc_origin &&
  935. uc->mfc_mcastgrp == c->mfc_mcastgrp) {
  936. list_del(&uc->list);
  937. atomic_dec(&mrt->cache_resolve_queue_len);
  938. found = true;
  939. break;
  940. }
  941. }
  942. if (list_empty(&mrt->mfc_unres_queue))
  943. del_timer(&mrt->ipmr_expire_timer);
  944. spin_unlock_bh(&mfc_unres_lock);
  945. if (found) {
  946. ipmr_cache_resolve(net, mrt, uc, c);
  947. ipmr_cache_free(uc);
  948. }
  949. return 0;
  950. }
  951. /*
  952. * Close the multicast socket, and clear the vif tables etc
  953. */
  954. static void mroute_clean_tables(struct mr_table *mrt)
  955. {
  956. int i;
  957. LIST_HEAD(list);
  958. struct mfc_cache *c, *next;
  959. /* Shut down all active vif entries */
  960. for (i = 0; i < mrt->maxvif; i++) {
  961. if (!(mrt->vif_table[i].flags & VIFF_STATIC))
  962. vif_delete(mrt, i, 0, &list);
  963. }
  964. unregister_netdevice_many(&list);
  965. /* Wipe the cache */
  966. for (i = 0; i < MFC_LINES; i++) {
  967. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
  968. if (c->mfc_flags & MFC_STATIC)
  969. continue;
  970. list_del_rcu(&c->list);
  971. ipmr_cache_free(c);
  972. }
  973. }
  974. if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
  975. spin_lock_bh(&mfc_unres_lock);
  976. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  977. list_del(&c->list);
  978. ipmr_destroy_unres(mrt, c);
  979. }
  980. spin_unlock_bh(&mfc_unres_lock);
  981. }
  982. }
  983. /* called from ip_ra_control(), before an RCU grace period,
  984. * we dont need to call synchronize_rcu() here
  985. */
  986. static void mrtsock_destruct(struct sock *sk)
  987. {
  988. struct net *net = sock_net(sk);
  989. struct mr_table *mrt;
  990. rtnl_lock();
  991. ipmr_for_each_table(mrt, net) {
  992. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  993. IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
  994. RCU_INIT_POINTER(mrt->mroute_sk, NULL);
  995. mroute_clean_tables(mrt);
  996. }
  997. }
  998. rtnl_unlock();
  999. }
  1000. /*
  1001. * Socket options and virtual interface manipulation. The whole
  1002. * virtual interface system is a complete heap, but unfortunately
  1003. * that's how BSD mrouted happens to think. Maybe one day with a proper
  1004. * MOSPF/PIM router set up we can clean this up.
  1005. */
  1006. int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
  1007. {
  1008. int ret;
  1009. struct vifctl vif;
  1010. struct mfcctl mfc;
  1011. struct net *net = sock_net(sk);
  1012. struct mr_table *mrt;
  1013. if (sk->sk_type != SOCK_RAW ||
  1014. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1015. return -EOPNOTSUPP;
  1016. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1017. if (mrt == NULL)
  1018. return -ENOENT;
  1019. if (optname != MRT_INIT) {
  1020. if (sk != rcu_access_pointer(mrt->mroute_sk) &&
  1021. !ns_capable(net->user_ns, CAP_NET_ADMIN))
  1022. return -EACCES;
  1023. }
  1024. switch (optname) {
  1025. case MRT_INIT:
  1026. if (optlen != sizeof(int))
  1027. return -EINVAL;
  1028. rtnl_lock();
  1029. if (rtnl_dereference(mrt->mroute_sk)) {
  1030. rtnl_unlock();
  1031. return -EADDRINUSE;
  1032. }
  1033. ret = ip_ra_control(sk, 1, mrtsock_destruct);
  1034. if (ret == 0) {
  1035. rcu_assign_pointer(mrt->mroute_sk, sk);
  1036. IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
  1037. }
  1038. rtnl_unlock();
  1039. return ret;
  1040. case MRT_DONE:
  1041. if (sk != rcu_access_pointer(mrt->mroute_sk))
  1042. return -EACCES;
  1043. return ip_ra_control(sk, 0, NULL);
  1044. case MRT_ADD_VIF:
  1045. case MRT_DEL_VIF:
  1046. if (optlen != sizeof(vif))
  1047. return -EINVAL;
  1048. if (copy_from_user(&vif, optval, sizeof(vif)))
  1049. return -EFAULT;
  1050. if (vif.vifc_vifi >= MAXVIFS)
  1051. return -ENFILE;
  1052. rtnl_lock();
  1053. if (optname == MRT_ADD_VIF) {
  1054. ret = vif_add(net, mrt, &vif,
  1055. sk == rtnl_dereference(mrt->mroute_sk));
  1056. } else {
  1057. ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
  1058. }
  1059. rtnl_unlock();
  1060. return ret;
  1061. /*
  1062. * Manipulate the forwarding caches. These live
  1063. * in a sort of kernel/user symbiosis.
  1064. */
  1065. case MRT_ADD_MFC:
  1066. case MRT_DEL_MFC:
  1067. if (optlen != sizeof(mfc))
  1068. return -EINVAL;
  1069. if (copy_from_user(&mfc, optval, sizeof(mfc)))
  1070. return -EFAULT;
  1071. rtnl_lock();
  1072. if (optname == MRT_DEL_MFC)
  1073. ret = ipmr_mfc_delete(mrt, &mfc);
  1074. else
  1075. ret = ipmr_mfc_add(net, mrt, &mfc,
  1076. sk == rtnl_dereference(mrt->mroute_sk));
  1077. rtnl_unlock();
  1078. return ret;
  1079. /*
  1080. * Control PIM assert.
