io.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157
  1. /*
  2. * This file is part of UBIFS.
  3. *
  4. * Copyright (C) 2006-2008 Nokia Corporation.
  5. * Copyright (C) 2006, 2007 University of Szeged, Hungary
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along with
  17. * this program; if not, write to the Free Software Foundation, Inc., 51
  18. * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Authors: Artem Bityutskiy (Битюцкий Артём)
  21. * Adrian Hunter
  22. * Zoltan Sogor
  23. */
  24. /*
  25. * This file implements UBIFS I/O subsystem which provides various I/O-related
  26. * helper functions (reading/writing/checking/validating nodes) and implements
  27. * write-buffering support. Write buffers help to save space which otherwise
  28. * would have been wasted for padding to the nearest minimal I/O unit boundary.
  29. * Instead, data first goes to the write-buffer and is flushed when the
  30. * buffer is full or when it is not used for some time (by timer). This is
  31. * similar to the mechanism is used by JFFS2.
  32. *
  33. * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
  34. * write size (@c->max_write_size). The latter is the maximum amount of bytes
  35. * the underlying flash is able to program at a time, and writing in
  36. * @c->max_write_size units should presumably be faster. Obviously,
  37. * @c->min_io_size <= @c->max_write_size. Write-buffers are of
  38. * @c->max_write_size bytes in size for maximum performance. However, when a
  39. * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
  40. * boundary) which contains data is written, not the whole write-buffer,
  41. * because this is more space-efficient.
  42. *
  43. * This optimization adds few complications to the code. Indeed, on the one
  44. * hand, we want to write in optimal @c->max_write_size bytes chunks, which
  45. * also means aligning writes at the @c->max_write_size bytes offsets. On the
  46. * other hand, we do not want to waste space when synchronizing the write
  47. * buffer, so during synchronization we writes in smaller chunks. And this makes
  48. * the next write offset to be not aligned to @c->max_write_size bytes. So the
  49. * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
  50. * to @c->max_write_size bytes again. We do this by temporarily shrinking
  51. * write-buffer size (@wbuf->size).
  52. *
  53. * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
  54. * mutexes defined inside these objects. Since sometimes upper-level code
  55. * has to lock the write-buffer (e.g. journal space reservation code), many
  56. * functions related to write-buffers have "nolock" suffix which means that the
  57. * caller has to lock the write-buffer before calling this function.
  58. *
  59. * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
  60. * aligned, UBIFS starts the next node from the aligned address, and the padded
  61. * bytes may contain any rubbish. In other words, UBIFS does not put padding
  62. * bytes in those small gaps. Common headers of nodes store real node lengths,
  63. * not aligned lengths. Indexing nodes also store real lengths in branches.
  64. *
  65. * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
  66. * uses padding nodes or padding bytes, if the padding node does not fit.
  67. *
  68. * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
  69. * they are read from the flash media.
  70. */
  71. #include <linux/crc32.h>
  72. #include <linux/slab.h>
  73. #include "ubifs.h"
  74. /**
  75. * ubifs_ro_mode - switch UBIFS to read read-only mode.
  76. * @c: UBIFS file-system description object
  77. * @err: error code which is the reason of switching to R/O mode
  78. */
  79. void ubifs_ro_mode(struct ubifs_info *c, int err)
  80. {
  81. if (!c->ro_error) {
  82. c->ro_error = 1;
  83. c->no_chk_data_crc = 0;
  84. c->vfs_sb->s_flags |= MS_RDONLY;
  85. ubifs_warn("switched to read-only mode, error %d", err);
  86. dump_stack();
  87. }
  88. }
  89. /*
  90. * Below are simple wrappers over UBI I/O functions which include some
  91. * additional checks and UBIFS debugging stuff. See corresponding UBI function
  92. * for more information.
  93. */
  94. int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
  95. int len, int even_ebadmsg)
  96. {
  97. int err;
  98. err = ubi_read(c->ubi, lnum, buf, offs, len);
  99. /*
  100. * In case of %-EBADMSG print the error message only if the
  101. * @even_ebadmsg is true.
