mqueue.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486
  1. /*
  2. * POSIX message queues filesystem for Linux.
  3. *
  4. * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
  5. * Michal Wronski (michal.wronski@gmail.com)
  6. *
  7. * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
  8. * Lockless receive & send, fd based notify:
  9. * Manfred Spraul (manfred@colorfullife.com)
  10. *
  11. * Audit: George Wilson (ltcgcw@us.ibm.com)
  12. *
  13. * This file is released under the GPL.
  14. */
  15. #include <linux/capability.h>
  16. #include <linux/init.h>
  17. #include <linux/pagemap.h>
  18. #include <linux/file.h>
  19. #include <linux/mount.h>
  20. #include <linux/namei.h>
  21. #include <linux/sysctl.h>
  22. #include <linux/poll.h>
  23. #include <linux/mqueue.h>
  24. #include <linux/msg.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/netlink.h>
  28. #include <linux/syscalls.h>
  29. #include <linux/audit.h>
  30. #include <linux/signal.h>
  31. #include <linux/mutex.h>
  32. #include <linux/nsproxy.h>
  33. #include <linux/pid.h>
  34. #include <linux/ipc_namespace.h>
  35. #include <linux/user_namespace.h>
  36. #include <linux/slab.h>
  37. #include <net/sock.h>
  38. #include "util.h"
  39. #define MQUEUE_MAGIC 0x19800202
  40. #define DIRENT_SIZE 20
  41. #define FILENT_SIZE 80
  42. #define SEND 0
  43. #define RECV 1
  44. #define STATE_NONE 0
  45. #define STATE_PENDING 1
  46. #define STATE_READY 2
  47. struct posix_msg_tree_node {
  48. struct rb_node rb_node;
  49. struct list_head msg_list;
  50. int priority;
  51. };
  52. struct ext_wait_queue { /* queue of sleeping tasks */
  53. struct task_struct *task;
  54. struct list_head list;
  55. struct msg_msg *msg; /* ptr of loaded message */
  56. int state; /* one of STATE_* values */
  57. };
  58. struct mqueue_inode_info {
  59. spinlock_t lock;
  60. struct inode vfs_inode;
  61. wait_queue_head_t wait_q;
  62. struct rb_root msg_tree;
  63. struct posix_msg_tree_node *node_cache;
  64. struct mq_attr attr;
  65. struct sigevent notify;
  66. struct pid* notify_owner;
  67. struct user_namespace *notify_user_ns;
  68. struct user_struct *user; /* user who created, for accounting */
  69. struct sock *notify_sock;
  70. struct sk_buff *notify_cookie;
  71. /* for tasks waiting for free space and messages, respectively */
  72. struct ext_wait_queue e_wait_q[2];
  73. unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  74. };
  75. static const struct inode_operations mqueue_dir_inode_operations;
  76. static const struct file_operations mqueue_file_operations;
  77. static const struct super_operations mqueue_super_ops;
  78. static void remove_notification(struct mqueue_inode_info *info);
  79. static struct kmem_cache *mqueue_inode_cachep;
  80. static struct ctl_table_header * mq_sysctl_table;
  81. static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
  82. {
  83. return container_of(inode, struct mqueue_inode_info, vfs_inode);
  84. }
  85. /*
  86. * This routine should be called with the mq_lock held.
  87. */
  88. static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
  89. {
  90. return get_ipc_ns(inode->i_sb->s_fs_info);
  91. }
  92. static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
  93. {
  94. struct ipc_namespace *ns;
  95. spin_lock(&mq_lock);
  96. ns = __get_ns_from_inode(inode);
  97. spin_unlock(&mq_lock);
  98. return ns;
  99. }
  100. /* Auxiliary functions to manipulate messages' list */
  101. static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
  102. {
  103. struct rb_node **p, *parent = NULL;
  104. struct posix_msg_tree_node *leaf;
  105. p = &info->msg_tree.rb_node;
  106. while (*p) {
  107. parent = *p;
  108. leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
  109. if (likely(leaf->priority == msg->m_type))
  110. goto insert_msg;
  111. else if (msg->m_type < leaf->priority)
  112. p = &(*p)->rb_left;
  113. else
  114. p = &(*p)->rb_right;
  115. }
  116. if (info->node_cache) {
  117. leaf = info->node_cache;
  118. info->node_cache = NULL;
  119. } else {
  120. leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
  121. if (!leaf)
  122. return -ENOMEM;
  123. rb_init_node(&leaf->rb_node);
  124. INIT_LIST_HEAD(&leaf->msg_list);
  125. info->qsize += sizeof(*leaf);
  126. }
  127. leaf->priority = msg->m_type;
  128. rb_link_node(&leaf->rb_node, parent, p);
  129. rb_insert_color(&leaf->rb_node, &info->msg_tree);
  130. insert_msg:
  131. info->attr.mq_curmsgs++;
  132. info->qsize += msg->m_ts;
  133. list_add_tail(&msg->m_list, &leaf->msg_list);
  134. return 0;
  135. }
  136. static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
  137. {
  138. struct rb_node **p, *parent = NULL;
  139. struct posix_msg_tree_node *leaf;
  140. struct msg_msg *msg;
  141. try_again:
  142. p = &info->msg_tree.rb_node;
  143. while (*p) {
  144. parent = *p;
  145. /*
  146. * During insert, low priorities go to the left and high to the
  147. * right. On receive, we want the highest priorities first, so
  148. * walk all the way to the right.
