clock.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. /*
  2. * sched_clock for unstable cpu clocks
  3. *
  4. * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  5. *
  6. * Updates and enhancements:
  7. * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  8. *
  9. * Based on code by:
  10. * Ingo Molnar <mingo@redhat.com>
  11. * Guillaume Chazarain <guichaz@gmail.com>
  12. *
  13. *
  14. * What:
  15. *
  16. * cpu_clock(i) provides a fast (execution time) high resolution
  17. * clock with bounded drift between CPUs. The value of cpu_clock(i)
  18. * is monotonic for constant i. The timestamp returned is in nanoseconds.
  19. *
  20. * ######################### BIG FAT WARNING ##########################
  21. * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  22. * # go backwards !! #
  23. * ####################################################################
  24. *
  25. * There is no strict promise about the base, although it tends to start
  26. * at 0 on boot (but people really shouldn't rely on that).
  27. *
  28. * cpu_clock(i) -- can be used from any context, including NMI.
  29. * sched_clock_cpu(i) -- must be used with local IRQs disabled (implied by NMI)
  30. * local_clock() -- is cpu_clock() on the current cpu.
  31. *
  32. * How:
  33. *
  34. * The implementation either uses sched_clock() when
  35. * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
  36. * sched_clock() is assumed to provide these properties (mostly it means
  37. * the architecture provides a globally synchronized highres time source).
  38. *
  39. * Otherwise it tries to create a semi stable clock from a mixture of other
  40. * clocks, including:
  41. *
  42. * - GTOD (clock monotomic)
  43. * - sched_clock()
  44. * - explicit idle events
  45. *
  46. * We use GTOD as base and use sched_clock() deltas to improve resolution. The
  47. * deltas are filtered to provide monotonicity and keeping it within an
  48. * expected window.
  49. *
  50. * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  51. * that is otherwise invisible (TSC gets stopped).
  52. *
  53. *
  54. * Notes:
  55. *
  56. * The !IRQ-safetly of sched_clock() and sched_clock_cpu() comes from things
  57. * like cpufreq interrupts that can change the base clock (TSC) multiplier
  58. * and cause funny jumps in time -- although the filtering provided by
  59. * sched_clock_cpu() should mitigate serious artifacts we cannot rely on it
  60. * in general since for !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK we fully rely on
  61. * sched_clock().
  62. */
  63. #include <linux/spinlock.h>
  64. #include <linux/hardirq.h>
  65. #include <linux/export.h>
  66. #include <linux/percpu.h>
  67. #include <linux/ktime.h>
  68. #include <linux/sched.h>
  69. #include <linux/compiler.h>
  70. /*
  71. * Scheduler clock - returns current time in nanosec units.
  72. * This is default implementation.
  73. * Architectures and sub-architectures can override this.
  74. */
  75. unsigned long long __weak sched_clock(void)
  76. {
  77. return (unsigned long long)(jiffies - INITIAL_JIFFIES)
  78. * (NSEC_PER_SEC / HZ);
  79. }
  80. EXPORT_SYMBOL_GPL(sched_clock);
  81. __read_mostly int sched_clock_running;
  82. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  83. __read_mostly int sched_clock_stable;
  84. struct sched_clock_data {
  85. u64 tick_raw;
  86. u64 tick_gtod;
  87. u64 clock;
  88. };
  89. static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  90. static inline struct sched_clock_data *this_scd(void)
  91. {
  92. return &__get_cpu_var(sched_clock_data);
  93. }
  94. static inline struct sched_clock_data *cpu_sdc(int cpu)
  95. {
  96. return &per_cpu(sched_clock_data, cpu);
  97. }
  98. void sched_clock_init(void)
  99. {
  100. u64 ktime_now = ktime_to_ns(ktime_get());
  101. int cpu;
  102. for_each_possible_cpu(cpu) {
  103. struct sched_clock_data *scd = cpu_sdc(cpu);
  104. scd->tick_raw = 0;
  105. scd->tick_gtod = ktime_now;
  106. scd->clock = ktime_now;
  107. }
  108. sched_clock_running = 1;
  109. }
  110. /*
  111. * min, max except they take wrapping into account
  112. */
  113. static inline u64 wrap_min(u64 x, u64 y)
  114. {
  115. return (s64)(x - y) < 0 ? x : y;
  116. }
  117. static inline u64 wrap_max(u64 x, u64 y)
  118. {
  119. return (s64)(x - y) > 0 ? x : y;
  120. }
  121. /*
  122. * update the percpu scd from the raw @now value
  123. *
  124. * - filter out backward motion
  125. * - use the GTOD tick value to create a window to filter crazy TSC values
  126. */
  127. static u64 sched_clock_local(struct sched_clock_data *scd)
  128. {
  129. u64 now, clock, old_clock, min_clock, max_clock;
  130. s64 delta;
  131. again:
  132. now = sched_clock();
  133. delta = now - scd->tick_raw;
  134. if (unlikely(delta < 0))
  135. delta = 0;
  136. old_clock = scd->clock;
  137. /*
  138. * scd->clock = clamp(scd->tick_gtod + delta,
  139. * max(scd->tick_gtod, scd->clock),
  140. * scd->tick_gtod + TICK_NSEC);
  141. */
  142. clock = scd->tick_gtod + delta;
  143. min_clock = wrap_max(scd->tick_gtod, old_clock);
  144. max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
  145. clock = wrap_max(clock, min_clock);
  146. clock = wrap_min(clock, max_clock);
  147. if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
  148. goto again;
  149. return clock;
  150. }
  151. static u64 sched_clock_remote(struct sched_clock_data *scd)
  152. {
  153. struct sched_clock_data *my_scd = this_scd();
  154. u64 this_clock, remote_clock;
  155. u64 *ptr, old_val, val;
  156. #if BITS_PER_LONG != 64
  157. again:
  158. /*
  159. * Careful here: The local and the remote clock values need to
  160. * be read out atomic as we need to compare the values and
  161. * then update either the local or the remote side. So the
  162. * cmpxchg64 below only protects one readout.
