fair.c 144 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <trace/events/sched.h>
  29. #include "sched.h"
  30. /*
  31. * Targeted preemption latency for CPU-bound tasks:
  32. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  33. *
  34. * NOTE: this latency value is not the same as the concept of
  35. * 'timeslice length' - timeslices in CFS are of variable length
  36. * and have no persistent notion like in traditional, time-slice
  37. * based scheduling concepts.
  38. *
  39. * (to see the precise effective timeslice length of your workload,
  40. * run vmstat and monitor the context-switches (cs) field)
  41. */
  42. unsigned int sysctl_sched_latency = 6000000ULL;
  43. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  44. /*
  45. * The initial- and re-scaling of tunables is configurable
  46. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  47. *
  48. * Options are:
  49. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  50. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  51. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  52. */
  53. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  54. = SCHED_TUNABLESCALING_LOG;
  55. /*
  56. * Minimal preemption granularity for CPU-bound tasks:
  57. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  58. */
  59. unsigned int sysctl_sched_min_granularity = 750000ULL;
  60. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  61. /*
  62. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  63. */
  64. static unsigned int sched_nr_latency = 8;
  65. /*
  66. * After fork, child runs first. If set to 0 (default) then
  67. * parent will (try to) run first.
  68. */
  69. unsigned int sysctl_sched_child_runs_first __read_mostly;
  70. /*
  71. * Controls whether, when SD_SHARE_PKG_RESOURCES is on, if all
  72. * tasks go to idle CPUs when woken. If this is off, note that the
  73. * per-task flag PF_WAKE_ON_IDLE can still cause a task to go to an
  74. * idle CPU upon being woken.
  75. */
  76. unsigned int __read_mostly sysctl_sched_wake_to_idle;
  77. /*
  78. * SCHED_OTHER wake-up granularity.
  79. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  80. *
  81. * This option delays the preemption effects of decoupled workloads
  82. * and reduces their over-scheduling. Synchronous workloads will still
  83. * have immediate wakeup/sleep latencies.
  84. */
  85. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  86. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  87. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  88. /*
  89. * The exponential sliding window over which load is averaged for shares
  90. * distribution.
  91. * (default: 10msec)
  92. */
  93. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  94. #ifdef CONFIG_CFS_BANDWIDTH
  95. /*
  96. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  97. * each time a cfs_rq requests quota.
  98. *
  99. * Note: in the case that the slice exceeds the runtime remaining (either due
  100. * to consumption or the quota being specified to be smaller than the slice)
  101. * we will always only issue the remaining available time.
  102. *
  103. * default: 5 msec, units: microseconds
  104. */
  105. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  106. #endif
  107. /*
  108. * Increase the granularity value when there are more CPUs,
  109. * because with more CPUs the 'effective latency' as visible
  110. * to users decreases. But the relationship is not linear,
  111. * so pick a second-best guess by going with the log2 of the
  112. * number of CPUs.
  113. *
  114. * This idea comes from the SD scheduler of Con Kolivas:
  115. */
  116. static int get_update_sysctl_factor(void)
  117. {
  118. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  119. unsigned int factor;
  120. switch (sysctl_sched_tunable_scaling) {
  121. case SCHED_TUNABLESCALING_NONE:
  122. factor = 1;
  123. break;
  124. case SCHED_TUNABLESCALING_LINEAR:
  125. factor = cpus;
  126. break;
  127. case SCHED_TUNABLESCALING_LOG:
  128. default:
  129. factor = 1 + ilog2(cpus);
  130. break;
  131. }
  132. return factor;
  133. }
  134. static void update_sysctl(void)
  135. {
  136. unsigned int factor = get_update_sysctl_factor();
  137. #define SET_SYSCTL(name) \
  138. (sysctl_##name = (factor) * normalized_sysctl_##name)
  139. SET_SYSCTL(sched_min_granularity);
  140. SET_SYSCTL(sched_latency);
  141. SET_SYSCTL(sched_wakeup_granularity);
  142. #undef SET_SYSCTL
  143. }
  144. void sched_init_granularity(void)
  145. {
  146. update_sysctl();
  147. }
  148. #if BITS_PER_LONG == 32
  149. # define WMULT_CONST (~0UL)
  150. #else
  151. # define WMULT_CONST (1UL << 32)
  152. #endif
  153. #define WMULT_SHIFT 32
  154. /*
  155. * Shift right and round:
  156. */
  157. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  158. /*
  159. * delta *= weight / lw
  160. */
  161. static unsigned long
  162. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  163. struct load_weight *lw)
  164. {
  165. u64 tmp;
  166. /*
  167. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  168. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  169. * 2^SCHED_LOAD_RESOLUTION.
  170. */
  171. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  172. tmp = (u64)delta_exec * scale_load_down(weight);
  173. else
  174. tmp = (u64)delta_exec;
  175. if (!lw->inv_weight) {
  176. unsigned long w = scale_load_down(lw->weight);
  177. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  178. lw->inv_weight = 1;
  179. else if (unlikely(!w))
  180. lw->inv_weight = WMULT_CONST;
  181. else
  182. lw->inv_weight = WMULT_CONST / w;
  183. }
  184. /*
  185. * Check whether we'd overflow the 64-bit multiplication:
  186. */
  187. if (unlikely(tmp > WMULT_CONST))
  188. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  189. WMULT_SHIFT/2);
  190. else
  191. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  192. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  193. }
  194. const struct sched_class fair_sched_class;
  195. /**************************************************************
  196. * CFS operations on generic schedulable entities:
  197. */
  198. #ifdef CONFIG_FAIR_GROUP_SCHED
  199. /* cpu runqueue to which this cfs_rq is attached */
  200. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  201. {
  202. return cfs_rq->rq;
  203. }
  204. /* An entity is a task if it doesn't "own" a runqueue */
  205. #define entity_is_task(se) (!se->my_q)
  206. static inline struct task_struct *task_of(struct sched_entity *se)
  207. {
  208. #ifdef CONFIG_SCHED_DEBUG
  209. WARN_ON_ONCE(!entity_is_task(se));
  210. #endif
  211. return container_of(se, struct task_struct, se);
  212. }
  213. /* Walk up scheduling entities hierarchy */
  214. #define for_each_sched_entity(se) \
  215. for (; se; se = se->parent)
  216. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  217. {
  218. return p->se.cfs_rq;
  219. }
  220. /* runqueue on which this entity is (to be) queued */
  221. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  222. {
  223. return se->cfs_rq;
  224. }
  225. /* runqueue "owned" by this group */
  226. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  227. {
  228. return grp->my_q;
  229. }
  230. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  231. {
  232. if (!cfs_rq->on_list) {
  233. /*
  234. * Ensure we either appear before our parent (if already
  235. * enqueued) or force our parent to appear after us when it is
  236. * enqueued. The fact that we always enqueue bottom-up
  237. * reduces this to two cases.
  238. */
  239. if (cfs_rq->tg->parent &&
  240. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  241. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  242. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  243. } else {
  244. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  245. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  246. }
  247. cfs_rq->on_list = 1;
  248. }
  249. }
  250. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  251. {
  252. if (cfs_rq->on_list) {
  253. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  254. cfs_rq->on_list = 0;
  255. }
  256. }
  257. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  258. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  259. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  260. /* Do the two (enqueued) entities belong to the same group ? */
  261. static inline int
  262. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  263. {
  264. if (se->cfs_rq == pse->cfs_rq)
  265. return 1;
  266. return 0;
  267. }
  268. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  269. {
  270. return se->parent;
  271. }
  272. /* return depth at which a sched entity is present in the hierarchy */
  273. static inline int depth_se(struct sched_entity *se)
  274. {
  275. int depth = 0;
  276. for_each_sched_entity(se)
  277. depth++;
  278. return depth;
  279. }
  280. static void
  281. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  282. {
  283. int se_depth, pse_depth;
  284. /*
  285. * preemption test can be made between sibling entities who are in the
  286. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  287. * both tasks until we find their ancestors who are siblings of common
  288. * parent.
  289. */
  290. /* First walk up until both entities are at same depth */
  291. se_depth = depth_se(*se);
  292. pse_depth = depth_se(*pse);
  293. while (se_depth > pse_depth) {
  294. se_depth--;
  295. *se = parent_entity(*se);
  296. }
  297. while (pse_depth > se_depth) {
  298. pse_depth--;
  299. *pse = parent_entity(*pse);
  300. }
  301. while (!is_same_group(*se, *pse)) {
  302. *se = parent_entity(*se);
  303. *pse = parent_entity(*pse);
  304. }
  305. }
  306. #else /* !CONFIG_FAIR_GROUP_SCHED */
  307. static inline struct task_struct *task_of(struct sched_entity *se)
  308. {
  309. return container_of(se, struct task_struct, se);
  310. }
  311. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  312. {
  313. return container_of(cfs_rq, struct rq, cfs);
  314. }
  315. #define entity_is_task(se) 1
  316. #define for_each_sched_entity(se) \
  317. for (; se; se = NULL)
  318. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  319. {
  320. return &task_rq(p)->cfs;
  321. }
  322. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  323. {
  324. struct task_struct *p = task_of(se);
  325. struct rq *rq = task_rq(p);
  326. return &rq->cfs;
  327. }
  328. /* runqueue "owned" by this group */
  329. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  330. {
  331. return NULL;
  332. }
  333. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  334. {
  335. }
  336. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  337. {
  338. }
  339. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  340. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  341. static inline int
  342. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  343. {
  344. return 1;
  345. }
  346. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  347. {
  348. return NULL;
  349. }
  350. static inline void
  351. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  352. {
  353. }
  354. #endif /* CONFIG_FAIR_GROUP_SCHED */
  355. static __always_inline
  356. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
  357. /**************************************************************
  358. * Scheduling class tree data structure manipulation methods:
  359. */
  360. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  361. {
  362. s64 delta = (s64)(vruntime - min_vruntime);
  363. if (delta > 0)
  364. min_vruntime = vruntime;
  365. return min_vruntime;
  366. }
  367. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  368. {
  369. s64 delta = (s64)(vruntime - min_vruntime);
  370. if (delta < 0)
  371. min_vruntime = vruntime;
  372. return min_vruntime;
  373. }
  374. static inline int entity_before(struct sched_entity *a,
  375. struct sched_entity *b)
  376. {
  377. return (s64)(a->vruntime - b->vruntime) < 0;
  378. }
  379. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  380. {
  381. u64 vruntime = cfs_rq->min_vruntime;
  382. if (cfs_rq->curr)
  383. vruntime = cfs_rq->curr->vruntime;
  384. if (cfs_rq->rb_leftmost) {
  385. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  386. struct sched_entity,
  387. run_node);
  388. if (!cfs_rq->curr)
  389. vruntime = se->vruntime;
  390. else
  391. vruntime = min_vruntime(vruntime, se->vruntime);
  392. }
  393. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  394. #ifndef CONFIG_64BIT
  395. smp_wmb();
  396. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  397. #endif
  398. }
  399. /*
  400. * Enqueue an entity into the rb-tree:
  401. */
  402. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  403. {
  404. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  405. struct rb_node *parent = NULL;
  406. struct sched_entity *entry;
  407. int leftmost = 1;
  408. /*
  409. * Find the right place in the rbtree:
  410. */
  411. while (*link) {
  412. parent = *link;
  413. entry = rb_entry(parent, struct sched_entity, run_node);
  414. /*
  415. * We dont care about collisions. Nodes with
  416. * the same key stay together.
  417. */
  418. if (entity_before(se, entry)) {
  419. link = &parent->rb_left;
  420. } else {
  421. link = &parent->rb_right;
  422. leftmost = 0;
  423. }
  424. }
  425. /*
  426. * Maintain a cache of leftmost tree entries (it is frequently
  427. * used):
  428. */
  429. if (leftmost)
  430. cfs_rq->rb_leftmost = &se->run_node;
  431. rb_link_node(&se->run_node, parent, link);
  432. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  433. }
  434. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  435. {
  436. if (cfs_rq->rb_leftmost == &se->run_node) {
  437. struct rb_node *next_node;
  438. next_node = rb_next(&se->run_node);
  439. cfs_rq->rb_leftmost = next_node;
  440. }
  441. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  442. }
  443. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  444. {
  445. struct rb_node *left = cfs_rq->rb_leftmost;
  446. if (!left)
  447. return NULL;
  448. return rb_entry(left, struct sched_entity, run_node);
  449. }
  450. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  451. {
  452. struct rb_node *next = rb_next(&se->run_node);
  453. if (!next)
  454. return NULL;
  455. return rb_entry(next, struct sched_entity, run_node);
  456. }
  457. #ifdef CONFIG_SCHED_DEBUG
  458. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  459. {
  460. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  461. if (!last)
  462. return NULL;
  463. return rb_entry(last, struct sched_entity, run_node);
  464. }
  465. /**************************************************************
  466. * Scheduling class statistics methods:
  467. */
  468. int sched_proc_update_handler(struct ctl_table *table, int write,
  469. void __user *buffer, size_t *lenp,
  470. loff_t *ppos)
  471. {
  472. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  473. int factor = get_update_sysctl_factor();
  474. if (ret || !write)
  475. return ret;
  476. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  477. sysctl_sched_min_granularity);
  478. #define WRT_SYSCTL(name) \
  479. (normalized_sysctl_##name = sysctl_##name / (factor))
  480. WRT_SYSCTL(sched_min_granularity);
  481. WRT_SYSCTL(sched_latency);
  482. WRT_SYSCTL(sched_wakeup_granularity);
  483. #undef WRT_SYSCTL
  484. return 0;
  485. }
  486. #endif
  487. /*
  488. * delta /= w
  489. */
  490. static inline unsigned long
  491. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  492. {
  493. if (unlikely(se->load.weight != NICE_0_LOAD))
  494. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  495. return delta;
  496. }
  497. /*
  498. * The idea is to set a period in which each task runs once.
  499. *
  500. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  501. * this period because otherwise the slices get too small.
  502. *
  503. * p = (nr <= nl) ? l : l*nr/nl
  504. */
  505. static u64 __sched_period(unsigned long nr_running)
  506. {
  507. u64 period = sysctl_sched_latency;
  508. unsigned long nr_latency = sched_nr_latency;
  509. if (unlikely(nr_running > nr_latency)) {
  510. period = sysctl_sched_min_granularity;
  511. period *= nr_running;
  512. }
  513. return period;
  514. }
  515. /*
  516. * We calculate the wall-time slice from the period by taking a part
  517. * proportional to the weight.
  518. *
  519. * s = p*P[w/rw]
  520. */
  521. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  522. {
  523. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  524. for_each_sched_entity(se) {
  525. struct load_weight *load;
  526. struct load_weight lw;
  527. cfs_rq = cfs_rq_of(se);
  528. load = &cfs_rq->load;
  529. if (unlikely(!se->on_rq)) {
  530. lw = cfs_rq->load;
  531. update_load_add(&lw, se->load.weight);
  532. load = &lw;
  533. }
  534. slice = calc_delta_mine(slice, se->load.weight, load);
  535. }
  536. return slice;
  537. }
  538. /*
  539. * We calculate the vruntime slice of a to be inserted task
  540. *
  541. * vs = s/w
  542. */
  543. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  544. {
  545. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  546. }
  547. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  548. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  549. /*
  550. * Update the current task's runtime statistics. Skip current tasks that
  551. * are not in our scheduling class.
  552. */
  553. static inline void
  554. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  555. unsigned long delta_exec)
  556. {
  557. unsigned long delta_exec_weighted;
  558. schedstat_set(curr->statistics.exec_max,
  559. max((u64)delta_exec, curr->statistics.exec_max));
  560. curr->sum_exec_runtime += delta_exec;
  561. schedstat_add(cfs_rq, exec_clock, delta_exec);
  562. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  563. curr->vruntime += delta_exec_weighted;
  564. update_min_vruntime(cfs_rq);
  565. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  566. cfs_rq->load_unacc_exec_time += delta_exec;
  567. #endif
  568. }
  569. static void update_curr(struct cfs_rq *cfs_rq)
  570. {
  571. struct sched_entity *curr = cfs_rq->curr;
  572. u64 now = rq_of(cfs_rq)->clock_task;
  573. unsigned long delta_exec;
  574. if (unlikely(!curr))
  575. return;
  576. /*
  577. * Get the amount of time the current task was running
  578. * since the last time we changed load (this cannot
  579. * overflow on 32 bits):
  580. */
  581. delta_exec = (unsigned long)(now - curr->exec_start);
  582. if (!delta_exec)
  583. return;
  584. __update_curr(cfs_rq, curr, delta_exec);
  585. curr->exec_start = now;
  586. if (entity_is_task(curr)) {
  587. struct task_struct *curtask = task_of(curr);
  588. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  589. cpuacct_charge(curtask, delta_exec);
  590. account_group_exec_runtime(curtask, delta_exec);
  591. }
  592. account_cfs_rq_runtime(cfs_rq, delta_exec);
  593. }
  594. static inline void
  595. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  596. {
  597. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  598. }
  599. /*
  600. * Task is being enqueued - update stats:
  601. */
  602. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  603. {
  604. /*
  605. * Are we enqueueing a waiting task? (for current tasks
  606. * a dequeue/enqueue event is a NOP)
  607. */
  608. if (se != cfs_rq->curr)
  609. update_stats_wait_start(cfs_rq, se);
  610. }
  611. static void
  612. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  613. {
  614. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  615. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  616. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  617. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  618. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  619. #ifdef CONFIG_SCHEDSTATS
  620. if (entity_is_task(se)) {
  621. trace_sched_stat_wait(task_of(se),
  622. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  623. }
  624. #endif
  625. schedstat_set(se->statistics.wait_start, 0);
  626. }
  627. static inline void
  628. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  629. {
  630. /*
  631. * Mark the end of the wait period if dequeueing a
  632. * waiting task:
  633. */
  634. if (se != cfs_rq->curr)
  635. update_stats_wait_end(cfs_rq, se);
  636. }
  637. /*
  638. * We are picking a new current task - update its stats:
  639. */
  640. static inline void
  641. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  642. {
  643. /*
  644. * We are starting a new run period:
  645. */
  646. se->exec_start = rq_of(cfs_rq)->clock_task;
  647. }
  648. /**************************************************
  649. * Scheduling class queueing methods:
  650. */
  651. static void
  652. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  653. {
  654. update_load_add(&cfs_rq->load, se->load.weight);
  655. if (!parent_entity(se))
  656. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  657. #ifdef CONFIG_SMP
  658. if (entity_is_task(se))
  659. list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
  660. #endif
  661. cfs_rq->nr_running++;
  662. }
  663. static void
  664. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  665. {
  666. update_load_sub(&cfs_rq->load, se->load.weight);
  667. if (!parent_entity(se))
  668. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  669. if (entity_is_task(se))
  670. list_del_init(&se->group_node);
  671. cfs_rq->nr_running--;
  672. }
  673. #ifdef CONFIG_FAIR_GROUP_SCHED
  674. /* we need this in update_cfs_load and load-balance functions below */
  675. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  676. # ifdef CONFIG_SMP
  677. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  678. int global_update)
  679. {
  680. struct task_group *tg = cfs_rq->tg;
  681. long load_avg;
  682. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  683. load_avg -= cfs_rq->load_contribution;
  684. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  685. atomic_add(load_avg, &tg->load_weight);
  686. cfs_rq->load_contribution += load_avg;
  687. }
  688. }
  689. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  690. {
  691. u64 period = sysctl_sched_shares_window;
  692. u64 now, delta;
  693. unsigned long load = cfs_rq->load.weight;
  694. if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
  695. return;
  696. now = rq_of(cfs_rq)->clock_task;
  697. delta = now - cfs_rq->load_stamp;
  698. /* truncate load history at 4 idle periods */
  699. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  700. now - cfs_rq->load_last > 4 * period) {
  701. cfs_rq->load_period = 0;
  702. cfs_rq->load_avg = 0;
  703. delta = period - 1;
  704. }
  705. cfs_rq->load_stamp = now;
  706. cfs_rq->load_unacc_exec_time = 0;
  707. cfs_rq->load_period += delta;
  708. if (load) {
  709. cfs_rq->load_last = now;
  710. cfs_rq->load_avg += delta * load;
  711. }
  712. /* consider updating load contribution on each fold or truncate */
  713. if (global_update || cfs_rq->load_period > period
  714. || !cfs_rq->load_period)
  715. update_cfs_rq_load_contribution(cfs_rq, global_update);
  716. while (cfs_rq->load_period > period) {
  717. /*
  718. * Inline assembly required to prevent the compiler
  719. * optimising this loop into a divmod call.
  720. * See __iter_div_u64_rem() for another example of this.
  721. */
  722. asm("" : "+rm" (cfs_rq->load_period));
  723. cfs_rq->load_period /= 2;
  724. cfs_rq->load_avg /= 2;
  725. }
  726. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  727. list_del_leaf_cfs_rq(cfs_rq);
  728. }
  729. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  730. {
  731. long tg_weight;
  732. /*
  733. * Use this CPU's actual weight instead of the last load_contribution
  734. * to gain a more accurate current total weight. See
  735. * update_cfs_rq_load_contribution().
