timekeeping.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445
  1. /*
  2. * linux/kernel/time/timekeeping.c
  3. *
  4. * Kernel timekeeping code and accessor functions
  5. *
  6. * This code was moved from linux/kernel/timer.c.
  7. * Please see that file for copyright and history logs.
  8. *
  9. */
  10. #include <linux/module.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/percpu.h>
  13. #include <linux/init.h>
  14. #include <linux/mm.h>
  15. #include <linux/sched.h>
  16. #include <linux/syscore_ops.h>
  17. #include <linux/clocksource.h>
  18. #include <linux/jiffies.h>
  19. #include <linux/time.h>
  20. #include <linux/tick.h>
  21. #include <linux/stop_machine.h>
  22. #include <linux/compiler.h>
  23. extern ktime_t ntp_get_next_leap(void);
  24. extern int __do_adjtimex(struct timex *);
  25. /* Structure holding internal timekeeping values. */
  26. struct timekeeper {
  27. /* Current clocksource used for timekeeping. */
  28. struct clocksource *clock;
  29. /* NTP adjusted clock multiplier */
  30. u32 mult;
  31. /* The shift value of the current clocksource. */
  32. int shift;
  33. /* CLOCK_MONOTONIC time value of a pending leap-second*/
  34. ktime_t next_leap_ktime;
  35. /* Number of clock cycles in one NTP interval. */
  36. cycle_t cycle_interval;
  37. /* Number of clock shifted nano seconds in one NTP interval. */
  38. u64 xtime_interval;
  39. /* shifted nano seconds left over when rounding cycle_interval */
  40. s64 xtime_remainder;
  41. /* Raw nano seconds accumulated per NTP interval. */
  42. u32 raw_interval;
  43. /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
  44. u64 xtime_nsec;
  45. /* Difference between accumulated time and NTP time in ntp
  46. * shifted nano seconds. */
  47. s64 ntp_error;
  48. /* Shift conversion between clock shifted nano seconds and
  49. * ntp shifted nano seconds. */
  50. int ntp_error_shift;
  51. /* The current time */
  52. struct timespec xtime;
  53. /*
  54. * wall_to_monotonic is what we need to add to xtime (or xtime corrected
  55. * for sub jiffie times) to get to monotonic time. Monotonic is pegged
  56. * at zero at system boot time, so wall_to_monotonic will be negative,
  57. * however, we will ALWAYS keep the tv_nsec part positive so we can use
  58. * the usual normalization.
  59. *
  60. * wall_to_monotonic is moved after resume from suspend for the
  61. * monotonic time not to jump. We need to add total_sleep_time to
  62. * wall_to_monotonic to get the real boot based time offset.
  63. *
  64. * - wall_to_monotonic is no longer the boot time, getboottime must be
  65. * used instead.
  66. */
  67. struct timespec wall_to_monotonic;
  68. /* time spent in suspend */
  69. struct timespec total_sleep_time;
  70. /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
  71. struct timespec raw_time;
  72. /* Offset clock monotonic -> clock realtime */
  73. ktime_t offs_real;
  74. /* Offset clock monotonic -> clock boottime */
  75. ktime_t offs_boot;
  76. /* Seqlock for all timekeeper values */
  77. seqlock_t lock;
  78. };
  79. static struct timekeeper timekeeper;
  80. /*
  81. * This read-write spinlock protects us from races in SMP while
  82. * playing with xtime.
  83. */
  84. __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
  85. /* flag for if timekeeping is suspended */
  86. int __read_mostly timekeeping_suspended;
  87. /**
  88. * timekeeper_setup_internals - Set up internals to use clocksource clock.
  89. *
  90. * @clock: Pointer to clocksource.
  91. *
  92. * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
  93. * pair and interval request.
  94. *
  95. * Unless you're the timekeeping code, you should not be using this!
  96. */
  97. static void timekeeper_setup_internals(struct clocksource *clock)
  98. {
  99. cycle_t interval;
  100. u64 tmp, ntpinterval;
  101. timekeeper.clock = clock;
  102. clock->cycle_last = clock->read(clock);
  103. /* Do the ns -> cycle conversion first, using original mult */
  104. tmp = NTP_INTERVAL_LENGTH;
  105. tmp <<= clock->shift;
  106. ntpinterval = tmp;
  107. tmp += clock->mult/2;
  108. do_div(tmp, clock->mult);
  109. if (tmp == 0)
  110. tmp = 1;
  111. interval = (cycle_t) tmp;
  112. timekeeper.cycle_interval = interval;
  113. /* Go back from cycles -> shifted ns */
  114. timekeeper.xtime_interval = (u64) interval * clock->mult;
  115. timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
  116. timekeeper.raw_interval =
  117. ((u64) interval * clock->mult) >> clock->shift;
  118. timekeeper.xtime_nsec = 0;
  119. timekeeper.shift = clock->shift;
  120. timekeeper.ntp_error = 0;
  121. timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
  122. /*
  123. * The timekeeper keeps its own mult values for the currently
  124. * active clocksource. These value will be adjusted via NTP
  125. * to counteract clock drifting.