  149. */
  150. p = &(*p)->rb_right;
  151. }
  152. if (!parent) {
  153. if (info->attr.mq_curmsgs) {
  154. pr_warn_once("Inconsistency in POSIX message queue, "
  155. "no tree element, but supposedly messages "
  156. "should exist!\n");
  157. info->attr.mq_curmsgs = 0;
  158. }
  159. return NULL;
  160. }
  161. leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
  162. if (unlikely(list_empty(&leaf->msg_list))) {
  163. pr_warn_once("Inconsistency in POSIX message queue, "
  164. "empty leaf node but we haven't implemented "
  165. "lazy leaf delete!\n");
  166. rb_erase(&leaf->rb_node, &info->msg_tree);
  167. if (info->node_cache) {
  168. info->qsize -= sizeof(*leaf);
  169. kfree(leaf);
  170. } else {
  171. info->node_cache = leaf;
  172. }
  173. goto try_again;
  174. } else {
  175. msg = list_first_entry(&leaf->msg_list,
  176. struct msg_msg, m_list);
  177. list_del(&msg->m_list);
  178. if (list_empty(&leaf->msg_list)) {
  179. rb_erase(&leaf->rb_node, &info->msg_tree);
  180. if (info->node_cache) {
  181. info->qsize -= sizeof(*leaf);
  182. kfree(leaf);
  183. } else {
  184. info->node_cache = leaf;
  185. }
  186. }
  187. }
  188. info->attr.mq_curmsgs--;
  189. info->qsize -= msg->m_ts;
  190. return msg;
  191. }
  192. static struct inode *mqueue_get_inode(struct super_block *sb,
  193. struct ipc_namespace *ipc_ns, umode_t mode,
  194. struct mq_attr *attr)
  195. {
  196. struct user_struct *u = current_user();
  197. struct inode *inode;
  198. int ret = -ENOMEM;
  199. inode = new_inode(sb);
  200. if (!inode)
  201. goto err;
  202. inode->i_ino = get_next_ino();
  203. inode->i_mode = mode;
  204. inode->i_uid = current_fsuid();
  205. inode->i_gid = current_fsgid();
  206. inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
  207. if (S_ISREG(mode)) {
  208. struct mqueue_inode_info *info;
  209. unsigned long mq_bytes, mq_treesize;
  210. inode->i_fop = &mqueue_file_operations;
  211. inode->i_size = FILENT_SIZE;
  212. /* mqueue specific info */
  213. info = MQUEUE_I(inode);
  214. spin_lock_init(&info->lock);
  215. init_waitqueue_head(&info->wait_q);
  216. INIT_LIST_HEAD(&info->e_wait_q[0].list);
  217. INIT_LIST_HEAD(&info->e_wait_q[1].list);
  218. info->notify_owner = NULL;
  219. info->notify_user_ns = NULL;
  220. info->qsize = 0;
  221. info->user = NULL; /* set when all is ok */
  222. info->msg_tree = RB_ROOT;
  223. info->node_cache = NULL;
  224. memset(&info->attr, 0, sizeof(info->attr));
  225. info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
  226. ipc_ns->mq_msg_default);
  227. info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
  228. ipc_ns->mq_msgsize_default);
  229. if (attr) {
  230. info->attr.mq_maxmsg = attr->mq_maxmsg;
  231. info->attr.mq_msgsize = attr->mq_msgsize;
  232. }
  233. /*
  234. * We used to allocate a static array of pointers and account
  235. * the size of that array as well as one msg_msg struct per
  236. * possible message into the queue size. That's no longer
  237. * accurate as the queue is now an rbtree and will grow and
  238. * shrink depending on usage patterns. We can, however, still
  239. * account one msg_msg struct per message, but the nodes are
  240. * allocated depending on priority usage, and most programs
  241. * only use one, or a handful, of priorities. However, since
  242. * this is pinned memory, we need to assume worst case, so
  243. * that means the min(mq_maxmsg, max_priorities) * struct
  244. * posix_msg_tree_node.
  245. */
  246. mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
  247. min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
  248. sizeof(struct posix_msg_tree_node);
  249. mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
  250. info->attr.mq_msgsize);
  251. spin_lock(&mq_lock);
  252. if (u->mq_bytes + mq_bytes < u->mq_bytes ||
  253. u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
  254. spin_unlock(&mq_lock);
  255. /* mqueue_evict_inode() releases info->messages */
  256. ret = -EMFILE;
  257. goto out_inode;
  258. }
  259. u->mq_bytes += mq_bytes;
  260. spin_unlock(&mq_lock);
  261. /* all is ok */
  262. info->user = get_uid(u);
  263. } else if (S_ISDIR(mode)) {
  264. inc_nlink(inode);
  265. /* Some things misbehave if size == 0 on a directory */
  266. inode->i_size = 2 * DIRENT_SIZE;
  267. inode->i_op = &mqueue_dir_inode_operations;
  268. inode->i_fop = &simple_dir_operations;
  269. }
  270. return inode;
  271. out_inode:
  272. iput(inode);
  273. err:
  274. return ERR_PTR(ret);
  275. }
  276. static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
  277. {
  278. struct inode *inode;
  279. struct ipc_namespace *ns = data;
  280. sb->s_blocksize = PAGE_CACHE_SIZE;
  281. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  282. sb->s_magic = MQUEUE_MAGIC;
  283. sb->s_op = &mqueue_super_ops;
  284. inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
  285. if (IS_ERR(inode))
  286. return PTR_ERR(inode);
  287. sb->s_root = d_make_root(inode);
  288. if (!sb->s_root)
  289. return -ENOMEM;
  290. return 0;
  291. }
  292. static struct dentry *mqueue_mount(struct file_system_type *fs_type,
  293. int flags, const char *dev_name,
  294. void *data)
  295. {
  296. if (!(flags & MS_KERNMOUNT))
  297. data = current->nsproxy->ipc_ns;
  298. return mount_ns(fs_type, flags, data, mqueue_fill_super);
  299. }
  300. static void init_once(void *foo)
  301. {
  302. struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
  303. inode_init_once(&p->vfs_inode);
  304. }
  305. static struct inode *mqueue_alloc_inode(struct super_block *sb)
  306. {
  307. struct mqueue_inode_info *ei;
  308. ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
  309. if (!ei)
  310. return NULL;
  311. return &ei->vfs_inode;
  312. }
  313. static void mqueue_i_callback(struct rcu_head *head)
  314. {
  315. struct inode *inode = container_of(head, struct inode, i_rcu);
  316. kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
  317. }
  318. static void mqueue_destroy_inode(struct inode *inode)
  319. {
  320. call_rcu(&inode->i_rcu, mqueue_i_callback);
  321. }
  322. static void mqueue_evict_inode(struct inode *inode)
  323. {
  324. struct mqueue_inode_info *info;
  325. struct user_struct *user;
  326. unsigned long mq_bytes, mq_treesize;
  327. struct ipc_namespace *ipc_ns;
  328. struct msg_msg *msg;
  329. end_writeback(inode);
  330. if (S_ISDIR(inode->i_mode))
  331. return;
  332. ipc_ns = get_ns_from_inode(inode);
  333. info = MQUEUE_I(inode);
  334. spin_lock(&info->lock);
  335. while ((msg = msg_get(info)) != NULL)
  336. free_msg(msg);
  337. kfree(info->node_cache);
  338. spin_unlock(&info->lock);
  339. /* Total amount of bytes accounted for the mqueue */
  340. mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
  341. min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
  342. sizeof(struct posix_msg_tree_node);
  343. mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
  344. info->attr.mq_msgsize);
  345. user = info->user;
  346. if (user) {
  347. spin_lock(&mq_lock);
  348. user->mq_bytes -= mq_bytes;
  349. /*
  350. * get_ns_from_inode() ensures that the
  351. * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
  352. * to which we now hold a reference, or it is NULL.