  102. */
  103. if (err && (err != -EBADMSG || even_ebadmsg)) {
  104. ubifs_err("reading %d bytes from LEB %d:%d failed, error %d",
  105. len, lnum, offs, err);
  106. dbg_dump_stack();
  107. }
  108. return err;
  109. }
  110. int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
  111. int len, int dtype)
  112. {
  113. int err;
  114. ubifs_assert(!c->ro_media && !c->ro_mount);
  115. if (c->ro_error)
  116. return -EROFS;
  117. if (!dbg_is_tst_rcvry(c))
  118. err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
  119. else
  120. err = dbg_leb_write(c, lnum, buf, offs, len, dtype);
  121. if (err) {
  122. ubifs_err("writing %d bytes to LEB %d:%d failed, error %d",
  123. len, lnum, offs, err);
  124. ubifs_ro_mode(c, err);
  125. dbg_dump_stack();
  126. }
  127. return err;
  128. }
  129. int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len,
  130. int dtype)
  131. {
  132. int err;
  133. ubifs_assert(!c->ro_media && !c->ro_mount);
  134. if (c->ro_error)
  135. return -EROFS;
  136. if (!dbg_is_tst_rcvry(c))
  137. err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
  138. else
  139. err = dbg_leb_change(c, lnum, buf, len, dtype);
  140. if (err) {
  141. ubifs_err("changing %d bytes in LEB %d failed, error %d",
  142. len, lnum, err);
  143. ubifs_ro_mode(c, err);
  144. dbg_dump_stack();
  145. }
  146. return err;
  147. }
  148. int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
  149. {
  150. int err;
  151. ubifs_assert(!c->ro_media && !c->ro_mount);
  152. if (c->ro_error)
  153. return -EROFS;
  154. if (!dbg_is_tst_rcvry(c))
  155. err = ubi_leb_unmap(c->ubi, lnum);
  156. else
  157. err = dbg_leb_unmap(c, lnum);
  158. if (err) {
  159. ubifs_err("unmap LEB %d failed, error %d", lnum, err);
  160. ubifs_ro_mode(c, err);
  161. dbg_dump_stack();
  162. }
  163. return err;
  164. }
  165. int ubifs_leb_map(struct ubifs_info *c, int lnum, int dtype)
  166. {
  167. int err;
  168. ubifs_assert(!c->ro_media && !c->ro_mount);
  169. if (c->ro_error)
  170. return -EROFS;
  171. if (!dbg_is_tst_rcvry(c))
  172. err = ubi_leb_map(c->ubi, lnum, dtype);
  173. else
  174. err = dbg_leb_map(c, lnum, dtype);
  175. if (err) {
  176. ubifs_err("mapping LEB %d failed, error %d", lnum, err);
  177. ubifs_ro_mode(c, err);
  178. dbg_dump_stack();
  179. }
  180. return err;
  181. }
  182. int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
  183. {
  184. int err;
  185. err = ubi_is_mapped(c->ubi, lnum);
  186. if (err < 0) {
  187. ubifs_err("ubi_is_mapped failed for LEB %d, error %d",
  188. lnum, err);
  189. dbg_dump_stack();
  190. }
  191. return err;
  192. }
  193. /**
  194. * ubifs_check_node - check node.
  195. * @c: UBIFS file-system description object
  196. * @buf: node to check
  197. * @lnum: logical eraseblock number
  198. * @offs: offset within the logical eraseblock
  199. * @quiet: print no messages
  200. * @must_chk_crc: indicates whether to always check the CRC
  201. *
  202. * This function checks node magic number and CRC checksum. This function also
  203. * validates node length to prevent UBIFS from becoming crazy when an attacker
  204. * feeds it a file-system image with incorrect nodes. For example, too large
  205. * node length in the common header could cause UBIFS to read memory outside of
  206. * allocated buffer when checking the CRC checksum.