  126. */
  127. timekeeper.mult = clock->mult;
  128. }
  129. /* Timekeeper helper functions. */
  130. static inline s64 timekeeping_get_ns(void)
  131. {
  132. cycle_t cycle_now, cycle_delta;
  133. struct clocksource *clock;
  134. /* read clocksource: */
  135. clock = timekeeper.clock;
  136. cycle_now = clock->read(clock);
  137. /* calculate the delta since the last update_wall_time: */
  138. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  139. /* return delta convert to nanoseconds using ntp adjusted mult. */
  140. return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
  141. timekeeper.shift);
  142. }
  143. static inline s64 timekeeping_get_ns_raw(void)
  144. {
  145. cycle_t cycle_now, cycle_delta;
  146. struct clocksource *clock;
  147. /* read clocksource: */
  148. clock = timekeeper.clock;
  149. cycle_now = clock->read(clock);
  150. /* calculate the delta since the last update_wall_time: */
  151. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  152. /* return delta convert to nanoseconds. */
  153. return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
  154. }
  155. static void update_rt_offset(void)
  156. {
  157. struct timespec tmp, *wtm = &timekeeper.wall_to_monotonic;
  158. set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec);
  159. timekeeper.offs_real = timespec_to_ktime(tmp);
  160. }
  161. /*
  162. * tk_update_leap_state - helper to update the next_leap_ktime
  163. */
  164. static inline void tk_update_leap_state(struct timekeeper *tk)
  165. {
  166. tk->next_leap_ktime = ntp_get_next_leap();
  167. if (tk->next_leap_ktime.tv64 != KTIME_MAX)
  168. /* Convert to monotonic time */
  169. tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
  170. }
  171. /* must hold write on timekeeper.lock */
  172. static void timekeeping_update(bool clearntp)
  173. {
  174. if (clearntp) {
  175. timekeeper.ntp_error = 0;
  176. ntp_clear();
  177. }
  178. tk_update_leap_state(&timekeeper);
  179. update_rt_offset();
  180. update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
  181. timekeeper.clock, timekeeper.mult);
  182. }
  183. /**
  184. * timekeeping_forward_now - update clock to the current time
  185. *
  186. * Forward the current clock to update its state since the last call to
  187. * update_wall_time(). This is useful before significant clock changes,
  188. * as it avoids having to deal with this time offset explicitly.
  189. */
  190. static void timekeeping_forward_now(void)
  191. {
  192. cycle_t cycle_now, cycle_delta;
  193. struct clocksource *clock;
  194. s64 nsec;
  195. clock = timekeeper.clock;
  196. cycle_now = clock->read(clock);
  197. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  198. clock->cycle_last = cycle_now;
  199. nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
  200. timekeeper.shift);
  201. /* If arch requires, add in gettimeoffset() */
  202. nsec += arch_gettimeoffset();
  203. timespec_add_ns(&timekeeper.xtime, nsec);
  204. nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
  205. timespec_add_ns(&timekeeper.raw_time, nsec);
  206. }
  207. /**
  208. * getnstimeofday - Returns the time of day in a timespec
  209. * @ts: pointer to the timespec to be set
  210. *
  211. * Returns the time of day in a timespec.
  212. */
  213. void getnstimeofday(struct timespec *ts)
  214. {
  215. unsigned long seq;
  216. s64 nsecs;
  217. WARN_ON(timekeeping_suspended);
  218. do {
  219. seq = read_seqbegin(&timekeeper.lock);
  220. *ts = timekeeper.xtime;
  221. nsecs = timekeeping_get_ns();
  222. /* If arch requires, add in gettimeoffset() */
  223. nsecs += arch_gettimeoffset();
  224. } while (read_seqretry(&timekeeper.lock, seq));
  225. timespec_add_ns(ts, nsecs);
  226. }
  227. EXPORT_SYMBOL(getnstimeofday);
  228. ktime_t ktime_get(void)
  229. {
  230. unsigned int seq;
  231. s64 secs, nsecs;
  232. WARN_ON(timekeeping_suspended);
  233. do {
  234. seq = read_seqbegin(&timekeeper.lock);
  235. secs = timekeeper.xtime.tv_sec +
  236. timekeeper.wall_to_monotonic.tv_sec;
  237. nsecs = timekeeper.xtime.tv_nsec +
  238. timekeeper.wall_to_monotonic.tv_nsec;
  239. nsecs += timekeeping_get_ns();
  240. /* If arch requires, add in gettimeoffset() */
  241. nsecs += arch_gettimeoffset();
  242. } while (read_seqretry(&timekeeper.lock, seq));
  243. /*
  244. * Use ktime_set/ktime_add_ns to create a proper ktime on
  245. * 32-bit architectures without CONFIG_KTIME_SCALAR.
  246. */
  247. return ktime_add_ns(ktime_set(secs, 0), nsecs);
  248. }
  249. EXPORT_SYMBOL_GPL(ktime_get);
  250. /**
  251. * ktime_get_ts - get the monotonic clock in timespec format
  252. * @ts: pointer to timespec variable
  253. *
  254. * The function calculates the monotonic clock from the realtime
  255. * clock and the wall_to_monotonic offset and stores the result
  256. * in normalized timespec format in the variable pointed to by @ts.
  257. */
  258. void ktime_get_ts(struct timespec *ts)
  259. {
  260. struct timespec tomono;
  261. unsigned int seq;
  262. s64 nsecs;
  263. WARN_ON(timekeeping_suspended);
  264. do {
  265. seq = read_seqbegin(&timekeeper.lock);
  266. *ts = timekeeper.xtime;
  267. tomono = timekeeper.wall_to_monotonic;
  268. nsecs = timekeeping_get_ns();
  269. /* If arch requires, add in gettimeoffset() */
  270. nsecs += arch_gettimeoffset();
  271. } while (read_seqretry(&timekeeper.lock, seq));
  272. set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
  273. (s64)ts->tv_nsec + tomono.tv_nsec + nsecs);
  274. }
  275. EXPORT_SYMBOL_GPL(ktime_get_ts);
  276. #ifdef CONFIG_NTP_PPS
  277. /**
  278. * getnstime_raw_and_real - get day and raw monotonic time in timespec format
  279. * @ts_raw: pointer to the timespec to be set to raw monotonic time
  280. * @ts_real: pointer to the timespec to be set to the time of day
  281. *
  282. * This function reads both the time of day and raw monotonic time at the
  283. * same time atomically and stores the resulting timestamps in timespec
  284. * format.