  1081. */
  1082. case MRT_ASSERT:
  1083. {
  1084. int v;
  1085. if (optlen != sizeof(v))
  1086. return -EINVAL;
  1087. if (get_user(v, (int __user *)optval))
  1088. return -EFAULT;
  1089. mrt->mroute_do_assert = !!v;
  1090. return 0;
  1091. }
  1092. #ifdef CONFIG_IP_PIMSM
  1093. case MRT_PIM:
  1094. {
  1095. int v;
  1096. if (optlen != sizeof(v))
  1097. return -EINVAL;
  1098. if (get_user(v, (int __user *)optval))
  1099. return -EFAULT;
  1100. v = !!v;
  1101. rtnl_lock();
  1102. ret = 0;
  1103. if (v != mrt->mroute_do_pim) {
  1104. mrt->mroute_do_pim = v;
  1105. mrt->mroute_do_assert = v;
  1106. }
  1107. rtnl_unlock();
  1108. return ret;
  1109. }
  1110. #endif
  1111. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  1112. case MRT_TABLE:
  1113. {
  1114. u32 v;
  1115. if (optlen != sizeof(u32))
  1116. return -EINVAL;
  1117. if (get_user(v, (u32 __user *)optval))
  1118. return -EFAULT;
  1119. rtnl_lock();
  1120. ret = 0;
  1121. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1122. ret = -EBUSY;
  1123. } else {
  1124. if (!ipmr_new_table(net, v))
  1125. ret = -ENOMEM;
  1126. else
  1127. raw_sk(sk)->ipmr_table = v;
  1128. }
  1129. rtnl_unlock();
  1130. return ret;
  1131. }
  1132. #endif
  1133. /*
  1134. * Spurious command, or MRT_VERSION which you cannot
  1135. * set.
  1136. */
  1137. default:
  1138. return -ENOPROTOOPT;
  1139. }
  1140. }
  1141. /*
  1142. * Getsock opt support for the multicast routing system.
  1143. */
  1144. int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
  1145. {
  1146. int olr;
  1147. int val;
  1148. struct net *net = sock_net(sk);
  1149. struct mr_table *mrt;
  1150. if (sk->sk_type != SOCK_RAW ||
  1151. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1152. return -EOPNOTSUPP;
  1153. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1154. if (mrt == NULL)
  1155. return -ENOENT;
  1156. if (optname != MRT_VERSION &&
  1157. #ifdef CONFIG_IP_PIMSM
  1158. optname != MRT_PIM &&
  1159. #endif
  1160. optname != MRT_ASSERT)
  1161. return -ENOPROTOOPT;
  1162. if (get_user(olr, optlen))
  1163. return -EFAULT;
  1164. olr = min_t(unsigned int, olr, sizeof(int));
  1165. if (olr < 0)
  1166. return -EINVAL;
  1167. if (put_user(olr, optlen))
  1168. return -EFAULT;
  1169. if (optname == MRT_VERSION)
  1170. val = 0x0305;
  1171. #ifdef CONFIG_IP_PIMSM
  1172. else if (optname == MRT_PIM)
  1173. val = mrt->mroute_do_pim;
  1174. #endif
  1175. else
  1176. val = mrt->mroute_do_assert;
  1177. if (copy_to_user(optval, &val, olr))
  1178. return -EFAULT;
  1179. return 0;
  1180. }
  1181. /*
  1182. * The IP multicast ioctl support routines.
  1183. */
  1184. int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
  1185. {
  1186. struct sioc_sg_req sr;
  1187. struct sioc_vif_req vr;
  1188. struct vif_device *vif;
  1189. struct mfc_cache *c;
  1190. struct net *net = sock_net(sk);
  1191. struct mr_table *mrt;
  1192. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1193. if (mrt == NULL)
  1194. return -ENOENT;
  1195. switch (cmd) {
  1196. case SIOCGETVIFCNT:
  1197. if (copy_from_user(&vr, arg, sizeof(vr)))
  1198. return -EFAULT;
  1199. if (vr.vifi >= mrt->maxvif)
  1200. return -EINVAL;
  1201. read_lock(&mrt_lock);
  1202. vif = &mrt->vif_table[vr.vifi];
  1203. if (VIF_EXISTS(mrt, vr.vifi)) {
  1204. vr.icount = vif->pkt_in;
  1205. vr.ocount = vif->pkt_out;
  1206. vr.ibytes = vif->bytes_in;
  1207. vr.obytes = vif->bytes_out;
  1208. read_unlock(&mrt_lock);
  1209. if (copy_to_user(arg, &vr, sizeof(vr)))
  1210. return -EFAULT;
  1211. return 0;
  1212. }
  1213. read_unlock(&mrt_lock);
  1214. return -EADDRNOTAVAIL;
  1215. case SIOCGETSGCNT:
  1216. if (copy_from_user(&sr, arg, sizeof(sr)))
  1217. return -EFAULT;
  1218. rcu_read_lock();
  1219. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1220. if (c) {
  1221. sr.pktcnt = c->mfc_un.res.pkt;
  1222. sr.bytecnt = c->mfc_un.res.bytes;
  1223. sr.wrong_if = c->mfc_un.res.wrong_if;
  1224. rcu_read_unlock();
  1225. if (copy_to_user(arg, &sr, sizeof(sr)))
  1226. return -EFAULT;
  1227. return 0;
  1228. }
  1229. rcu_read_unlock();
  1230. return -EADDRNOTAVAIL;
  1231. default:
  1232. return -ENOIOCTLCMD;
  1233. }
  1234. }
  1235. #ifdef CONFIG_COMPAT
  1236. struct compat_sioc_sg_req {
  1237. struct in_addr src;
  1238. struct in_addr grp;
  1239. compat_ulong_t pktcnt;
  1240. compat_ulong_t bytecnt;
  1241. compat_ulong_t wrong_if;
  1242. };
  1243. struct compat_sioc_vif_req {
  1244. vifi_t vifi; /* Which iface */
  1245. compat_ulong_t icount;
  1246. compat_ulong_t ocount;
  1247. compat_ulong_t ibytes;
  1248. compat_ulong_t obytes;
  1249. };
  1250. int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
  1251. {
  1252. struct compat_sioc_sg_req sr;
  1253. struct compat_sioc_vif_req vr;
  1254. struct vif_device *vif;
  1255. struct mfc_cache *c;