  353. * We can't put it here under mq_lock, though.
  354. */
  355. if (ipc_ns)
  356. ipc_ns->mq_queues_count--;
  357. spin_unlock(&mq_lock);
  358. free_uid(user);
  359. }
  360. if (ipc_ns)
  361. put_ipc_ns(ipc_ns);
  362. }
  363. static int mqueue_create(struct inode *dir, struct dentry *dentry,
  364. umode_t mode, struct nameidata *nd)
  365. {
  366. struct inode *inode;
  367. struct mq_attr *attr = dentry->d_fsdata;
  368. int error;
  369. struct ipc_namespace *ipc_ns;
  370. spin_lock(&mq_lock);
  371. ipc_ns = __get_ns_from_inode(dir);
  372. if (!ipc_ns) {
  373. error = -EACCES;
  374. goto out_unlock;
  375. }
  376. if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
  377. !capable(CAP_SYS_RESOURCE)) {
  378. error = -ENOSPC;
  379. goto out_unlock;
  380. }
  381. ipc_ns->mq_queues_count++;
  382. spin_unlock(&mq_lock);
  383. inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
  384. if (IS_ERR(inode)) {
  385. error = PTR_ERR(inode);
  386. spin_lock(&mq_lock);
  387. ipc_ns->mq_queues_count--;
  388. goto out_unlock;
  389. }
  390. put_ipc_ns(ipc_ns);
  391. dir->i_size += DIRENT_SIZE;
  392. dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
  393. d_instantiate(dentry, inode);
  394. dget(dentry);
  395. return 0;
  396. out_unlock:
  397. spin_unlock(&mq_lock);
  398. if (ipc_ns)
  399. put_ipc_ns(ipc_ns);
  400. return error;
  401. }
  402. static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
  403. {
  404. struct inode *inode = dentry->d_inode;
  405. dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
  406. dir->i_size -= DIRENT_SIZE;
  407. drop_nlink(inode);
  408. dput(dentry);
  409. return 0;
  410. }
  411. /*
  412. * This is routine for system read from queue file.
  413. * To avoid mess with doing here some sort of mq_receive we allow
  414. * to read only queue size & notification info (the only values
  415. * that are interesting from user point of view and aren't accessible
  416. * through std routines)
  417. */
  418. static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
  419. size_t count, loff_t *off)
  420. {
  421. struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
  422. char buffer[FILENT_SIZE];
  423. ssize_t ret;
  424. spin_lock(&info->lock);
  425. snprintf(buffer, sizeof(buffer),
  426. "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
  427. info->qsize,
  428. info->notify_owner ? info->notify.sigev_notify : 0,
  429. (info->notify_owner &&
  430. info->notify.sigev_notify == SIGEV_SIGNAL) ?
  431. info->notify.sigev_signo : 0,
  432. pid_vnr(info->notify_owner));
  433. spin_unlock(&info->lock);
  434. buffer[sizeof(buffer)-1] = '\0';
  435. ret = simple_read_from_buffer(u_data, count, off, buffer,
  436. strlen(buffer));
  437. if (ret <= 0)
  438. return ret;
  439. filp->f_path.dentry->d_inode->i_atime = filp->f_path.dentry->d_inode->i_ctime = CURRENT_TIME;
  440. return ret;
  441. }
  442. static int mqueue_flush_file(struct file *filp, fl_owner_t id)
  443. {
  444. struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
  445. spin_lock(&info->lock);
  446. if (task_tgid(current) == info->notify_owner)
  447. remove_notification(info);
  448. spin_unlock(&info->lock);
  449. return 0;
  450. }
  451. static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
  452. {
  453. struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
  454. int retval = 0;
  455. poll_wait(filp, &info->wait_q, poll_tab);
  456. spin_lock(&info->lock);
  457. if (info->attr.mq_curmsgs)
  458. retval = POLLIN | POLLRDNORM;
  459. if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
  460. retval |= POLLOUT | POLLWRNORM;
  461. spin_unlock(&info->lock);
  462. return retval;
  463. }
  464. /* Adds current to info->e_wait_q[sr] before element with smaller prio */
  465. static void wq_add(struct mqueue_inode_info *info, int sr,
  466. struct ext_wait_queue *ewp)
  467. {
  468. struct ext_wait_queue *walk;
  469. ewp->task = current;
  470. list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
  471. if (walk->task->static_prio <= current->static_prio) {
  472. list_add_tail(&ewp->list, &walk->list);
  473. return;
  474. }
  475. }
  476. list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
  477. }
  478. /*
  479. * Puts current task to sleep. Caller must hold queue lock. After return
  480. * lock isn't held.