  736. */
  737. tg_weight = atomic_read(&tg->load_weight);
  738. tg_weight -= cfs_rq->load_contribution;
  739. tg_weight += cfs_rq->load.weight;
  740. return tg_weight;
  741. }
  742. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  743. {
  744. long tg_weight, load, shares;
  745. tg_weight = calc_tg_weight(tg, cfs_rq);
  746. load = cfs_rq->load.weight;
  747. shares = (tg->shares * load);
  748. if (tg_weight)
  749. shares /= tg_weight;
  750. if (shares < MIN_SHARES)
  751. shares = MIN_SHARES;
  752. if (shares > tg->shares)
  753. shares = tg->shares;
  754. return shares;
  755. }
  756. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  757. {
  758. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  759. update_cfs_load(cfs_rq, 0);
  760. update_cfs_shares(cfs_rq);
  761. }
  762. }
  763. # else /* CONFIG_SMP */
  764. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  765. {
  766. }
  767. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  768. {
  769. return tg->shares;
  770. }
  771. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  772. {
  773. }
  774. # endif /* CONFIG_SMP */
  775. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  776. unsigned long weight)
  777. {
  778. if (se->on_rq) {
  779. /* commit outstanding execution time */
  780. if (cfs_rq->curr == se)
  781. update_curr(cfs_rq);
  782. account_entity_dequeue(cfs_rq, se);
  783. }
  784. update_load_set(&se->load, weight);
  785. if (se->on_rq)
  786. account_entity_enqueue(cfs_rq, se);
  787. }
  788. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  789. {
  790. struct task_group *tg;
  791. struct sched_entity *se;
  792. long shares;
  793. tg = cfs_rq->tg;
  794. se = tg->se[cpu_of(rq_of(cfs_rq))];
  795. if (!se || throttled_hierarchy(cfs_rq))
  796. return;
  797. #ifndef CONFIG_SMP
  798. if (likely(se->load.weight == tg->shares))
  799. return;
  800. #endif
  801. shares = calc_cfs_shares(cfs_rq, tg);
  802. reweight_entity(cfs_rq_of(se), se, shares);
  803. }
  804. #else /* CONFIG_FAIR_GROUP_SCHED */
  805. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  806. {
  807. }
  808. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  809. {
  810. }
  811. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  812. {
  813. }
  814. #endif /* CONFIG_FAIR_GROUP_SCHED */
  815. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  816. {
  817. #ifdef CONFIG_SCHEDSTATS
  818. struct task_struct *tsk = NULL;
  819. if (entity_is_task(se))
  820. tsk = task_of(se);
  821. if (se->statistics.sleep_start) {
  822. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  823. if ((s64)delta < 0)
  824. delta = 0;
  825. if (unlikely(delta > se->statistics.sleep_max))
  826. se->statistics.sleep_max = delta;
  827. se->statistics.sleep_start = 0;
  828. se->statistics.sum_sleep_runtime += delta;
  829. if (tsk) {
  830. account_scheduler_latency(tsk, delta >> 10, 1);
  831. trace_sched_stat_sleep(tsk, delta);
  832. }
  833. }
  834. if (se->statistics.block_start) {
  835. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  836. if ((s64)delta < 0)
  837. delta = 0;
  838. if (unlikely(delta > se->statistics.block_max))
  839. se->statistics.block_max = delta;
  840. se->statistics.block_start = 0;
  841. se->statistics.sum_sleep_runtime += delta;
  842. if (tsk) {
  843. if (tsk->in_iowait) {
  844. se->statistics.iowait_sum += delta;
  845. se->statistics.iowait_count++;
  846. trace_sched_stat_iowait(tsk, delta);
  847. }
  848. trace_sched_stat_blocked(tsk, delta);
  849. /*
  850. * Blocking time is in units of nanosecs, so shift by
  851. * 20 to get a milliseconds-range estimation of the
  852. * amount of time that the task spent sleeping:
  853. */
  854. if (unlikely(prof_on == SLEEP_PROFILING)) {
  855. profile_hits(SLEEP_PROFILING,
  856. (void *)get_wchan(tsk),
  857. delta >> 20);
  858. }
  859. account_scheduler_latency(tsk, delta >> 10, 0);
  860. }
  861. }
  862. #endif
  863. }
  864. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  865. {
  866. #ifdef CONFIG_SCHED_DEBUG
  867. s64 d = se->vruntime - cfs_rq->min_vruntime;
  868. if (d < 0)
  869. d = -d;
  870. if (d > 3*sysctl_sched_latency)
  871. schedstat_inc(cfs_rq, nr_spread_over);
  872. #endif
  873. }
  874. static void
  875. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  876. {
  877. u64 vruntime = cfs_rq->min_vruntime;
  878. /*
  879. * The 'current' period is already promised to the current tasks,
  880. * however the extra weight of the new task will slow them down a
  881. * little, place the new task so that it fits in the slot that
  882. * stays open at the end.
  883. */
  884. if (initial && sched_feat(START_DEBIT))
  885. vruntime += sched_vslice(cfs_rq, se);
  886. /* sleeps up to a single latency don't count. */
  887. if (!initial) {
  888. unsigned long thresh = sysctl_sched_latency;
  889. /*
  890. * Halve their sleep time's effect, to allow
  891. * for a gentler effect of sleepers:
  892. */
  893. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  894. thresh >>= 1;
  895. vruntime -= thresh;
  896. }
  897. /* ensure we never gain time by being placed backwards. */
  898. vruntime = max_vruntime(se->vruntime, vruntime);
  899. se->vruntime = vruntime;
  900. }
  901. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  902. static void
  903. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  904. {
  905. /*
  906. * Update the normalized vruntime before updating min_vruntime
  907. * through callig update_curr().
  908. */
  909. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  910. se->vruntime += cfs_rq->min_vruntime;
  911. /*
  912. * Update run-time statistics of the 'current'.
  913. */
  914. update_curr(cfs_rq);
  915. update_cfs_load(cfs_rq, 0);
  916. account_entity_enqueue(cfs_rq, se);
  917. update_cfs_shares(cfs_rq);
  918. if (flags & ENQUEUE_WAKEUP) {
  919. place_entity(cfs_rq, se, 0);
  920. enqueue_sleeper(cfs_rq, se);
  921. }
  922. update_stats_enqueue(cfs_rq, se);
  923. check_spread(cfs_rq, se);
  924. if (se != cfs_rq->curr)
  925. __enqueue_entity(cfs_rq, se);
  926. se->on_rq = 1;
  927. if (cfs_rq->nr_running == 1) {
  928. list_add_leaf_cfs_rq(cfs_rq);
  929. check_enqueue_throttle(cfs_rq);
  930. }
  931. }
  932. static void __clear_buddies_last(struct sched_entity *se)
  933. {
  934. for_each_sched_entity(se) {
  935. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  936. if (cfs_rq->last == se)
  937. cfs_rq->last = NULL;
  938. else
  939. break;
  940. }
  941. }
  942. static void __clear_buddies_next(struct sched_entity *se)
  943. {
  944. for_each_sched_entity(se) {
  945. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  946. if (cfs_rq->next == se)
  947. cfs_rq->next = NULL;
  948. else
  949. break;
  950. }
  951. }
  952. static void __clear_buddies_skip(struct sched_entity *se)
  953. {
  954. for_each_sched_entity(se) {
  955. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  956. if (cfs_rq->skip == se)
  957. cfs_rq->skip = NULL;
  958. else
  959. break;
  960. }
  961. }
  962. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  963. {
  964. if (cfs_rq->last == se)
  965. __clear_buddies_last(se);
  966. if (cfs_rq->next == se)
  967. __clear_buddies_next(se);
  968. if (cfs_rq->skip == se)
  969. __clear_buddies_skip(se);
  970. }
  971. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  972. static void
  973. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  974. {
  975. /*
  976. * Update run-time statistics of the 'current'.
  977. */
  978. update_curr(cfs_rq);
  979. update_stats_dequeue(cfs_rq, se);
  980. if (flags & DEQUEUE_SLEEP) {
  981. #ifdef CONFIG_SCHEDSTATS
  982. if (entity_is_task(se)) {
  983. struct task_struct *tsk = task_of(se);
  984. if (tsk->state & TASK_INTERRUPTIBLE)
  985. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  986. if (tsk->state & TASK_UNINTERRUPTIBLE)
  987. se->statistics.block_start = rq_of(cfs_rq)->clock;
  988. }
  989. #endif
  990. }
  991. clear_buddies(cfs_rq, se);
  992. if (se != cfs_rq->curr)
  993. __dequeue_entity(cfs_rq, se);
  994. se->on_rq = 0;
  995. update_cfs_load(cfs_rq, 0);
  996. account_entity_dequeue(cfs_rq, se);
  997. /*
  998. * Normalize the entity after updating the min_vruntime because the
  999. * update can refer to the ->curr item and we need to reflect this
  1000. * movement in our normalized position.
  1001. */
  1002. if (!(flags & DEQUEUE_SLEEP))
  1003. se->vruntime -= cfs_rq->min_vruntime;
  1004. /* return excess runtime on last dequeue */
  1005. return_cfs_rq_runtime(cfs_rq);
  1006. update_min_vruntime(cfs_rq);
  1007. update_cfs_shares(cfs_rq);
  1008. }
  1009. /*
  1010. * Preempt the current task with a newly woken task if needed:
  1011. */
  1012. static void
  1013. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  1014. {
  1015. unsigned long ideal_runtime, delta_exec;
  1016. struct sched_entity *se;
  1017. s64 delta;
  1018. ideal_runtime = sched_slice(cfs_rq, curr);
  1019. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1020. if (delta_exec > ideal_runtime) {
  1021. resched_task(rq_of(cfs_rq)->curr);
  1022. /*
  1023. * The current task ran long enough, ensure it doesn't get
  1024. * re-elected due to buddy favours.
  1025. */
  1026. clear_buddies(cfs_rq, curr);
  1027. return;
  1028. }
  1029. /*
  1030. * Ensure that a task that missed wakeup preemption by a
  1031. * narrow margin doesn't have to wait for a full slice.
  1032. * This also mitigates buddy induced latencies under load.
  1033. */
  1034. if (delta_exec < sysctl_sched_min_granularity)
  1035. return;
  1036. se = __pick_first_entity(cfs_rq);
  1037. delta = curr->vruntime - se->vruntime;
  1038. if (delta < 0)
  1039. return;
  1040. if (delta > ideal_runtime)
  1041. resched_task(rq_of(cfs_rq)->curr);
  1042. }
  1043. static void
  1044. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1045. {
  1046. /* 'current' is not kept within the tree. */
  1047. if (se->on_rq) {
  1048. /*
  1049. * Any task has to be enqueued before it get to execute on
  1050. * a CPU. So account for the time it spent waiting on the
  1051. * runqueue.
  1052. */
  1053. update_stats_wait_end(cfs_rq, se);
  1054. __dequeue_entity(cfs_rq, se);
  1055. }
  1056. update_stats_curr_start(cfs_rq, se);
  1057. cfs_rq->curr = se;
  1058. #ifdef CONFIG_SCHEDSTATS
  1059. /*
  1060. * Track our maximum slice length, if the CPU's load is at
  1061. * least twice that of our own weight (i.e. dont track it
  1062. * when there are only lesser-weight tasks around):
  1063. */
  1064. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  1065. se->statistics.slice_max = max(se->statistics.slice_max,
  1066. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  1067. }
  1068. #endif
  1069. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  1070. }
  1071. static int
  1072. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  1073. /*
  1074. * Pick the next process, keeping these things in mind, in this order:
  1075. * 1) keep things fair between processes/task groups
  1076. * 2) pick the "next" process, since someone really wants that to run
  1077. * 3) pick the "last" process, for cache locality
  1078. * 4) do not run the "skip" process, if something else is available
  1079. */
  1080. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  1081. {
  1082. struct sched_entity *se = __pick_first_entity(cfs_rq);
  1083. struct sched_entity *left = se;
  1084. /*
  1085. * Avoid running the skip buddy, if running something else can
  1086. * be done without getting too unfair.
  1087. */
  1088. if (cfs_rq->skip == se) {
  1089. struct sched_entity *second = __pick_next_entity(se);
  1090. if (second && wakeup_preempt_entity(second, left) < 1)
  1091. se = second;
  1092. }
  1093. /*
  1094. * Prefer last buddy, try to return the CPU to a preempted task.
  1095. */
  1096. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1097. se = cfs_rq->last;
  1098. /*
  1099. * Someone really wants this to run. If it's not unfair, run it.
  1100. */
  1101. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1102. se = cfs_rq->next;
  1103. clear_buddies(cfs_rq, se);
  1104. return se;
  1105. }
  1106. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1107. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1108. {
  1109. /*
  1110. * If still on the runqueue then deactivate_task()
  1111. * was not called and update_curr() has to be done:
  1112. */
  1113. if (prev->on_rq)
  1114. update_curr(cfs_rq);
  1115. /* throttle cfs_rqs exceeding runtime */
  1116. check_cfs_rq_runtime(cfs_rq);
  1117. check_spread(cfs_rq, prev);
  1118. if (prev->on_rq) {
  1119. update_stats_wait_start(cfs_rq, prev);
  1120. /* Put 'current' back into the tree. */
  1121. __enqueue_entity(cfs_rq, prev);
  1122. }
  1123. cfs_rq->curr = NULL;
  1124. }
  1125. static void
  1126. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1127. {
  1128. /*
  1129. * Update run-time statistics of the 'current'.
  1130. */
  1131. update_curr(cfs_rq);
  1132. /*
  1133. * Update share accounting for long-running entities.
  1134. */
  1135. update_entity_shares_tick(cfs_rq);
  1136. #ifdef CONFIG_SCHED_HRTICK
  1137. /*
  1138. * queued ticks are scheduled to match the slice, so don't bother
  1139. * validating it and just reschedule.
  1140. */
  1141. if (queued) {
  1142. resched_task(rq_of(cfs_rq)->curr);
  1143. return;
  1144. }
  1145. /*
  1146. * don't let the period tick interfere with the hrtick preemption
  1147. */
  1148. if (!sched_feat(DOUBLE_TICK) &&
  1149. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1150. return;
  1151. #endif
  1152. if (cfs_rq->nr_running > 1)
  1153. check_preempt_tick(cfs_rq, curr);
  1154. }
  1155. /**************************************************
  1156. * CFS bandwidth control machinery
  1157. */
  1158. #ifdef CONFIG_CFS_BANDWIDTH
  1159. #ifdef HAVE_JUMP_LABEL
  1160. static struct static_key __cfs_bandwidth_used;
  1161. static inline bool cfs_bandwidth_used(void)
  1162. {
  1163. return static_key_false(&__cfs_bandwidth_used);
  1164. }
  1165. void cfs_bandwidth_usage_inc(void)
  1166. {
  1167. static_key_slow_inc(&__cfs_bandwidth_used);
  1168. }
  1169. void cfs_bandwidth_usage_dec(void)
  1170. {
  1171. static_key_slow_dec(&__cfs_bandwidth_used);
  1172. }
  1173. #else /* HAVE_JUMP_LABEL */
  1174. static bool cfs_bandwidth_used(void)
  1175. {
  1176. return true;
  1177. }
  1178. void cfs_bandwidth_usage_inc(void) {}
  1179. void cfs_bandwidth_usage_dec(void) {}
  1180. #endif /* HAVE_JUMP_LABEL */
  1181. /*
  1182. * default period for cfs group bandwidth.
  1183. * default: 0.1s, units: nanoseconds
  1184. */
  1185. static inline u64 default_cfs_period(void)
  1186. {
  1187. return 100000000ULL;
  1188. }
  1189. static inline u64 sched_cfs_bandwidth_slice(void)
  1190. {
  1191. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1192. }
  1193. /*
  1194. * Replenish runtime according to assigned quota and update expiration time.
  1195. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1196. * additional synchronization around rq->lock.
  1197. *
  1198. * requires cfs_b->lock
  1199. */
  1200. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1201. {
  1202. u64 now;
  1203. if (cfs_b->quota == RUNTIME_INF)
  1204. return;
  1205. now = sched_clock_cpu(smp_processor_id());
  1206. cfs_b->runtime = cfs_b->quota;
  1207. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1208. }
  1209. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1210. {
  1211. return &tg->cfs_bandwidth;
  1212. }
  1213. /* returns 0 on failure to allocate runtime */
  1214. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1215. {
  1216. struct task_group *tg = cfs_rq->tg;
  1217. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1218. u64 amount = 0, min_amount, expires;
  1219. /* note: this is a positive sum as runtime_remaining <= 0 */
  1220. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1221. raw_spin_lock(&cfs_b->lock);
  1222. if (cfs_b->quota == RUNTIME_INF)
  1223. amount = min_amount;
  1224. else {
  1225. /*
  1226. * If the bandwidth pool has become inactive, then at least one
  1227. * period must have elapsed since the last consumption.
  1228. * Refresh the global state and ensure bandwidth timer becomes
  1229. * active.
  1230. */
  1231. if (!cfs_b->timer_active) {
  1232. __refill_cfs_bandwidth_runtime(cfs_b);
  1233. __start_cfs_bandwidth(cfs_b);
  1234. }
  1235. if (cfs_b->runtime > 0) {
  1236. amount = min(cfs_b->runtime, min_amount);
  1237. cfs_b->runtime -= amount;
  1238. cfs_b->idle = 0;
  1239. }
  1240. }
  1241. expires = cfs_b->runtime_expires;
  1242. raw_spin_unlock(&cfs_b->lock);
  1243. cfs_rq->runtime_remaining += amount;
  1244. /*
  1245. * we may have advanced our local expiration to account for allowed
  1246. * spread between our sched_clock and the one on which runtime was
  1247. * issued.
  1248. */
  1249. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1250. cfs_rq->runtime_expires = expires;
  1251. return cfs_rq->runtime_remaining > 0;
  1252. }
  1253. /*
  1254. * Note: This depends on the synchronization provided by sched_clock and the
  1255. * fact that rq->clock snapshots this value.
  1256. */
  1257. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1258. {
  1259. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1260. struct rq *rq = rq_of(cfs_rq);
  1261. /* if the deadline is ahead of our clock, nothing to do */
  1262. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1263. return;
  1264. if (cfs_rq->runtime_remaining < 0)
  1265. return;
  1266. /*
  1267. * If the local deadline has passed we have to consider the
  1268. * possibility that our sched_clock is 'fast' and the global deadline
  1269. * has not truly expired.
  1270. *
  1271. * Fortunately we can check determine whether this the case by checking
  1272. * whether the global deadline has advanced.
  1273. */
  1274. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1275. /* extend local deadline, drift is bounded above by 2 ticks */
  1276. cfs_rq->runtime_expires += TICK_NSEC;
  1277. } else {
  1278. /* global deadline is ahead, expiration has passed */
  1279. cfs_rq->runtime_remaining = 0;
  1280. }
  1281. }
  1282. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1283. unsigned long delta_exec)
  1284. {
  1285. /* dock delta_exec before expiring quota (as it could span periods) */
  1286. cfs_rq->runtime_remaining -= delta_exec;
  1287. expire_cfs_rq_runtime(cfs_rq);
  1288. if (likely(cfs_rq->runtime_remaining > 0))
  1289. return;
  1290. /*
  1291. * if we're unable to extend our runtime we resched so that the active
  1292. * hierarchy can be throttled
  1293. */
  1294. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1295. resched_task(rq_of(cfs_rq)->curr);
  1296. }
  1297. static __always_inline
  1298. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
  1299. {
  1300. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  1301. return;
  1302. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1303. }
  1304. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1305. {
  1306. return cfs_bandwidth_used() && cfs_rq->throttled;
  1307. }
  1308. /* check whether cfs_rq, or any parent, is throttled */
  1309. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1310. {
  1311. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  1312. }
  1313. /*
  1314. * Ensure that neither of the group entities corresponding to src_cpu or
  1315. * dest_cpu are members of a throttled hierarchy when performing group
  1316. * load-balance operations.