  1256. struct net *net = sock_net(sk);
  1257. struct mr_table *mrt;
  1258. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1259. if (mrt == NULL)
  1260. return -ENOENT;
  1261. switch (cmd) {
  1262. case SIOCGETVIFCNT:
  1263. if (copy_from_user(&vr, arg, sizeof(vr)))
  1264. return -EFAULT;
  1265. if (vr.vifi >= mrt->maxvif)
  1266. return -EINVAL;
  1267. vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
  1268. read_lock(&mrt_lock);
  1269. vif = &mrt->vif_table[vr.vifi];
  1270. if (VIF_EXISTS(mrt, vr.vifi)) {
  1271. vr.icount = vif->pkt_in;
  1272. vr.ocount = vif->pkt_out;
  1273. vr.ibytes = vif->bytes_in;
  1274. vr.obytes = vif->bytes_out;
  1275. read_unlock(&mrt_lock);
  1276. if (copy_to_user(arg, &vr, sizeof(vr)))
  1277. return -EFAULT;
  1278. return 0;
  1279. }
  1280. read_unlock(&mrt_lock);
  1281. return -EADDRNOTAVAIL;
  1282. case SIOCGETSGCNT:
  1283. if (copy_from_user(&sr, arg, sizeof(sr)))
  1284. return -EFAULT;
  1285. rcu_read_lock();
  1286. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1287. if (c) {
  1288. sr.pktcnt = c->mfc_un.res.pkt;
  1289. sr.bytecnt = c->mfc_un.res.bytes;
  1290. sr.wrong_if = c->mfc_un.res.wrong_if;
  1291. rcu_read_unlock();
  1292. if (copy_to_user(arg, &sr, sizeof(sr)))
  1293. return -EFAULT;
  1294. return 0;
  1295. }
  1296. rcu_read_unlock();
  1297. return -EADDRNOTAVAIL;
  1298. default:
  1299. return -ENOIOCTLCMD;
  1300. }
  1301. }
  1302. #endif
  1303. static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
  1304. {
  1305. struct net_device *dev = ptr;
  1306. struct net *net = dev_net(dev);
  1307. struct mr_table *mrt;
  1308. struct vif_device *v;
  1309. int ct;
  1310. if (event != NETDEV_UNREGISTER)
  1311. return NOTIFY_DONE;
  1312. ipmr_for_each_table(mrt, net) {
  1313. v = &mrt->vif_table[0];
  1314. for (ct = 0; ct < mrt->maxvif; ct++, v++) {
  1315. if (v->dev == dev)
  1316. vif_delete(mrt, ct, 1, NULL);
  1317. }
  1318. }
  1319. return NOTIFY_DONE;
  1320. }
  1321. static struct notifier_block ip_mr_notifier = {
  1322. .notifier_call = ipmr_device_event,
  1323. };
  1324. /*
  1325. * Encapsulate a packet by attaching a valid IPIP header to it.
  1326. * This avoids tunnel drivers and other mess and gives us the speed so
  1327. * important for multicast video.
  1328. */
  1329. static void ip_encap(struct net *net, struct sk_buff *skb,
  1330. __be32 saddr, __be32 daddr)
  1331. {
  1332. struct iphdr *iph;
  1333. const struct iphdr *old_iph = ip_hdr(skb);
  1334. skb_push(skb, sizeof(struct iphdr));
  1335. skb->transport_header = skb->network_header;
  1336. skb_reset_network_header(skb);
  1337. iph = ip_hdr(skb);
  1338. iph->version = 4;
  1339. iph->tos = old_iph->tos;
  1340. iph->ttl = old_iph->ttl;
  1341. iph->frag_off = 0;
  1342. iph->daddr = daddr;
  1343. iph->saddr = saddr;
  1344. iph->protocol = IPPROTO_IPIP;
  1345. iph->ihl = 5;
  1346. iph->tot_len = htons(skb->len);
  1347. ip_select_ident(net, skb, NULL);
  1348. ip_send_check(iph);
  1349. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  1350. nf_reset(skb);
  1351. }
  1352. static inline int ipmr_forward_finish(struct sk_buff *skb)
  1353. {
  1354. struct ip_options *opt = &(IPCB(skb)->opt);
  1355. IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
  1356. if (unlikely(opt->optlen))
  1357. ip_forward_options(skb);
  1358. return dst_output(skb);
  1359. }
  1360. /*
  1361. * Processing handlers for ipmr_forward
  1362. */
  1363. static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
  1364. struct sk_buff *skb, struct mfc_cache *c, int vifi)
  1365. {
  1366. const struct iphdr *iph = ip_hdr(skb);
  1367. struct vif_device *vif = &mrt->vif_table[vifi];
  1368. struct net_device *dev;
  1369. struct rtable *rt;
  1370. struct flowi4 fl4;
  1371. int encap = 0;
  1372. if (vif->dev == NULL)
  1373. goto out_free;
  1374. #ifdef CONFIG_IP_PIMSM
  1375. if (vif->flags & VIFF_REGISTER) {
  1376. vif->pkt_out++;
  1377. vif->bytes_out += skb->len;
  1378. vif->dev->stats.tx_bytes += skb->len;
  1379. vif->dev->stats.tx_packets++;
  1380. ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
  1381. goto out_free;
  1382. }
  1383. #endif
  1384. if (vif->flags & VIFF_TUNNEL) {
  1385. rt = ip_route_output_ports(net, &fl4, NULL,
  1386. vif->remote, vif->local,
  1387. 0, 0,
  1388. IPPROTO_IPIP,
  1389. RT_TOS(iph->tos), vif->link);
  1390. if (IS_ERR(rt))
  1391. goto out_free;
  1392. encap = sizeof(struct iphdr);
  1393. } else {
  1394. rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
  1395. 0, 0,
  1396. IPPROTO_IPIP,
  1397. RT_TOS(iph->tos), vif->link);
  1398. if (IS_ERR(rt))
  1399. goto out_free;
  1400. }
  1401. dev = rt->dst.dev;
  1402. if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
  1403. /* Do not fragment multicasts. Alas, IPv4 does not
  1404. * allow to send ICMP, so that packets will disappear
  1405. * to blackhole.