  481. * sr: SEND or RECV
  482. */
  483. static int wq_sleep(struct mqueue_inode_info *info, int sr,
  484. ktime_t *timeout, struct ext_wait_queue *ewp)
  485. {
  486. int retval;
  487. signed long time;
  488. wq_add(info, sr, ewp);
  489. for (;;) {
  490. set_current_state(TASK_INTERRUPTIBLE);
  491. spin_unlock(&info->lock);
  492. time = schedule_hrtimeout_range_clock(timeout, 0,
  493. HRTIMER_MODE_ABS, CLOCK_REALTIME);
  494. while (ewp->state == STATE_PENDING)
  495. cpu_relax();
  496. if (ewp->state == STATE_READY) {
  497. retval = 0;
  498. goto out;
  499. }
  500. spin_lock(&info->lock);
  501. if (ewp->state == STATE_READY) {
  502. retval = 0;
  503. goto out_unlock;
  504. }
  505. if (signal_pending(current)) {
  506. retval = -ERESTARTSYS;
  507. break;
  508. }
  509. if (time == 0) {
  510. retval = -ETIMEDOUT;
  511. break;
  512. }
  513. }
  514. list_del(&ewp->list);
  515. out_unlock:
  516. spin_unlock(&info->lock);
  517. out:
  518. return retval;
  519. }
  520. /*
  521. * Returns waiting task that should be serviced first or NULL if none exists
  522. */
  523. static struct ext_wait_queue *wq_get_first_waiter(
  524. struct mqueue_inode_info *info, int sr)
  525. {
  526. struct list_head *ptr;
  527. ptr = info->e_wait_q[sr].list.prev;
  528. if (ptr == &info->e_wait_q[sr].list)
  529. return NULL;
  530. return list_entry(ptr, struct ext_wait_queue, list);
  531. }
  532. static inline void set_cookie(struct sk_buff *skb, char code)
  533. {
  534. ((char*)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
  535. }
  536. /*
  537. * The next function is only to split too long sys_mq_timedsend
  538. */
  539. static void __do_notify(struct mqueue_inode_info *info)
  540. {
  541. /* notification
  542. * invoked when there is registered process and there isn't process
  543. * waiting synchronously for message AND state of queue changed from
  544. * empty to not empty. Here we are sure that no one is waiting
  545. * synchronously. */
  546. if (info->notify_owner &&
  547. info->attr.mq_curmsgs == 1) {
  548. struct siginfo sig_i;
  549. switch (info->notify.sigev_notify) {
  550. case SIGEV_NONE:
  551. break;
  552. case SIGEV_SIGNAL:
  553. /* sends signal */
  554. sig_i.si_signo = info->notify.sigev_signo;
  555. sig_i.si_errno = 0;
  556. sig_i.si_code = SI_MESGQ;
  557. sig_i.si_value = info->notify.sigev_value;
  558. /* map current pid/uid into info->owner's namespaces */
  559. rcu_read_lock();
  560. sig_i.si_pid = task_tgid_nr_ns(current,
  561. ns_of_pid(info->notify_owner));
  562. sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
  563. rcu_read_unlock();
  564. kill_pid_info(info->notify.sigev_signo,
  565. &sig_i, info->notify_owner);
  566. break;
  567. case SIGEV_THREAD:
  568. set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
  569. netlink_sendskb(info->notify_sock, info->notify_cookie);
  570. break;
  571. }
  572. /* after notification unregisters process */
  573. put_pid(info->notify_owner);
  574. put_user_ns(info->notify_user_ns);
  575. info->notify_owner = NULL;
  576. info->notify_user_ns = NULL;
  577. }
  578. wake_up(&info->wait_q);
  579. }
  580. static int prepare_timeout(const struct timespec __user *u_abs_timeout,
  581. ktime_t *expires, struct timespec *ts)
  582. {
  583. if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
  584. return -EFAULT;
  585. if (!timespec_valid(ts))
  586. return -EINVAL;
  587. *expires = timespec_to_ktime(*ts);
  588. return 0;
  589. }
  590. static void remove_notification(struct mqueue_inode_info *info)
  591. {
  592. if (info->notify_owner != NULL &&
  593. info->notify.sigev_notify == SIGEV_THREAD) {
  594. set_cookie(info->notify_cookie, NOTIFY_REMOVED);
  595. netlink_sendskb(info->notify_sock, info->notify_cookie);
  596. }
  597. put_pid(info->notify_owner);
  598. put_user_ns(info->notify_user_ns);
  599. info->notify_owner = NULL;
  600. info->notify_user_ns = NULL;
  601. }
  602. static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
  603. {
  604. int mq_treesize;
  605. unsigned long total_size;
  606. if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
  607. return -EINVAL;
  608. if (capable(CAP_SYS_RESOURCE)) {
  609. if (attr->mq_maxmsg > HARD_MSGMAX ||
  610. attr->mq_msgsize > HARD_MSGSIZEMAX)
  611. return -EINVAL;
  612. } else {
  613. if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
  614. attr->mq_msgsize > ipc_ns->mq_msgsize_max)
  615. return -EINVAL;
  616. }
  617. /* check for overflow */
  618. if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
  619. return -EOVERFLOW;
  620. mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
  621. min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
  622. sizeof(struct posix_msg_tree_node);
  623. total_size = attr->mq_maxmsg * attr->mq_msgsize;
  624. if (total_size + mq_treesize < total_size)
  625. return -EOVERFLOW;
  626. return 0;
  627. }
  628. /*
  629. * Invoked when creating a new queue via sys_mq_open
  630. */
  631. static struct file *do_create(struct ipc_namespace *ipc_ns, struct dentry *dir,
  632. struct dentry *dentry, int oflag, umode_t mode,
  633. struct mq_attr *attr)
  634. {
  635. const struct cred *cred = current_cred();
  636. struct file *result;
  637. int ret;
  638. if (attr) {
  639. ret = mq_attr_ok(ipc_ns, attr);
  640. if (ret)
  641. goto out;
  642. /* store for use during create */
  643. dentry->d_fsdata = attr;
  644. } else {
  645. struct mq_attr def_attr;
  646. def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
  647. ipc_ns->mq_msg_default);
  648. def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
  649. ipc_ns->mq_msgsize_default);
  650. ret = mq_attr_ok(ipc_ns, &def_attr);
  651. if (ret)
  652. goto out;
  653. }
  654. mode &= ~current_umask();
  655. ret = mnt_want_write(ipc_ns->mq_mnt);
  656. if (ret)
  657. goto out;
  658. ret = vfs_create2(ipc_ns->mq_mnt, dir->d_inode, dentry, mode, NULL);
  659. dentry->d_fsdata = NULL;
  660. if (ret)
  661. goto out_drop_write;
  662. result = dentry_open(dentry, ipc_ns->mq_mnt, oflag, cred);
  663. /*
  664. * dentry_open() took a persistent mnt_want_write(),
  665. * so we can now drop this one.