  1317. */
  1318. static inline int throttled_lb_pair(struct task_group *tg,
  1319. int src_cpu, int dest_cpu)
  1320. {
  1321. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1322. src_cfs_rq = tg->cfs_rq[src_cpu];
  1323. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1324. return throttled_hierarchy(src_cfs_rq) ||
  1325. throttled_hierarchy(dest_cfs_rq);
  1326. }
  1327. /* updated child weight may affect parent so we have to do this bottom up */
  1328. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1329. {
  1330. struct rq *rq = data;
  1331. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1332. cfs_rq->throttle_count--;
  1333. #ifdef CONFIG_SMP
  1334. if (!cfs_rq->throttle_count) {
  1335. u64 delta = rq->clock_task - cfs_rq->load_stamp;
  1336. /* leaving throttled state, advance shares averaging windows */
  1337. cfs_rq->load_stamp += delta;
  1338. cfs_rq->load_last += delta;
  1339. /* update entity weight now that we are on_rq again */
  1340. update_cfs_shares(cfs_rq);
  1341. }
  1342. #endif
  1343. return 0;
  1344. }
  1345. static int tg_throttle_down(struct task_group *tg, void *data)
  1346. {
  1347. struct rq *rq = data;
  1348. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1349. /* group is entering throttled state, record last load */
  1350. if (!cfs_rq->throttle_count)
  1351. update_cfs_load(cfs_rq, 0);
  1352. cfs_rq->throttle_count++;
  1353. return 0;
  1354. }
  1355. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1356. {
  1357. struct rq *rq = rq_of(cfs_rq);
  1358. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1359. struct sched_entity *se;
  1360. long task_delta, dequeue = 1;
  1361. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1362. /* account load preceding throttle */
  1363. rcu_read_lock();
  1364. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1365. rcu_read_unlock();
  1366. task_delta = cfs_rq->h_nr_running;
  1367. for_each_sched_entity(se) {
  1368. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1369. /* throttled entity or throttle-on-deactivate */
  1370. if (!se->on_rq)
  1371. break;
  1372. if (dequeue)
  1373. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1374. qcfs_rq->h_nr_running -= task_delta;
  1375. if (qcfs_rq->load.weight)
  1376. dequeue = 0;
  1377. }
  1378. if (!se)
  1379. rq->nr_running -= task_delta;
  1380. cfs_rq->throttled = 1;
  1381. cfs_rq->throttled_timestamp = rq->clock;
  1382. raw_spin_lock(&cfs_b->lock);
  1383. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1384. if (!cfs_b->timer_active)
  1385. __start_cfs_bandwidth(cfs_b);
  1386. raw_spin_unlock(&cfs_b->lock);
  1387. }
  1388. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1389. {
  1390. struct rq *rq = rq_of(cfs_rq);
  1391. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1392. struct sched_entity *se;
  1393. int enqueue = 1;
  1394. long task_delta;
  1395. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1396. cfs_rq->throttled = 0;
  1397. raw_spin_lock(&cfs_b->lock);
  1398. cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
  1399. list_del_rcu(&cfs_rq->throttled_list);
  1400. raw_spin_unlock(&cfs_b->lock);
  1401. cfs_rq->throttled_timestamp = 0;
  1402. update_rq_clock(rq);
  1403. /* update hierarchical throttle state */
  1404. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1405. if (!cfs_rq->load.weight)
  1406. return;
  1407. task_delta = cfs_rq->h_nr_running;
  1408. for_each_sched_entity(se) {
  1409. if (se->on_rq)
  1410. enqueue = 0;
  1411. cfs_rq = cfs_rq_of(se);
  1412. if (enqueue)
  1413. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1414. cfs_rq->h_nr_running += task_delta;
  1415. if (cfs_rq_throttled(cfs_rq))
  1416. break;
  1417. }
  1418. if (!se)
  1419. rq->nr_running += task_delta;
  1420. /* determine whether we need to wake up potentially idle cpu */
  1421. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1422. resched_task(rq->curr);
  1423. }
  1424. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1425. u64 remaining, u64 expires)
  1426. {
  1427. struct cfs_rq *cfs_rq;
  1428. u64 runtime = remaining;
  1429. rcu_read_lock();
  1430. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1431. throttled_list) {
  1432. struct rq *rq = rq_of(cfs_rq);
  1433. raw_spin_lock(&rq->lock);
  1434. if (!cfs_rq_throttled(cfs_rq))
  1435. goto next;
  1436. runtime = -cfs_rq->runtime_remaining + 1;
  1437. if (runtime > remaining)
  1438. runtime = remaining;
  1439. remaining -= runtime;
  1440. cfs_rq->runtime_remaining += runtime;
  1441. cfs_rq->runtime_expires = expires;
  1442. /* we check whether we're throttled above */
  1443. if (cfs_rq->runtime_remaining > 0)
  1444. unthrottle_cfs_rq(cfs_rq);
  1445. next:
  1446. raw_spin_unlock(&rq->lock);
  1447. if (!remaining)
  1448. break;
  1449. }
  1450. rcu_read_unlock();
  1451. return remaining;
  1452. }
  1453. /*
  1454. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1455. * cfs_rqs as appropriate. If there has been no activity within the last
  1456. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1457. * used to track this state.
  1458. */
  1459. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1460. {
  1461. u64 runtime, runtime_expires;
  1462. int idle = 1, throttled;
  1463. raw_spin_lock(&cfs_b->lock);
  1464. /* no need to continue the timer with no bandwidth constraint */
  1465. if (cfs_b->quota == RUNTIME_INF)
  1466. goto out_unlock;
  1467. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1468. /* idle depends on !throttled (for the case of a large deficit) */
  1469. idle = cfs_b->idle && !throttled;
  1470. cfs_b->nr_periods += overrun;
  1471. /* if we're going inactive then everything else can be deferred */
  1472. if (idle)
  1473. goto out_unlock;
  1474. /*
  1475. * if we have relooped after returning idle once, we need to update our
  1476. * status as actually running, so that other cpus doing
  1477. * __start_cfs_bandwidth will stop trying to cancel us.
  1478. */
  1479. cfs_b->timer_active = 1;
  1480. __refill_cfs_bandwidth_runtime(cfs_b);
  1481. if (!throttled) {
  1482. /* mark as potentially idle for the upcoming period */
  1483. cfs_b->idle = 1;
  1484. goto out_unlock;
  1485. }
  1486. /* account preceding periods in which throttling occurred */
  1487. cfs_b->nr_throttled += overrun;
  1488. /*
  1489. * There are throttled entities so we must first use the new bandwidth
  1490. * to unthrottle them before making it generally available. This
  1491. * ensures that all existing debts will be paid before a new cfs_rq is
  1492. * allowed to run.
  1493. */
  1494. runtime = cfs_b->runtime;
  1495. runtime_expires = cfs_b->runtime_expires;
  1496. cfs_b->runtime = 0;
  1497. /*
  1498. * This check is repeated as we are holding onto the new bandwidth
  1499. * while we unthrottle. This can potentially race with an unthrottled
  1500. * group trying to acquire new bandwidth from the global pool.
  1501. */
  1502. while (throttled && runtime > 0) {
  1503. raw_spin_unlock(&cfs_b->lock);
  1504. /* we can't nest cfs_b->lock while distributing bandwidth */
  1505. runtime = distribute_cfs_runtime(cfs_b, runtime,
  1506. runtime_expires);
  1507. raw_spin_lock(&cfs_b->lock);
  1508. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1509. }
  1510. /* return (any) remaining runtime */
  1511. cfs_b->runtime = runtime;
  1512. /*
  1513. * While we are ensured activity in the period following an
  1514. * unthrottle, this also covers the case in which the new bandwidth is
  1515. * insufficient to cover the existing bandwidth deficit. (Forcing the
  1516. * timer to remain active while there are any throttled entities.)
  1517. */
  1518. cfs_b->idle = 0;
  1519. out_unlock:
  1520. if (idle)
  1521. cfs_b->timer_active = 0;
  1522. raw_spin_unlock(&cfs_b->lock);
  1523. return idle;
  1524. }
  1525. /* a cfs_rq won't donate quota below this amount */
  1526. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  1527. /* minimum remaining period time to redistribute slack quota */
  1528. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  1529. /* how long we wait to gather additional slack before distributing */
  1530. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  1531. /*
  1532. * Are we near the end of the current quota period?
  1533. *
  1534. * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
  1535. * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
  1536. * migrate_hrtimers, base is never cleared, so we are fine.
  1537. */
  1538. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  1539. {
  1540. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  1541. u64 remaining;
  1542. /* if the call-back is running a quota refresh is already occurring */
  1543. if (hrtimer_callback_running(refresh_timer))
  1544. return 1;
  1545. /* is a quota refresh about to occur? */
  1546. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  1547. if (remaining < min_expire)
  1548. return 1;
  1549. return 0;
  1550. }
  1551. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  1552. {
  1553. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  1554. /* if there's a quota refresh soon don't bother with slack */
  1555. if (runtime_refresh_within(cfs_b, min_left))
  1556. return;
  1557. start_bandwidth_timer(&cfs_b->slack_timer,
  1558. ns_to_ktime(cfs_bandwidth_slack_period));
  1559. }
  1560. /* we know any runtime found here is valid as update_curr() precedes return */
  1561. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1562. {
  1563. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1564. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  1565. if (slack_runtime <= 0)
  1566. return;
  1567. raw_spin_lock(&cfs_b->lock);
  1568. if (cfs_b->quota != RUNTIME_INF &&
  1569. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  1570. cfs_b->runtime += slack_runtime;
  1571. /* we are under rq->lock, defer unthrottling using a timer */
  1572. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  1573. !list_empty(&cfs_b->throttled_cfs_rq))
  1574. start_cfs_slack_bandwidth(cfs_b);
  1575. }
  1576. raw_spin_unlock(&cfs_b->lock);
  1577. /* even if it's not valid for return we don't want to try again */
  1578. cfs_rq->runtime_remaining -= slack_runtime;
  1579. }
  1580. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1581. {
  1582. if (!cfs_bandwidth_used())
  1583. return;
  1584. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  1585. return;
  1586. __return_cfs_rq_runtime(cfs_rq);
  1587. }
  1588. /*
  1589. * This is done with a timer (instead of inline with bandwidth return) since
  1590. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  1591. */
  1592. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  1593. {
  1594. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  1595. u64 expires;
  1596. /* confirm we're still not at a refresh boundary */
  1597. raw_spin_lock(&cfs_b->lock);
  1598. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
  1599. raw_spin_unlock(&cfs_b->lock);
  1600. return;
  1601. }
  1602. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  1603. runtime = cfs_b->runtime;
  1604. cfs_b->runtime = 0;
  1605. }
  1606. expires = cfs_b->runtime_expires;
  1607. raw_spin_unlock(&cfs_b->lock);
  1608. if (!runtime)
  1609. return;
  1610. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  1611. raw_spin_lock(&cfs_b->lock);
  1612. if (expires == cfs_b->runtime_expires)
  1613. cfs_b->runtime = runtime;
  1614. raw_spin_unlock(&cfs_b->lock);
  1615. }
  1616. /*
  1617. * When a group wakes up we want to make sure that its quota is not already
  1618. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  1619. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  1620. */
  1621. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  1622. {
  1623. if (!cfs_bandwidth_used())
  1624. return;
  1625. /* an active group must be handled by the update_curr()->put() path */
  1626. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  1627. return;
  1628. /* ensure the group is not already throttled */
  1629. if (cfs_rq_throttled(cfs_rq))
  1630. return;
  1631. /* update runtime allocation */
  1632. account_cfs_rq_runtime(cfs_rq, 0);
  1633. if (cfs_rq->runtime_remaining <= 0)
  1634. throttle_cfs_rq(cfs_rq);
  1635. }
  1636. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  1637. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1638. {
  1639. if (!cfs_bandwidth_used())
  1640. return;
  1641. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  1642. return;
  1643. /*
  1644. * it's possible for a throttled entity to be forced into a running
  1645. * state (e.g. set_curr_task), in this case we're finished.
  1646. */
  1647. if (cfs_rq_throttled(cfs_rq))
  1648. return;
  1649. throttle_cfs_rq(cfs_rq);
  1650. }
  1651. static inline u64 default_cfs_period(void);
  1652. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  1653. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
  1654. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  1655. {
  1656. struct cfs_bandwidth *cfs_b =
  1657. container_of(timer, struct cfs_bandwidth, slack_timer);
  1658. do_sched_cfs_slack_timer(cfs_b);
  1659. return HRTIMER_NORESTART;
  1660. }
  1661. extern const u64 max_cfs_quota_period;
  1662. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  1663. {
  1664. struct cfs_bandwidth *cfs_b =
  1665. container_of(timer, struct cfs_bandwidth, period_timer);
  1666. ktime_t now;
  1667. int overrun;
  1668. int idle = 0;
  1669. int count = 0;
  1670. for (;;) {
  1671. now = hrtimer_cb_get_time(timer);
  1672. overrun = hrtimer_forward(timer, now, cfs_b->period);
  1673. if (!overrun)
  1674. break;
  1675. if (++count > 3) {
  1676. u64 new, old = ktime_to_ns(cfs_b->period);
  1677. new = (old * 147) / 128; /* ~115% */
  1678. new = min(new, max_cfs_quota_period);
  1679. cfs_b->period = ns_to_ktime(new);
  1680. /* since max is 1s, this is limited to 1e9^2, which fits in u64 */
  1681. cfs_b->quota *= new;
  1682. cfs_b->quota = div64_u64(cfs_b->quota, old);
  1683. pr_warn_ratelimited(
  1684. "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
  1685. smp_processor_id(),
  1686. div_u64(new, NSEC_PER_USEC),
  1687. div_u64(cfs_b->quota, NSEC_PER_USEC));
  1688. /* reset count so we don't come right back in here */
  1689. count = 0;
  1690. }
  1691. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  1692. }
  1693. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  1694. }
  1695. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1696. {
  1697. raw_spin_lock_init(&cfs_b->lock);
  1698. cfs_b->runtime = 0;
  1699. cfs_b->quota = RUNTIME_INF;
  1700. cfs_b->period = ns_to_ktime(default_cfs_period());
  1701. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  1702. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1703. cfs_b->period_timer.function = sched_cfs_period_timer;
  1704. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1705. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  1706. }
  1707. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1708. {
  1709. cfs_rq->runtime_enabled = 0;
  1710. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  1711. }
  1712. /* requires cfs_b->lock, may release to reprogram timer */
  1713. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1714. {
  1715. /*
  1716. * The timer may be active because we're trying to set a new bandwidth
  1717. * period or because we're racing with the tear-down path
  1718. * (timer_active==0 becomes visible before the hrtimer call-back
  1719. * terminates). In either case we ensure that it's re-programmed
  1720. */
  1721. while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
  1722. hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
  1723. /* bounce the lock to allow do_sched_cfs_period_timer to run */
  1724. raw_spin_unlock(&cfs_b->lock);
  1725. cpu_relax();
  1726. raw_spin_lock(&cfs_b->lock);
  1727. /* if someone else restarted the timer then we're done */
  1728. if (cfs_b->timer_active)
  1729. return;
  1730. }
  1731. cfs_b->timer_active = 1;
  1732. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  1733. }
  1734. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1735. {
  1736. hrtimer_cancel(&cfs_b->period_timer);
  1737. hrtimer_cancel(&cfs_b->slack_timer);
  1738. }
  1739. static void unthrottle_offline_cfs_rqs(struct rq *rq)
  1740. {
  1741. struct cfs_rq *cfs_rq;
  1742. for_each_leaf_cfs_rq(rq, cfs_rq) {
  1743. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1744. if (!cfs_rq->runtime_enabled)
  1745. continue;
  1746. /*
  1747. * clock_task is not advancing so we just need to make sure
  1748. * there's some valid quota amount
  1749. */
  1750. cfs_rq->runtime_remaining = cfs_b->quota;
  1751. if (cfs_rq_throttled(cfs_rq))
  1752. unthrottle_cfs_rq(cfs_rq);
  1753. }
  1754. }
  1755. #else /* CONFIG_CFS_BANDWIDTH */
  1756. static __always_inline
  1757. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
  1758. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1759. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  1760. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1761. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1762. {
  1763. return 0;
  1764. }
  1765. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1766. {
  1767. return 0;
  1768. }
  1769. static inline int throttled_lb_pair(struct task_group *tg,
  1770. int src_cpu, int dest_cpu)
  1771. {
  1772. return 0;
  1773. }
  1774. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1775. #ifdef CONFIG_FAIR_GROUP_SCHED
  1776. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1777. #endif
  1778. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1779. {
  1780. return NULL;
  1781. }
  1782. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1783. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  1784. #endif /* CONFIG_CFS_BANDWIDTH */
  1785. /**************************************************
  1786. * CFS operations on tasks:
  1787. */
  1788. #ifdef CONFIG_SCHED_HRTICK
  1789. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1790. {
  1791. struct sched_entity *se = &p->se;
  1792. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1793. WARN_ON(task_rq(p) != rq);
  1794. if (rq->cfs.h_nr_running > 1) {
  1795. u64 slice = sched_slice(cfs_rq, se);
  1796. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1797. s64 delta = slice - ran;
  1798. if (delta < 0) {
  1799. if (rq->curr == p)
  1800. resched_task(p);
  1801. return;
  1802. }
  1803. /*
  1804. * Don't schedule slices shorter than 10000ns, that just
  1805. * doesn't make sense. Rely on vruntime for fairness.
  1806. */
  1807. if (rq->curr != p)
  1808. delta = max_t(s64, 10000LL, delta);
  1809. hrtick_start(rq, delta);
  1810. }
  1811. }
  1812. /*
  1813. * called from enqueue/dequeue and updates the hrtick when the
  1814. * current task is from our class.
  1815. */
  1816. static void hrtick_update(struct rq *rq)
  1817. {
  1818. struct task_struct *curr = rq->curr;
  1819. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  1820. return;
  1821. hrtick_start_fair(rq, curr);
  1822. }
  1823. #else /* !CONFIG_SCHED_HRTICK */
  1824. static inline void
  1825. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1826. {
  1827. }
  1828. static inline void hrtick_update(struct rq *rq)
  1829. {
  1830. }
  1831. #endif
  1832. /*
  1833. * The enqueue_task method is called before nr_running is
  1834. * increased. Here we update the fair scheduling stats and
  1835. * then put the task into the rbtree:
  1836. */
  1837. static void
  1838. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1839. {
  1840. struct cfs_rq *cfs_rq;
  1841. struct sched_entity *se = &p->se;
  1842. for_each_sched_entity(se) {
  1843. if (se->on_rq)
  1844. break;
  1845. cfs_rq = cfs_rq_of(se);
  1846. enqueue_entity(cfs_rq, se, flags);
  1847. /*
  1848. * end evaluation on encountering a throttled cfs_rq
  1849. *
  1850. * note: in the case of encountering a throttled cfs_rq we will
  1851. * post the final h_nr_running increment below.
  1852. */
  1853. if (cfs_rq_throttled(cfs_rq))
  1854. break;
  1855. cfs_rq->h_nr_running++;
  1856. flags = ENQUEUE_WAKEUP;
  1857. }
  1858. for_each_sched_entity(se) {
  1859. cfs_rq = cfs_rq_of(se);
  1860. cfs_rq->h_nr_running++;
  1861. if (cfs_rq_throttled(cfs_rq))
  1862. break;
  1863. update_cfs_load(cfs_rq, 0);
  1864. update_cfs_shares(cfs_rq);
  1865. }
  1866. if (!se)
  1867. inc_nr_running(rq);
  1868. hrtick_update(rq);
  1869. }
  1870. static void set_next_buddy(struct sched_entity *se);
  1871. /*
  1872. * The dequeue_task method is called before nr_running is
  1873. * decreased. We remove the task from the rbtree and
  1874. * update the fair scheduling stats:
  1875. */
  1876. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1877. {
  1878. struct cfs_rq *cfs_rq;
  1879. struct sched_entity *se = &p->se;
  1880. int task_sleep = flags & DEQUEUE_SLEEP;
  1881. for_each_sched_entity(se) {
  1882. cfs_rq = cfs_rq_of(se);
  1883. dequeue_entity(cfs_rq, se, flags);
  1884. /*
  1885. * end evaluation on encountering a throttled cfs_rq
  1886. *
  1887. * note: in the case of encountering a throttled cfs_rq we will
  1888. * post the final h_nr_running decrement below.
  1889. */
  1890. if (cfs_rq_throttled(cfs_rq))
  1891. break;
  1892. cfs_rq->h_nr_running--;
  1893. /* Don't dequeue parent if it has other entities besides us */
  1894. if (cfs_rq->load.weight) {
  1895. /*
  1896. * Bias pick_next to pick a task from this cfs_rq, as
  1897. * p is sleeping when it is within its sched_slice.
  1898. */
  1899. if (task_sleep && parent_entity(se))
  1900. set_next_buddy(parent_entity(se));
  1901. /* avoid re-evaluating load for this entity */
  1902. se = parent_entity(se);
  1903. break;
  1904. }
  1905. flags |= DEQUEUE_SLEEP;
  1906. }
  1907. for_each_sched_entity(se) {
  1908. cfs_rq = cfs_rq_of(se);
  1909. cfs_rq->h_nr_running--;
  1910. if (cfs_rq_throttled(cfs_rq))
  1911. break;
  1912. update_cfs_load(cfs_rq, 0);
  1913. update_cfs_shares(cfs_rq);
  1914. }
  1915. if (!se)
  1916. dec_nr_running(rq);
  1917. hrtick_update(rq);
  1918. }
  1919. #ifdef CONFIG_SMP
  1920. /* Used instead of source_load when we know the type == 0 */
  1921. static unsigned long weighted_cpuload(const int cpu)
  1922. {
  1923. return cpu_rq(cpu)->load.weight;
  1924. }
  1925. /*
  1926. * Return a low guess at the load of a migration-source cpu weighted
  1927. * according to the scheduling class and "nice" value.