  1406. */
  1407. IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
  1408. ip_rt_put(rt);
  1409. goto out_free;
  1410. }
  1411. encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
  1412. if (skb_cow(skb, encap)) {
  1413. ip_rt_put(rt);
  1414. goto out_free;
  1415. }
  1416. vif->pkt_out++;
  1417. vif->bytes_out += skb->len;
  1418. skb_dst_drop(skb);
  1419. skb_dst_set(skb, &rt->dst);
  1420. ip_decrease_ttl(ip_hdr(skb));
  1421. /* FIXME: forward and output firewalls used to be called here.
  1422. * What do we do with netfilter? -- RR
  1423. */
  1424. if (vif->flags & VIFF_TUNNEL) {
  1425. ip_encap(net, skb, vif->local, vif->remote);
  1426. /* FIXME: extra output firewall step used to be here. --RR */
  1427. vif->dev->stats.tx_packets++;
  1428. vif->dev->stats.tx_bytes += skb->len;
  1429. }
  1430. IPCB(skb)->flags |= IPSKB_FORWARDED;
  1431. /*
  1432. * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
  1433. * not only before forwarding, but after forwarding on all output
  1434. * interfaces. It is clear, if mrouter runs a multicasting
  1435. * program, it should receive packets not depending to what interface
  1436. * program is joined.
  1437. * If we will not make it, the program will have to join on all
  1438. * interfaces. On the other hand, multihoming host (or router, but
  1439. * not mrouter) cannot join to more than one interface - it will
  1440. * result in receiving multiple packets.
  1441. */
  1442. NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
  1443. ipmr_forward_finish);
  1444. return;
  1445. out_free:
  1446. kfree_skb(skb);
  1447. }
  1448. static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
  1449. {
  1450. int ct;
  1451. for (ct = mrt->maxvif-1; ct >= 0; ct--) {
  1452. if (mrt->vif_table[ct].dev == dev)
  1453. break;
  1454. }
  1455. return ct;
  1456. }
  1457. /* "local" means that we should preserve one skb (for local delivery) */
  1458. static int ip_mr_forward(struct net *net, struct mr_table *mrt,
  1459. struct sk_buff *skb, struct mfc_cache *cache,
  1460. int local)
  1461. {
  1462. int psend = -1;
  1463. int vif, ct;
  1464. vif = cache->mfc_parent;
  1465. cache->mfc_un.res.pkt++;
  1466. cache->mfc_un.res.bytes += skb->len;
  1467. /*
  1468. * Wrong interface: drop packet and (maybe) send PIM assert.
  1469. */
  1470. if (mrt->vif_table[vif].dev != skb->dev) {
  1471. int true_vifi;
  1472. if (rt_is_output_route(skb_rtable(skb))) {
  1473. /* It is our own packet, looped back.
  1474. * Very complicated situation...
  1475. *
  1476. * The best workaround until routing daemons will be
  1477. * fixed is not to redistribute packet, if it was
  1478. * send through wrong interface. It means, that
  1479. * multicast applications WILL NOT work for
  1480. * (S,G), which have default multicast route pointing
  1481. * to wrong oif. In any case, it is not a good
  1482. * idea to use multicasting applications on router.
  1483. */
  1484. goto dont_forward;
  1485. }
  1486. cache->mfc_un.res.wrong_if++;
  1487. true_vifi = ipmr_find_vif(mrt, skb->dev);
  1488. if (true_vifi >= 0 && mrt->mroute_do_assert &&
  1489. /* pimsm uses asserts, when switching from RPT to SPT,
  1490. * so that we cannot check that packet arrived on an oif.
  1491. * It is bad, but otherwise we would need to move pretty
  1492. * large chunk of pimd to kernel. Ough... --ANK
  1493. */
  1494. (mrt->mroute_do_pim ||
  1495. cache->mfc_un.res.ttls[true_vifi] < 255) &&
  1496. time_after(jiffies,
  1497. cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
  1498. cache->mfc_un.res.last_assert = jiffies;
  1499. ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
  1500. }
  1501. goto dont_forward;
  1502. }
  1503. mrt->vif_table[vif].pkt_in++;
  1504. mrt->vif_table[vif].bytes_in += skb->len;
  1505. /*
  1506. * Forward the frame
  1507. */
  1508. for (ct = cache->mfc_un.res.maxvif - 1;
  1509. ct >= cache->mfc_un.res.minvif; ct--) {
  1510. if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
  1511. if (psend != -1) {
  1512. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1513. if (skb2)
  1514. ipmr_queue_xmit(net, mrt, skb2, cache,
  1515. psend);
  1516. }
  1517. psend = ct;
  1518. }
  1519. }
  1520. if (psend != -1) {
  1521. if (local) {
  1522. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1523. if (skb2)
  1524. ipmr_queue_xmit(net, mrt, skb2, cache, psend);
  1525. } else {
  1526. ipmr_queue_xmit(net, mrt, skb, cache, psend);
  1527. return 0;
  1528. }
  1529. }
  1530. dont_forward:
  1531. if (!local)
  1532. kfree_skb(skb);
  1533. return 0;
  1534. }
  1535. static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
  1536. {
  1537. struct rtable *rt = skb_rtable(skb);
  1538. struct iphdr *iph = ip_hdr(skb);
  1539. struct flowi4 fl4 = {
  1540. .daddr = iph->daddr,
  1541. .saddr = iph->saddr,
  1542. .flowi4_tos = RT_TOS(iph->tos),
  1543. .flowi4_oif = rt->rt_oif,
  1544. .flowi4_iif = rt->rt_iif,
  1545. .flowi4_mark = rt->rt_mark,
  1546. };
  1547. struct mr_table *mrt;
  1548. int err;
  1549. err = ipmr_fib_lookup(net, &fl4, &mrt);
  1550. if (err)
  1551. return ERR_PTR(err);
  1552. return mrt;
  1553. }
  1554. /*
  1555. * Multicast packets for forwarding arrive here
  1556. * Called with rcu_read_lock();
  1557. */
  1558. int ip_mr_input(struct sk_buff *skb)
  1559. {
  1560. struct mfc_cache *cache;
  1561. struct net *net = dev_net(skb->dev);
  1562. int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
  1563. struct mr_table *mrt;
  1564. /* Packet is looped back after forward, it should not be
  1565. * forwarded second time, but still can be delivered locally.