  285. */
  286. void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
  287. {
  288. unsigned long seq;
  289. s64 nsecs_raw, nsecs_real;
  290. WARN_ON_ONCE(timekeeping_suspended);
  291. do {
  292. u32 arch_offset;
  293. seq = read_seqbegin(&timekeeper.lock);
  294. *ts_raw = timekeeper.raw_time;
  295. *ts_real = timekeeper.xtime;
  296. nsecs_raw = timekeeping_get_ns_raw();
  297. nsecs_real = timekeeping_get_ns();
  298. /* If arch requires, add in gettimeoffset() */
  299. arch_offset = arch_gettimeoffset();
  300. nsecs_raw += arch_offset;
  301. nsecs_real += arch_offset;
  302. } while (read_seqretry(&timekeeper.lock, seq));
  303. timespec_add_ns(ts_raw, nsecs_raw);
  304. timespec_add_ns(ts_real, nsecs_real);
  305. }
  306. EXPORT_SYMBOL(getnstime_raw_and_real);
  307. #endif /* CONFIG_NTP_PPS */
  308. /**
  309. * do_gettimeofday - Returns the time of day in a timeval
  310. * @tv: pointer to the timeval to be set
  311. *
  312. * NOTE: Users should be converted to using getnstimeofday()
  313. */
  314. void do_gettimeofday(struct timeval *tv)
  315. {
  316. struct timespec now;
  317. getnstimeofday(&now);
  318. tv->tv_sec = now.tv_sec;
  319. tv->tv_usec = now.tv_nsec/1000;
  320. }
  321. EXPORT_SYMBOL(do_gettimeofday);
  322. /**
  323. * do_settimeofday - Sets the time of day
  324. * @tv: pointer to the timespec variable containing the new time
  325. *
  326. * Sets the time of day to the new time and update NTP and notify hrtimers
  327. */
  328. int do_settimeofday(const struct timespec *tv)
  329. {
  330. struct timespec ts_delta;
  331. unsigned long flags;
  332. if (!timespec_valid_strict(tv))
  333. return -EINVAL;
  334. write_seqlock_irqsave(&timekeeper.lock, flags);
  335. timekeeping_forward_now();
  336. ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
  337. ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
  338. timekeeper.wall_to_monotonic =
  339. timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
  340. timekeeper.xtime = *tv;
  341. timekeeping_update(true);
  342. write_sequnlock_irqrestore(&timekeeper.lock, flags);
  343. /* signal hrtimers about time change */
  344. clock_was_set();
  345. return 0;
  346. }
  347. EXPORT_SYMBOL(do_settimeofday);
  348. /**
  349. * timekeeping_inject_offset - Adds or subtracts from the current time.
  350. * @tv: pointer to the timespec variable containing the offset
  351. *
  352. * Adds or subtracts an offset value from the current time.
  353. */
  354. int timekeeping_inject_offset(struct timespec *ts)
  355. {
  356. unsigned long flags;
  357. struct timespec tmp;
  358. int ret = 0;
  359. if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
  360. return -EINVAL;
  361. write_seqlock_irqsave(&timekeeper.lock, flags);
  362. timekeeping_forward_now();
  363. tmp = timespec_add(timekeeper.xtime, *ts);
  364. if (!timespec_valid_strict(&tmp)) {
  365. ret = -EINVAL;
  366. goto error;
  367. }
  368. timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
  369. timekeeper.wall_to_monotonic =
  370. timespec_sub(timekeeper.wall_to_monotonic, *ts);
  371. error: /* even if we error out, we forwarded the time, so call update */
  372. timekeeping_update(true);
  373. write_sequnlock_irqrestore(&timekeeper.lock, flags);
  374. /* signal hrtimers about time change */
  375. clock_was_set();
  376. return ret;
  377. }
  378. EXPORT_SYMBOL(timekeeping_inject_offset);
  379. /**
  380. * change_clocksource - Swaps clocksources if a new one is available
  381. *
  382. * Accumulates current time interval and initializes new clocksource
  383. */
  384. static int change_clocksource(void *data)
  385. {
  386. struct clocksource *new, *old;
  387. unsigned long flags;
  388. new = (struct clocksource *) data;
  389. write_seqlock_irqsave(&timekeeper.lock, flags);
  390. timekeeping_forward_now();
  391. if (!new->enable || new->enable(new) == 0) {
  392. old = timekeeper.clock;
  393. timekeeper_setup_internals(new);
  394. if (old->disable)
  395. old->disable(old);
  396. }
  397. timekeeping_update(true);
  398. write_sequnlock_irqrestore(&timekeeper.lock, flags);
  399. return 0;
  400. }
  401. /**
  402. * timekeeping_notify - Install a new clock source
  403. * @clock: pointer to the clock source
  404. *
  405. * This function is called from clocksource.c after a new, better clock
  406. * source has been registered. The caller holds the clocksource_mutex.
  407. */
  408. void timekeeping_notify(struct clocksource *clock)
  409. {
  410. if (timekeeper.clock == clock)
  411. return;
  412. stop_machine(change_clocksource, clock, NULL);
  413. tick_clock_notify();
  414. }
  415. /**
  416. * ktime_get_real - get the real (wall-) time in ktime_t format
  417. *
  418. * returns the time in ktime_t format
  419. */
  420. ktime_t ktime_get_real(void)
  421. {
  422. struct timespec now;
  423. getnstimeofday(&now);
  424. return timespec_to_ktime(now);
  425. }
  426. EXPORT_SYMBOL_GPL(ktime_get_real);
  427. /**
  428. * getrawmonotonic - Returns the raw monotonic time in a timespec
  429. * @ts: pointer to the timespec to be set
  430. *
  431. * Returns the raw monotonic time (completely un-modified by ntp)
  432. */
  433. void getrawmonotonic(struct timespec *ts)
  434. {
  435. unsigned long seq;
  436. s64 nsecs;
  437. do {
  438. seq = read_seqbegin(&timekeeper.lock);
  439. nsecs = timekeeping_get_ns_raw();
  440. *ts = timekeeper.raw_time;
  441. } while (read_seqretry(&timekeeper.lock, seq));
  442. timespec_add_ns(ts, nsecs);
  443. }
  444. EXPORT_SYMBOL(getrawmonotonic);
  445. /**
  446. * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
  447. */
  448. int timekeeping_valid_for_hres(void)
  449. {
  450. unsigned long seq;
  451. int ret;
  452. do {
  453. seq = read_seqbegin(&timekeeper.lock);
  454. ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
  455. } while (read_seqretry(&timekeeper.lock, seq));
  456. return ret;
  457. }
  458. /**
  459. * timekeeping_max_deferment - Returns max time the clocksource can be deferred
  460. */
  461. u64 timekeeping_max_deferment(void)
  462. {
  463. unsigned long seq;
  464. u64 ret;
  465. do {
  466. seq = read_seqbegin(&timekeeper.lock);
  467. ret = timekeeper.clock->max_idle_ns;
  468. } while (read_seqretry(&timekeeper.lock, seq));
  469. return ret;
  470. }
  471. /**
  472. * read_persistent_clock - Return time from the persistent clock.