  1928. *
  1929. * We want to under-estimate the load of migration sources, to
  1930. * balance conservatively.
  1931. */
  1932. static unsigned long source_load(int cpu, int type)
  1933. {
  1934. struct rq *rq = cpu_rq(cpu);
  1935. unsigned long total = weighted_cpuload(cpu);
  1936. if (type == 0 || !sched_feat(LB_BIAS))
  1937. return total;
  1938. return min(rq->cpu_load[type-1], total);
  1939. }
  1940. /*
  1941. * Return a high guess at the load of a migration-target cpu weighted
  1942. * according to the scheduling class and "nice" value.
  1943. */
  1944. static unsigned long target_load(int cpu, int type)
  1945. {
  1946. struct rq *rq = cpu_rq(cpu);
  1947. unsigned long total = weighted_cpuload(cpu);
  1948. if (type == 0 || !sched_feat(LB_BIAS))
  1949. return total;
  1950. return max(rq->cpu_load[type-1], total);
  1951. }
  1952. static unsigned long power_of(int cpu)
  1953. {
  1954. return cpu_rq(cpu)->cpu_power;
  1955. }
  1956. static unsigned long cpu_avg_load_per_task(int cpu)
  1957. {
  1958. struct rq *rq = cpu_rq(cpu);
  1959. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1960. if (nr_running)
  1961. return rq->load.weight / nr_running;
  1962. return 0;
  1963. }
  1964. static void record_wakee(struct task_struct *p)
  1965. {
  1966. /*
  1967. * Rough decay (wiping) for cost saving, don't worry
  1968. * about the boundary, really active task won't care
  1969. * about the loss.
  1970. */
  1971. if (jiffies > current->wakee_flip_decay_ts + HZ) {
  1972. current->wakee_flips = 0;
  1973. current->wakee_flip_decay_ts = jiffies;
  1974. }
  1975. if (current->last_wakee != p) {
  1976. current->last_wakee = p;
  1977. current->wakee_flips++;
  1978. }
  1979. }
  1980. static void task_waking_fair(struct task_struct *p)
  1981. {
  1982. struct sched_entity *se = &p->se;
  1983. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1984. u64 min_vruntime;
  1985. #ifndef CONFIG_64BIT
  1986. u64 min_vruntime_copy;
  1987. do {
  1988. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1989. smp_rmb();
  1990. min_vruntime = cfs_rq->min_vruntime;
  1991. } while (min_vruntime != min_vruntime_copy);
  1992. #else
  1993. min_vruntime = cfs_rq->min_vruntime;
  1994. #endif
  1995. se->vruntime -= min_vruntime;
  1996. record_wakee(p);
  1997. }
  1998. #ifdef CONFIG_FAIR_GROUP_SCHED
  1999. /*
  2000. * effective_load() calculates the load change as seen from the root_task_group
  2001. *
  2002. * Adding load to a group doesn't make a group heavier, but can cause movement
  2003. * of group shares between cpus. Assuming the shares were perfectly aligned one
  2004. * can calculate the shift in shares.
  2005. *
  2006. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  2007. * on this @cpu and results in a total addition (subtraction) of @wg to the
  2008. * total group weight.
  2009. *
  2010. * Given a runqueue weight distribution (rw_i) we can compute a shares
  2011. * distribution (s_i) using:
  2012. *
  2013. * s_i = rw_i / \Sum rw_j (1)
  2014. *
  2015. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  2016. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  2017. * shares distribution (s_i):
  2018. *
  2019. * rw_i = { 2, 4, 1, 0 }
  2020. * s_i = { 2/7, 4/7, 1/7, 0 }
  2021. *
  2022. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  2023. * task used to run on and the CPU the waker is running on), we need to
  2024. * compute the effect of waking a task on either CPU and, in case of a sync
  2025. * wakeup, compute the effect of the current task going to sleep.
  2026. *
  2027. * So for a change of @wl to the local @cpu with an overall group weight change
  2028. * of @wl we can compute the new shares distribution (s'_i) using:
  2029. *
  2030. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  2031. *
  2032. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  2033. * differences in waking a task to CPU 0. The additional task changes the
  2034. * weight and shares distributions like:
  2035. *
  2036. * rw'_i = { 3, 4, 1, 0 }
  2037. * s'_i = { 3/8, 4/8, 1/8, 0 }
  2038. *
  2039. * We can then compute the difference in effective weight by using:
  2040. *
  2041. * dw_i = S * (s'_i - s_i) (3)
  2042. *
  2043. * Where 'S' is the group weight as seen by its parent.
  2044. *
  2045. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  2046. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  2047. * 4/7) times the weight of the group.
  2048. */
  2049. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  2050. {
  2051. struct sched_entity *se = tg->se[cpu];
  2052. if (!tg->parent) /* the trivial, non-cgroup case */
  2053. return wl;
  2054. for_each_sched_entity(se) {
  2055. long w, W;
  2056. tg = se->my_q->tg;
  2057. /*
  2058. * W = @wg + \Sum rw_j
  2059. */
  2060. W = wg + calc_tg_weight(tg, se->my_q);
  2061. /*
  2062. * w = rw_i + @wl
  2063. */
  2064. w = se->my_q->load.weight + wl;
  2065. /*
  2066. * wl = S * s'_i; see (2)
  2067. */
  2068. if (W > 0 && w < W)
  2069. wl = (w * tg->shares) / W;
  2070. else
  2071. wl = tg->shares;
  2072. /*
  2073. * Per the above, wl is the new se->load.weight value; since
  2074. * those are clipped to [MIN_SHARES, ...) do so now. See
  2075. * calc_cfs_shares().
  2076. */
  2077. if (wl < MIN_SHARES)
  2078. wl = MIN_SHARES;
  2079. /*
  2080. * wl = dw_i = S * (s'_i - s_i); see (3)
  2081. */
  2082. wl -= se->load.weight;
  2083. /*
  2084. * Recursively apply this logic to all parent groups to compute
  2085. * the final effective load change on the root group. Since
  2086. * only the @tg group gets extra weight, all parent groups can
  2087. * only redistribute existing shares. @wl is the shift in shares
  2088. * resulting from this level per the above.
  2089. */
  2090. wg = 0;
  2091. }
  2092. return wl;
  2093. }
  2094. #else
  2095. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  2096. unsigned long wl, unsigned long wg)
  2097. {
  2098. return wl;
  2099. }
  2100. #endif
  2101. static int wake_wide(struct task_struct *p)
  2102. {
  2103. int factor = this_cpu_read(sd_llc_size);
  2104. /*
  2105. * Yeah, it's the switching-frequency, could means many wakee or
  2106. * rapidly switch, use factor here will just help to automatically
  2107. * adjust the loose-degree, so bigger node will lead to more pull.
  2108. */
  2109. if (p->wakee_flips > factor) {
  2110. /*
  2111. * wakee is somewhat hot, it needs certain amount of cpu
  2112. * resource, so if waker is far more hot, prefer to leave
  2113. * it alone.
  2114. */
  2115. if (current->wakee_flips > (factor * p->wakee_flips))
  2116. return 1;
  2117. }
  2118. return 0;
  2119. }
  2120. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  2121. {
  2122. s64 this_load, load;
  2123. int idx, this_cpu, prev_cpu;
  2124. unsigned long tl_per_task;
  2125. struct task_group *tg;
  2126. unsigned long weight;
  2127. int balanced;
  2128. /*
  2129. * If we wake multiple tasks be careful to not bounce
  2130. * ourselves around too much.
  2131. */
  2132. if (wake_wide(p))
  2133. return 0;
  2134. idx = sd->wake_idx;
  2135. this_cpu = smp_processor_id();
  2136. prev_cpu = task_cpu(p);
  2137. load = source_load(prev_cpu, idx);
  2138. this_load = target_load(this_cpu, idx);
  2139. /*
  2140. * If sync wakeup then subtract the (maximum possible)
  2141. * effect of the currently running task from the load
  2142. * of the current CPU:
  2143. */
  2144. if (sync) {
  2145. tg = task_group(current);
  2146. weight = current->se.load.weight;
  2147. this_load += effective_load(tg, this_cpu, -weight, -weight);
  2148. load += effective_load(tg, prev_cpu, 0, -weight);
  2149. }
  2150. tg = task_group(p);
  2151. weight = p->se.load.weight;
  2152. /*
  2153. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  2154. * due to the sync cause above having dropped this_load to 0, we'll
  2155. * always have an imbalance, but there's really nothing you can do
  2156. * about that, so that's good too.
  2157. *
  2158. * Otherwise check if either cpus are near enough in load to allow this
  2159. * task to be woken on this_cpu.
  2160. */
  2161. if (this_load > 0) {
  2162. s64 this_eff_load, prev_eff_load;
  2163. this_eff_load = 100;
  2164. this_eff_load *= power_of(prev_cpu);
  2165. this_eff_load *= this_load +
  2166. effective_load(tg, this_cpu, weight, weight);
  2167. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  2168. prev_eff_load *= power_of(this_cpu);
  2169. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  2170. balanced = this_eff_load <= prev_eff_load;
  2171. } else
  2172. balanced = true;
  2173. /*
  2174. * If the currently running task will sleep within
  2175. * a reasonable amount of time then attract this newly
  2176. * woken task:
  2177. */
  2178. if (sync && balanced)
  2179. return 1;
  2180. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  2181. tl_per_task = cpu_avg_load_per_task(this_cpu);
  2182. if (balanced ||
  2183. (this_load <= load &&
  2184. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  2185. /*
  2186. * This domain has SD_WAKE_AFFINE and
  2187. * p is cache cold in this domain, and
  2188. * there is no bad imbalance.
  2189. */
  2190. schedstat_inc(sd, ttwu_move_affine);
  2191. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  2192. return 1;
  2193. }
  2194. return 0;
  2195. }
  2196. /*
  2197. * find_idlest_group finds and returns the least busy CPU group within the
  2198. * domain.
  2199. */
  2200. static struct sched_group *
  2201. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  2202. int this_cpu, int load_idx)
  2203. {
  2204. struct sched_group *idlest = NULL, *group = sd->groups;
  2205. unsigned long min_load = ULONG_MAX, this_load = 0;
  2206. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  2207. do {
  2208. unsigned long load, avg_load;
  2209. int local_group;
  2210. int i;
  2211. /* Skip over this group if it has no CPUs allowed */
  2212. if (!cpumask_intersects(sched_group_cpus(group),
  2213. tsk_cpus_allowed(p)))
  2214. continue;
  2215. local_group = cpumask_test_cpu(this_cpu,
  2216. sched_group_cpus(group));
  2217. /* Tally up the load of all CPUs in the group */
  2218. avg_load = 0;
  2219. for_each_cpu(i, sched_group_cpus(group)) {
  2220. /* Bias balancing toward cpus of our domain */
  2221. if (local_group)
  2222. load = source_load(i, load_idx);
  2223. else
  2224. load = target_load(i, load_idx);
  2225. avg_load += load;
  2226. }
  2227. /* Adjust by relative CPU power of the group */
  2228. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  2229. if (local_group) {
  2230. this_load = avg_load;
  2231. } else if (avg_load < min_load) {
  2232. min_load = avg_load;
  2233. idlest = group;
  2234. }
  2235. } while (group = group->next, group != sd->groups);
  2236. if (!idlest || 100*this_load < imbalance*min_load)
  2237. return NULL;
  2238. return idlest;
  2239. }
  2240. /*
  2241. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  2242. */
  2243. static int
  2244. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  2245. {
  2246. unsigned long load, min_load = ULONG_MAX;
  2247. int idlest = -1;
  2248. int i;
  2249. /* Check if we have any choice: */
  2250. if (group->group_weight == 1)
  2251. return cpumask_first(sched_group_cpus(group));
  2252. /* Traverse only the allowed CPUs */
  2253. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  2254. load = weighted_cpuload(i);
  2255. if (load < min_load || (load == min_load && i == this_cpu)) {
  2256. min_load = load;
  2257. idlest = i;
  2258. }
  2259. }
  2260. return idlest;
  2261. }
  2262. /*
  2263. * Try and locate an idle CPU in the sched_domain.
  2264. */
  2265. static int select_idle_sibling(struct task_struct *p, int target)
  2266. {
  2267. struct sched_domain *sd;
  2268. struct sched_group *sg;
  2269. int i = task_cpu(p);
  2270. if (idle_cpu(target))
  2271. return target;
  2272. /*
  2273. * If the prevous cpu is cache affine and idle, don't be stupid.
  2274. */
  2275. if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
  2276. return i;
  2277. if (!sysctl_sched_wake_to_idle &&
  2278. !(current->flags & PF_WAKE_UP_IDLE) &&
  2279. !(p->flags & PF_WAKE_UP_IDLE))
  2280. return target;
  2281. /*
  2282. * Otherwise, iterate the domains and find an elegible idle cpu.
  2283. */
  2284. sd = rcu_dereference(per_cpu(sd_llc, target));
  2285. for_each_lower_domain(sd) {
  2286. sg = sd->groups;
  2287. do {
  2288. if (!cpumask_intersects(sched_group_cpus(sg),
  2289. tsk_cpus_allowed(p)))
  2290. goto next;
  2291. for_each_cpu(i, sched_group_cpus(sg)) {
  2292. if (i == target || !idle_cpu(i))
  2293. goto next;
  2294. }
  2295. target = cpumask_first_and(sched_group_cpus(sg),
  2296. tsk_cpus_allowed(p));
  2297. goto done;
  2298. next:
  2299. sg = sg->next;
  2300. } while (sg != sd->groups);
  2301. }
  2302. done:
  2303. return target;
  2304. }
  2305. /*
  2306. * sched_balance_self: balance the current task (running on cpu) in domains
  2307. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  2308. * SD_BALANCE_EXEC.
  2309. *
  2310. * Balance, ie. select the least loaded group.
  2311. *
  2312. * Returns the target CPU number, or the same CPU if no balancing is needed.
  2313. *
  2314. * preempt must be disabled.
  2315. */
  2316. static int
  2317. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  2318. {
  2319. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  2320. int cpu = smp_processor_id();
  2321. int prev_cpu = task_cpu(p);
  2322. int new_cpu = cpu;
  2323. int want_affine = 0;
  2324. int want_sd = 1;
  2325. int sync = wake_flags & WF_SYNC;
  2326. if (p->nr_cpus_allowed == 1)
  2327. return prev_cpu;
  2328. if (sd_flag & SD_BALANCE_WAKE) {
  2329. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  2330. want_affine = 1;
  2331. new_cpu = prev_cpu;
  2332. }
  2333. rcu_read_lock();
  2334. for_each_domain(cpu, tmp) {
  2335. if (!(tmp->flags & SD_LOAD_BALANCE))
  2336. continue;
  2337. /*
  2338. * If power savings logic is enabled for a domain, see if we
  2339. * are not overloaded, if so, don't balance wider.
  2340. */
  2341. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  2342. unsigned long power = 0;
  2343. unsigned long nr_running = 0;
  2344. unsigned long capacity;
  2345. int i;
  2346. for_each_cpu(i, sched_domain_span(tmp)) {
  2347. power += power_of(i);
  2348. nr_running += cpu_rq(i)->cfs.nr_running;
  2349. }
  2350. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  2351. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  2352. nr_running /= 2;
  2353. if (nr_running < capacity)
  2354. want_sd = 0;
  2355. }
  2356. /*
  2357. * If both cpu and prev_cpu are part of this domain,
  2358. * cpu is a valid SD_WAKE_AFFINE target.
  2359. */
  2360. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  2361. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  2362. affine_sd = tmp;
  2363. want_affine = 0;
  2364. }
  2365. if (!want_sd && !want_affine)
  2366. break;
  2367. if (!(tmp->flags & sd_flag))
  2368. continue;
  2369. if (want_sd)
  2370. sd = tmp;
  2371. }
  2372. if (affine_sd) {
  2373. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  2374. prev_cpu = cpu;
  2375. new_cpu = select_idle_sibling(p, prev_cpu);
  2376. goto unlock;
  2377. }
  2378. while (sd) {
  2379. int load_idx = sd->forkexec_idx;
  2380. struct sched_group *group;
  2381. int weight;
  2382. if (!(sd->flags & sd_flag)) {
  2383. sd = sd->child;
  2384. continue;
  2385. }
  2386. if (sd_flag & SD_BALANCE_WAKE)
  2387. load_idx = sd->wake_idx;
  2388. group = find_idlest_group(sd, p, cpu, load_idx);
  2389. if (!group) {
  2390. sd = sd->child;
  2391. continue;
  2392. }
  2393. new_cpu = find_idlest_cpu(group, p, cpu);
  2394. if (new_cpu == -1 || new_cpu == cpu) {
  2395. /* Now try balancing at a lower domain level of cpu */
  2396. sd = sd->child;
  2397. continue;
  2398. }
  2399. /* Now try balancing at a lower domain level of new_cpu */
  2400. cpu = new_cpu;
  2401. weight = sd->span_weight;
  2402. sd = NULL;
  2403. for_each_domain(cpu, tmp) {
  2404. if (weight <= tmp->span_weight)
  2405. break;
  2406. if (tmp->flags & sd_flag)
  2407. sd = tmp;
  2408. }
  2409. /* while loop will break here if sd == NULL */
  2410. }
  2411. unlock:
  2412. rcu_read_unlock();
  2413. return new_cpu;
  2414. }
  2415. #endif /* CONFIG_SMP */
  2416. static unsigned long
  2417. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  2418. {
  2419. unsigned long gran = sysctl_sched_wakeup_granularity;
  2420. /*
  2421. * Since its curr running now, convert the gran from real-time
  2422. * to virtual-time in his units.
  2423. *
  2424. * By using 'se' instead of 'curr' we penalize light tasks, so
  2425. * they get preempted easier. That is, if 'se' < 'curr' then
  2426. * the resulting gran will be larger, therefore penalizing the
  2427. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  2428. * be smaller, again penalizing the lighter task.
  2429. *
  2430. * This is especially important for buddies when the leftmost
  2431. * task is higher priority than the buddy.
  2432. */
  2433. return calc_delta_fair(gran, se);
  2434. }
  2435. /*
  2436. * Should 'se' preempt 'curr'.
  2437. *
  2438. * |s1
  2439. * |s2
  2440. * |s3
  2441. * g
  2442. * |<--->|c
  2443. *
  2444. * w(c, s1) = -1
  2445. * w(c, s2) = 0
  2446. * w(c, s3) = 1
  2447. *
  2448. */
  2449. static int
  2450. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  2451. {
  2452. s64 gran, vdiff = curr->vruntime - se->vruntime;
  2453. if (vdiff <= 0)
  2454. return -1;
  2455. gran = wakeup_gran(curr, se);
  2456. if (vdiff > gran)
  2457. return 1;
  2458. return 0;
  2459. }
  2460. static void set_last_buddy(struct sched_entity *se)
  2461. {
  2462. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2463. return;
  2464. for_each_sched_entity(se)
  2465. cfs_rq_of(se)->last = se;
  2466. }
  2467. static void set_next_buddy(struct sched_entity *se)
  2468. {
  2469. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2470. return;
  2471. for_each_sched_entity(se)
  2472. cfs_rq_of(se)->next = se;
  2473. }
  2474. static void set_skip_buddy(struct sched_entity *se)
  2475. {
  2476. for_each_sched_entity(se)
  2477. cfs_rq_of(se)->skip = se;
  2478. }
  2479. /*
  2480. * Preempt the current task with a newly woken task if needed:
  2481. */
  2482. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2483. {
  2484. struct task_struct *curr = rq->curr;
  2485. struct sched_entity *se = &curr->se, *pse = &p->se;
  2486. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2487. int scale = cfs_rq->nr_running >= sched_nr_latency;
  2488. int next_buddy_marked = 0;
  2489. if (unlikely(se == pse))
  2490. return;
  2491. /*
  2492. * This is possible from callers such as move_task(), in which we
  2493. * unconditionally check_prempt_curr() after an enqueue (which may have
  2494. * lead to a throttle). This both saves work and prevents false
  2495. * next-buddy nomination below.
  2496. */
  2497. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  2498. return;
  2499. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  2500. set_next_buddy(pse);
  2501. next_buddy_marked = 1;
  2502. }
  2503. /*
  2504. * We can come here with TIF_NEED_RESCHED already set from new task
  2505. * wake up path.
  2506. *
  2507. * Note: this also catches the edge-case of curr being in a throttled
  2508. * group (e.g. via set_curr_task), since update_curr() (in the
  2509. * enqueue of curr) will have resulted in resched being set. This
  2510. * prevents us from potentially nominating it as a false LAST_BUDDY
  2511. * below.