  1566. */
  1567. if (IPCB(skb)->flags & IPSKB_FORWARDED)
  1568. goto dont_forward;
  1569. mrt = ipmr_rt_fib_lookup(net, skb);
  1570. if (IS_ERR(mrt)) {
  1571. kfree_skb(skb);
  1572. return PTR_ERR(mrt);
  1573. }
  1574. if (!local) {
  1575. if (IPCB(skb)->opt.router_alert) {
  1576. if (ip_call_ra_chain(skb))
  1577. return 0;
  1578. } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
  1579. /* IGMPv1 (and broken IGMPv2 implementations sort of
  1580. * Cisco IOS <= 11.2(8)) do not put router alert
  1581. * option to IGMP packets destined to routable
  1582. * groups. It is very bad, because it means
  1583. * that we can forward NO IGMP messages.
  1584. */
  1585. struct sock *mroute_sk;
  1586. mroute_sk = rcu_dereference(mrt->mroute_sk);
  1587. if (mroute_sk) {
  1588. nf_reset(skb);
  1589. raw_rcv(mroute_sk, skb);
  1590. return 0;
  1591. }
  1592. }
  1593. }
  1594. /* already under rcu_read_lock() */
  1595. cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
  1596. /*
  1597. * No usable cache entry
  1598. */
  1599. if (cache == NULL) {
  1600. int vif;
  1601. if (local) {
  1602. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1603. ip_local_deliver(skb);
  1604. if (skb2 == NULL)
  1605. return -ENOBUFS;
  1606. skb = skb2;
  1607. }
  1608. read_lock(&mrt_lock);
  1609. vif = ipmr_find_vif(mrt, skb->dev);
  1610. if (vif >= 0) {
  1611. int err2 = ipmr_cache_unresolved(mrt, vif, skb);
  1612. read_unlock(&mrt_lock);
  1613. return err2;
  1614. }
  1615. read_unlock(&mrt_lock);
  1616. kfree_skb(skb);
  1617. return -ENODEV;
  1618. }
  1619. read_lock(&mrt_lock);
  1620. ip_mr_forward(net, mrt, skb, cache, local);
  1621. read_unlock(&mrt_lock);
  1622. if (local)
  1623. return ip_local_deliver(skb);
  1624. return 0;
  1625. dont_forward:
  1626. if (local)
  1627. return ip_local_deliver(skb);
  1628. kfree_skb(skb);
  1629. return 0;
  1630. }
  1631. #ifdef CONFIG_IP_PIMSM
  1632. /* called with rcu_read_lock() */
  1633. static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
  1634. unsigned int pimlen)
  1635. {
  1636. struct net_device *reg_dev = NULL;
  1637. struct iphdr *encap;
  1638. encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
  1639. /*
  1640. * Check that:
  1641. * a. packet is really sent to a multicast group
  1642. * b. packet is not a NULL-REGISTER
  1643. * c. packet is not truncated
  1644. */
  1645. if (!ipv4_is_multicast(encap->daddr) ||
  1646. encap->tot_len == 0 ||
  1647. ntohs(encap->tot_len) + pimlen > skb->len)
  1648. return 1;
  1649. read_lock(&mrt_lock);
  1650. if (mrt->mroute_reg_vif_num >= 0)
  1651. reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
  1652. read_unlock(&mrt_lock);
  1653. if (reg_dev == NULL)
  1654. return 1;
  1655. skb->mac_header = skb->network_header;
  1656. skb_pull(skb, (u8 *)encap - skb->data);
  1657. skb_reset_network_header(skb);
  1658. skb->protocol = htons(ETH_P_IP);
  1659. skb->ip_summed = CHECKSUM_NONE;
  1660. skb->pkt_type = PACKET_HOST;
  1661. skb_tunnel_rx(skb, reg_dev);
  1662. netif_rx(skb);
  1663. return NET_RX_SUCCESS;
  1664. }
  1665. #endif
  1666. #ifdef CONFIG_IP_PIMSM_V1
  1667. /*
  1668. * Handle IGMP messages of PIMv1
  1669. */
  1670. int pim_rcv_v1(struct sk_buff *skb)
  1671. {
  1672. struct igmphdr *pim;
  1673. struct net *net = dev_net(skb->dev);
  1674. struct mr_table *mrt;
  1675. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1676. goto drop;
  1677. pim = igmp_hdr(skb);
  1678. mrt = ipmr_rt_fib_lookup(net, skb);
  1679. if (IS_ERR(mrt))
  1680. goto drop;
  1681. if (!mrt->mroute_do_pim ||
  1682. pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
  1683. goto drop;
  1684. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1685. drop:
  1686. kfree_skb(skb);
  1687. }
  1688. return 0;
  1689. }
  1690. #endif
  1691. #ifdef CONFIG_IP_PIMSM_V2
  1692. static int pim_rcv(struct sk_buff *skb)
  1693. {
  1694. struct pimreghdr *pim;
  1695. struct net *net = dev_net(skb->dev);
  1696. struct mr_table *mrt;
  1697. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1698. goto drop;
  1699. pim = (struct pimreghdr *)skb_transport_header(skb);
  1700. if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
  1701. (pim->flags & PIM_NULL_REGISTER) ||
  1702. (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
  1703. csum_fold(skb_checksum(skb, 0, skb->len, 0))))
  1704. goto drop;
  1705. mrt = ipmr_rt_fib_lookup(net, skb);
  1706. if (IS_ERR(mrt))
  1707. goto drop;
  1708. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1709. drop:
  1710. kfree_skb(skb);
  1711. }
  1712. return 0;
  1713. }
  1714. #endif
  1715. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1716. struct mfc_cache *c, struct rtmsg *rtm)
  1717. {
  1718. int ct;
  1719. struct rtnexthop *nhp;
  1720. u8 *b = skb_tail_pointer(skb);
  1721. struct rtattr *mp_head;
  1722. /* If cache is unresolved, don't try to parse IIF and OIF */
  1723. if (c->mfc_parent >= MAXVIFS)
  1724. return -ENOENT;