  473. *
  474. * Weak dummy function for arches that do not yet support it.
  475. * Reads the time from the battery backed persistent clock.
  476. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
  477. *
  478. * XXX - Do be sure to remove it once all arches implement it.
  479. */
  480. void __weak read_persistent_clock(struct timespec *ts)
  481. {
  482. ts->tv_sec = 0;
  483. ts->tv_nsec = 0;
  484. }
  485. /**
  486. * read_boot_clock - Return time of the system start.
  487. *
  488. * Weak dummy function for arches that do not yet support it.
  489. * Function to read the exact time the system has been started.
  490. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
  491. *
  492. * XXX - Do be sure to remove it once all arches implement it.
  493. */
  494. void __weak read_boot_clock(struct timespec *ts)
  495. {
  496. ts->tv_sec = 0;
  497. ts->tv_nsec = 0;
  498. }
  499. /*
  500. * timekeeping_init - Initializes the clocksource and common timekeeping values
  501. */
  502. void __init timekeeping_init(void)
  503. {
  504. struct clocksource *clock;
  505. unsigned long flags;
  506. struct timespec now, boot;
  507. read_persistent_clock(&now);
  508. if (!timespec_valid_strict(&now)) {
  509. pr_warn("WARNING: Persistent clock returned invalid value!\n"
  510. " Check your CMOS/BIOS settings.\n");
  511. now.tv_sec = 0;
  512. now.tv_nsec = 0;
  513. }
  514. read_boot_clock(&boot);
  515. if (!timespec_valid_strict(&boot)) {
  516. pr_warn("WARNING: Boot clock returned invalid value!\n"
  517. " Check your CMOS/BIOS settings.\n");
  518. boot.tv_sec = 0;
  519. boot.tv_nsec = 0;
  520. }
  521. seqlock_init(&timekeeper.lock);
  522. ntp_init();
  523. write_seqlock_irqsave(&timekeeper.lock, flags);
  524. clock = clocksource_default_clock();
  525. if (clock->enable)
  526. clock->enable(clock);
  527. timekeeper_setup_internals(clock);
  528. timekeeper.xtime.tv_sec = now.tv_sec;
  529. timekeeper.xtime.tv_nsec = now.tv_nsec;
  530. timekeeper.raw_time.tv_sec = 0;
  531. timekeeper.raw_time.tv_nsec = 0;
  532. if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
  533. boot.tv_sec = timekeeper.xtime.tv_sec;
  534. boot.tv_nsec = timekeeper.xtime.tv_nsec;
  535. }
  536. set_normalized_timespec(&timekeeper.wall_to_monotonic,
  537. -boot.tv_sec, -boot.tv_nsec);
  538. update_rt_offset();
  539. timekeeper.total_sleep_time.tv_sec = 0;
  540. timekeeper.total_sleep_time.tv_nsec = 0;
  541. write_sequnlock_irqrestore(&timekeeper.lock, flags);
  542. }
  543. /* time in seconds when suspend began */
  544. static struct timespec timekeeping_suspend_time;
  545. static void update_sleep_time(struct timespec t)
  546. {
  547. timekeeper.total_sleep_time = t;
  548. timekeeper.offs_boot = timespec_to_ktime(t);
  549. }
  550. /**
  551. * __timekeeping_inject_sleeptime - Internal function to add sleep interval
  552. * @delta: pointer to a timespec delta value
  553. *
  554. * Takes a timespec offset measuring a suspend interval and properly
  555. * adds the sleep offset to the timekeeping variables.
  556. */
  557. static void __timekeeping_inject_sleeptime(struct timespec *delta)
  558. {
  559. if (!timespec_valid_strict(delta)) {
  560. printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
  561. "sleep delta value!\n");
  562. return;
  563. }
  564. timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
  565. timekeeper.wall_to_monotonic =
  566. timespec_sub(timekeeper.wall_to_monotonic, *delta);
  567. update_sleep_time(timespec_add(timekeeper.total_sleep_time, *delta));
  568. }
  569. /**
  570. * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
  571. * @delta: pointer to a timespec delta value
  572. *
  573. * This hook is for architectures that cannot support read_persistent_clock
  574. * because their RTC/persistent clock is only accessible when irqs are enabled.
  575. *
  576. * This function should only be called by rtc_resume(), and allows
  577. * a suspend offset to be injected into the timekeeping values.
  578. */
  579. void timekeeping_inject_sleeptime(struct timespec *delta)
  580. {
  581. unsigned long flags;
  582. struct timespec ts;
  583. /* Make sure we don't set the clock twice */
  584. read_persistent_clock(&ts);
  585. if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
  586. return;
  587. write_seqlock_irqsave(&timekeeper.lock, flags);
  588. timekeeping_forward_now();
  589. __timekeeping_inject_sleeptime(delta);
  590. timekeeping_update(true);
  591. write_sequnlock_irqrestore(&timekeeper.lock, flags);
  592. /* signal hrtimers about time change */
  593. clock_was_set();
  594. }
  595. /**
  596. * timekeeping_resume - Resumes the generic timekeeping subsystem.
  597. *
  598. * This is for the generic clocksource timekeeping.
  599. * xtime/wall_to_monotonic/jiffies/etc are
  600. * still managed by arch specific suspend/resume code.
  601. */
  602. static void timekeeping_resume(void)
  603. {
  604. struct timekeeper *tk = &timekeeper;
  605. struct clocksource *clock = tk->clock;
  606. unsigned long flags;
  607. struct timespec ts_new, ts_delta;
  608. cycle_t cycle_now, cycle_delta;
  609. bool suspendtime_found = false;
  610. read_persistent_clock(&ts_new);
  611. clocksource_resume();
  612. write_seqlock_irqsave(&timekeeper.lock, flags);
  613. /*
  614. * After system resumes, we need to calculate the suspended time and
  615. * compensate it for the OS time. There are 3 sources that could be
  616. * used: Nonstop clocksource during suspend, persistent clock and rtc
  617. * device.