  666. */
  667. mnt_drop_write(ipc_ns->mq_mnt);
  668. return result;
  669. out_drop_write:
  670. mnt_drop_write(ipc_ns->mq_mnt);
  671. out:
  672. dput(dentry);
  673. mntput(ipc_ns->mq_mnt);
  674. return ERR_PTR(ret);
  675. }
  676. /* Opens existing queue */
  677. static struct file *do_open(struct ipc_namespace *ipc_ns,
  678. struct dentry *dentry, int oflag)
  679. {
  680. int ret;
  681. const struct cred *cred = current_cred();
  682. static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
  683. MAY_READ | MAY_WRITE };
  684. if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) {
  685. ret = -EINVAL;
  686. goto err;
  687. }
  688. if (inode_permission2(ipc_ns->mq_mnt, dentry->d_inode, oflag2acc[oflag & O_ACCMODE])) {
  689. ret = -EACCES;
  690. goto err;
  691. }
  692. return dentry_open(dentry, ipc_ns->mq_mnt, oflag, cred);
  693. err:
  694. dput(dentry);
  695. mntput(ipc_ns->mq_mnt);
  696. return ERR_PTR(ret);
  697. }
  698. SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
  699. struct mq_attr __user *, u_attr)
  700. {
  701. struct dentry *dentry;
  702. struct file *filp;
  703. char *name;
  704. struct mq_attr attr;
  705. int fd, error;
  706. struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
  707. if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
  708. return -EFAULT;
  709. audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
  710. if (IS_ERR(name = getname(u_name)))
  711. return PTR_ERR(name);
  712. fd = get_unused_fd_flags(O_CLOEXEC);
  713. if (fd < 0)
  714. goto out_putname;
  715. mutex_lock(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex);
  716. dentry = lookup_one_len2(name, ipc_ns->mq_mnt, ipc_ns->mq_mnt->mnt_root, strlen(name));
  717. if (IS_ERR(dentry)) {
  718. error = PTR_ERR(dentry);
  719. goto out_putfd;
  720. }
  721. mntget(ipc_ns->mq_mnt);
  722. if (oflag & O_CREAT) {
  723. if (dentry->d_inode) { /* entry already exists */
  724. audit_inode(name, dentry);
  725. if (oflag & O_EXCL) {
  726. error = -EEXIST;
  727. goto out;
  728. }
  729. filp = do_open(ipc_ns, dentry, oflag);
  730. } else {
  731. filp = do_create(ipc_ns, ipc_ns->mq_mnt->mnt_root,
  732. dentry, oflag, mode,
  733. u_attr ? &attr : NULL);
  734. }
  735. } else {
  736. if (!dentry->d_inode) {
  737. error = -ENOENT;
  738. goto out;
  739. }
  740. audit_inode(name, dentry);
  741. filp = do_open(ipc_ns, dentry, oflag);
  742. }
  743. if (IS_ERR(filp)) {
  744. error = PTR_ERR(filp);
  745. goto out_putfd;
  746. }
  747. fd_install(fd, filp);
  748. goto out_upsem;
  749. out:
  750. dput(dentry);
  751. mntput(ipc_ns->mq_mnt);
  752. out_putfd:
  753. put_unused_fd(fd);
  754. fd = error;
  755. out_upsem:
  756. mutex_unlock(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex);
  757. out_putname:
  758. putname(name);
  759. return fd;
  760. }
  761. SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
  762. {
  763. int err;
  764. char *name;
  765. struct dentry *dentry;
  766. struct inode *inode = NULL;
  767. struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
  768. name = getname(u_name);
  769. if (IS_ERR(name))
  770. return PTR_ERR(name);
  771. mutex_lock_nested(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex,
  772. I_MUTEX_PARENT);
  773. dentry = lookup_one_len2(name, ipc_ns->mq_mnt, ipc_ns->mq_mnt->mnt_root,
  774. strlen(name));
  775. if (IS_ERR(dentry)) {
  776. err = PTR_ERR(dentry);
  777. goto out_unlock;
  778. }
  779. if (!dentry->d_inode) {
  780. err = -ENOENT;
  781. goto out_err;
  782. }
  783. inode = dentry->d_inode;
  784. if (inode)
  785. ihold(inode);
  786. err = mnt_want_write(ipc_ns->mq_mnt);
  787. if (err)
  788. goto out_err;
  789. err = vfs_unlink2(ipc_ns->mq_mnt, dentry->d_parent->d_inode, dentry);
  790. mnt_drop_write(ipc_ns->mq_mnt);
  791. out_err:
  792. dput(dentry);
  793. out_unlock:
  794. mutex_unlock(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex);
  795. putname(name);
  796. if (inode)
  797. iput(inode);
  798. return err;
  799. }
  800. /* Pipelined send and receive functions.
  801. *
  802. * If a receiver finds no waiting message, then it registers itself in the
  803. * list of waiting receivers. A sender checks that list before adding the new
  804. * message into the message array. If there is a waiting receiver, then it
  805. * bypasses the message array and directly hands the message over to the
  806. * receiver.
  807. * The receiver accepts the message and returns without grabbing the queue
  808. * spinlock. Therefore an intermediate STATE_PENDING state and memory barriers
  809. * are necessary. The same algorithm is used for sysv semaphores, see
  810. * ipc/sem.c for more details.
  811. *
  812. * The same algorithm is used for senders.
  813. */
  814. /* pipelined_send() - send a message directly to the task waiting in
  815. * sys_mq_timedreceive() (without inserting message into a queue).