  2512. */
  2513. if (test_tsk_need_resched(curr))
  2514. return;
  2515. /* Idle tasks are by definition preempted by non-idle tasks. */
  2516. if (unlikely(curr->policy == SCHED_IDLE) &&
  2517. likely(p->policy != SCHED_IDLE))
  2518. goto preempt;
  2519. /*
  2520. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  2521. * is driven by the tick):
  2522. */
  2523. if (unlikely(p->policy != SCHED_NORMAL))
  2524. return;
  2525. find_matching_se(&se, &pse);
  2526. update_curr(cfs_rq_of(se));
  2527. BUG_ON(!pse);
  2528. if (wakeup_preempt_entity(se, pse) == 1) {
  2529. /*
  2530. * Bias pick_next to pick the sched entity that is
  2531. * triggering this preemption.
  2532. */
  2533. if (!next_buddy_marked)
  2534. set_next_buddy(pse);
  2535. goto preempt;
  2536. }
  2537. return;
  2538. preempt:
  2539. resched_task(curr);
  2540. /*
  2541. * Only set the backward buddy when the current task is still
  2542. * on the rq. This can happen when a wakeup gets interleaved
  2543. * with schedule on the ->pre_schedule() or idle_balance()
  2544. * point, either of which can * drop the rq lock.
  2545. *
  2546. * Also, during early boot the idle thread is in the fair class,
  2547. * for obvious reasons its a bad idea to schedule back to it.
  2548. */
  2549. if (unlikely(!se->on_rq || curr == rq->idle))
  2550. return;
  2551. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  2552. set_last_buddy(se);
  2553. }
  2554. static struct task_struct *pick_next_task_fair(struct rq *rq)
  2555. {
  2556. struct task_struct *p;
  2557. struct cfs_rq *cfs_rq = &rq->cfs;
  2558. struct sched_entity *se;
  2559. if (!cfs_rq->nr_running)
  2560. return NULL;
  2561. do {
  2562. se = pick_next_entity(cfs_rq);
  2563. set_next_entity(cfs_rq, se);
  2564. cfs_rq = group_cfs_rq(se);
  2565. } while (cfs_rq);
  2566. p = task_of(se);
  2567. if (hrtick_enabled(rq))
  2568. hrtick_start_fair(rq, p);
  2569. return p;
  2570. }
  2571. /*
  2572. * Account for a descheduled task:
  2573. */
  2574. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  2575. {
  2576. struct sched_entity *se = &prev->se;
  2577. struct cfs_rq *cfs_rq;
  2578. for_each_sched_entity(se) {
  2579. cfs_rq = cfs_rq_of(se);
  2580. put_prev_entity(cfs_rq, se);
  2581. }
  2582. }
  2583. /*
  2584. * sched_yield() is very simple
  2585. *
  2586. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  2587. */
  2588. static void yield_task_fair(struct rq *rq)
  2589. {
  2590. struct task_struct *curr = rq->curr;
  2591. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2592. struct sched_entity *se = &curr->se;
  2593. /*
  2594. * Are we the only task in the tree?
  2595. */
  2596. if (unlikely(rq->nr_running == 1))
  2597. return;
  2598. clear_buddies(cfs_rq, se);
  2599. if (curr->policy != SCHED_BATCH) {
  2600. update_rq_clock(rq);
  2601. /*
  2602. * Update run-time statistics of the 'current'.
  2603. */
  2604. update_curr(cfs_rq);
  2605. /*
  2606. * Tell update_rq_clock() that we've just updated,
  2607. * so we don't do microscopic update in schedule()
  2608. * and double the fastpath cost.
  2609. */
  2610. rq->skip_clock_update = 1;
  2611. }
  2612. set_skip_buddy(se);
  2613. }
  2614. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  2615. {
  2616. struct sched_entity *se = &p->se;
  2617. /* throttled hierarchies are not runnable */
  2618. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  2619. return false;
  2620. /* Tell the scheduler that we'd really like pse to run next. */
  2621. set_next_buddy(se);
  2622. yield_task_fair(rq);
  2623. return true;
  2624. }
  2625. #ifdef CONFIG_SMP
  2626. /**************************************************
  2627. * Fair scheduling class load-balancing methods:
  2628. */
  2629. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  2630. #define LBF_ALL_PINNED 0x01
  2631. #define LBF_NEED_BREAK 0x02
  2632. struct lb_env {
  2633. struct sched_domain *sd;
  2634. int src_cpu;
  2635. struct rq *src_rq;
  2636. int dst_cpu;
  2637. struct rq *dst_rq;
  2638. enum cpu_idle_type idle;
  2639. long load_move;
  2640. unsigned int flags;
  2641. unsigned int loop;
  2642. unsigned int loop_break;
  2643. unsigned int loop_max;
  2644. };
  2645. static DEFINE_PER_CPU(bool, dbs_boost_needed);
  2646. /*
  2647. * move_task - move a task from one runqueue to another runqueue.
  2648. * Both runqueues must be locked.
  2649. */
  2650. static void move_task(struct task_struct *p, struct lb_env *env)
  2651. {
  2652. deactivate_task(env->src_rq, p, 0);
  2653. set_task_cpu(p, env->dst_cpu);
  2654. activate_task(env->dst_rq, p, 0);
  2655. check_preempt_curr(env->dst_rq, p, 0);
  2656. if (task_notify_on_migrate(p))
  2657. per_cpu(dbs_boost_needed, env->dst_cpu) = true;
  2658. }
  2659. /*
  2660. * Is this task likely cache-hot:
  2661. */
  2662. static int
  2663. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  2664. {
  2665. s64 delta;
  2666. if (p->sched_class != &fair_sched_class)
  2667. return 0;
  2668. if (unlikely(p->policy == SCHED_IDLE))
  2669. return 0;
  2670. /*
  2671. * Buddy candidates are cache hot:
  2672. */
  2673. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  2674. (&p->se == cfs_rq_of(&p->se)->next ||
  2675. &p->se == cfs_rq_of(&p->se)->last))
  2676. return 1;
  2677. if (sysctl_sched_migration_cost == -1)
  2678. return 1;
  2679. if (sysctl_sched_migration_cost == 0)
  2680. return 0;
  2681. delta = now - p->se.exec_start;
  2682. return delta < (s64)sysctl_sched_migration_cost;
  2683. }
  2684. /*
  2685. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2686. */
  2687. static
  2688. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  2689. {
  2690. int tsk_cache_hot = 0;
  2691. /*
  2692. * We do not migrate tasks that are:
  2693. * 1) running (obviously), or
  2694. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2695. * 3) are cache-hot on their current CPU.
  2696. */
  2697. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  2698. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  2699. return 0;
  2700. }
  2701. env->flags &= ~LBF_ALL_PINNED;
  2702. if (task_running(env->src_rq, p)) {
  2703. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  2704. return 0;
  2705. }
  2706. /*
  2707. * Aggressive migration if:
  2708. * 1) task is cache cold, or
  2709. * 2) too many balance attempts have failed.
  2710. */
  2711. tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
  2712. if (!tsk_cache_hot ||
  2713. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  2714. #ifdef CONFIG_SCHEDSTATS
  2715. if (tsk_cache_hot) {
  2716. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  2717. schedstat_inc(p, se.statistics.nr_forced_migrations);
  2718. }
  2719. #endif
  2720. return 1;
  2721. }
  2722. if (tsk_cache_hot) {
  2723. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  2724. return 0;
  2725. }
  2726. return 1;
  2727. }
  2728. /*
  2729. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2730. * part of active balancing operations within "domain".
  2731. * Returns 1 if successful and 0 otherwise.
  2732. *
  2733. * Called with both runqueues locked.
  2734. */
  2735. static int move_one_task(struct lb_env *env)
  2736. {
  2737. struct task_struct *p, *n;
  2738. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  2739. if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
  2740. continue;
  2741. if (!can_migrate_task(p, env))
  2742. continue;
  2743. move_task(p, env);
  2744. /*
  2745. * Right now, this is only the second place move_task()
  2746. * is called, so we can safely collect move_task()
  2747. * stats here rather than inside move_task().
  2748. */
  2749. schedstat_inc(env->sd, lb_gained[env->idle]);
  2750. return 1;
  2751. }
  2752. return 0;
  2753. }
  2754. static unsigned long task_h_load(struct task_struct *p);
  2755. static const unsigned int sched_nr_migrate_break = 32;
  2756. /*
  2757. * move_tasks tries to move up to load_move weighted load from busiest to
  2758. * this_rq, as part of a balancing operation within domain "sd".
  2759. * Returns 1 if successful and 0 otherwise.
  2760. *
  2761. * Called with both runqueues locked.
  2762. */
  2763. static int move_tasks(struct lb_env *env)
  2764. {
  2765. struct list_head *tasks = &env->src_rq->cfs_tasks;
  2766. struct task_struct *p;
  2767. unsigned long load;
  2768. int pulled = 0;
  2769. if (env->load_move <= 0)
  2770. return 0;
  2771. while (!list_empty(tasks)) {
  2772. p = list_first_entry(tasks, struct task_struct, se.group_node);
  2773. env->loop++;
  2774. /* We've more or less seen every task there is, call it quits */
  2775. if (env->loop > env->loop_max)
  2776. break;
  2777. /* take a breather every nr_migrate tasks */
  2778. if (env->loop > env->loop_break) {
  2779. env->loop_break += sched_nr_migrate_break;
  2780. env->flags |= LBF_NEED_BREAK;
  2781. break;
  2782. }
  2783. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  2784. goto next;
  2785. load = task_h_load(p);
  2786. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  2787. goto next;
  2788. if ((load / 2) > env->load_move)
  2789. goto next;
  2790. if (!can_migrate_task(p, env))
  2791. goto next;
  2792. move_task(p, env);
  2793. pulled++;
  2794. env->load_move -= load;
  2795. #ifdef CONFIG_PREEMPT
  2796. /*
  2797. * NEWIDLE balancing is a source of latency, so preemptible
  2798. * kernels will stop after the first task is pulled to minimize
  2799. * the critical section.
  2800. */
  2801. if (env->idle == CPU_NEWLY_IDLE)
  2802. break;
  2803. #endif
  2804. /*
  2805. * We only want to steal up to the prescribed amount of
  2806. * weighted load.
  2807. */
  2808. if (env->load_move <= 0)
  2809. break;
  2810. continue;
  2811. next:
  2812. list_move_tail(&p->se.group_node, tasks);
  2813. }
  2814. /*
  2815. * Right now, this is one of only two places move_task() is called,
  2816. * so we can safely collect move_task() stats here rather than
  2817. * inside move_task().
  2818. */
  2819. schedstat_add(env->sd, lb_gained[env->idle], pulled);
  2820. return pulled;
  2821. }
  2822. #ifdef CONFIG_FAIR_GROUP_SCHED
  2823. /*
  2824. * update tg->load_weight by folding this cpu's load_avg
  2825. */
  2826. static int update_shares_cpu(struct task_group *tg, int cpu)
  2827. {
  2828. struct cfs_rq *cfs_rq;
  2829. unsigned long flags;
  2830. struct rq *rq;
  2831. if (!tg->se[cpu])
  2832. return 0;
  2833. rq = cpu_rq(cpu);
  2834. cfs_rq = tg->cfs_rq[cpu];
  2835. raw_spin_lock_irqsave(&rq->lock, flags);
  2836. update_rq_clock(rq);
  2837. update_cfs_load(cfs_rq, 1);
  2838. /*
  2839. * We need to update shares after updating tg->load_weight in
  2840. * order to adjust the weight of groups with long running tasks.
  2841. */
  2842. update_cfs_shares(cfs_rq);
  2843. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2844. return 0;
  2845. }
  2846. static void update_shares(int cpu)
  2847. {
  2848. struct cfs_rq *cfs_rq;
  2849. struct rq *rq = cpu_rq(cpu);
  2850. rcu_read_lock();
  2851. /*
  2852. * Iterates the task_group tree in a bottom up fashion, see
  2853. * list_add_leaf_cfs_rq() for details.
  2854. */
  2855. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2856. /* throttled entities do not contribute to load */
  2857. if (throttled_hierarchy(cfs_rq))
  2858. continue;
  2859. update_shares_cpu(cfs_rq->tg, cpu);
  2860. }
  2861. rcu_read_unlock();
  2862. }
  2863. /*
  2864. * Compute the cpu's hierarchical load factor for each task group.
  2865. * This needs to be done in a top-down fashion because the load of a child
  2866. * group is a fraction of its parents load.
  2867. */
  2868. static int tg_load_down(struct task_group *tg, void *data)
  2869. {
  2870. unsigned long load;
  2871. long cpu = (long)data;
  2872. if (!tg->parent) {
  2873. load = cpu_rq(cpu)->load.weight;
  2874. } else {
  2875. load = tg->parent->cfs_rq[cpu]->h_load;
  2876. load *= tg->se[cpu]->load.weight;
  2877. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  2878. }
  2879. tg->cfs_rq[cpu]->h_load = load;
  2880. return 0;
  2881. }
  2882. static void update_h_load(long cpu)
  2883. {
  2884. rcu_read_lock();
  2885. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  2886. rcu_read_unlock();
  2887. }
  2888. static unsigned long task_h_load(struct task_struct *p)
  2889. {
  2890. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  2891. unsigned long load;
  2892. load = p->se.load.weight;
  2893. load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
  2894. return load;
  2895. }
  2896. #else
  2897. static inline void update_shares(int cpu)
  2898. {
  2899. }
  2900. static inline void update_h_load(long cpu)
  2901. {
  2902. }
  2903. static unsigned long task_h_load(struct task_struct *p)
  2904. {
  2905. return p->se.load.weight;
  2906. }
  2907. #endif
  2908. /********** Helpers for find_busiest_group ************************/
  2909. /*
  2910. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2911. * during load balancing.
  2912. */
  2913. struct sd_lb_stats {
  2914. struct sched_group *busiest; /* Busiest group in this sd */
  2915. struct sched_group *this; /* Local group in this sd */
  2916. unsigned long total_load; /* Total load of all groups in sd */
  2917. unsigned long total_pwr; /* Total power of all groups in sd */
  2918. unsigned long avg_load; /* Average load across all groups in sd */
  2919. /** Statistics of this group */
  2920. unsigned long this_load;
  2921. unsigned long this_load_per_task;
  2922. unsigned long this_nr_running;
  2923. unsigned long this_has_capacity;
  2924. unsigned int this_idle_cpus;
  2925. /* Statistics of the busiest group */
  2926. unsigned int busiest_idle_cpus;
  2927. unsigned long max_load;
  2928. unsigned long busiest_load_per_task;
  2929. unsigned long busiest_nr_running;
  2930. unsigned long busiest_group_capacity;
  2931. unsigned long busiest_has_capacity;
  2932. unsigned int busiest_group_weight;
  2933. int group_imb; /* Is there imbalance in this sd */
  2934. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2935. int power_savings_balance; /* Is powersave balance needed for this sd */
  2936. struct sched_group *group_min; /* Least loaded group in sd */
  2937. struct sched_group *group_leader; /* Group which relieves group_min */
  2938. unsigned long min_load_per_task; /* load_per_task in group_min */
  2939. unsigned long leader_nr_running; /* Nr running of group_leader */
  2940. unsigned long min_nr_running; /* Nr running of group_min */
  2941. #endif
  2942. };
  2943. /*
  2944. * sg_lb_stats - stats of a sched_group required for load_balancing
  2945. */
  2946. struct sg_lb_stats {
  2947. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2948. unsigned long group_load; /* Total load over the CPUs of the group */
  2949. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2950. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2951. unsigned long group_capacity;
  2952. unsigned long idle_cpus;
  2953. unsigned long group_weight;
  2954. int group_imb; /* Is there an imbalance in the group ? */
  2955. int group_has_capacity; /* Is there extra capacity in the group? */
  2956. };
  2957. /**
  2958. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2959. * @sd: The sched_domain whose load_idx is to be obtained.
  2960. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2961. */
  2962. static inline int get_sd_load_idx(struct sched_domain *sd,
  2963. enum cpu_idle_type idle)
  2964. {
  2965. int load_idx;
  2966. switch (idle) {
  2967. case CPU_NOT_IDLE:
  2968. load_idx = sd->busy_idx;
  2969. break;
  2970. case CPU_NEWLY_IDLE:
  2971. load_idx = sd->newidle_idx;
  2972. break;
  2973. default:
  2974. load_idx = sd->idle_idx;
  2975. break;
  2976. }
  2977. return load_idx;
  2978. }
  2979. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2980. /**
  2981. * init_sd_power_savings_stats - Initialize power savings statistics for
  2982. * the given sched_domain, during load balancing.
  2983. *
  2984. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2985. * @sds: Variable containing the statistics for sd.
  2986. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2987. */
  2988. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2989. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2990. {
  2991. /*
  2992. * Busy processors will not participate in power savings
  2993. * balance.
  2994. */
  2995. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2996. sds->power_savings_balance = 0;
  2997. else {
  2998. sds->power_savings_balance = 1;
  2999. sds->min_nr_running = ULONG_MAX;
  3000. sds->leader_nr_running = 0;
  3001. }
  3002. }
  3003. /**
  3004. * update_sd_power_savings_stats - Update the power saving stats for a
  3005. * sched_domain while performing load balancing.
  3006. *
  3007. * @group: sched_group belonging to the sched_domain under consideration.
  3008. * @sds: Variable containing the statistics of the sched_domain
  3009. * @local_group: Does group contain the CPU for which we're performing
  3010. * load balancing ?
  3011. * @sgs: Variable containing the statistics of the group.
  3012. */
  3013. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3014. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3015. {
  3016. if (!sds->power_savings_balance)
  3017. return;
  3018. /*
  3019. * If the local group is idle or completely loaded
  3020. * no need to do power savings balance at this domain
  3021. */
  3022. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  3023. !sds->this_nr_running))
  3024. sds->power_savings_balance = 0;
  3025. /*
  3026. * If a group is already running at full capacity or idle,
  3027. * don't include that group in power savings calculations
  3028. */
  3029. if (!sds->power_savings_balance ||
  3030. sgs->sum_nr_running >= sgs->group_capacity ||
  3031. !sgs->sum_nr_running)
  3032. return;
  3033. /*
  3034. * Calculate the group which has the least non-idle load.
  3035. * This is the group from where we need to pick up the load
  3036. * for saving power
  3037. */
  3038. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3039. (sgs->sum_nr_running == sds->min_nr_running &&
  3040. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3041. sds->group_min = group;
  3042. sds->min_nr_running = sgs->sum_nr_running;
  3043. sds->min_load_per_task = sgs->sum_weighted_load /
  3044. sgs->sum_nr_running;
  3045. }
  3046. /*
  3047. * Calculate the group which is almost near its
  3048. * capacity but still has some space to pick up some load
  3049. * from other group and save more power
  3050. */
  3051. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3052. return;
  3053. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3054. (sgs->sum_nr_running == sds->leader_nr_running &&
  3055. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3056. sds->group_leader = group;
  3057. sds->leader_nr_running = sgs->sum_nr_running;
  3058. }
  3059. }
  3060. /**
  3061. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3062. * @sds: Variable containing the statistics of the sched_domain
  3063. * under consideration.
  3064. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3065. * @imbalance: Variable to store the imbalance.
  3066. *
  3067. * Description:
  3068. * Check if we have potential to perform some power-savings balance.
  3069. * If yes, set the busiest group to be the least loaded group in the
  3070. * sched_domain, so that it's CPUs can be put to idle.
  3071. *
  3072. * Returns 1 if there is potential to perform power-savings balance.
  3073. * Else returns 0.
  3074. */
  3075. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3076. int this_cpu, unsigned long *imbalance)
  3077. {
  3078. if (!sds->power_savings_balance)
  3079. return 0;
  3080. if (sds->this != sds->group_leader ||
  3081. sds->group_leader == sds->group_min)
  3082. return 0;
  3083. *imbalance = sds->min_load_per_task;
  3084. sds->busiest = sds->group_min;
  3085. return 1;
  3086. }
  3087. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3088. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3089. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3090. {
  3091. return;
  3092. }
  3093. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3094. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3095. {
  3096. return;
  3097. }
  3098. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3099. int this_cpu, unsigned long *imbalance)
  3100. {
  3101. return 0;
  3102. }
  3103. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3104. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3105. {
  3106. return SCHED_POWER_SCALE;
  3107. }
  3108. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3109. {
  3110. return default_scale_freq_power(sd, cpu);
  3111. }
  3112. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3113. {
  3114. unsigned long weight = sd->span_weight;
  3115. unsigned long smt_gain = sd->smt_gain;
  3116. smt_gain /= weight;
  3117. return smt_gain;
  3118. }
  3119. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3120. {
  3121. return default_scale_smt_power(sd, cpu);
  3122. }
  3123. unsigned long scale_rt_power(int cpu)
  3124. {
  3125. struct rq *rq = cpu_rq(cpu);
  3126. u64 total, available, age_stamp, avg;
  3127. /*
  3128. * Since we're reading these variables without serialization make sure
  3129. * we read them once before doing sanity checks on them.