  618. *
  619. * One specific platform may have 1 or 2 or all of them, and the
  620. * preference will be:
  621. * suspend-nonstop clocksource -> persistent clock -> rtc
  622. * The less preferred source will only be tried if there is no better
  623. * usable source. The rtc part is handled separately in rtc core code.
  624. */
  625. cycle_now = clock->read(clock);
  626. if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
  627. cycle_now > clock->cycle_last) {
  628. u64 num, max = ULLONG_MAX;
  629. u32 mult = clock->mult;
  630. u32 shift = clock->shift;
  631. s64 nsec = 0;
  632. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  633. /*
  634. * "cycle_delta * mutl" may cause 64 bits overflow, if the
  635. * suspended time is too long. In that case we need do the
  636. * 64 bits math carefully
  637. */
  638. do_div(max, mult);
  639. if (cycle_delta > max) {
  640. num = div64_u64(cycle_delta, max);
  641. nsec = (((u64) max * mult) >> shift) * num;
  642. cycle_delta -= num * max;
  643. }
  644. nsec += ((u64) cycle_delta * mult) >> shift;
  645. ts_delta = ns_to_timespec(nsec);
  646. suspendtime_found = true;
  647. } else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
  648. ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
  649. suspendtime_found = true;
  650. }
  651. if (suspendtime_found)
  652. __timekeeping_inject_sleeptime(&ts_delta);
  653. /* Re-base the last cycle value */
  654. clock->cycle_last = cycle_now;
  655. tk->ntp_error = 0;
  656. timekeeping_suspended = 0;
  657. timekeeping_update(false);
  658. write_sequnlock_irqrestore(&timekeeper.lock, flags);
  659. touch_softlockup_watchdog();
  660. clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
  661. /* Resume hrtimers */
  662. hrtimers_resume();
  663. }
  664. static int timekeeping_suspend(void)
  665. {
  666. unsigned long flags;
  667. struct timespec delta, delta_delta;
  668. static struct timespec old_delta;
  669. read_persistent_clock(&timekeeping_suspend_time);
  670. write_seqlock_irqsave(&timekeeper.lock, flags);
  671. timekeeping_forward_now();
  672. timekeeping_suspended = 1;
  673. /*
  674. * To avoid drift caused by repeated suspend/resumes,
  675. * which each can add ~1 second drift error,
  676. * try to compensate so the difference in system time
  677. * and persistent_clock time stays close to constant.
  678. */
  679. delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
  680. delta_delta = timespec_sub(delta, old_delta);
  681. if (abs(delta_delta.tv_sec) >= 2) {
  682. /*
  683. * if delta_delta is too large, assume time correction
  684. * has occured and set old_delta to the current delta.
  685. */
  686. old_delta = delta;
  687. } else {
  688. /* Otherwise try to adjust old_system to compensate */
  689. timekeeping_suspend_time =
  690. timespec_add(timekeeping_suspend_time, delta_delta);
  691. }
  692. write_sequnlock_irqrestore(&timekeeper.lock, flags);
  693. clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
  694. clocksource_suspend();
  695. return 0;
  696. }
  697. /* sysfs resume/suspend bits for timekeeping */
  698. static struct syscore_ops timekeeping_syscore_ops = {
  699. .resume = timekeeping_resume,
  700. .suspend = timekeeping_suspend,
  701. };
  702. static int __init timekeeping_init_ops(void)
  703. {
  704. register_syscore_ops(&timekeeping_syscore_ops);
  705. return 0;
  706. }
  707. device_initcall(timekeeping_init_ops);
  708. /*
  709. * If the error is already larger, we look ahead even further
  710. * to compensate for late or lost adjustments.
  711. */
  712. static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
  713. s64 *offset)
  714. {
  715. s64 tick_error, i;
  716. u32 look_ahead, adj;
  717. s32 error2, mult;
  718. /*
  719. * Use the current error value to determine how much to look ahead.
  720. * The larger the error the slower we adjust for it to avoid problems
  721. * with losing too many ticks, otherwise we would overadjust and
  722. * produce an even larger error. The smaller the adjustment the
  723. * faster we try to adjust for it, as lost ticks can do less harm
  724. * here. This is tuned so that an error of about 1 msec is adjusted
  725. * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
  726. */
  727. error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
  728. error2 = abs(error2);
  729. for (look_ahead = 0; error2 > 0; look_ahead++)
  730. error2 >>= 2;
  731. /*
  732. * Now calculate the error in (1 << look_ahead) ticks, but first
  733. * remove the single look ahead already included in the error.
  734. */
  735. tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
  736. tick_error -= timekeeper.xtime_interval >> 1;
  737. error = ((error - tick_error) >> look_ahead) + tick_error;
  738. /* Finally calculate the adjustment shift value. */
  739. i = *interval;
  740. mult = 1;
  741. if (error < 0) {
  742. error = -error;
  743. *interval = -*interval;
  744. *offset = -*offset;
  745. mult = -1;
  746. }
  747. for (adj = 0; error > i; adj++)
  748. error >>= 1;
  749. *interval <<= adj;
  750. *offset <<= adj;
  751. return mult << adj;
  752. }
  753. /*
  754. * Adjust the multiplier to reduce the error value,
  755. * this is optimized for the most common adjustments of -1,0,1,
  756. * for other values we can do a bit more work.
  757. */
  758. static void timekeeping_adjust(s64 offset)
  759. {
  760. s64 error, interval = timekeeper.cycle_interval;
  761. int adj;
  762. /*
  763. * The point of this is to check if the error is greater than half
  764. * an interval.
  765. *
  766. * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
  767. *
  768. * Note we subtract one in the shift, so that error is really error*2.
  769. * This "saves" dividing(shifting) interval twice, but keeps the
  770. * (error > interval) comparison as still measuring if error is
  771. * larger than half an interval.
  772. *
  773. * Note: It does not "save" on aggravation when reading the code.