  816. */
  817. static inline void pipelined_send(struct mqueue_inode_info *info,
  818. struct msg_msg *message,
  819. struct ext_wait_queue *receiver)
  820. {
  821. receiver->msg = message;
  822. list_del(&receiver->list);
  823. receiver->state = STATE_PENDING;
  824. wake_up_process(receiver->task);
  825. smp_wmb();
  826. receiver->state = STATE_READY;
  827. }
  828. /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
  829. * gets its message and put to the queue (we have one free place for sure). */
  830. static inline void pipelined_receive(struct mqueue_inode_info *info)
  831. {
  832. struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
  833. if (!sender) {
  834. /* for poll */
  835. wake_up_interruptible(&info->wait_q);
  836. return;
  837. }
  838. if (msg_insert(sender->msg, info))
  839. return;
  840. list_del(&sender->list);
  841. sender->state = STATE_PENDING;
  842. wake_up_process(sender->task);
  843. smp_wmb();
  844. sender->state = STATE_READY;
  845. }
  846. SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
  847. size_t, msg_len, unsigned int, msg_prio,
  848. const struct timespec __user *, u_abs_timeout)
  849. {
  850. struct file *filp;
  851. struct inode *inode;
  852. struct ext_wait_queue wait;
  853. struct ext_wait_queue *receiver;
  854. struct msg_msg *msg_ptr;
  855. struct mqueue_inode_info *info;
  856. ktime_t expires, *timeout = NULL;
  857. struct timespec ts;
  858. struct posix_msg_tree_node *new_leaf = NULL;
  859. int ret = 0, fput_needed;
  860. if (u_abs_timeout) {
  861. int res = prepare_timeout(u_abs_timeout, &expires, &ts);
  862. if (res)
  863. return res;
  864. timeout = &expires;
  865. }
  866. if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
  867. return -EINVAL;
  868. audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
  869. filp = fget_light(mqdes, &fput_needed);
  870. if (unlikely(!filp)) {
  871. ret = -EBADF;
  872. goto out;
  873. }
  874. inode = filp->f_path.dentry->d_inode;
  875. if (unlikely(filp->f_op != &mqueue_file_operations)) {
  876. ret = -EBADF;
  877. goto out_fput;
  878. }
  879. info = MQUEUE_I(inode);
  880. audit_inode(NULL, filp->f_path.dentry);
  881. if (unlikely(!(filp->f_mode & FMODE_WRITE))) {
  882. ret = -EBADF;
  883. goto out_fput;
  884. }
  885. if (unlikely(msg_len > info->attr.mq_msgsize)) {
  886. ret = -EMSGSIZE;
  887. goto out_fput;
  888. }
  889. /* First try to allocate memory, before doing anything with
  890. * existing queues. */
  891. msg_ptr = load_msg(u_msg_ptr, msg_len);
  892. if (IS_ERR(msg_ptr)) {
  893. ret = PTR_ERR(msg_ptr);
  894. goto out_fput;
  895. }
  896. msg_ptr->m_ts = msg_len;
  897. msg_ptr->m_type = msg_prio;
  898. /*
  899. * msg_insert really wants us to have a valid, spare node struct so
  900. * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
  901. * fall back to that if necessary.
  902. */
  903. if (!info->node_cache)
  904. new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
  905. spin_lock(&info->lock);
  906. if (!info->node_cache && new_leaf) {
  907. /* Save our speculative allocation into the cache */
  908. rb_init_node(&new_leaf->rb_node);
  909. INIT_LIST_HEAD(&new_leaf->msg_list);
  910. info->node_cache = new_leaf;
  911. info->qsize += sizeof(*new_leaf);
  912. new_leaf = NULL;
  913. } else {
  914. kfree(new_leaf);
  915. }
  916. if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
  917. if (filp->f_flags & O_NONBLOCK) {
  918. ret = -EAGAIN;
  919. } else {
  920. wait.task = current;
  921. wait.msg = (void *) msg_ptr;
  922. wait.state = STATE_NONE;
  923. ret = wq_sleep(info, SEND, timeout, &wait);
  924. /*
  925. * wq_sleep must be called with info->lock held, and
  926. * returns with the lock released
  927. */
  928. goto out_free;
  929. }
  930. } else {
  931. receiver = wq_get_first_waiter(info, RECV);
  932. if (receiver) {
  933. pipelined_send(info, msg_ptr, receiver);
  934. } else {
  935. /* adds message to the queue */
  936. ret = msg_insert(msg_ptr, info);
  937. if (ret)
  938. goto out_unlock;
  939. __do_notify(info);
  940. }
  941. inode->i_atime = inode->i_mtime = inode->i_ctime =
  942. CURRENT_TIME;
  943. }
  944. out_unlock:
  945. spin_unlock(&info->lock);
  946. out_free:
  947. if (ret)
  948. free_msg(msg_ptr);
  949. out_fput:
  950. fput_light(filp, fput_needed);
  951. out:
  952. return ret;
  953. }
  954. SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
  955. size_t, msg_len, unsigned int __user *, u_msg_prio,
  956. const struct timespec __user *, u_abs_timeout)
  957. {
  958. ssize_t ret;
  959. struct msg_msg *msg_ptr;
  960. struct file *filp;
  961. struct inode *inode;
  962. struct mqueue_inode_info *info;
  963. struct ext_wait_queue wait;
  964. ktime_t expires, *timeout = NULL;
  965. struct timespec ts;
  966. struct posix_msg_tree_node *new_leaf = NULL;
  967. int fput_needed;
  968. if (u_abs_timeout) {
  969. int res = prepare_timeout(u_abs_timeout, &expires, &ts);
  970. if (res)
  971. return res;
  972. timeout = &expires;
  973. }
  974. audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
  975. filp = fget_light(mqdes, &fput_needed);
  976. if (unlikely(!filp)) {
  977. ret = -EBADF;
  978. goto out;
  979. }
  980. inode = filp->f_path.dentry->d_inode;
  981. if (unlikely(filp->f_op != &mqueue_file_operations)) {
  982. ret = -EBADF;
  983. goto out_fput;
  984. }
  985. info = MQUEUE_I(inode);
  986. audit_inode(NULL, filp->f_path.dentry);
  987. if (unlikely(!(filp->f_mode & FMODE_READ))) {
  988. ret = -EBADF;
  989. goto out_fput;
  990. }
  991. /* checks if buffer is big enough */
  992. if (unlikely(msg_len < info->attr.mq_msgsize)) {
  993. ret = -EMSGSIZE;
  994. goto out_fput;
  995. }
  996. /*
  997. * msg_insert really wants us to have a valid, spare node struct so
  998. * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
  999. * fall back to that if necessary.