  207. *
  208. * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
  209. * true, which is controlled by corresponding UBIFS mount option. However, if
  210. * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
  211. * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
  212. * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
  213. * is checked. This is because during mounting or re-mounting from R/O mode to
  214. * R/W mode we may read journal nodes (when replying the journal or doing the
  215. * recovery) and the journal nodes may potentially be corrupted, so checking is
  216. * required.
  217. *
  218. * This function returns zero in case of success and %-EUCLEAN in case of bad
  219. * CRC or magic.
  220. */
  221. int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
  222. int offs, int quiet, int must_chk_crc)
  223. {
  224. int err = -EINVAL, type, node_len;
  225. uint32_t crc, node_crc, magic;
  226. const struct ubifs_ch *ch = buf;
  227. ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
  228. ubifs_assert(!(offs & 7) && offs < c->leb_size);
  229. magic = le32_to_cpu(ch->magic);
  230. if (magic != UBIFS_NODE_MAGIC) {
  231. if (!quiet)
  232. ubifs_err("bad magic %#08x, expected %#08x",
  233. magic, UBIFS_NODE_MAGIC);
  234. err = -EUCLEAN;
  235. goto out;
  236. }
  237. type = ch->node_type;
  238. if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
  239. if (!quiet)
  240. ubifs_err("bad node type %d", type);
  241. goto out;
  242. }
  243. node_len = le32_to_cpu(ch->len);
  244. if (node_len + offs > c->leb_size)
  245. goto out_len;
  246. if (c->ranges[type].max_len == 0) {
  247. if (node_len != c->ranges[type].len)
  248. goto out_len;
  249. } else if (node_len < c->ranges[type].min_len ||
  250. node_len > c->ranges[type].max_len)
  251. goto out_len;
  252. if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
  253. !c->remounting_rw && c->no_chk_data_crc)
  254. return 0;
  255. crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
  256. node_crc = le32_to_cpu(ch->crc);
  257. if (crc != node_crc) {
  258. if (!quiet)
  259. ubifs_err("bad CRC: calculated %#08x, read %#08x",
  260. crc, node_crc);
  261. err = -EUCLEAN;
  262. goto out;
  263. }
  264. return 0;
  265. out_len:
  266. if (!quiet)
  267. ubifs_err("bad node length %d", node_len);
  268. out:
  269. if (!quiet) {
  270. ubifs_err("bad node at LEB %d:%d", lnum, offs);
  271. dbg_dump_node(c, buf);
  272. dbg_dump_stack();
  273. }
  274. return err;
  275. }
  276. /**
  277. * ubifs_pad - pad flash space.
  278. * @c: UBIFS file-system description object
  279. * @buf: buffer to put padding to
  280. * @pad: how many bytes to pad
  281. *
  282. * The flash media obliges us to write only in chunks of %c->min_io_size and
  283. * when we have to write less data we add padding node to the write-buffer and
  284. * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
  285. * media is being scanned. If the amount of wasted space is not enough to fit a
  286. * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
  287. * pattern (%UBIFS_PADDING_BYTE).
  288. *
  289. * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
  290. * used.
  291. */
  292. void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
  293. {
  294. uint32_t crc;
  295. ubifs_assert(pad >= 0 && !(pad & 7));
  296. if (pad >= UBIFS_PAD_NODE_SZ) {
  297. struct ubifs_ch *ch = buf;
  298. struct ubifs_pad_node *pad_node = buf;
  299. ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
  300. ch->node_type = UBIFS_PAD_NODE;
  301. ch->group_type = UBIFS_NO_NODE_GROUP;
  302. ch->padding[0] = ch->padding[1] = 0;
  303. ch->sqnum = 0;
  304. ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
  305. pad -= UBIFS_PAD_NODE_SZ;
  306. pad_node->pad_len = cpu_to_le32(pad);
  307. crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
  308. ch->crc = cpu_to_le32(crc);
  309. memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
  310. } else if (pad > 0)
  311. /* Too little space, padding node won't fit */
  312. memset(buf, UBIFS_PADDING_BYTE, pad);
  313. }
  314. /**
  315. * next_sqnum - get next sequence number.