  774. */
  775. error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
  776. if (error > interval) {
  777. /*
  778. * We now divide error by 4(via shift), which checks if
  779. * the error is greater than twice the interval.
  780. * If it is greater, we need a bigadjust, if its smaller,
  781. * we can adjust by 1.
  782. */
  783. error >>= 2;
  784. /*
  785. * XXX - In update_wall_time, we round up to the next
  786. * nanosecond, and store the amount rounded up into
  787. * the error. This causes the likely below to be unlikely.
  788. *
  789. * The proper fix is to avoid rounding up by using
  790. * the high precision timekeeper.xtime_nsec instead of
  791. * xtime.tv_nsec everywhere. Fixing this will take some
  792. * time.
  793. */
  794. if (likely(error <= interval))
  795. adj = 1;
  796. else
  797. adj = timekeeping_bigadjust(error, &interval, &offset);
  798. } else if (error < -interval) {
  799. /* See comment above, this is just switched for the negative */
  800. error >>= 2;
  801. if (likely(error >= -interval)) {
  802. adj = -1;
  803. interval = -interval;
  804. offset = -offset;
  805. } else
  806. adj = timekeeping_bigadjust(error, &interval, &offset);
  807. } else /* No adjustment needed */
  808. return;
  809. if (unlikely(timekeeper.clock->maxadj &&
  810. (timekeeper.mult + adj >
  811. timekeeper.clock->mult + timekeeper.clock->maxadj))) {
  812. printk_once(KERN_WARNING
  813. "Adjusting %s more than 11%% (%ld vs %ld)\n",
  814. timekeeper.clock->name, (long)timekeeper.mult + adj,
  815. (long)timekeeper.clock->mult +
  816. timekeeper.clock->maxadj);
  817. }
  818. /*
  819. * So the following can be confusing.
  820. *
  821. * To keep things simple, lets assume adj == 1 for now.
  822. *
  823. * When adj != 1, remember that the interval and offset values
  824. * have been appropriately scaled so the math is the same.
  825. *
  826. * The basic idea here is that we're increasing the multiplier
  827. * by one, this causes the xtime_interval to be incremented by
  828. * one cycle_interval. This is because:
  829. * xtime_interval = cycle_interval * mult
  830. * So if mult is being incremented by one:
  831. * xtime_interval = cycle_interval * (mult + 1)
  832. * Its the same as:
  833. * xtime_interval = (cycle_interval * mult) + cycle_interval
  834. * Which can be shortened to:
  835. * xtime_interval += cycle_interval
  836. *
  837. * So offset stores the non-accumulated cycles. Thus the current
  838. * time (in shifted nanoseconds) is:
  839. * now = (offset * adj) + xtime_nsec
  840. * Now, even though we're adjusting the clock frequency, we have
  841. * to keep time consistent. In other words, we can't jump back
  842. * in time, and we also want to avoid jumping forward in time.
  843. *
  844. * So given the same offset value, we need the time to be the same
  845. * both before and after the freq adjustment.
  846. * now = (offset * adj_1) + xtime_nsec_1
  847. * now = (offset * adj_2) + xtime_nsec_2
  848. * So:
  849. * (offset * adj_1) + xtime_nsec_1 =
  850. * (offset * adj_2) + xtime_nsec_2
  851. * And we know:
  852. * adj_2 = adj_1 + 1
  853. * So:
  854. * (offset * adj_1) + xtime_nsec_1 =
  855. * (offset * (adj_1+1)) + xtime_nsec_2
  856. * (offset * adj_1) + xtime_nsec_1 =
  857. * (offset * adj_1) + offset + xtime_nsec_2
  858. * Canceling the sides:
  859. * xtime_nsec_1 = offset + xtime_nsec_2
  860. * Which gives us:
  861. * xtime_nsec_2 = xtime_nsec_1 - offset
  862. * Which simplfies to:
  863. * xtime_nsec -= offset
  864. *
  865. * XXX - TODO: Doc ntp_error calculation.
  866. */
  867. timekeeper.mult += adj;
  868. timekeeper.xtime_interval += interval;
  869. timekeeper.xtime_nsec -= offset;
  870. timekeeper.ntp_error -= (interval - offset) <<
  871. timekeeper.ntp_error_shift;
  872. }
  873. /**
  874. * logarithmic_accumulation - shifted accumulation of cycles
  875. *
  876. * This functions accumulates a shifted interval of cycles into
  877. * into a shifted interval nanoseconds. Allows for O(log) accumulation
  878. * loop.
  879. *
  880. * Returns the unconsumed cycles.
  881. */
  882. static cycle_t logarithmic_accumulation(cycle_t offset, int shift,
  883. unsigned int *clock_set)
  884. {
  885. u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
  886. u64 raw_nsecs;
  887. /* If the offset is smaller than a shifted interval, do nothing */
  888. if (offset < timekeeper.cycle_interval<<shift)
  889. return offset;
  890. /* Accumulate one shifted interval */
  891. offset -= timekeeper.cycle_interval << shift;
  892. timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
  893. timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
  894. while (timekeeper.xtime_nsec >= nsecps) {
  895. int leap;
  896. timekeeper.xtime_nsec -= nsecps;
  897. timekeeper.xtime.tv_sec++;
  898. leap = second_overflow(timekeeper.xtime.tv_sec);
  899. timekeeper.xtime.tv_sec += leap;
  900. timekeeper.wall_to_monotonic.tv_sec -= leap;
  901. if (leap)
  902. *clock_set = 1;
  903. }
  904. /* Accumulate raw time */
  905. raw_nsecs = (u64)timekeeper.raw_interval << shift;
  906. raw_nsecs += timekeeper.raw_time.tv_nsec;
  907. if (raw_nsecs >= NSEC_PER_SEC) {
  908. u64 raw_secs = raw_nsecs;
  909. raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
  910. timekeeper.raw_time.tv_sec += raw_secs;
  911. }
  912. timekeeper.raw_time.tv_nsec = raw_nsecs;
  913. /* Accumulate error between NTP and clock interval */
  914. timekeeper.ntp_error += ntp_tick_length() << shift;
  915. timekeeper.ntp_error -=
  916. (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
  917. (timekeeper.ntp_error_shift + shift);
  918. return offset;
  919. }
  920. /**
  921. * update_wall_time - Uses the current clocksource to increment the wall time
  922. *
  923. */
  924. static void update_wall_time(void)
  925. {
  926. struct clocksource *clock;
  927. cycle_t offset;
  928. int shift = 0, maxshift;
  929. unsigned int clock_set = 0;
  930. unsigned long flags;
  931. write_seqlock_irqsave(&timekeeper.lock, flags);
  932. /* Make sure we're fully resumed: */
  933. if (unlikely(timekeeping_suspended))
  934. goto out;
  935. clock = timekeeper.clock;
  936. #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
  937. offset = timekeeper.cycle_interval;
  938. #else
  939. offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
  940. #endif
  941. /* Check if there's really nothing to do */
  942. if (offset < timekeeper.cycle_interval)
  943. goto out;
  944. timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
  945. timekeeper.shift;
  946. /*
  947. * With NO_HZ we may have to accumulate many cycle_intervals
  948. * (think "ticks") worth of time at once. To do this efficiently,
  949. * we calculate the largest doubling multiple of cycle_intervals
  950. * that is smaller than the offset. We then accumulate that
  951. * chunk in one go, and then try to consume the next smaller
  952. * doubled multiple.