  1000. */
  1001. if (!info->node_cache)
  1002. new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
  1003. spin_lock(&info->lock);
  1004. if (!info->node_cache && new_leaf) {
  1005. /* Save our speculative allocation into the cache */
  1006. rb_init_node(&new_leaf->rb_node);
  1007. INIT_LIST_HEAD(&new_leaf->msg_list);
  1008. info->node_cache = new_leaf;
  1009. info->qsize += sizeof(*new_leaf);
  1010. } else {
  1011. kfree(new_leaf);
  1012. }
  1013. if (info->attr.mq_curmsgs == 0) {
  1014. if (filp->f_flags & O_NONBLOCK) {
  1015. spin_unlock(&info->lock);
  1016. ret = -EAGAIN;
  1017. } else {
  1018. wait.task = current;
  1019. wait.state = STATE_NONE;
  1020. ret = wq_sleep(info, RECV, timeout, &wait);
  1021. msg_ptr = wait.msg;
  1022. }
  1023. } else {
  1024. msg_ptr = msg_get(info);
  1025. inode->i_atime = inode->i_mtime = inode->i_ctime =
  1026. CURRENT_TIME;
  1027. /* There is now free space in queue. */
  1028. pipelined_receive(info);
  1029. spin_unlock(&info->lock);
  1030. ret = 0;
  1031. }
  1032. if (ret == 0) {
  1033. ret = msg_ptr->m_ts;
  1034. if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
  1035. store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
  1036. ret = -EFAULT;
  1037. }
  1038. free_msg(msg_ptr);
  1039. }
  1040. out_fput:
  1041. fput_light(filp, fput_needed);
  1042. out:
  1043. return ret;
  1044. }
  1045. /*
  1046. * Notes: the case when user wants us to deregister (with NULL as pointer)
  1047. * and he isn't currently owner of notification, will be silently discarded.
  1048. * It isn't explicitly defined in the POSIX.
  1049. */
  1050. SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
  1051. const struct sigevent __user *, u_notification)
  1052. {
  1053. int ret, fput_needed;
  1054. struct file *filp;
  1055. struct sock *sock;
  1056. struct inode *inode;
  1057. struct sigevent notification;
  1058. struct mqueue_inode_info *info;
  1059. struct sk_buff *nc;
  1060. if (u_notification) {
  1061. if (copy_from_user(&notification, u_notification,
  1062. sizeof(struct sigevent)))
  1063. return -EFAULT;
  1064. }
  1065. audit_mq_notify(mqdes, u_notification ? &notification : NULL);
  1066. nc = NULL;
  1067. sock = NULL;
  1068. if (u_notification != NULL) {
  1069. if (unlikely(notification.sigev_notify != SIGEV_NONE &&
  1070. notification.sigev_notify != SIGEV_SIGNAL &&
  1071. notification.sigev_notify != SIGEV_THREAD))
  1072. return -EINVAL;
  1073. if (notification.sigev_notify == SIGEV_SIGNAL &&
  1074. !valid_signal(notification.sigev_signo)) {
  1075. return -EINVAL;
  1076. }
  1077. if (notification.sigev_notify == SIGEV_THREAD) {
  1078. long timeo;
  1079. /* create the notify skb */
  1080. nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
  1081. if (!nc) {
  1082. ret = -ENOMEM;
  1083. goto out;
  1084. }
  1085. if (copy_from_user(nc->data,
  1086. notification.sigev_value.sival_ptr,
  1087. NOTIFY_COOKIE_LEN)) {
  1088. ret = -EFAULT;
  1089. goto out;
  1090. }
  1091. /* TODO: add a header? */
  1092. skb_put(nc, NOTIFY_COOKIE_LEN);
  1093. /* and attach it to the socket */
  1094. retry:
  1095. filp = fget_light(notification.sigev_signo, &fput_needed);
  1096. if (!filp) {
  1097. ret = -EBADF;
  1098. goto out;
  1099. }
  1100. sock = netlink_getsockbyfilp(filp);
  1101. fput_light(filp, fput_needed);
  1102. if (IS_ERR(sock)) {
  1103. ret = PTR_ERR(sock);
  1104. sock = NULL;
  1105. goto out;
  1106. }
  1107. timeo = MAX_SCHEDULE_TIMEOUT;
  1108. ret = netlink_attachskb(sock, nc, &timeo, NULL);
  1109. if (ret == 1) {
  1110. sock = NULL;
  1111. goto retry;
  1112. }
  1113. if (ret) {
  1114. sock = NULL;
  1115. nc = NULL;
  1116. goto out;
  1117. }
  1118. }
  1119. }
  1120. filp = fget_light(mqdes, &fput_needed);
  1121. if (!filp) {
  1122. ret = -EBADF;
  1123. goto out;
  1124. }
  1125. inode = filp->f_path.dentry->d_inode;
  1126. if (unlikely(filp->f_op != &mqueue_file_operations)) {
  1127. ret = -EBADF;
  1128. goto out_fput;
  1129. }
  1130. info = MQUEUE_I(inode);
  1131. ret = 0;
  1132. spin_lock(&info->lock);
  1133. if (u_notification == NULL) {
  1134. if (info->notify_owner == task_tgid(current)) {
  1135. remove_notification(info);
  1136. inode->i_atime = inode->i_ctime = CURRENT_TIME;
  1137. }
  1138. } else if (info->notify_owner != NULL) {
  1139. ret = -EBUSY;
  1140. } else {
  1141. switch (notification.sigev_notify) {
  1142. case SIGEV_NONE:
  1143. info->notify.sigev_notify = SIGEV_NONE;
  1144. break;
  1145. case SIGEV_THREAD:
  1146. info->notify_sock = sock;
  1147. info->notify_cookie = nc;
  1148. sock = NULL;
  1149. nc = NULL;
  1150. info->notify.sigev_notify = SIGEV_THREAD;
  1151. break;