  1725. if (VIF_EXISTS(mrt, c->mfc_parent))
  1726. RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
  1727. mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
  1728. for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
  1729. if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
  1730. if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
  1731. goto rtattr_failure;
  1732. nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
  1733. nhp->rtnh_flags = 0;
  1734. nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
  1735. nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
  1736. nhp->rtnh_len = sizeof(*nhp);
  1737. }
  1738. }
  1739. mp_head->rta_type = RTA_MULTIPATH;
  1740. mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
  1741. rtm->rtm_type = RTN_MULTICAST;
  1742. return 1;
  1743. rtattr_failure:
  1744. nlmsg_trim(skb, b);
  1745. return -EMSGSIZE;
  1746. }
  1747. int ipmr_get_route(struct net *net, struct sk_buff *skb,
  1748. __be32 saddr, __be32 daddr,
  1749. struct rtmsg *rtm, int nowait)
  1750. {
  1751. struct mfc_cache *cache;
  1752. struct mr_table *mrt;
  1753. int err;
  1754. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1755. if (mrt == NULL)
  1756. return -ENOENT;
  1757. rcu_read_lock();
  1758. cache = ipmr_cache_find(mrt, saddr, daddr);
  1759. if (cache == NULL) {
  1760. struct sk_buff *skb2;
  1761. struct iphdr *iph;
  1762. struct net_device *dev;
  1763. int vif = -1;
  1764. if (nowait) {
  1765. rcu_read_unlock();
  1766. return -EAGAIN;
  1767. }
  1768. dev = skb->dev;
  1769. read_lock(&mrt_lock);
  1770. if (dev)
  1771. vif = ipmr_find_vif(mrt, dev);
  1772. if (vif < 0) {
  1773. read_unlock(&mrt_lock);
  1774. rcu_read_unlock();
  1775. return -ENODEV;
  1776. }
  1777. skb2 = skb_clone(skb, GFP_ATOMIC);
  1778. if (!skb2) {
  1779. read_unlock(&mrt_lock);
  1780. rcu_read_unlock();
  1781. return -ENOMEM;
  1782. }
  1783. skb_push(skb2, sizeof(struct iphdr));
  1784. skb_reset_network_header(skb2);
  1785. iph = ip_hdr(skb2);
  1786. iph->ihl = sizeof(struct iphdr) >> 2;
  1787. iph->saddr = saddr;
  1788. iph->daddr = daddr;
  1789. iph->version = 0;
  1790. err = ipmr_cache_unresolved(mrt, vif, skb2);
  1791. read_unlock(&mrt_lock);
  1792. rcu_read_unlock();
  1793. return err;
  1794. }
  1795. read_lock(&mrt_lock);
  1796. if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
  1797. cache->mfc_flags |= MFC_NOTIFY;
  1798. err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
  1799. read_unlock(&mrt_lock);
  1800. rcu_read_unlock();
  1801. return err;
  1802. }
  1803. static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1804. u32 pid, u32 seq, struct mfc_cache *c)
  1805. {
  1806. struct nlmsghdr *nlh;
  1807. struct rtmsg *rtm;
  1808. nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
  1809. if (nlh == NULL)
  1810. return -EMSGSIZE;
  1811. rtm = nlmsg_data(nlh);
  1812. rtm->rtm_family = RTNL_FAMILY_IPMR;
  1813. rtm->rtm_dst_len = 32;
  1814. rtm->rtm_src_len = 32;
  1815. rtm->rtm_tos = 0;
  1816. rtm->rtm_table = mrt->id;
  1817. NLA_PUT_U32(skb, RTA_TABLE, mrt->id);
  1818. rtm->rtm_type = RTN_MULTICAST;
  1819. rtm->rtm_scope = RT_SCOPE_UNIVERSE;
  1820. rtm->rtm_protocol = RTPROT_UNSPEC;
  1821. rtm->rtm_flags = 0;
  1822. NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin);
  1823. NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp);
  1824. if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
  1825. goto nla_put_failure;
  1826. return nlmsg_end(skb, nlh);
  1827. nla_put_failure:
  1828. nlmsg_cancel(skb, nlh);
  1829. return -EMSGSIZE;
  1830. }
  1831. static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
  1832. {
  1833. struct net *net = sock_net(skb->sk);
  1834. struct mr_table *mrt;
  1835. struct mfc_cache *mfc;
  1836. unsigned int t = 0, s_t;
  1837. unsigned int h = 0, s_h;
  1838. unsigned int e = 0, s_e;
  1839. s_t = cb->args[0];
  1840. s_h = cb->args[1];
  1841. s_e = cb->args[2];
  1842. rcu_read_lock();
  1843. ipmr_for_each_table(mrt, net) {
  1844. if (t < s_t)
  1845. goto next_table;
  1846. if (t > s_t)
  1847. s_h = 0;
  1848. for (h = s_h; h < MFC_LINES; h++) {
  1849. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
  1850. if (e < s_e)
  1851. goto next_entry;
  1852. if (ipmr_fill_mroute(mrt, skb,
  1853. NETLINK_CB(cb->skb).pid,
  1854. cb->nlh->nlmsg_seq,
  1855. mfc) < 0)
  1856. goto done;
  1857. next_entry:
  1858. e++;
  1859. }
  1860. e = s_e = 0;
  1861. }
  1862. s_h = 0;
  1863. next_table:
  1864. t++;
  1865. }
  1866. done:
  1867. rcu_read_unlock();
  1868. cb->args[2] = e;
  1869. cb->args[1] = h;
  1870. cb->args[0] = t;
  1871. return skb->len;
  1872. }
  1873. #ifdef CONFIG_PROC_FS
  1874. /*
  1875. * The /proc interfaces to multicast routing :
  1876. * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
  1877. */
  1878. struct ipmr_vif_iter {
  1879. struct seq_net_private p;
  1880. struct mr_table *mrt;
  1881. int ct;
  1882. };