  316. * @c: UBIFS file-system description object
  317. */
  318. static unsigned long long next_sqnum(struct ubifs_info *c)
  319. {
  320. unsigned long long sqnum;
  321. spin_lock(&c->cnt_lock);
  322. sqnum = ++c->max_sqnum;
  323. spin_unlock(&c->cnt_lock);
  324. if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
  325. if (sqnum >= SQNUM_WATERMARK) {
  326. ubifs_err("sequence number overflow %llu, end of life",
  327. sqnum);
  328. ubifs_ro_mode(c, -EINVAL);
  329. }
  330. ubifs_warn("running out of sequence numbers, end of life soon");
  331. }
  332. return sqnum;
  333. }
  334. /**
  335. * ubifs_prepare_node - prepare node to be written to flash.
  336. * @c: UBIFS file-system description object
  337. * @node: the node to pad
  338. * @len: node length
  339. * @pad: if the buffer has to be padded
  340. *
  341. * This function prepares node at @node to be written to the media - it
  342. * calculates node CRC, fills the common header, and adds proper padding up to
  343. * the next minimum I/O unit if @pad is not zero.
  344. */
  345. void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
  346. {
  347. uint32_t crc;
  348. struct ubifs_ch *ch = node;
  349. unsigned long long sqnum = next_sqnum(c);
  350. ubifs_assert(len >= UBIFS_CH_SZ);
  351. ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
  352. ch->len = cpu_to_le32(len);
  353. ch->group_type = UBIFS_NO_NODE_GROUP;
  354. ch->sqnum = cpu_to_le64(sqnum);
  355. ch->padding[0] = ch->padding[1] = 0;
  356. crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
  357. ch->crc = cpu_to_le32(crc);
  358. if (pad) {
  359. len = ALIGN(len, 8);
  360. pad = ALIGN(len, c->min_io_size) - len;
  361. ubifs_pad(c, node + len, pad);
  362. }
  363. }
  364. /**
  365. * ubifs_prep_grp_node - prepare node of a group to be written to flash.
  366. * @c: UBIFS file-system description object
  367. * @node: the node to pad
  368. * @len: node length
  369. * @last: indicates the last node of the group
  370. *
  371. * This function prepares node at @node to be written to the media - it
  372. * calculates node CRC and fills the common header.
  373. */
  374. void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
  375. {
  376. uint32_t crc;
  377. struct ubifs_ch *ch = node;
  378. unsigned long long sqnum = next_sqnum(c);
  379. ubifs_assert(len >= UBIFS_CH_SZ);
  380. ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
  381. ch->len = cpu_to_le32(len);
  382. if (last)
  383. ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
  384. else
  385. ch->group_type = UBIFS_IN_NODE_GROUP;
  386. ch->sqnum = cpu_to_le64(sqnum);
  387. ch->padding[0] = ch->padding[1] = 0;
  388. crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
  389. ch->crc = cpu_to_le32(crc);
  390. }
  391. /**
  392. * wbuf_timer_callback - write-buffer timer callback function.
  393. * @data: timer data (write-buffer descriptor)
  394. *
  395. * This function is called when the write-buffer timer expires.
  396. */
  397. static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
  398. {
  399. struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
  400. dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
  401. wbuf->need_sync = 1;
  402. wbuf->c->need_wbuf_sync = 1;
  403. ubifs_wake_up_bgt(wbuf->c);
  404. return HRTIMER_NORESTART;
  405. }
  406. /**
  407. * new_wbuf_timer - start new write-buffer timer.