  1152. case SIGEV_SIGNAL:
  1153. info->notify.sigev_signo = notification.sigev_signo;
  1154. info->notify.sigev_value = notification.sigev_value;
  1155. info->notify.sigev_notify = SIGEV_SIGNAL;
  1156. break;
  1157. }
  1158. info->notify_owner = get_pid(task_tgid(current));
  1159. info->notify_user_ns = get_user_ns(current_user_ns());
  1160. inode->i_atime = inode->i_ctime = CURRENT_TIME;
  1161. }
  1162. spin_unlock(&info->lock);
  1163. out_fput:
  1164. fput_light(filp, fput_needed);
  1165. out:
  1166. if (sock) {
  1167. netlink_detachskb(sock, nc);
  1168. } else if (nc) {
  1169. dev_kfree_skb(nc);
  1170. }
  1171. return ret;
  1172. }
  1173. SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
  1174. const struct mq_attr __user *, u_mqstat,
  1175. struct mq_attr __user *, u_omqstat)
  1176. {
  1177. int ret;
  1178. struct mq_attr mqstat, omqstat;
  1179. int fput_needed;
  1180. struct file *filp;
  1181. struct inode *inode;
  1182. struct mqueue_inode_info *info;
  1183. if (u_mqstat != NULL) {
  1184. if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
  1185. return -EFAULT;
  1186. if (mqstat.mq_flags & (~O_NONBLOCK))
  1187. return -EINVAL;
  1188. }
  1189. filp = fget_light(mqdes, &fput_needed);
  1190. if (!filp) {
  1191. ret = -EBADF;
  1192. goto out;
  1193. }
  1194. inode = filp->f_path.dentry->d_inode;
  1195. if (unlikely(filp->f_op != &mqueue_file_operations)) {
  1196. ret = -EBADF;
  1197. goto out_fput;
  1198. }
  1199. info = MQUEUE_I(inode);
  1200. spin_lock(&info->lock);
  1201. omqstat = info->attr;
  1202. omqstat.mq_flags = filp->f_flags & O_NONBLOCK;
  1203. if (u_mqstat) {
  1204. audit_mq_getsetattr(mqdes, &mqstat);
  1205. spin_lock(&filp->f_lock);
  1206. if (mqstat.mq_flags & O_NONBLOCK)
  1207. filp->f_flags |= O_NONBLOCK;
  1208. else
  1209. filp->f_flags &= ~O_NONBLOCK;
  1210. spin_unlock(&filp->f_lock);
  1211. inode->i_atime = inode->i_ctime = CURRENT_TIME;
  1212. }
  1213. spin_unlock(&info->lock);
  1214. ret = 0;
  1215. if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
  1216. sizeof(struct mq_attr)))
  1217. ret = -EFAULT;
  1218. out_fput:
  1219. fput_light(filp, fput_needed);
  1220. out:
  1221. return ret;
  1222. }
  1223. static const struct inode_operations mqueue_dir_inode_operations = {
  1224. .lookup = simple_lookup,
  1225. .create = mqueue_create,
  1226. .unlink = mqueue_unlink,
  1227. };
  1228. static const struct file_operations mqueue_file_operations = {
  1229. .flush = mqueue_flush_file,
  1230. .poll = mqueue_poll_file,
  1231. .read = mqueue_read_file,
  1232. .llseek = default_llseek,
  1233. };
  1234. static const struct super_operations mqueue_super_ops = {
  1235. .alloc_inode = mqueue_alloc_inode,
  1236. .destroy_inode = mqueue_destroy_inode,
  1237. .evict_inode = mqueue_evict_inode,
  1238. .statfs = simple_statfs,
  1239. };
  1240. static struct file_system_type mqueue_fs_type = {
  1241. .name = "mqueue",
  1242. .mount = mqueue_mount,
  1243. .kill_sb = kill_litter_super,
  1244. };
  1245. int mq_init_ns(struct ipc_namespace *ns)
  1246. {
  1247. ns->mq_queues_count = 0;
  1248. ns->mq_queues_max = DFLT_QUEUESMAX;
  1249. ns->mq_msg_max = DFLT_MSGMAX;
  1250. ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
  1251. ns->mq_msg_default = DFLT_MSG;
  1252. ns->mq_msgsize_default = DFLT_MSGSIZE;
  1253. ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
  1254. if (IS_ERR(ns->mq_mnt)) {
  1255. int err = PTR_ERR(ns->mq_mnt);
  1256. ns->mq_mnt = NULL;
  1257. return err;
  1258. }
  1259. return 0;
  1260. }
  1261. void mq_clear_sbinfo(struct ipc_namespace *ns)
  1262. {
  1263. ns->mq_mnt->mnt_sb->s_fs_info = NULL;
  1264. }
  1265. void mq_put_mnt(struct ipc_namespace *ns)
  1266. {
  1267. kern_unmount(ns->mq_mnt);
  1268. }
  1269. static int __init init_mqueue_fs(void)
  1270. {
  1271. int error;
  1272. mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
  1273. sizeof(struct mqueue_inode_info), 0,
  1274. SLAB_HWCACHE_ALIGN, init_once);
  1275. if (mqueue_inode_cachep == NULL)
  1276. return -ENOMEM;
  1277. /* ignore failures - they are not fatal */
  1278. mq_sysctl_table = mq_register_sysctl_table();
  1279. error = register_filesystem(&mqueue_fs_type);
  1280. if (error)
  1281. goto out_sysctl;
  1282. spin_lock_init(&mq_lock);
  1283. error = mq_init_ns(&init_ipc_ns);
  1284. if (error)
  1285. goto out_filesystem;
  1286. return 0;
  1287. out_filesystem:
  1288. unregister_filesystem(&mqueue_fs_type);
  1289. out_sysctl:
  1290. if (mq_sysctl_table)
  1291. unregister_sysctl_table(mq_sysctl_table);
  1292. kmem_cache_destroy(mqueue_inode_cachep);
  1293. return error;
  1294. }
  1295. __initcall(init_mqueue_fs);