  163. *
  164. * We must reread via sched_clock_local() in the retry case on
  165. * 32bit as an NMI could use sched_clock_local() via the
  166. * tracer and hit between the readout of
  167. * the low32bit and the high 32bit portion.
  168. */
  169. this_clock = sched_clock_local(my_scd);
  170. /*
  171. * We must enforce atomic readout on 32bit, otherwise the
  172. * update on the remote cpu can hit inbetween the readout of
  173. * the low32bit and the high 32bit portion.
  174. */
  175. remote_clock = cmpxchg64(&scd->clock, 0, 0);
  176. #else
  177. /*
  178. * On 64bit the read of [my]scd->clock is atomic versus the
  179. * update, so we can avoid the above 32bit dance.
  180. */
  181. sched_clock_local(my_scd);
  182. again:
  183. this_clock = my_scd->clock;
  184. remote_clock = scd->clock;
  185. #endif
  186. /*
  187. * Use the opportunity that we have both locks
  188. * taken to couple the two clocks: we take the
  189. * larger time as the latest time for both
  190. * runqueues. (this creates monotonic movement)
  191. */
  192. if (likely((s64)(remote_clock - this_clock) < 0)) {
  193. ptr = &scd->clock;
  194. old_val = remote_clock;
  195. val = this_clock;
  196. } else {
  197. /*
  198. * Should be rare, but possible:
  199. */
  200. ptr = &my_scd->clock;
  201. old_val = this_clock;
  202. val = remote_clock;
  203. }
  204. if (cmpxchg64(ptr, old_val, val) != old_val)
  205. goto again;
  206. return val;
  207. }
  208. /*
  209. * Similar to cpu_clock(), but requires local IRQs to be disabled.
  210. *
  211. * See cpu_clock().
  212. */
  213. u64 sched_clock_cpu(int cpu)
  214. {
  215. struct sched_clock_data *scd;
  216. u64 clock;
  217. WARN_ON_ONCE(!irqs_disabled());
  218. if (sched_clock_stable)
  219. return sched_clock();
  220. if (unlikely(!sched_clock_running))
  221. return 0ull;
  222. scd = cpu_sdc(cpu);
  223. if (cpu != smp_processor_id())
  224. clock = sched_clock_remote(scd);
  225. else
  226. clock = sched_clock_local(scd);
  227. return clock;
  228. }
  229. void sched_clock_tick(void)
  230. {
  231. struct sched_clock_data *scd;
  232. u64 now, now_gtod;
  233. if (sched_clock_stable)
  234. return;
  235. if (unlikely(!sched_clock_running))
  236. return;
  237. WARN_ON_ONCE(!irqs_disabled());
  238. scd = this_scd();
  239. now_gtod = ktime_to_ns(ktime_get());
  240. now = sched_clock();
  241. scd->tick_raw = now;
  242. scd->tick_gtod = now_gtod;
  243. sched_clock_local(scd);
  244. }
  245. /*
  246. * We are going deep-idle (irqs are disabled):
  247. */
  248. void sched_clock_idle_sleep_event(void)
  249. {
  250. sched_clock_cpu(smp_processor_id());
  251. }
  252. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  253. /*
  254. * We just idled delta nanoseconds (called with irqs disabled):
  255. */
  256. void sched_clock_idle_wakeup_event(u64 delta_ns)
  257. {
  258. if (timekeeping_suspended)
  259. return;
  260. sched_clock_tick();
  261. touch_softlockup_watchdog();
  262. }
  263. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  264. /*
  265. * As outlined at the top, provides a fast, high resolution, nanosecond
  266. * time source that is monotonic per cpu argument and has bounded drift
  267. * between cpus.
  268. *
  269. * ######################### BIG FAT WARNING ##########################
  270. * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  271. * # go backwards !! #
  272. * ####################################################################
  273. */
  274. u64 cpu_clock(int cpu)
  275. {
  276. u64 clock;
  277. unsigned long flags;
  278. local_irq_save(flags);
  279. clock = sched_clock_cpu(cpu);
  280. local_irq_restore(flags);
  281. return clock;
  282. }
  283. /*
  284. * Similar to cpu_clock() for the current cpu. Time will only be observed
  285. * to be monotonic if care is taken to only compare timestampt taken on the
  286. * same CPU.
  287. *
  288. * See cpu_clock().
  289. */
  290. u64 local_clock(void)
  291. {
  292. u64 clock;
  293. unsigned long flags;
  294. local_irq_save(flags);
  295. clock = sched_clock_cpu(smp_processor_id());
  296. local_irq_restore(flags);
  297. return clock;
  298. }
  299. #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  300. void sched_clock_init(void)
  301. {
  302. sched_clock_running = 1;
  303. }
  304. u64 sched_clock_cpu(int cpu)
  305. {
  306. if (unlikely(!sched_clock_running))
  307. return 0;
  308. return sched_clock();
  309. }
  310. u64 cpu_clock(int cpu)
  311. {
  312. return sched_clock_cpu(cpu);
  313. }
  314. u64 local_clock(void)
  315. {
  316. return sched_clock_cpu(0);
  317. }
  318. #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  319. EXPORT_SYMBOL_GPL(cpu_clock);
  320. EXPORT_SYMBOL_GPL(local_clock);