  408. * @wbuf: write-buffer descriptor
  409. */
  410. static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
  411. {
  412. ubifs_assert(!hrtimer_active(&wbuf->timer));
  413. if (wbuf->no_timer)
  414. return;
  415. dbg_io("set timer for jhead %s, %llu-%llu millisecs",
  416. dbg_jhead(wbuf->jhead),
  417. div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
  418. div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
  419. USEC_PER_SEC));
  420. hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
  421. HRTIMER_MODE_REL);
  422. }
  423. /**
  424. * cancel_wbuf_timer - cancel write-buffer timer.
  425. * @wbuf: write-buffer descriptor
  426. */
  427. static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
  428. {
  429. if (wbuf->no_timer)
  430. return;
  431. wbuf->need_sync = 0;
  432. hrtimer_cancel(&wbuf->timer);
  433. }
  434. /**
  435. * ubifs_wbuf_sync_nolock - synchronize write-buffer.
  436. * @wbuf: write-buffer to synchronize
  437. *
  438. * This function synchronizes write-buffer @buf and returns zero in case of
  439. * success or a negative error code in case of failure.
  440. *
  441. * Note, although write-buffers are of @c->max_write_size, this function does
  442. * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
  443. * if the write-buffer is only partially filled with data, only the used part
  444. * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
  445. * This way we waste less space.
  446. */
  447. int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
  448. {
  449. struct ubifs_info *c = wbuf->c;
  450. int err, dirt, sync_len;
  451. cancel_wbuf_timer_nolock(wbuf);
  452. if (!wbuf->used || wbuf->lnum == -1)
  453. /* Write-buffer is empty or not seeked */
  454. return 0;
  455. dbg_io("LEB %d:%d, %d bytes, jhead %s",
  456. wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
  457. ubifs_assert(!(wbuf->avail & 7));
  458. ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
  459. ubifs_assert(wbuf->size >= c->min_io_size);
  460. ubifs_assert(wbuf->size <= c->max_write_size);
  461. ubifs_assert(wbuf->size % c->min_io_size == 0);
  462. ubifs_assert(!c->ro_media && !c->ro_mount);
  463. if (c->leb_size - wbuf->offs >= c->max_write_size)
  464. ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
  465. if (c->ro_error)
  466. return -EROFS;
  467. /*
  468. * Do not write whole write buffer but write only the minimum necessary
  469. * amount of min. I/O units.
  470. */
  471. sync_len = ALIGN(wbuf->used, c->min_io_size);
  472. dirt = sync_len - wbuf->used;
  473. if (dirt)
  474. ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
  475. err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len,
  476. wbuf->dtype);
  477. if (err)
  478. return err;
  479. spin_lock(&wbuf->lock);
  480. wbuf->offs += sync_len;
  481. /*
  482. * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
  483. * But our goal is to optimize writes and make sure we write in
  484. * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
  485. * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
  486. * sure that @wbuf->offs + @wbuf->size is aligned to
  487. * @c->max_write_size. This way we make sure that after next
  488. * write-buffer flush we are again at the optimal offset (aligned to
  489. * @c->max_write_size).
  490. */
  491. if (c->leb_size - wbuf->offs < c->max_write_size)
  492. wbuf->size = c->leb_size - wbuf->offs;
  493. else if (wbuf->offs & (c->max_write_size - 1))
  494. wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
  495. else
  496. wbuf->size = c->max_write_size;
  497. wbuf->avail = wbuf->size;
  498. wbuf->used = 0;
  499. wbuf->next_ino = 0;
  500. spin_unlock(&wbuf->lock);
  501. if (wbuf->sync_callback)
  502. err = wbuf->sync_callback(c, wbuf->lnum,
  503. c->leb_size - wbuf->offs, dirt);
  504. return err;
  505. }
  506. /**
  507. * ubifs_wbuf_seek_nolock - seek write-buffer.
  508. * @wbuf: write-buffer
  509. * @lnum: logical eraseblock number to seek to
  510. * @offs: logical eraseblock offset to seek to
  511. * @dtype: data type
  512. *
  513. * This function targets the write-buffer to logical eraseblock @lnum:@offs.