  953. */
  954. shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
  955. shift = max(0, shift);
  956. /* Bound shift to one less than what overflows tick_length */
  957. maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
  958. shift = min(shift, maxshift);
  959. while (offset >= timekeeper.cycle_interval) {
  960. offset = logarithmic_accumulation(offset, shift, &clock_set);
  961. if(offset < timekeeper.cycle_interval<<shift)
  962. shift--;
  963. }
  964. /* correct the clock when NTP error is too big */
  965. timekeeping_adjust(offset);
  966. /*
  967. * Since in the loop above, we accumulate any amount of time
  968. * in xtime_nsec over a second into xtime.tv_sec, its possible for
  969. * xtime_nsec to be fairly small after the loop. Further, if we're
  970. * slightly speeding the clocksource up in timekeeping_adjust(),
  971. * its possible the required corrective factor to xtime_nsec could
  972. * cause it to underflow.
  973. *
  974. * Now, we cannot simply roll the accumulated second back, since
  975. * the NTP subsystem has been notified via second_overflow. So
  976. * instead we push xtime_nsec forward by the amount we underflowed,
  977. * and add that amount into the error.
  978. *
  979. * We'll correct this error next time through this function, when
  980. * xtime_nsec is not as small.
  981. */
  982. if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
  983. s64 neg = -(s64)timekeeper.xtime_nsec;
  984. timekeeper.xtime_nsec = 0;
  985. timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
  986. }
  987. /*
  988. * Store full nanoseconds into xtime after rounding it up and
  989. * add the remainder to the error difference.
  990. */
  991. timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
  992. timekeeper.shift) + 1;
  993. timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
  994. timekeeper.shift;
  995. timekeeper.ntp_error += timekeeper.xtime_nsec <<
  996. timekeeper.ntp_error_shift;
  997. /*
  998. * Finally, make sure that after the rounding
  999. * xtime.tv_nsec isn't larger than NSEC_PER_SEC
  1000. */
  1001. if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
  1002. int leap;
  1003. timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
  1004. timekeeper.xtime.tv_sec++;
  1005. leap = second_overflow(timekeeper.xtime.tv_sec);
  1006. timekeeper.xtime.tv_sec += leap;
  1007. timekeeper.wall_to_monotonic.tv_sec -= leap;
  1008. if (leap)
  1009. clock_set = 1;
  1010. }
  1011. timekeeping_update(false);
  1012. out:
  1013. write_sequnlock_irqrestore(&timekeeper.lock, flags);
  1014. if (clock_set)
  1015. clock_was_set_delayed();
  1016. }
  1017. /**
  1018. * getboottime - Return the real time of system boot.
  1019. * @ts: pointer to the timespec to be set
  1020. *
  1021. * Returns the wall-time of boot in a timespec.
  1022. *
  1023. * This is based on the wall_to_monotonic offset and the total suspend
  1024. * time. Calls to settimeofday will affect the value returned (which
  1025. * basically means that however wrong your real time clock is at boot time,
  1026. * you get the right time here).
  1027. */
  1028. void getboottime(struct timespec *ts)
  1029. {
  1030. time_t tv_sec = timekeeper.wall_to_monotonic.tv_sec +
  1031. timekeeper.total_sleep_time.tv_sec;
  1032. s64 tv_nsec = (s64)timekeeper.wall_to_monotonic.tv_nsec +
  1033. timekeeper.total_sleep_time.tv_nsec;
  1034. set_normalized_timespec(ts, -tv_sec, -tv_nsec);
  1035. }
  1036. EXPORT_SYMBOL_GPL(getboottime);
  1037. /**
  1038. * get_monotonic_boottime - Returns monotonic time since boot
  1039. * @ts: pointer to the timespec to be set
  1040. *
  1041. * Returns the monotonic time since boot in a timespec.
  1042. *
  1043. * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
  1044. * includes the time spent in suspend.
  1045. */
  1046. void get_monotonic_boottime(struct timespec *ts)
  1047. {
  1048. struct timespec tomono, sleep;
  1049. unsigned int seq;
  1050. s64 nsecs;
  1051. WARN_ON(timekeeping_suspended);
  1052. do {
  1053. seq = read_seqbegin(&timekeeper.lock);
  1054. *ts = timekeeper.xtime;
  1055. tomono = timekeeper.wall_to_monotonic;
  1056. sleep = timekeeper.total_sleep_time;
  1057. nsecs = timekeeping_get_ns();
  1058. } while (read_seqretry(&timekeeper.lock, seq));
  1059. set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
  1060. (s64)ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
  1061. }
  1062. EXPORT_SYMBOL_GPL(get_monotonic_boottime);
  1063. /**
  1064. * ktime_get_boottime - Returns monotonic time since boot in a ktime
  1065. *
  1066. * Returns the monotonic time since boot in a ktime
  1067. *
  1068. * This is similar to CLOCK_MONTONIC/ktime_get, but also
  1069. * includes the time spent in suspend.