  1883. static struct vif_device *ipmr_vif_seq_idx(struct net *net,
  1884. struct ipmr_vif_iter *iter,
  1885. loff_t pos)
  1886. {
  1887. struct mr_table *mrt = iter->mrt;
  1888. for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
  1889. if (!VIF_EXISTS(mrt, iter->ct))
  1890. continue;
  1891. if (pos-- == 0)
  1892. return &mrt->vif_table[iter->ct];
  1893. }
  1894. return NULL;
  1895. }
  1896. static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
  1897. __acquires(mrt_lock)
  1898. {
  1899. struct ipmr_vif_iter *iter = seq->private;
  1900. struct net *net = seq_file_net(seq);
  1901. struct mr_table *mrt;
  1902. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1903. if (mrt == NULL)
  1904. return ERR_PTR(-ENOENT);
  1905. iter->mrt = mrt;
  1906. read_lock(&mrt_lock);
  1907. return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
  1908. : SEQ_START_TOKEN;
  1909. }
  1910. static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1911. {
  1912. struct ipmr_vif_iter *iter = seq->private;
  1913. struct net *net = seq_file_net(seq);
  1914. struct mr_table *mrt = iter->mrt;
  1915. ++*pos;
  1916. if (v == SEQ_START_TOKEN)
  1917. return ipmr_vif_seq_idx(net, iter, 0);
  1918. while (++iter->ct < mrt->maxvif) {
  1919. if (!VIF_EXISTS(mrt, iter->ct))
  1920. continue;
  1921. return &mrt->vif_table[iter->ct];
  1922. }
  1923. return NULL;
  1924. }
  1925. static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
  1926. __releases(mrt_lock)
  1927. {
  1928. read_unlock(&mrt_lock);
  1929. }
  1930. static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
  1931. {
  1932. struct ipmr_vif_iter *iter = seq->private;
  1933. struct mr_table *mrt = iter->mrt;
  1934. if (v == SEQ_START_TOKEN) {
  1935. seq_puts(seq,
  1936. "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
  1937. } else {
  1938. const struct vif_device *vif = v;
  1939. const char *name = vif->dev ? vif->dev->name : "none";
  1940. seq_printf(seq,
  1941. "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
  1942. vif - mrt->vif_table,
  1943. name, vif->bytes_in, vif->pkt_in,
  1944. vif->bytes_out, vif->pkt_out,
  1945. vif->flags, vif->local, vif->remote);
  1946. }
  1947. return 0;
  1948. }
  1949. static const struct seq_operations ipmr_vif_seq_ops = {
  1950. .start = ipmr_vif_seq_start,
  1951. .next = ipmr_vif_seq_next,
  1952. .stop = ipmr_vif_seq_stop,
  1953. .show = ipmr_vif_seq_show,
  1954. };
  1955. static int ipmr_vif_open(struct inode *inode, struct file *file)
  1956. {
  1957. return seq_open_net(inode, file, &ipmr_vif_seq_ops,
  1958. sizeof(struct ipmr_vif_iter));
  1959. }
  1960. static const struct file_operations ipmr_vif_fops = {
  1961. .owner = THIS_MODULE,
  1962. .open = ipmr_vif_open,
  1963. .read = seq_read,
  1964. .llseek = seq_lseek,
  1965. .release = seq_release_net,
  1966. };
  1967. struct ipmr_mfc_iter {
  1968. struct seq_net_private p;
  1969. struct mr_table *mrt;
  1970. struct list_head *cache;
  1971. int ct;
  1972. };
  1973. static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
  1974. struct ipmr_mfc_iter *it, loff_t pos)
  1975. {
  1976. struct mr_table *mrt = it->mrt;
  1977. struct mfc_cache *mfc;
  1978. rcu_read_lock();
  1979. for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
  1980. it->cache = &mrt->mfc_cache_array[it->ct];
  1981. list_for_each_entry_rcu(mfc, it->cache, list)
  1982. if (pos-- == 0)
  1983. return mfc;
  1984. }
  1985. rcu_read_unlock();
  1986. spin_lock_bh(&mfc_unres_lock);
  1987. it->cache = &mrt->mfc_unres_queue;
  1988. list_for_each_entry(mfc, it->cache, list)
  1989. if (pos-- == 0)
  1990. return mfc;
  1991. spin_unlock_bh(&mfc_unres_lock);
  1992. it->cache = NULL;
  1993. return NULL;
  1994. }
  1995. static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
  1996. {
  1997. struct ipmr_mfc_iter *it = seq->private;
  1998. struct net *net = seq_file_net(seq);
  1999. struct mr_table *mrt;
  2000. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2001. if (mrt == NULL)
  2002. return ERR_PTR(-ENOENT);
  2003. it->mrt = mrt;
  2004. it->cache = NULL;
  2005. it->ct = 0;
  2006. return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
  2007. : SEQ_START_TOKEN;
  2008. }
  2009. static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2010. {
  2011. struct mfc_cache *mfc = v;
  2012. struct ipmr_mfc_iter *it = seq->private;
  2013. struct net *net = seq_file_net(seq);
  2014. struct mr_table *mrt = it->mrt;
  2015. ++*pos;
  2016. if (v == SEQ_START_TOKEN)
  2017. return ipmr_mfc_seq_idx(net, seq->private, 0);
  2018. if (mfc->list.next != it->cache)
  2019. return list_entry(mfc->list.next, struct mfc_cache, list);
  2020. if (it->cache == &mrt->mfc_unres_queue)
  2021. goto end_of_list;
  2022. BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
  2023. while (++it->ct < MFC_LINES) {
  2024. it->cache = &mrt->mfc_cache_array[it->ct];
  2025. if (list_empty(it->cache))
  2026. continue;
  2027. return list_first_entry(it->cache, struct mfc_cache, list);
