sched_clock.c 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226
  1. /*
  2. * sched_clock.c: support for extending counters to full 64-bit ns counter
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/clocksource.h>
  9. #include <linux/init.h>
  10. #include <linux/jiffies.h>
  11. #include <linux/ktime.h>
  12. #include <linux/kernel.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/sched.h>
  15. #include <linux/syscore_ops.h>
  16. #include <linux/hrtimer.h>
  17. #include <linux/sched_clock.h>
  18. #include <linux/seqlock.h>
  19. #include <linux/bitops.h>
  20. struct clock_data {
  21. ktime_t wrap_kt;
  22. u64 epoch_ns;
  23. u64 epoch_cyc;
  24. seqcount_t seq;
  25. unsigned long rate;
  26. u32 mult;
  27. u32 shift;
  28. bool suspended;
  29. };
  30. static struct hrtimer sched_clock_timer;
  31. static int irqtime = -1;
  32. static int initialized;
  33. core_param(irqtime, irqtime, int, 0400);
  34. static struct clock_data cd = {
  35. .mult = NSEC_PER_SEC / HZ,
  36. };
  37. static u64 __read_mostly sched_clock_mask;
  38. static u64 notrace jiffy_sched_clock_read(void)
  39. {
  40. /*
  41. * We don't need to use get_jiffies_64 on 32-bit arches here
  42. * because we register with BITS_PER_LONG
  43. */
  44. return (u64)(jiffies - INITIAL_JIFFIES);
  45. }
  46. static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
  47. static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
  48. {
  49. return (cyc * mult) >> shift;
  50. }
  51. unsigned long long notrace sched_clock(void)
  52. {
  53. u64 epoch_ns;
  54. u64 epoch_cyc;
  55. u64 cyc;
  56. unsigned long seq;
  57. if (cd.suspended)
  58. return cd.epoch_ns;
  59. do {
  60. seq = read_seqcount_begin(&cd.seq);
  61. epoch_cyc = cd.epoch_cyc;
  62. epoch_ns = cd.epoch_ns;
  63. } while (read_seqcount_retry(&cd.seq, seq));
  64. cyc = read_sched_clock();
  65. cyc = (cyc - epoch_cyc) & sched_clock_mask;
  66. return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
  67. }
  68. /*
  69. * Atomically update the sched_clock epoch.
  70. */
  71. static void notrace update_sched_clock(void)
  72. {
  73. unsigned long flags;
  74. u64 cyc;
  75. u64 ns;
  76. cyc = read_sched_clock();
  77. ns = cd.epoch_ns +
  78. cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
  79. cd.mult, cd.shift);
  80. raw_local_irq_save(flags);
  81. write_seqcount_begin(&cd.seq);
  82. cd.epoch_ns = ns;
  83. cd.epoch_cyc = cyc;
  84. write_seqcount_end(&cd.seq);
  85. raw_local_irq_restore(flags);
  86. }
  87. static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
  88. {
  89. update_sched_clock();
  90. hrtimer_forward_now(hrt, cd.wrap_kt);
  91. return HRTIMER_RESTART;
  92. }
  93. void __init sched_clock_register(u64 (*read)(void), int bits,
  94. unsigned long rate)
  95. {
  96. u64 res, wrap, new_mask, new_epoch, cyc, ns;
  97. u32 new_mult, new_shift;
  98. ktime_t new_wrap_kt;
  99. unsigned long r;
  100. char r_unit;
  101. if (cd.rate > rate)
  102. return;
  103. WARN_ON(!irqs_disabled());
  104. /* calculate the mult/shift to convert counter ticks to ns. */
  105. clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
  106. new_mask = CLOCKSOURCE_MASK(bits);
  107. /* calculate how many ns until we wrap */
  108. wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask);
  109. new_wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
  110. /* update epoch for new counter and update epoch_ns from old counter*/
  111. new_epoch = read();
  112. cyc = read_sched_clock();
  113. ns = cd.epoch_ns + cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
  114. cd.mult, cd.shift);
  115. write_seqcount_begin(&cd.seq);
  116. read_sched_clock = read;
  117. sched_clock_mask = new_mask;
  118. cd.rate = rate;
  119. cd.wrap_kt = new_wrap_kt;
  120. cd.mult = new_mult;
  121. cd.shift = new_shift;
  122. cd.epoch_cyc = new_epoch;
  123. cd.epoch_ns = ns;
  124. write_seqcount_end(&cd.seq);
  125. r = rate;
  126. if (r >= 4000000) {
  127. r /= 1000000;
  128. r_unit = 'M';
  129. } else if (r >= 1000) {
  130. r /= 1000;
  131. r_unit = 'k';
  132. } else
  133. r_unit = ' ';
  134. /* calculate the ns resolution of this counter */
  135. res = cyc_to_ns(1ULL, new_mult, new_shift);
  136. pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
  137. bits, r, r_unit, res, wrap);
  138. /* Enable IRQ time accounting if we have a fast enough sched_clock */
  139. if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
  140. enable_sched_clock_irqtime();
  141. pr_debug("Registered %pF as sched_clock source\n", read);
  142. }
  143. int sched_clock_initialized(void)
  144. {
  145. return initialized;
  146. }
  147. void __init sched_clock_postinit(void)
  148. {
  149. /*
  150. * If no sched_clock function has been provided at that point,
  151. * make it the final one one.
  152. */
  153. if (read_sched_clock == jiffy_sched_clock_read)
  154. sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
  155. update_sched_clock();
  156. /*
  157. * Start the timer to keep sched_clock() properly updated and
  158. * sets the initial epoch.
  159. */
  160. hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  161. sched_clock_timer.function = sched_clock_poll;
  162. hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
  163. initialized = 1;
  164. }
  165. static int sched_clock_suspend(void)
  166. {
  167. update_sched_clock();
  168. hrtimer_cancel(&sched_clock_timer);
  169. cd.suspended = true;
  170. return 0;
  171. }
  172. static void sched_clock_resume(void)
  173. {
  174. cd.epoch_cyc = read_sched_clock();
  175. hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
  176. cd.suspended = false;
  177. }
  178. static struct syscore_ops sched_clock_ops = {
  179. .suspend = sched_clock_suspend,
  180. .resume = sched_clock_resume,
  181. };
  182. static int __init sched_clock_syscore_init(void)
  183. {
  184. register_syscore_ops(&sched_clock_ops);
  185. return 0;
  186. }
  187. device_initcall(sched_clock_syscore_init);