  1070. */
  1071. ktime_t ktime_get_boottime(void)
  1072. {
  1073. struct timespec ts;
  1074. get_monotonic_boottime(&ts);
  1075. return timespec_to_ktime(ts);
  1076. }
  1077. EXPORT_SYMBOL_GPL(ktime_get_boottime);
  1078. /**
  1079. * monotonic_to_bootbased - Convert the monotonic time to boot based.
  1080. * @ts: pointer to the timespec to be converted
  1081. */
  1082. void monotonic_to_bootbased(struct timespec *ts)
  1083. {
  1084. *ts = timespec_add(*ts, timekeeper.total_sleep_time);
  1085. }
  1086. EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
  1087. unsigned long get_seconds(void)
  1088. {
  1089. return timekeeper.xtime.tv_sec;
  1090. }
  1091. EXPORT_SYMBOL(get_seconds);
  1092. struct timespec __current_kernel_time(void)
  1093. {
  1094. return timekeeper.xtime;
  1095. }
  1096. struct timespec current_kernel_time(void)
  1097. {
  1098. struct timespec now;
  1099. unsigned long seq;
  1100. do {
  1101. seq = read_seqbegin(&timekeeper.lock);
  1102. now = timekeeper.xtime;
  1103. } while (read_seqretry(&timekeeper.lock, seq));
  1104. return now;
  1105. }
  1106. EXPORT_SYMBOL(current_kernel_time);
  1107. struct timespec get_monotonic_coarse(void)
  1108. {
  1109. struct timespec now, mono;
  1110. unsigned long seq;
  1111. do {
  1112. seq = read_seqbegin(&timekeeper.lock);
  1113. now = timekeeper.xtime;
  1114. mono = timekeeper.wall_to_monotonic;
  1115. } while (read_seqretry(&timekeeper.lock, seq));
  1116. set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
  1117. (s64)now.tv_nsec + mono.tv_nsec);
  1118. return now;
  1119. }
  1120. /*
  1121. * The 64-bit jiffies value is not atomic - you MUST NOT read it
  1122. * without sampling the sequence number in xtime_lock.
  1123. * jiffies is defined in the linker script...
  1124. */
  1125. void do_timer(unsigned long ticks)
  1126. {
  1127. jiffies_64 += ticks;
  1128. update_wall_time();
  1129. calc_global_load(ticks);
  1130. }
  1131. /**
  1132. * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
  1133. * and sleep offsets.
  1134. * @xtim: pointer to timespec to be set with xtime
  1135. * @wtom: pointer to timespec to be set with wall_to_monotonic
  1136. * @sleep: pointer to timespec to be set with time in suspend
  1137. */
  1138. void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
  1139. struct timespec *wtom, struct timespec *sleep)
  1140. {
  1141. unsigned long seq;
  1142. do {
  1143. seq = read_seqbegin(&timekeeper.lock);
  1144. *xtim = timekeeper.xtime;
  1145. *wtom = timekeeper.wall_to_monotonic;
  1146. *sleep = timekeeper.total_sleep_time;
  1147. } while (read_seqretry(&timekeeper.lock, seq));
  1148. }
  1149. #ifdef CONFIG_HIGH_RES_TIMERS
  1150. /**
  1151. * ktime_get_update_offsets - hrtimer helper
  1152. * @offs_real: pointer to storage for monotonic -> realtime offset
  1153. * @offs_boot: pointer to storage for monotonic -> boottime offset
  1154. *
  1155. * Returns current monotonic time and updates the offsets
  1156. * Called from hrtimer_interupt() or retrigger_next_event()
  1157. */
  1158. ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
  1159. {
  1160. ktime_t now;
  1161. unsigned int seq;
  1162. u64 secs, nsecs;
  1163. do {
  1164. seq = read_seqbegin(&timekeeper.lock);
  1165. secs = timekeeper.xtime.tv_sec;
  1166. nsecs = timekeeper.xtime.tv_nsec;
  1167. nsecs += timekeeping_get_ns();
  1168. /* If arch requires, add in gettimeoffset() */
  1169. nsecs += arch_gettimeoffset();
  1170. *offs_real = timekeeper.offs_real;
  1171. *offs_boot = timekeeper.offs_boot;
  1172. now = ktime_add_ns(ktime_set(secs, 0), nsecs);
  1173. now = ktime_sub(now, *offs_real);
  1174. /* Handle leapsecond insertion adjustments */
  1175. if (unlikely(now.tv64 >= timekeeper.next_leap_ktime.tv64))
  1176. *offs_real = ktime_sub(timekeeper.offs_real, ktime_set(1, 0));
  1177. } while (read_seqretry(&timekeeper.lock, seq));
  1178. return now;
  1179. }
  1180. #endif
  1181. /**
  1182. * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
  1183. */
  1184. ktime_t ktime_get_monotonic_offset(void)
  1185. {
  1186. unsigned long seq;
  1187. struct timespec wtom;
  1188. do {
  1189. seq = read_seqbegin(&timekeeper.lock);
  1190. wtom = timekeeper.wall_to_monotonic;
  1191. } while (read_seqretry(&timekeeper.lock, seq));
  1192. return timespec_to_ktime(wtom);
  1193. }
  1194. EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
  1195. /*
  1196. * do_adjtimex() - Accessor function to NTP __do_adjtimex function
  1197. */
  1198. int do_adjtimex(struct timex *txc)
  1199. {
  1200. int ret;
  1201. ret = __do_adjtimex(txc);
  1202. tk_update_leap_state(&timekeeper);
  1203. return ret;
  1204. }
  1205. /**
  1206. * xtime_update() - advances the timekeeping infrastructure
  1207. * @ticks: number of ticks, that have elapsed since the last call.
  1208. *
  1209. * Must be called with interrupts disabled.
  1210. */
  1211. void xtime_update(unsigned long ticks)
  1212. {
  1213. write_seqlock(&xtime_lock);
  1214. do_timer(ticks);
  1215. write_sequnlock(&xtime_lock);
  1216. }