  3130. */
  3131. age_stamp = ACCESS_ONCE(rq->age_stamp);
  3132. avg = ACCESS_ONCE(rq->rt_avg);
  3133. total = sched_avg_period() + (rq->clock - age_stamp);
  3134. if (unlikely(total < avg)) {
  3135. /* Ensures that power won't end up being negative */
  3136. available = 0;
  3137. } else {
  3138. available = total - avg;
  3139. }
  3140. if (unlikely((s64)total < SCHED_POWER_SCALE))
  3141. total = SCHED_POWER_SCALE;
  3142. total >>= SCHED_POWER_SHIFT;
  3143. return div_u64(available, total);
  3144. }
  3145. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3146. {
  3147. unsigned long weight = sd->span_weight;
  3148. unsigned long power = SCHED_POWER_SCALE;
  3149. struct sched_group *sdg = sd->groups;
  3150. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3151. if (sched_feat(ARCH_POWER))
  3152. power *= arch_scale_smt_power(sd, cpu);
  3153. else
  3154. power *= default_scale_smt_power(sd, cpu);
  3155. power >>= SCHED_POWER_SHIFT;
  3156. }
  3157. sdg->sgp->power_orig = power;
  3158. if (sched_feat(ARCH_POWER))
  3159. power *= arch_scale_freq_power(sd, cpu);
  3160. else
  3161. power *= default_scale_freq_power(sd, cpu);
  3162. power >>= SCHED_POWER_SHIFT;
  3163. power *= scale_rt_power(cpu);
  3164. power >>= SCHED_POWER_SHIFT;
  3165. if (!power)
  3166. power = 1;
  3167. cpu_rq(cpu)->cpu_power = power;
  3168. sdg->sgp->power = power;
  3169. }
  3170. void update_group_power(struct sched_domain *sd, int cpu)
  3171. {
  3172. struct sched_domain *child = sd->child;
  3173. struct sched_group *group, *sdg = sd->groups;
  3174. unsigned long power;
  3175. unsigned long interval;
  3176. interval = msecs_to_jiffies(sd->balance_interval);
  3177. interval = clamp(interval, 1UL, max_load_balance_interval);
  3178. sdg->sgp->next_update = jiffies + interval;
  3179. if (!child) {
  3180. update_cpu_power(sd, cpu);
  3181. return;
  3182. }
  3183. power = 0;
  3184. if (child->flags & SD_OVERLAP) {
  3185. /*
  3186. * SD_OVERLAP domains cannot assume that child groups
  3187. * span the current group.
  3188. */
  3189. for_each_cpu(cpu, sched_group_cpus(sdg))
  3190. power += power_of(cpu);
  3191. } else {
  3192. /*
  3193. * !SD_OVERLAP domains can assume that child groups
  3194. * span the current group.
  3195. */
  3196. group = child->groups;
  3197. do {
  3198. power += group->sgp->power;
  3199. group = group->next;
  3200. } while (group != child->groups);
  3201. }
  3202. sdg->sgp->power_orig = sdg->sgp->power = power;
  3203. }
  3204. /*
  3205. * Try and fix up capacity for tiny siblings, this is needed when
  3206. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  3207. * which on its own isn't powerful enough.
  3208. *
  3209. * See update_sd_pick_busiest() and check_asym_packing().
  3210. */
  3211. static inline int
  3212. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  3213. {
  3214. /*
  3215. * Only siblings can have significantly less than SCHED_POWER_SCALE
  3216. */
  3217. if (!(sd->flags & SD_SHARE_CPUPOWER))
  3218. return 0;
  3219. /*
  3220. * If ~90% of the cpu_power is still there, we're good.
  3221. */
  3222. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  3223. return 1;
  3224. return 0;
  3225. }
  3226. /**
  3227. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3228. * @env: The load balancing environment.
  3229. * @group: sched_group whose statistics are to be updated.
  3230. * @this_cpu: Cpu for which load balance is currently performed.
  3231. * @idle: Idle status of this_cpu
  3232. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3233. * @local_group: Does group contain this_cpu.
  3234. * @balance: Should we balance.
  3235. * @sgs: variable to hold the statistics for this group.
  3236. */
  3237. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3238. struct sched_group *group, int this_cpu,
  3239. enum cpu_idle_type idle, int load_idx,
  3240. int local_group, const struct cpumask *cpus,
  3241. int *balance, struct sg_lb_stats *sgs)
  3242. {
  3243. unsigned long nr_running, max_nr_running, min_nr_running;
  3244. unsigned long load, max_cpu_load, min_cpu_load;
  3245. int i;
  3246. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3247. unsigned long avg_load_per_task = 0;
  3248. if (local_group)
  3249. balance_cpu = group_balance_cpu(group);
  3250. /* Tally up the load of all CPUs in the group */
  3251. max_cpu_load = 0;
  3252. min_cpu_load = ~0UL;
  3253. max_nr_running = 0;
  3254. min_nr_running = ~0UL;
  3255. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3256. struct rq *rq = cpu_rq(i);
  3257. nr_running = rq->nr_running;
  3258. /* Bias balancing toward cpus of our domain */
  3259. if (local_group) {
  3260. if (idle_cpu(i) && !first_idle_cpu &&
  3261. cpumask_test_cpu(i, sched_group_mask(group))) {
  3262. first_idle_cpu = 1;
  3263. balance_cpu = i;
  3264. }
  3265. load = target_load(i, load_idx);
  3266. } else {
  3267. load = source_load(i, load_idx);
  3268. if (load > max_cpu_load)
  3269. max_cpu_load = load;
  3270. if (min_cpu_load > load)
  3271. min_cpu_load = load;
  3272. if (nr_running > max_nr_running)
  3273. max_nr_running = nr_running;
  3274. if (min_nr_running > nr_running)
  3275. min_nr_running = nr_running;
  3276. }
  3277. sgs->group_load += load;
  3278. sgs->sum_nr_running += nr_running;
  3279. sgs->sum_weighted_load += weighted_cpuload(i);
  3280. if (idle_cpu(i))
  3281. sgs->idle_cpus++;
  3282. }
  3283. /*
  3284. * First idle cpu or the first cpu(busiest) in this sched group
  3285. * is eligible for doing load balancing at this and above
  3286. * domains. In the newly idle case, we will allow all the cpu's
  3287. * to do the newly idle load balance.
  3288. */
  3289. if (local_group) {
  3290. if (idle != CPU_NEWLY_IDLE) {
  3291. if (balance_cpu != this_cpu) {
  3292. *balance = 0;
  3293. return;
  3294. }
  3295. update_group_power(sd, this_cpu);
  3296. } else if (time_after_eq(jiffies, group->sgp->next_update))
  3297. update_group_power(sd, this_cpu);
  3298. }
  3299. /* Adjust by relative CPU power of the group */
  3300. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  3301. /*
  3302. * Consider the group unbalanced when the imbalance is larger
  3303. * than the average weight of a task.
  3304. *
  3305. * APZ: with cgroup the avg task weight can vary wildly and
  3306. * might not be a suitable number - should we keep a
  3307. * normalized nr_running number somewhere that negates
  3308. * the hierarchy?
  3309. */
  3310. if (sgs->sum_nr_running)
  3311. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  3312. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
  3313. (max_nr_running - min_nr_running) > 1)
  3314. sgs->group_imb = 1;
  3315. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  3316. SCHED_POWER_SCALE);
  3317. if (!sgs->group_capacity)
  3318. sgs->group_capacity = fix_small_capacity(sd, group);
  3319. sgs->group_weight = group->group_weight;
  3320. if (sgs->group_capacity > sgs->sum_nr_running)
  3321. sgs->group_has_capacity = 1;
  3322. }
  3323. /**
  3324. * update_sd_pick_busiest - return 1 on busiest group
  3325. * @env: The load balancing environment.
  3326. * @sds: sched_domain statistics
  3327. * @sg: sched_group candidate to be checked for being the busiest
  3328. * @sgs: sched_group statistics
  3329. *
  3330. * Determine if @sg is a busier group than the previously selected
  3331. * busiest group.
  3332. */
  3333. static bool update_sd_pick_busiest(struct sched_domain *sd,
  3334. struct sd_lb_stats *sds,
  3335. struct sched_group *sg,
  3336. struct sg_lb_stats *sgs,
  3337. int this_cpu)
  3338. {
  3339. if (sgs->avg_load <= sds->max_load)
  3340. return false;
  3341. if (sgs->sum_nr_running > sgs->group_capacity)
  3342. return true;
  3343. if (sgs->group_imb)
  3344. return true;
  3345. /*
  3346. * ASYM_PACKING needs to move all the work to the lowest
  3347. * numbered CPUs in the group, therefore mark all groups
  3348. * higher than ourself as busy.
  3349. */
  3350. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  3351. this_cpu < group_first_cpu(sg)) {
  3352. if (!sds->busiest)
  3353. return true;
  3354. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  3355. return true;
  3356. }
  3357. return false;
  3358. }
  3359. /**
  3360. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  3361. * @env: The load balancing environment.
  3362. * @balance: Should we balance.
  3363. * @sds: variable to hold the statistics for this sched_domain.
  3364. */
  3365. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3366. enum cpu_idle_type idle, const struct cpumask *cpus,
  3367. int *balance, struct sd_lb_stats *sds)
  3368. {
  3369. struct sched_domain *child = sd->child;
  3370. struct sched_group *sg = sd->groups;
  3371. struct sg_lb_stats sgs;
  3372. int load_idx, prefer_sibling = 0;
  3373. if (child && child->flags & SD_PREFER_SIBLING)
  3374. prefer_sibling = 1;
  3375. init_sd_power_savings_stats(sd, sds, idle);
  3376. load_idx = get_sd_load_idx(sd, idle);
  3377. do {
  3378. int local_group;
  3379. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  3380. memset(&sgs, 0, sizeof(sgs));
  3381. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  3382. local_group, cpus, balance, &sgs);
  3383. if (local_group && !(*balance))
  3384. return;
  3385. sds->total_load += sgs.group_load;
  3386. sds->total_pwr += sg->sgp->power;
  3387. /*
  3388. * In case the child domain prefers tasks go to siblings
  3389. * first, lower the sg capacity to one so that we'll try
  3390. * and move all the excess tasks away. We lower the capacity
  3391. * of a group only if the local group has the capacity to fit
  3392. * these excess tasks, i.e. nr_running < group_capacity. The
  3393. * extra check prevents the case where you always pull from the
  3394. * heaviest group when it is already under-utilized (possible
  3395. * with a large weight task outweighs the tasks on the system).
  3396. */
  3397. if (prefer_sibling && !local_group && sds->this_has_capacity)
  3398. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3399. if (local_group) {
  3400. sds->this_load = sgs.avg_load;
  3401. sds->this = sg;
  3402. sds->this_nr_running = sgs.sum_nr_running;
  3403. sds->this_load_per_task = sgs.sum_weighted_load;
  3404. sds->this_has_capacity = sgs.group_has_capacity;
  3405. sds->this_idle_cpus = sgs.idle_cpus;
  3406. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  3407. sds->max_load = sgs.avg_load;
  3408. sds->busiest = sg;
  3409. sds->busiest_nr_running = sgs.sum_nr_running;
  3410. sds->busiest_idle_cpus = sgs.idle_cpus;
  3411. sds->busiest_group_capacity = sgs.group_capacity;
  3412. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3413. sds->busiest_has_capacity = sgs.group_has_capacity;
  3414. sds->busiest_group_weight = sgs.group_weight;
  3415. sds->group_imb = sgs.group_imb;
  3416. }
  3417. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  3418. sg = sg->next;
  3419. } while (sg != sd->groups);
  3420. }
  3421. /**
  3422. * check_asym_packing - Check to see if the group is packed into the
  3423. * sched doman.
  3424. *
  3425. * This is primarily intended to used at the sibling level. Some
  3426. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  3427. * case of POWER7, it can move to lower SMT modes only when higher
  3428. * threads are idle. When in lower SMT modes, the threads will
  3429. * perform better since they share less core resources. Hence when we
  3430. * have idle threads, we want them to be the higher ones.
  3431. *
  3432. * This packing function is run on idle threads. It checks to see if
  3433. * the busiest CPU in this domain (core in the P7 case) has a higher
  3434. * CPU number than the packing function is being run on. Here we are
  3435. * assuming lower CPU number will be equivalent to lower a SMT thread
  3436. * number.
  3437. *
  3438. * Returns 1 when packing is required and a task should be moved to
  3439. * this CPU. The amount of the imbalance is returned in *imbalance.
  3440. *
  3441. * @env: The load balancing environment.
  3442. * @sds: Statistics of the sched_domain which is to be packed
  3443. */
  3444. static int check_asym_packing(struct sched_domain *sd,
  3445. struct sd_lb_stats *sds,
  3446. int this_cpu, unsigned long *imbalance)
  3447. {
  3448. int busiest_cpu;
  3449. if (!(sd->flags & SD_ASYM_PACKING))
  3450. return 0;
  3451. if (!sds->busiest)
  3452. return 0;
  3453. busiest_cpu = group_first_cpu(sds->busiest);
  3454. if (this_cpu > busiest_cpu)
  3455. return 0;
  3456. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
  3457. SCHED_POWER_SCALE);
  3458. return 1;
  3459. }
  3460. /**
  3461. * fix_small_imbalance - Calculate the minor imbalance that exists
  3462. * amongst the groups of a sched_domain, during
  3463. * load balancing.
  3464. * @env: The load balancing environment.
  3465. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3466. */
  3467. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3468. int this_cpu, unsigned long *imbalance)
  3469. {
  3470. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3471. unsigned int imbn = 2;
  3472. unsigned long scaled_busy_load_per_task;
  3473. if (sds->this_nr_running) {
  3474. sds->this_load_per_task /= sds->this_nr_running;
  3475. if (sds->busiest_load_per_task >
  3476. sds->this_load_per_task)
  3477. imbn = 1;
  3478. } else
  3479. sds->this_load_per_task =
  3480. cpu_avg_load_per_task(this_cpu);
  3481. scaled_busy_load_per_task = sds->busiest_load_per_task
  3482. * SCHED_POWER_SCALE;
  3483. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  3484. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  3485. (scaled_busy_load_per_task * imbn)) {
  3486. *imbalance = sds->busiest_load_per_task;
  3487. return;
  3488. }
  3489. /*
  3490. * OK, we don't have enough imbalance to justify moving tasks,
  3491. * however we may be able to increase total CPU power used by
  3492. * moving them.
  3493. */
  3494. pwr_now += sds->busiest->sgp->power *
  3495. min(sds->busiest_load_per_task, sds->max_load);
  3496. pwr_now += sds->this->sgp->power *
  3497. min(sds->this_load_per_task, sds->this_load);
  3498. pwr_now /= SCHED_POWER_SCALE;
  3499. /* Amount of load we'd subtract */
  3500. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3501. sds->busiest->sgp->power;
  3502. if (sds->max_load > tmp)
  3503. pwr_move += sds->busiest->sgp->power *
  3504. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3505. /* Amount of load we'd add */
  3506. if (sds->max_load * sds->busiest->sgp->power <
  3507. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  3508. tmp = (sds->max_load * sds->busiest->sgp->power) /
  3509. sds->this->sgp->power;
  3510. else
  3511. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3512. sds->this->sgp->power;
  3513. pwr_move += sds->this->sgp->power *
  3514. min(sds->this_load_per_task, sds->this_load + tmp);
  3515. pwr_move /= SCHED_POWER_SCALE;
  3516. /* Move if we gain throughput */
  3517. if (pwr_move > pwr_now)
  3518. *imbalance = sds->busiest_load_per_task;
  3519. }
  3520. /**
  3521. * calculate_imbalance - Calculate the amount of imbalance present within the
  3522. * groups of a given sched_domain during load balance.
  3523. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3524. * @this_cpu: Cpu for which currently load balance is being performed.
  3525. * @imbalance: The variable to store the imbalance.
  3526. */
  3527. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3528. unsigned long *imbalance)
  3529. {
  3530. unsigned long max_pull, load_above_capacity = ~0UL;
  3531. sds->busiest_load_per_task /= sds->busiest_nr_running;
  3532. if (sds->group_imb) {
  3533. sds->busiest_load_per_task =
  3534. min(sds->busiest_load_per_task, sds->avg_load);
  3535. }
  3536. /*
  3537. * In the presence of smp nice balancing, certain scenarios can have
  3538. * max load less than avg load(as we skip the groups at or below
  3539. * its cpu_power, while calculating max_load..)
  3540. */
  3541. if (sds->max_load < sds->avg_load) {
  3542. *imbalance = 0;
  3543. return fix_small_imbalance(sds, this_cpu, imbalance);
  3544. }
  3545. if (!sds->group_imb) {
  3546. /*
  3547. * Don't want to pull so many tasks that a group would go idle.
  3548. */
  3549. load_above_capacity = (sds->busiest_nr_running -
  3550. sds->busiest_group_capacity);
  3551. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  3552. load_above_capacity /= sds->busiest->sgp->power;
  3553. }
  3554. /*
  3555. * We're trying to get all the cpus to the average_load, so we don't
  3556. * want to push ourselves above the average load, nor do we wish to
  3557. * reduce the max loaded cpu below the average load. At the same time,
  3558. * we also don't want to reduce the group load below the group capacity
  3559. * (so that we can implement power-savings policies etc). Thus we look
  3560. * for the minimum possible imbalance.
  3561. * Be careful of negative numbers as they'll appear as very large values
  3562. * with unsigned longs.
  3563. */
  3564. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  3565. /* How much load to actually move to equalise the imbalance */
  3566. *imbalance = min(max_pull * sds->busiest->sgp->power,
  3567. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  3568. / SCHED_POWER_SCALE;
  3569. /*
  3570. * if *imbalance is less than the average load per runnable task
  3571. * there is no guarantee that any tasks will be moved so we'll have
  3572. * a think about bumping its value to force at least one task to be
  3573. * moved
  3574. */
  3575. if (*imbalance < sds->busiest_load_per_task)
  3576. return fix_small_imbalance(sds, this_cpu, imbalance);
  3577. }
  3578. /******* find_busiest_group() helpers end here *********************/
  3579. /**
  3580. * find_busiest_group - Returns the busiest group within the sched_domain
  3581. * if there is an imbalance. If there isn't an imbalance, and
  3582. * the user has opted for power-savings, it returns a group whose
  3583. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3584. * such a group exists.
  3585. *
  3586. * Also calculates the amount of weighted load which should be moved
  3587. * to restore balance.
  3588. *
  3589. * @env: The load balancing environment.
  3590. * @cpus: The set of CPUs under consideration for load-balancing.
  3591. * @balance: Pointer to a variable indicating if this_cpu
  3592. * is the appropriate cpu to perform load balancing at this_level.
  3593. *
  3594. * Returns: - the busiest group if imbalance exists.
  3595. * - If no imbalance and user has opted for power-savings balance,
  3596. * return the least loaded group whose CPUs can be
  3597. * put to idle by rebalancing its tasks onto our group.
  3598. */
  3599. static struct sched_group *
  3600. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3601. unsigned long *imbalance, enum cpu_idle_type idle,
  3602. const struct cpumask *cpus, int *balance)
  3603. {
  3604. struct sd_lb_stats sds;
  3605. memset(&sds, 0, sizeof(sds));
  3606. /*
  3607. * Compute the various statistics relavent for load balancing at
  3608. * this level.
  3609. */
  3610. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  3611. /*
  3612. * this_cpu is not the appropriate cpu to perform load balancing at
  3613. * this level.
  3614. */
  3615. if (!(*balance))
  3616. goto ret;
  3617. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  3618. check_asym_packing(sd, &sds, this_cpu, imbalance))
  3619. return sds.busiest;
  3620. /* There is no busy sibling group to pull tasks from */
  3621. if (!sds.busiest || sds.busiest_nr_running == 0)
  3622. goto out_balanced;
  3623. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  3624. /*
  3625. * If the busiest group is imbalanced the below checks don't
  3626. * work because they assumes all things are equal, which typically
  3627. * isn't true due to cpus_allowed constraints and the like.
  3628. */
  3629. if (sds.group_imb)
  3630. goto force_balance;
  3631. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  3632. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  3633. !sds.busiest_has_capacity)
  3634. goto force_balance;
  3635. /*
  3636. * If the local group is more busy than the selected busiest group
  3637. * don't try and pull any tasks.
  3638. */
  3639. if (sds.this_load >= sds.max_load)
  3640. goto out_balanced;
  3641. /*
  3642. * Don't pull any tasks if this group is already above the domain
  3643. * average load.
  3644. */
  3645. if (sds.this_load >= sds.avg_load)
  3646. goto out_balanced;
  3647. if (idle == CPU_IDLE) {
  3648. /*
  3649. * This cpu is idle. If the busiest group load doesn't
  3650. * have more tasks than the number of available cpu's and
  3651. * there is no imbalance between this and busiest group
  3652. * wrt to idle cpu's, it is balanced.