  2028. }
  2029. /* exhausted cache_array, show unresolved */
  2030. rcu_read_unlock();
  2031. it->cache = &mrt->mfc_unres_queue;
  2032. it->ct = 0;
  2033. spin_lock_bh(&mfc_unres_lock);
  2034. if (!list_empty(it->cache))
  2035. return list_first_entry(it->cache, struct mfc_cache, list);
  2036. end_of_list:
  2037. spin_unlock_bh(&mfc_unres_lock);
  2038. it->cache = NULL;
  2039. return NULL;
  2040. }
  2041. static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
  2042. {
  2043. struct ipmr_mfc_iter *it = seq->private;
  2044. struct mr_table *mrt = it->mrt;
  2045. if (it->cache == &mrt->mfc_unres_queue)
  2046. spin_unlock_bh(&mfc_unres_lock);
  2047. else if (it->cache == &mrt->mfc_cache_array[it->ct])
  2048. rcu_read_unlock();
  2049. }
  2050. static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
  2051. {
  2052. int n;
  2053. if (v == SEQ_START_TOKEN) {
  2054. seq_puts(seq,
  2055. "Group Origin Iif Pkts Bytes Wrong Oifs\n");
  2056. } else {
  2057. const struct mfc_cache *mfc = v;
  2058. const struct ipmr_mfc_iter *it = seq->private;
  2059. const struct mr_table *mrt = it->mrt;
  2060. seq_printf(seq, "%08X %08X %-3hd",
  2061. (__force u32) mfc->mfc_mcastgrp,
  2062. (__force u32) mfc->mfc_origin,
  2063. mfc->mfc_parent);
  2064. if (it->cache != &mrt->mfc_unres_queue) {
  2065. seq_printf(seq, " %8lu %8lu %8lu",
  2066. mfc->mfc_un.res.pkt,
  2067. mfc->mfc_un.res.bytes,
  2068. mfc->mfc_un.res.wrong_if);
  2069. for (n = mfc->mfc_un.res.minvif;
  2070. n < mfc->mfc_un.res.maxvif; n++) {
  2071. if (VIF_EXISTS(mrt, n) &&
  2072. mfc->mfc_un.res.ttls[n] < 255)
  2073. seq_printf(seq,
  2074. " %2d:%-3d",
  2075. n, mfc->mfc_un.res.ttls[n]);
  2076. }
  2077. } else {
  2078. /* unresolved mfc_caches don't contain
  2079. * pkt, bytes and wrong_if values
  2080. */
  2081. seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
  2082. }
  2083. seq_putc(seq, '\n');
  2084. }
  2085. return 0;
  2086. }
  2087. static const struct seq_operations ipmr_mfc_seq_ops = {
  2088. .start = ipmr_mfc_seq_start,
  2089. .next = ipmr_mfc_seq_next,
  2090. .stop = ipmr_mfc_seq_stop,
  2091. .show = ipmr_mfc_seq_show,
  2092. };
  2093. static int ipmr_mfc_open(struct inode *inode, struct file *file)
  2094. {
  2095. return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
  2096. sizeof(struct ipmr_mfc_iter));
  2097. }
  2098. static const struct file_operations ipmr_mfc_fops = {
  2099. .owner = THIS_MODULE,
  2100. .open = ipmr_mfc_open,
  2101. .read = seq_read,
  2102. .llseek = seq_lseek,
  2103. .release = seq_release_net,
  2104. };
  2105. #endif
  2106. #ifdef CONFIG_IP_PIMSM_V2
  2107. static const struct net_protocol pim_protocol = {
  2108. .handler = pim_rcv,
  2109. .netns_ok = 1,
  2110. };
  2111. #endif
  2112. /*
  2113. * Setup for IP multicast routing
  2114. */
  2115. static int __net_init ipmr_net_init(struct net *net)
  2116. {
  2117. int err;
  2118. err = ipmr_rules_init(net);
  2119. if (err < 0)
  2120. goto fail;
  2121. #ifdef CONFIG_PROC_FS
  2122. err = -ENOMEM;
  2123. if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
  2124. goto proc_vif_fail;
  2125. if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
  2126. goto proc_cache_fail;
  2127. #endif
  2128. return 0;
  2129. #ifdef CONFIG_PROC_FS
  2130. proc_cache_fail:
  2131. proc_net_remove(net, "ip_mr_vif");
  2132. proc_vif_fail:
  2133. ipmr_rules_exit(net);
  2134. #endif
  2135. fail:
  2136. return err;
  2137. }
  2138. static void __net_exit ipmr_net_exit(struct net *net)
  2139. {
  2140. #ifdef CONFIG_PROC_FS
  2141. proc_net_remove(net, "ip_mr_cache");
  2142. proc_net_remove(net, "ip_mr_vif");
  2143. #endif
  2144. ipmr_rules_exit(net);
  2145. }
  2146. static struct pernet_operations ipmr_net_ops = {
  2147. .init = ipmr_net_init,
  2148. .exit = ipmr_net_exit,
  2149. };
  2150. int __init ip_mr_init(void)
  2151. {
  2152. int err;
  2153. mrt_cachep = kmem_cache_create("ip_mrt_cache",
  2154. sizeof(struct mfc_cache),
  2155. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
  2156. NULL);
  2157. if (!mrt_cachep)
  2158. return -ENOMEM;
  2159. err = register_pernet_subsys(&ipmr_net_ops);
  2160. if (err)
  2161. goto reg_pernet_fail;
  2162. err = register_netdevice_notifier(&ip_mr_notifier);
  2163. if (err)
  2164. goto reg_notif_fail;
  2165. #ifdef CONFIG_IP_PIMSM_V2
  2166. if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
  2167. pr_err("%s: can't add PIM protocol\n", __func__);
  2168. err = -EAGAIN;
  2169. goto add_proto_fail;
  2170. }
  2171. #endif
  2172. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
  2173. NULL, ipmr_rtm_dumproute, NULL);
  2174. return 0;
  2175. #ifdef CONFIG_IP_PIMSM_V2
  2176. add_proto_fail:
  2177. unregister_netdevice_notifier(&ip_mr_notifier);
  2178. #endif
  2179. reg_notif_fail:
  2180. unregister_pernet_subsys(&ipmr_net_ops);
  2181. reg_pernet_fail:
  2182. kmem_cache_destroy(mrt_cachep);
  2183. return err;
  2184. }