  514. * The write-buffer has to be empty. Returns zero in case of success and a
  515. * negative error code in case of failure.
  516. */
  517. int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
  518. int dtype)
  519. {
  520. const struct ubifs_info *c = wbuf->c;
  521. dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
  522. ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
  523. ubifs_assert(offs >= 0 && offs <= c->leb_size);
  524. ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
  525. ubifs_assert(lnum != wbuf->lnum);
  526. ubifs_assert(wbuf->used == 0);
  527. spin_lock(&wbuf->lock);
  528. wbuf->lnum = lnum;
  529. wbuf->offs = offs;
  530. if (c->leb_size - wbuf->offs < c->max_write_size)
  531. wbuf->size = c->leb_size - wbuf->offs;
  532. else if (wbuf->offs & (c->max_write_size - 1))
  533. wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
  534. else
  535. wbuf->size = c->max_write_size;
  536. wbuf->avail = wbuf->size;
  537. wbuf->used = 0;
  538. spin_unlock(&wbuf->lock);
  539. wbuf->dtype = dtype;
  540. return 0;
  541. }
  542. /**
  543. * ubifs_bg_wbufs_sync - synchronize write-buffers.
  544. * @c: UBIFS file-system description object
  545. *
  546. * This function is called by background thread to synchronize write-buffers.
  547. * Returns zero in case of success and a negative error code in case of
  548. * failure.
  549. */
  550. int ubifs_bg_wbufs_sync(struct ubifs_info *c)
  551. {
  552. int err, i;
  553. ubifs_assert(!c->ro_media && !c->ro_mount);
  554. if (!c->need_wbuf_sync)
  555. return 0;
  556. c->need_wbuf_sync = 0;
  557. if (c->ro_error) {
  558. err = -EROFS;
  559. goto out_timers;
  560. }
  561. dbg_io("synchronize");
  562. for (i = 0; i < c->jhead_cnt; i++) {
  563. struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
  564. cond_resched();
  565. /*
  566. * If the mutex is locked then wbuf is being changed, so
  567. * synchronization is not necessary.
  568. */
  569. if (mutex_is_locked(&wbuf->io_mutex))
  570. continue;
  571. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  572. if (!wbuf->need_sync) {
  573. mutex_unlock(&wbuf->io_mutex);
  574. continue;
  575. }
  576. err = ubifs_wbuf_sync_nolock(wbuf);
  577. mutex_unlock(&wbuf->io_mutex);
  578. if (err) {
  579. ubifs_err("cannot sync write-buffer, error %d", err);
  580. ubifs_ro_mode(c, err);
  581. goto out_timers;
  582. }
  583. }
  584. return 0;
  585. out_timers:
  586. /* Cancel all timers to prevent repeated errors */
  587. for (i = 0; i < c->jhead_cnt; i++) {
  588. struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
  589. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  590. cancel_wbuf_timer_nolock(wbuf);
  591. mutex_unlock(&wbuf->io_mutex);
  592. }
  593. return err;
  594. }
  595. /**
  596. * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
  597. * @wbuf: write-buffer
  598. * @buf: node to write
  599. * @len: node length
  600. *
  601. * This function writes data to flash via write-buffer @wbuf. This means that
  602. * the last piece of the node won't reach the flash media immediately if it
  603. * does not take whole max. write unit (@c->max_write_size). Instead, the node
  604. * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
  605. * because more data are appended to the write-buffer).
  606. *
  607. * This function returns zero in case of success and a negative error code in
  608. * case of failure. If the node cannot be written because there is no more
  609. * space in this logical eraseblock, %-ENOSPC is returned.