  3653. */
  3654. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  3655. sds.busiest_nr_running <= sds.busiest_group_weight)
  3656. goto out_balanced;
  3657. } else {
  3658. /*
  3659. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  3660. * imbalance_pct to be conservative.
  3661. */
  3662. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3663. goto out_balanced;
  3664. }
  3665. force_balance:
  3666. /* Looks like there is an imbalance. Compute it */
  3667. calculate_imbalance(&sds, this_cpu, imbalance);
  3668. return sds.busiest;
  3669. out_balanced:
  3670. /*
  3671. * There is no obvious imbalance. But check if we can do some balancing
  3672. * to save power.
  3673. */
  3674. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3675. return sds.busiest;
  3676. ret:
  3677. *imbalance = 0;
  3678. return NULL;
  3679. }
  3680. /*
  3681. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3682. */
  3683. static struct rq *
  3684. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  3685. enum cpu_idle_type idle, unsigned long imbalance,
  3686. const struct cpumask *cpus)
  3687. {
  3688. struct rq *busiest = NULL, *rq;
  3689. unsigned long max_load = 0;
  3690. int i;
  3691. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3692. unsigned long power = power_of(i);
  3693. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  3694. SCHED_POWER_SCALE);
  3695. unsigned long wl;
  3696. if (!capacity)
  3697. capacity = fix_small_capacity(sd, group);
  3698. rq = cpu_rq(i);
  3699. wl = weighted_cpuload(i);
  3700. /*
  3701. * When comparing with imbalance, use weighted_cpuload()
  3702. * which is not scaled with the cpu power.
  3703. */
  3704. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3705. continue;
  3706. /*
  3707. * For the load comparisons with the other cpu's, consider
  3708. * the weighted_cpuload() scaled with the cpu power, so that
  3709. * the load can be moved away from the cpu that is potentially
  3710. * running at a lower capacity.
  3711. */
  3712. wl = (wl * SCHED_POWER_SCALE) / power;
  3713. if (wl > max_load) {
  3714. max_load = wl;
  3715. busiest = rq;
  3716. }
  3717. }
  3718. return busiest;
  3719. }
  3720. /*
  3721. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3722. * so long as it is large enough.
  3723. */
  3724. #define MAX_PINNED_INTERVAL 512
  3725. /* Working cpumask for load_balance and load_balance_newidle. */
  3726. DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3727. static int need_active_balance(struct sched_domain *sd, int idle,
  3728. int busiest_cpu, int this_cpu)
  3729. {
  3730. if (idle == CPU_NEWLY_IDLE) {
  3731. /*
  3732. * ASYM_PACKING needs to force migrate tasks from busy but
  3733. * higher numbered CPUs in order to pack all tasks in the
  3734. * lowest numbered CPUs.
  3735. */
  3736. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  3737. return 1;
  3738. /*
  3739. * The only task running in a non-idle cpu can be moved to this
  3740. * cpu in an attempt to completely freeup the other CPU
  3741. * package.
  3742. *
  3743. * The package power saving logic comes from
  3744. * find_busiest_group(). If there are no imbalance, then
  3745. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3746. * f_b_g() will select a group from which a running task may be
  3747. * pulled to this cpu in order to make the other package idle.
  3748. * If there is no opportunity to make a package idle and if
  3749. * there are no imbalance, then f_b_g() will return NULL and no
  3750. * action will be taken in load_balance_newidle().
  3751. *
  3752. * Under normal task pull operation due to imbalance, there
  3753. * will be more than one task in the source run queue and
  3754. * move_tasks() will succeed. ld_moved will be true and this
  3755. * active balance code will not be triggered.
  3756. */
  3757. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3758. return 0;
  3759. }
  3760. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  3761. }
  3762. static int active_load_balance_cpu_stop(void *data);
  3763. /*
  3764. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3765. * tasks if there is an imbalance.
  3766. */
  3767. static int load_balance(int this_cpu, struct rq *this_rq,
  3768. struct sched_domain *sd, enum cpu_idle_type idle,
  3769. int *balance)
  3770. {
  3771. int ld_moved, active_balance = 0;
  3772. struct sched_group *group;
  3773. unsigned long imbalance;
  3774. struct rq *busiest = NULL;
  3775. unsigned long flags;
  3776. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3777. struct lb_env env = {
  3778. .sd = sd,
  3779. .dst_cpu = this_cpu,
  3780. .dst_rq = this_rq,
  3781. .idle = idle,
  3782. .loop_break = sched_nr_migrate_break,
  3783. };
  3784. cpumask_copy(cpus, cpu_active_mask);
  3785. schedstat_inc(sd, lb_count[idle]);
  3786. redo:
  3787. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  3788. cpus, balance);
  3789. if (*balance == 0)
  3790. goto out_balanced;
  3791. if (!group) {
  3792. schedstat_inc(sd, lb_nobusyg[idle]);
  3793. goto out_balanced;
  3794. }
  3795. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  3796. if (!busiest) {
  3797. schedstat_inc(sd, lb_nobusyq[idle]);
  3798. goto out_balanced;
  3799. }
  3800. BUG_ON(busiest == this_rq);
  3801. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3802. ld_moved = 0;
  3803. if (busiest->nr_running > 1) {
  3804. /*
  3805. * Attempt to move tasks. If find_busiest_group has found
  3806. * an imbalance but busiest->nr_running <= 1, the group is
  3807. * still unbalanced. ld_moved simply stays zero, so it is
  3808. * correctly treated as an imbalance.
  3809. */
  3810. env.flags |= LBF_ALL_PINNED;
  3811. env.load_move = imbalance;
  3812. env.src_cpu = busiest->cpu;
  3813. env.src_rq = busiest;
  3814. env.loop_max = min_t(unsigned long, sysctl_sched_nr_migrate, busiest->nr_running);
  3815. more_balance:
  3816. local_irq_save(flags);
  3817. double_rq_lock(this_rq, busiest);
  3818. if (!env.loop)
  3819. update_h_load(env.src_cpu);
  3820. ld_moved += move_tasks(&env);
  3821. double_rq_unlock(this_rq, busiest);
  3822. local_irq_restore(flags);
  3823. if (env.flags & LBF_NEED_BREAK) {
  3824. env.flags &= ~LBF_NEED_BREAK;
  3825. goto more_balance;
  3826. }
  3827. /*
  3828. * some other cpu did the load balance for us.
  3829. */
  3830. if (ld_moved && this_cpu != smp_processor_id())
  3831. resched_cpu(this_cpu);
  3832. /* All tasks on this runqueue were pinned by CPU affinity */
  3833. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  3834. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3835. if (!cpumask_empty(cpus))
  3836. goto redo;
  3837. goto out_balanced;
  3838. }
  3839. }
  3840. if (!ld_moved) {
  3841. schedstat_inc(sd, lb_failed[idle]);
  3842. /*
  3843. * Increment the failure counter only on periodic balance.
  3844. * We do not want newidle balance, which can be very
  3845. * frequent, pollute the failure counter causing
  3846. * excessive cache_hot migrations and active balances.
  3847. */
  3848. if (idle != CPU_NEWLY_IDLE)
  3849. sd->nr_balance_failed++;
  3850. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  3851. raw_spin_lock_irqsave(&busiest->lock, flags);
  3852. /* don't kick the active_load_balance_cpu_stop,
  3853. * if the curr task on busiest cpu can't be
  3854. * moved to this_cpu
  3855. */
  3856. if (!cpumask_test_cpu(this_cpu,
  3857. tsk_cpus_allowed(busiest->curr))) {
  3858. raw_spin_unlock_irqrestore(&busiest->lock,
  3859. flags);
  3860. env.flags |= LBF_ALL_PINNED;
  3861. goto out_one_pinned;
  3862. }
  3863. /*
  3864. * ->active_balance synchronizes accesses to
  3865. * ->active_balance_work. Once set, it's cleared
  3866. * only after active load balance is finished.
  3867. */
  3868. if (!busiest->active_balance) {
  3869. busiest->active_balance = 1;
  3870. busiest->push_cpu = this_cpu;
  3871. active_balance = 1;
  3872. }
  3873. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3874. if (active_balance)
  3875. stop_one_cpu_nowait(cpu_of(busiest),
  3876. active_load_balance_cpu_stop, busiest,
  3877. &busiest->active_balance_work);
  3878. /*
  3879. * We've kicked active balancing, reset the failure
  3880. * counter.
  3881. */
  3882. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3883. }
  3884. } else {
  3885. sd->nr_balance_failed = 0;
  3886. if (per_cpu(dbs_boost_needed, this_cpu)) {
  3887. per_cpu(dbs_boost_needed, this_cpu) = false;
  3888. atomic_notifier_call_chain(&migration_notifier_head,
  3889. this_cpu,
  3890. (void *)cpu_of(busiest));
  3891. }
  3892. }
  3893. if (likely(!active_balance)) {
  3894. /* We were unbalanced, so reset the balancing interval */
  3895. sd->balance_interval = sd->min_interval;
  3896. } else {
  3897. /*
  3898. * If we've begun active balancing, start to back off. This
  3899. * case may not be covered by the all_pinned logic if there
  3900. * is only 1 task on the busy runqueue (because we don't call
  3901. * move_tasks).
  3902. */
  3903. if (sd->balance_interval < sd->max_interval)
  3904. sd->balance_interval *= 2;
  3905. }
  3906. goto out;
  3907. out_balanced:
  3908. schedstat_inc(sd, lb_balanced[idle]);
  3909. sd->nr_balance_failed = 0;
  3910. out_one_pinned:
  3911. /* tune up the balancing interval */
  3912. if (((env.flags & LBF_ALL_PINNED) &&
  3913. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3914. (sd->balance_interval < sd->max_interval))
  3915. sd->balance_interval *= 2;
  3916. ld_moved = 0;
  3917. out:
  3918. trace_sched_load_balance(this_cpu, idle, *balance,
  3919. group ? group->cpumask[0] : 0,
  3920. busiest ? busiest->nr_running : 0, imbalance,
  3921. env.flags, ld_moved, sd->balance_interval);
  3922. return ld_moved;
  3923. }
  3924. /*
  3925. * idle_balance is called by schedule() if this_cpu is about to become
  3926. * idle. Attempts to pull tasks from other CPUs.
  3927. */
  3928. void idle_balance(int this_cpu, struct rq *this_rq)
  3929. {
  3930. struct sched_domain *sd;
  3931. int pulled_task = 0;
  3932. unsigned long next_balance = jiffies + HZ;
  3933. this_rq->idle_stamp = this_rq->clock;
  3934. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3935. return;
  3936. /*
  3937. * Drop the rq->lock, but keep IRQ/preempt disabled.
  3938. */
  3939. raw_spin_unlock(&this_rq->lock);
  3940. update_shares(this_cpu);
  3941. rcu_read_lock();
  3942. for_each_domain(this_cpu, sd) {
  3943. unsigned long interval;
  3944. int balance = 1;
  3945. if (!(sd->flags & SD_LOAD_BALANCE))
  3946. continue;
  3947. if (sd->flags & SD_BALANCE_NEWIDLE) {
  3948. pulled_task = load_balance(this_cpu, this_rq,
  3949. sd, CPU_NEWLY_IDLE, &balance);
  3950. }
  3951. interval = msecs_to_jiffies(sd->balance_interval);
  3952. if (time_after(next_balance, sd->last_balance + interval))
  3953. next_balance = sd->last_balance + interval;
  3954. /*
  3955. * Stop searching for tasks to pull if there are
  3956. * now runnable tasks on this rq.
  3957. */
  3958. if (pulled_task || this_rq->nr_running > 0) {
  3959. this_rq->idle_stamp = 0;
  3960. break;
  3961. }
  3962. }
  3963. rcu_read_unlock();
  3964. raw_spin_lock(&this_rq->lock);
  3965. /*
  3966. * While browsing the domains, we released the rq lock.
  3967. * A task could have be enqueued in the meantime
  3968. */
  3969. if (this_rq->nr_running && !pulled_task)
  3970. return;
  3971. if (!pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3972. /*
  3973. * We are going idle. next_balance may be set based on
  3974. * a busy processor. So reset next_balance.
  3975. */
  3976. this_rq->next_balance = next_balance;
  3977. }
  3978. }
  3979. /*
  3980. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  3981. * running tasks off the busiest CPU onto idle CPUs. It requires at
  3982. * least 1 task to be running on each physical CPU where possible, and
  3983. * avoids physical / logical imbalances.
  3984. */
  3985. static int active_load_balance_cpu_stop(void *data)
  3986. {
  3987. struct rq *busiest_rq = data;
  3988. int busiest_cpu = cpu_of(busiest_rq);
  3989. int target_cpu = busiest_rq->push_cpu;
  3990. struct rq *target_rq = cpu_rq(target_cpu);
  3991. struct sched_domain *sd;
  3992. raw_spin_lock_irq(&busiest_rq->lock);
  3993. /* make sure the requested cpu hasn't gone down in the meantime */
  3994. if (unlikely(busiest_cpu != smp_processor_id() ||
  3995. !busiest_rq->active_balance))
  3996. goto out_unlock;
  3997. /* Is there any task to move? */
  3998. if (busiest_rq->nr_running <= 1)
  3999. goto out_unlock;
  4000. /*
  4001. * This condition is "impossible", if it occurs
  4002. * we need to fix it. Originally reported by
  4003. * Bjorn Helgaas on a 128-cpu setup.
  4004. */
  4005. BUG_ON(busiest_rq == target_rq);
  4006. /* move a task from busiest_rq to target_rq */
  4007. double_lock_balance(busiest_rq, target_rq);
  4008. /* Search for an sd spanning us and the target CPU. */
  4009. rcu_read_lock();
  4010. for_each_domain(target_cpu, sd) {
  4011. if ((sd->flags & SD_LOAD_BALANCE) &&
  4012. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  4013. break;
  4014. }
  4015. if (likely(sd)) {
  4016. struct lb_env env = {
  4017. .sd = sd,
  4018. .dst_cpu = target_cpu,
  4019. .dst_rq = target_rq,
  4020. .src_cpu = busiest_rq->cpu,
  4021. .src_rq = busiest_rq,
  4022. .idle = CPU_IDLE,
  4023. };
  4024. schedstat_inc(sd, alb_count);
  4025. if (move_one_task(&env))
  4026. schedstat_inc(sd, alb_pushed);
  4027. else
  4028. schedstat_inc(sd, alb_failed);
  4029. }
  4030. rcu_read_unlock();
  4031. double_unlock_balance(busiest_rq, target_rq);
  4032. out_unlock:
  4033. busiest_rq->active_balance = 0;
  4034. raw_spin_unlock_irq(&busiest_rq->lock);
  4035. if (per_cpu(dbs_boost_needed, target_cpu)) {
  4036. per_cpu(dbs_boost_needed, target_cpu) = false;
  4037. atomic_notifier_call_chain(&migration_notifier_head,
  4038. target_cpu,
  4039. (void *)cpu_of(busiest_rq));
  4040. }
  4041. return 0;
  4042. }
  4043. #ifdef CONFIG_NO_HZ
  4044. /*
  4045. * idle load balancing details
  4046. * - When one of the busy CPUs notice that there may be an idle rebalancing
  4047. * needed, they will kick the idle load balancer, which then does idle
  4048. * load balancing for all the idle CPUs.
  4049. */
  4050. static struct {
  4051. cpumask_var_t idle_cpus_mask;
  4052. atomic_t nr_cpus;
  4053. unsigned long next_balance; /* in jiffy units */
  4054. } nohz ____cacheline_aligned;
  4055. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  4056. /**
  4057. * lowest_flag_domain - Return lowest sched_domain containing flag.
  4058. * @cpu: The cpu whose lowest level of sched domain is to
  4059. * be returned.
  4060. * @flag: The flag to check for the lowest sched_domain
  4061. * for the given cpu.
  4062. *
  4063. * Returns the lowest sched_domain of a cpu which contains the given flag.
  4064. */
  4065. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  4066. {
  4067. struct sched_domain *sd;
  4068. for_each_domain(cpu, sd)
  4069. if (sd->flags & flag)
  4070. break;
  4071. return sd;
  4072. }
  4073. /**
  4074. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  4075. * @cpu: The cpu whose domains we're iterating over.
  4076. * @sd: variable holding the value of the power_savings_sd
  4077. * for cpu.
  4078. * @flag: The flag to filter the sched_domains to be iterated.
  4079. *
  4080. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  4081. * set, starting from the lowest sched_domain to the highest.
  4082. */
  4083. #define for_each_flag_domain(cpu, sd, flag) \
  4084. for (sd = lowest_flag_domain(cpu, flag); \
  4085. (sd && (sd->flags & flag)); sd = sd->parent)
  4086. /**
  4087. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  4088. * @cpu: The cpu which is nominating a new idle_load_balancer.
  4089. *
  4090. * Returns: Returns the id of the idle load balancer if it exists,
  4091. * Else, returns >= nr_cpu_ids.
  4092. *
  4093. * This algorithm picks the idle load balancer such that it belongs to a
  4094. * semi-idle powersavings sched_domain. The idea is to try and avoid
  4095. * completely idle packages/cores just for the purpose of idle load balancing
  4096. * when there are other idle cpu's which are better suited for that job.
  4097. */
  4098. static int find_new_ilb(int cpu)
  4099. {
  4100. int ilb = cpumask_first(nohz.idle_cpus_mask);
  4101. struct sched_group *ilbg;
  4102. struct sched_domain *sd;
  4103. /*
  4104. * Have idle load balancer selection from semi-idle packages only
  4105. * when power-aware load balancing is enabled
  4106. */
  4107. if (!(sched_smt_power_savings || sched_mc_power_savings))
  4108. goto out_done;
  4109. /*
  4110. * Optimize for the case when we have no idle CPUs or only one
  4111. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  4112. */
  4113. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  4114. goto out_done;
  4115. rcu_read_lock();
  4116. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  4117. ilbg = sd->groups;
  4118. do {
  4119. if (ilbg->group_weight !=
  4120. atomic_read(&ilbg->sgp->nr_busy_cpus)) {
  4121. ilb = cpumask_first_and(nohz.idle_cpus_mask,
  4122. sched_group_cpus(ilbg));
  4123. goto unlock;
  4124. }
  4125. ilbg = ilbg->next;
  4126. } while (ilbg != sd->groups);
  4127. }
  4128. unlock:
  4129. rcu_read_unlock();
  4130. out_done:
  4131. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  4132. return ilb;
  4133. return nr_cpu_ids;
  4134. }
  4135. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  4136. static inline int find_new_ilb(int call_cpu)
  4137. {
  4138. return nr_cpu_ids;
  4139. }
  4140. #endif
  4141. /*
  4142. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  4143. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  4144. * CPU (if there is one).
  4145. */
  4146. static void nohz_balancer_kick(int cpu)
  4147. {
  4148. int ilb_cpu;
  4149. nohz.next_balance++;
  4150. ilb_cpu = find_new_ilb(cpu);
  4151. if (ilb_cpu >= nr_cpu_ids)
  4152. return;
  4153. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  4154. return;
  4155. /*
  4156. * Use smp_send_reschedule() instead of resched_cpu().
  4157. * This way we generate a sched IPI on the target cpu which
  4158. * is idle. And the softirq performing nohz idle load balance
  4159. * will be run before returning from the IPI.
  4160. */
  4161. smp_send_reschedule(ilb_cpu);
  4162. return;
  4163. }
  4164. static inline void nohz_balance_exit_idle(int cpu)
  4165. {
  4166. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  4167. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  4168. atomic_dec(&nohz.nr_cpus);
  4169. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4170. }
  4171. }
  4172. static inline void set_cpu_sd_state_busy(void)
  4173. {
  4174. struct sched_domain *sd;
  4175. int cpu = smp_processor_id();
  4176. rcu_read_lock();
  4177. sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd);
  4178. if (!sd || !sd->nohz_idle)
  4179. goto unlock;
  4180. sd->nohz_idle = 0;
  4181. for (; sd; sd = sd->parent)
  4182. atomic_inc(&sd->groups->sgp->nr_busy_cpus);
  4183. unlock:
  4184. rcu_read_unlock();
  4185. }
  4186. void set_cpu_sd_state_idle(void)
  4187. {
  4188. struct sched_domain *sd;
  4189. int cpu = smp_processor_id();
  4190. rcu_read_lock();
  4191. sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd);
  4192. if (!sd || sd->nohz_idle)
  4193. goto unlock;
  4194. sd->nohz_idle = 1;
  4195. for (; sd; sd = sd->parent)
  4196. atomic_dec(&sd->groups->sgp->nr_busy_cpus);
  4197. unlock:
  4198. rcu_read_unlock();
  4199. }
  4200. /*
  4201. * This routine will record that the cpu is going idle with tick stopped.
  4202. * This info will be used in performing idle load balancing in the future.
  4203. */
  4204. void nohz_balance_enter_idle(int cpu)
  4205. {
  4206. /*
  4207. * If this cpu is going down, then nothing needs to be done.
  4208. */
  4209. if (!cpu_active(cpu))
  4210. return;
  4211. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  4212. return;
  4213. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  4214. atomic_inc(&nohz.nr_cpus);
  4215. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4216. }
  4217. static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
  4218. unsigned long action, void *hcpu)
  4219. {
  4220. switch (action & ~CPU_TASKS_FROZEN) {
  4221. case CPU_DYING:
  4222. nohz_balance_exit_idle(smp_processor_id());
  4223. return NOTIFY_OK;
  4224. default:
  4225. return NOTIFY_DONE;
  4226. }
  4227. }
  4228. #endif
  4229. static DEFINE_SPINLOCK(balancing);
  4230. /*
  4231. * Scale the max load_balance interval with the number of CPUs in the system.
  4232. * This trades load-balance latency on larger machines for less cross talk.
  4233. */
  4234. void update_max_interval(void)
  4235. {
  4236. max_load_balance_interval = HZ*num_online_cpus()/10;
  4237. }
  4238. /*
  4239. * It checks each scheduling domain to see if it is due to be balanced,
  4240. * and initiates a balancing operation if so.
  4241. *
  4242. * Balancing parameters are set up in arch_init_sched_domains.
  4243. */
  4244. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4245. {
  4246. int balance = 1;
  4247. struct rq *rq = cpu_rq(cpu);
  4248. unsigned long interval;
  4249. struct sched_domain *sd;
  4250. /* Earliest time when we have to do rebalance again */
  4251. unsigned long next_balance = jiffies + 60*HZ;
  4252. int update_next_balance = 0;
  4253. int need_serialize;
  4254. update_shares(cpu);
  4255. rcu_read_lock();
  4256. for_each_domain(cpu, sd) {
  4257. if (!(sd->flags & SD_LOAD_BALANCE))
  4258. continue;
  4259. interval = sd->balance_interval;
  4260. if (idle != CPU_IDLE)
  4261. interval *= sd->busy_factor;
  4262. /* scale ms to jiffies */
  4263. interval = msecs_to_jiffies(interval);
  4264. interval = clamp(interval, 1UL, max_load_balance_interval);
  4265. need_serialize = sd->flags & SD_SERIALIZE;
  4266. if (need_serialize) {
  4267. if (!spin_trylock(&balancing))
  4268. goto out;
  4269. }
  4270. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4271. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4272. /*
  4273. * We've pulled tasks over so either we're no
  4274. * longer idle.
  4275. */
  4276. idle = CPU_NOT_IDLE;
  4277. }
  4278. sd->last_balance = jiffies;
  4279. }
  4280. if (need_serialize)
  4281. spin_unlock(&balancing);
  4282. out:
  4283. if (time_after(next_balance, sd->last_balance + interval)) {
  4284. next_balance = sd->last_balance + interval;
  4285. update_next_balance = 1;
  4286. }
  4287. /*
  4288. * Stop the load balance at this level. There is another
  4289. * CPU in our sched group which is doing load balancing more
  4290. * actively.
  4291. */
  4292. if (!balance)
  4293. break;
  4294. }
  4295. rcu_read_unlock();
  4296. /*
  4297. * next_balance will be updated only when there is a need.
  4298. * When the cpu is attached to null domain for ex, it will not be
  4299. * updated.
  4300. */
  4301. if (likely(update_next_balance))
  4302. rq->next_balance = next_balance;
  4303. }
  4304. #ifdef CONFIG_NO_HZ
  4305. /*
  4306. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  4307. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4308. */
  4309. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  4310. {
  4311. struct rq *this_rq = cpu_rq(this_cpu);
  4312. struct rq *rq;
  4313. int balance_cpu;
  4314. if (idle != CPU_IDLE ||
  4315. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  4316. goto end;
  4317. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  4318. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  4319. continue;
  4320. /*
  4321. * If this cpu gets work to do, stop the load balancing
  4322. * work being done for other cpus. Next load
  4323. * balancing owner will pick it up.
  4324. */
  4325. if (need_resched())
  4326. break;
  4327. rq = cpu_rq(balance_cpu);
  4328. raw_spin_lock_irq(&rq->lock);
  4329. update_rq_clock(rq);
  4330. update_idle_cpu_load(rq);
  4331. raw_spin_unlock_irq(&rq->lock);
  4332. rebalance_domains(balance_cpu, CPU_IDLE);
  4333. if (time_after(this_rq->next_balance, rq->next_balance))
  4334. this_rq->next_balance = rq->next_balance;
  4335. }
  4336. nohz.next_balance = this_rq->next_balance;
  4337. end:
  4338. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  4339. }
  4340. /*
  4341. * Current heuristic for kicking the idle load balancer in the presence
  4342. * of an idle cpu is the system.
  4343. * - This rq has more than one task.
  4344. * - At any scheduler domain level, this cpu's scheduler group has multiple
  4345. * busy cpu's exceeding the group's power.
  4346. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  4347. * domain span are idle.
  4348. */
  4349. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  4350. {
  4351. unsigned long now = jiffies;
  4352. struct sched_domain *sd;
  4353. if (unlikely(idle_cpu(cpu)))
  4354. return 0;
  4355. /*
  4356. * We may be recently in ticked or tickless idle mode. At the first
  4357. * busy tick after returning from idle, we will update the busy stats.
  4358. */
  4359. set_cpu_sd_state_busy();
  4360. nohz_balance_exit_idle(cpu);
  4361. /*
  4362. * None are in tickless mode and hence no need for NOHZ idle load
  4363. * balancing.
  4364. */
  4365. if (likely(!atomic_read(&nohz.nr_cpus)))
  4366. return 0;
  4367. if (time_before(now, nohz.next_balance))
  4368. return 0;
  4369. if (rq->nr_running >= 2)
  4370. goto need_kick;
  4371. rcu_read_lock();
  4372. for_each_domain(cpu, sd) {
  4373. struct sched_group *sg = sd->groups;
  4374. struct sched_group_power *sgp = sg->sgp;
  4375. int nr_busy = atomic_read(&sgp->nr_busy_cpus);
  4376. if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
  4377. goto need_kick_unlock;
  4378. if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
  4379. && (cpumask_first_and(nohz.idle_cpus_mask,
  4380. sched_domain_span(sd)) < cpu))
  4381. goto need_kick_unlock;
  4382. if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
  4383. break;
  4384. }
  4385. rcu_read_unlock();
  4386. return 0;
  4387. need_kick_unlock:
  4388. rcu_read_unlock();
  4389. need_kick:
  4390. return 1;
  4391. }
  4392. #else
  4393. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  4394. #endif
  4395. /*
  4396. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4397. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  4398. */
  4399. static void run_rebalance_domains(struct softirq_action *h)
  4400. {
  4401. int this_cpu = smp_processor_id();
  4402. struct rq *this_rq = cpu_rq(this_cpu);
  4403. enum cpu_idle_type idle = this_rq->idle_balance ?
  4404. CPU_IDLE : CPU_NOT_IDLE;
  4405. rebalance_domains(this_cpu, idle);
  4406. /*
  4407. * If this cpu has a pending nohz_balance_kick, then do the
  4408. * balancing on behalf of the other idle cpus whose ticks are
  4409. * stopped.
  4410. */
  4411. nohz_idle_balance(this_cpu, idle);
  4412. }
  4413. static inline int on_null_domain(int cpu)
  4414. {
  4415. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  4416. }
  4417. /*
  4418. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4419. */
  4420. void trigger_load_balance(struct rq *rq, int cpu)
  4421. {
  4422. /* Don't need to rebalance while attached to NULL domain */
  4423. if (time_after_eq(jiffies, rq->next_balance) &&
  4424. likely(!on_null_domain(cpu)))
  4425. raise_softirq(SCHED_SOFTIRQ);
  4426. #ifdef CONFIG_NO_HZ
  4427. if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  4428. nohz_balancer_kick(cpu);
  4429. #endif
  4430. }
  4431. static void rq_online_fair(struct rq *rq)
  4432. {
  4433. update_sysctl();
  4434. }
  4435. static void rq_offline_fair(struct rq *rq)
  4436. {
  4437. update_sysctl();
  4438. /* Ensure any throttled groups are reachable by pick_next_task */
  4439. unthrottle_offline_cfs_rqs(rq);
  4440. }
  4441. #endif /* CONFIG_SMP */
  4442. /*
  4443. * scheduler tick hitting a task of our scheduling class:
  4444. */
  4445. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  4446. {
  4447. struct cfs_rq *cfs_rq;
  4448. struct sched_entity *se = &curr->se;
  4449. for_each_sched_entity(se) {
  4450. cfs_rq = cfs_rq_of(se);
  4451. entity_tick(cfs_rq, se, queued);
  4452. }
  4453. }
  4454. /*
  4455. * called on fork with the child task as argument from the parent's context
  4456. * - child not yet on the tasklist
  4457. * - preemption disabled
  4458. */
  4459. static void task_fork_fair(struct task_struct *p)
  4460. {
  4461. struct cfs_rq *cfs_rq;
  4462. struct sched_entity *se = &p->se, *curr;
  4463. int this_cpu = smp_processor_id();
  4464. struct rq *rq = this_rq();
  4465. unsigned long flags;
  4466. raw_spin_lock_irqsave(&rq->lock, flags);
  4467. update_rq_clock(rq);
  4468. cfs_rq = task_cfs_rq(current);
  4469. curr = cfs_rq->curr;
  4470. /*
  4471. * Not only the cpu but also the task_group of the parent might have
  4472. * been changed after parent->se.parent,cfs_rq were copied to
  4473. * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
  4474. * of child point to valid ones.
  4475. */
  4476. rcu_read_lock();
  4477. __set_task_cpu(p, this_cpu);
  4478. rcu_read_unlock();
  4479. update_curr(cfs_rq);
  4480. if (curr)
  4481. se->vruntime = curr->vruntime;
  4482. place_entity(cfs_rq, se, 1);
  4483. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  4484. /*
  4485. * Upon rescheduling, sched_class::put_prev_task() will place
  4486. * 'current' within the tree based on its new key value.
  4487. */
  4488. swap(curr->vruntime, se->vruntime);
  4489. resched_task(rq->curr);
  4490. }
  4491. se->vruntime -= cfs_rq->min_vruntime;
  4492. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4493. }
  4494. /*
  4495. * Priority of the task has changed. Check to see if we preempt
  4496. * the current task.
  4497. */
  4498. static void
  4499. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  4500. {
  4501. if (!p->se.on_rq)
  4502. return;
  4503. /*
  4504. * Reschedule if we are currently running on this runqueue and
  4505. * our priority decreased, or if we are not currently running on
  4506. * this runqueue and our priority is higher than the current's
  4507. */
  4508. if (rq->curr == p) {
  4509. if (p->prio > oldprio)
  4510. resched_task(rq->curr);
  4511. } else
  4512. check_preempt_curr(rq, p, 0);
  4513. }
  4514. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  4515. {
  4516. struct sched_entity *se = &p->se;
  4517. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4518. /*
  4519. * Ensure the task's vruntime is normalized, so that when it's
  4520. * switched back to the fair class the enqueue_entity(.flags=0) will
  4521. * do the right thing.
  4522. *
  4523. * If it's on_rq, then the dequeue_entity(.flags=0) will already
  4524. * have normalized the vruntime, if it's !on_rq, then only when
  4525. * the task is sleeping will it still have non-normalized vruntime.
  4526. */
  4527. if (!p->on_rq && p->state != TASK_RUNNING) {
  4528. /*
  4529. * Fix up our vruntime so that the current sleep doesn't
  4530. * cause 'unlimited' sleep bonus.
  4531. */
  4532. place_entity(cfs_rq, se, 0);
  4533. se->vruntime -= cfs_rq->min_vruntime;
  4534. }
  4535. }
  4536. /*
  4537. * We switched to the sched_fair class.
  4538. */
  4539. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  4540. {
  4541. if (!p->se.on_rq)
  4542. return;
  4543. /*
  4544. * We were most likely switched from sched_rt, so
  4545. * kick off the schedule if running, otherwise just see
  4546. * if we can still preempt the current task.
  4547. */
  4548. if (rq->curr == p)
  4549. resched_task(rq->curr);
  4550. else
  4551. check_preempt_curr(rq, p, 0);
  4552. }
  4553. /* Account for a task changing its policy or group.
  4554. *
  4555. * This routine is mostly called to set cfs_rq->curr field when a task
  4556. * migrates between groups/classes.
  4557. */
  4558. static void set_curr_task_fair(struct rq *rq)
  4559. {
  4560. struct sched_entity *se = &rq->curr->se;
  4561. for_each_sched_entity(se) {
  4562. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4563. set_next_entity(cfs_rq, se);
  4564. /* ensure bandwidth has been allocated on our new cfs_rq */
  4565. account_cfs_rq_runtime(cfs_rq, 0);
  4566. }
  4567. }
  4568. void init_cfs_rq(struct cfs_rq *cfs_rq)
  4569. {
  4570. cfs_rq->tasks_timeline = RB_ROOT;
  4571. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  4572. #ifndef CONFIG_64BIT
  4573. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  4574. #endif
  4575. }
  4576. #ifdef CONFIG_FAIR_GROUP_SCHED
  4577. static void task_move_group_fair(struct task_struct *p, int on_rq)
  4578. {
  4579. /*
  4580. * If the task was not on the rq at the time of this cgroup movement
  4581. * it must have been asleep, sleeping tasks keep their ->vruntime
  4582. * absolute on their old rq until wakeup (needed for the fair sleeper
  4583. * bonus in place_entity()).
  4584. *
  4585. * If it was on the rq, we've just 'preempted' it, which does convert
  4586. * ->vruntime to a relative base.
  4587. *
  4588. * Make sure both cases convert their relative position when migrating
  4589. * to another cgroup's rq. This does somewhat interfere with the
  4590. * fair sleeper stuff for the first placement, but who cares.
  4591. */
  4592. /*
  4593. * When !on_rq, vruntime of the task has usually NOT been normalized.
  4594. * But there are some cases where it has already been normalized:
  4595. *
  4596. * - Moving a forked child which is waiting for being woken up by
  4597. * wake_up_new_task().
  4598. * - Moving a task which has been woken up by try_to_wake_up() and
  4599. * waiting for actually being woken up by sched_ttwu_pending().
  4600. *
  4601. * To prevent boost or penalty in the new cfs_rq caused by delta
  4602. * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
  4603. */
  4604. if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
  4605. on_rq = 1;
  4606. if (!on_rq)
  4607. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4608. set_task_rq(p, task_cpu(p));
  4609. if (!on_rq)
  4610. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  4611. }
  4612. void free_fair_sched_group(struct task_group *tg)
  4613. {
  4614. int i;
  4615. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4616. for_each_possible_cpu(i) {
  4617. if (tg->cfs_rq)
  4618. kfree(tg->cfs_rq[i]);
  4619. if (tg->se)
  4620. kfree(tg->se[i]);
  4621. }
  4622. kfree(tg->cfs_rq);
  4623. kfree(tg->se);
  4624. }
  4625. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4626. {
  4627. struct cfs_rq *cfs_rq;
  4628. struct sched_entity *se;
  4629. int i;
  4630. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  4631. if (!tg->cfs_rq)
  4632. goto err;
  4633. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  4634. if (!tg->se)
  4635. goto err;
  4636. tg->shares = NICE_0_LOAD;
  4637. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4638. for_each_possible_cpu(i) {
  4639. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  4640. GFP_KERNEL, cpu_to_node(i));
  4641. if (!cfs_rq)
  4642. goto err;
  4643. se = kzalloc_node(sizeof(struct sched_entity),
  4644. GFP_KERNEL, cpu_to_node(i));
  4645. if (!se)
  4646. goto err_free_rq;
  4647. init_cfs_rq(cfs_rq);
  4648. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  4649. }
  4650. return 1;
  4651. err_free_rq:
  4652. kfree(cfs_rq);
  4653. err:
  4654. return 0;
  4655. }
  4656. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  4657. {
  4658. struct rq *rq = cpu_rq(cpu);
  4659. unsigned long flags;
  4660. /*
  4661. * Only empty task groups can be destroyed; so we can speculatively
  4662. * check on_list without danger of it being re-added.
  4663. */
  4664. if (!tg->cfs_rq[cpu]->on_list)
  4665. return;
  4666. raw_spin_lock_irqsave(&rq->lock, flags);
  4667. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  4668. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4669. }
  4670. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  4671. struct sched_entity *se, int cpu,
  4672. struct sched_entity *parent)
  4673. {
  4674. struct rq *rq = cpu_rq(cpu);
  4675. cfs_rq->tg = tg;
  4676. cfs_rq->rq = rq;
  4677. #ifdef CONFIG_SMP
  4678. /* allow initial update_cfs_load() to truncate */
  4679. cfs_rq->load_stamp = 1;
  4680. #endif
  4681. init_cfs_rq_runtime(cfs_rq);
  4682. tg->cfs_rq[cpu] = cfs_rq;
  4683. tg->se[cpu] = se;
  4684. /* se could be NULL for root_task_group */
  4685. if (!se)
  4686. return;
  4687. if (!parent)
  4688. se->cfs_rq = &rq->cfs;
  4689. else
  4690. se->cfs_rq = parent->my_q;
  4691. se->my_q = cfs_rq;
  4692. /* guarantee group entities always have weight */
  4693. update_load_set(&se->load, NICE_0_LOAD);
  4694. se->parent = parent;
  4695. }
  4696. static DEFINE_MUTEX(shares_mutex);
  4697. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  4698. {
  4699. int i;
  4700. unsigned long flags;
  4701. /*
  4702. * We can't change the weight of the root cgroup.
  4703. */
  4704. if (!tg->se[0])
  4705. return -EINVAL;
  4706. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  4707. mutex_lock(&shares_mutex);
  4708. if (tg->shares == shares)
  4709. goto done;
  4710. tg->shares = shares;
  4711. for_each_possible_cpu(i) {
  4712. struct rq *rq = cpu_rq(i);
  4713. struct sched_entity *se;
  4714. se = tg->se[i];
  4715. /* Propagate contribution to hierarchy */
  4716. raw_spin_lock_irqsave(&rq->lock, flags);
  4717. for_each_sched_entity(se)
  4718. update_cfs_shares(group_cfs_rq(se));
  4719. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4720. }
  4721. done:
  4722. mutex_unlock(&shares_mutex);
  4723. return 0;
  4724. }
  4725. #else /* CONFIG_FAIR_GROUP_SCHED */
  4726. void free_fair_sched_group(struct task_group *tg) { }
  4727. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4728. {
  4729. return 1;
  4730. }
  4731. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  4732. #endif /* CONFIG_FAIR_GROUP_SCHED */
  4733. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  4734. {
  4735. struct sched_entity *se = &task->se;
  4736. unsigned int rr_interval = 0;
  4737. /*
  4738. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  4739. * idle runqueue:
  4740. */
  4741. if (rq->cfs.load.weight)
  4742. rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  4743. return rr_interval;
  4744. }
  4745. /*
  4746. * All the scheduling class methods:
  4747. */
  4748. const struct sched_class fair_sched_class = {
  4749. .next = &idle_sched_class,
  4750. .enqueue_task = enqueue_task_fair,
  4751. .dequeue_task = dequeue_task_fair,
  4752. .yield_task = yield_task_fair,
  4753. .yield_to_task = yield_to_task_fair,
  4754. .check_preempt_curr = check_preempt_wakeup,
  4755. .pick_next_task = pick_next_task_fair,
  4756. .put_prev_task = put_prev_task_fair,
  4757. #ifdef CONFIG_SMP
  4758. .select_task_rq = select_task_rq_fair,
  4759. .rq_online = rq_online_fair,
  4760. .rq_offline = rq_offline_fair,
  4761. .task_waking = task_waking_fair,
  4762. #endif
  4763. .set_curr_task = set_curr_task_fair,
  4764. .task_tick = task_tick_fair,
  4765. .task_fork = task_fork_fair,
  4766. .prio_changed = prio_changed_fair,
  4767. .switched_from = switched_from_fair,
  4768. .switched_to = switched_to_fair,
  4769. .get_rr_interval = get_rr_interval_fair,
  4770. #ifdef CONFIG_FAIR_GROUP_SCHED
  4771. .task_move_group = task_move_group_fair,
  4772. #endif
  4773. };
  4774. #ifdef CONFIG_SCHED_DEBUG
  4775. void print_cfs_stats(struct seq_file *m, int cpu)
  4776. {
  4777. struct cfs_rq *cfs_rq;
  4778. rcu_read_lock();
  4779. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  4780. print_cfs_rq(m, cpu, cfs_rq);
  4781. rcu_read_unlock();
  4782. }
  4783. #endif
  4784. __init void init_sched_fair_class(void)
  4785. {
  4786. #ifdef CONFIG_SMP
  4787. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  4788. #ifdef CONFIG_NO_HZ
  4789. nohz.next_balance = jiffies;
  4790. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  4791. cpu_notifier(sched_ilb_notifier, 0);
  4792. #endif
  4793. #endif /* SMP */
  4794. }