  610. */
  611. int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
  612. {
  613. struct ubifs_info *c = wbuf->c;
  614. int err, written, n, aligned_len = ALIGN(len, 8);
  615. dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
  616. dbg_ntype(((struct ubifs_ch *)buf)->node_type),
  617. dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
  618. ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
  619. ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
  620. ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
  621. ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
  622. ubifs_assert(wbuf->size >= c->min_io_size);
  623. ubifs_assert(wbuf->size <= c->max_write_size);
  624. ubifs_assert(wbuf->size % c->min_io_size == 0);
  625. ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
  626. ubifs_assert(!c->ro_media && !c->ro_mount);
  627. ubifs_assert(!c->space_fixup);
  628. if (c->leb_size - wbuf->offs >= c->max_write_size)
  629. ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
  630. if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
  631. err = -ENOSPC;
  632. goto out;
  633. }
  634. cancel_wbuf_timer_nolock(wbuf);
  635. if (c->ro_error)
  636. return -EROFS;
  637. if (aligned_len <= wbuf->avail) {
  638. /*
  639. * The node is not very large and fits entirely within
  640. * write-buffer.
  641. */
  642. memcpy(wbuf->buf + wbuf->used, buf, len);
  643. if (aligned_len == wbuf->avail) {
  644. dbg_io("flush jhead %s wbuf to LEB %d:%d",
  645. dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
  646. err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
  647. wbuf->offs, wbuf->size,
  648. wbuf->dtype);
  649. if (err)
  650. goto out;
  651. spin_lock(&wbuf->lock);
  652. wbuf->offs += wbuf->size;
  653. if (c->leb_size - wbuf->offs >= c->max_write_size)
  654. wbuf->size = c->max_write_size;
  655. else
  656. wbuf->size = c->leb_size - wbuf->offs;
  657. wbuf->avail = wbuf->size;
  658. wbuf->used = 0;
  659. wbuf->next_ino = 0;
  660. spin_unlock(&wbuf->lock);
  661. } else {
  662. spin_lock(&wbuf->lock);
  663. wbuf->avail -= aligned_len;
  664. wbuf->used += aligned_len;
  665. spin_unlock(&wbuf->lock);
  666. }
  667. goto exit;
  668. }
  669. written = 0;
  670. if (wbuf->used) {
  671. /*
  672. * The node is large enough and does not fit entirely within
  673. * current available space. We have to fill and flush
  674. * write-buffer and switch to the next max. write unit.
  675. */
  676. dbg_io("flush jhead %s wbuf to LEB %d:%d",
  677. dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
  678. memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
  679. err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
  680. wbuf->size, wbuf->dtype);
  681. if (err)
  682. goto out;
  683. wbuf->offs += wbuf->size;
  684. len -= wbuf->avail;
  685. aligned_len -= wbuf->avail;
  686. written += wbuf->avail;
  687. } else if (wbuf->offs & (c->max_write_size - 1)) {
  688. /*
  689. * The write-buffer offset is not aligned to
  690. * @c->max_write_size and @wbuf->size is less than
  691. * @c->max_write_size. Write @wbuf->size bytes to make sure the
  692. * following writes are done in optimal @c->max_write_size
  693. * chunks.
  694. */
  695. dbg_io("write %d bytes to LEB %d:%d",
  696. wbuf->size, wbuf->lnum, wbuf->offs);
  697. err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
  698. wbuf->size, wbuf->dtype);
  699. if (err)
  700. goto out;
  701. wbuf->offs += wbuf->size;
  702. len -= wbuf->size;
  703. aligned_len -= wbuf->size;
  704. written += wbuf->size;
  705. }
  706. /*
  707. * The remaining data may take more whole max. write units, so write the
  708. * remains multiple to max. write unit size directly to the flash media.
  709. * We align node length to 8-byte boundary because we anyway flash wbuf
  710. * if the remaining space is less than 8 bytes.
  711. */
  712. n = aligned_len >> c->max_write_shift;
  713. if (n) {
  714. n <<= c->max_write_shift;
  715. dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
  716. wbuf->offs);
  717. err = ubifs_leb_write(c, wbuf->lnum, buf + written,
  718. wbuf->offs, n, wbuf->dtype);
  719. if (err)
  720. goto out;
  721. wbuf->offs += n;
  722. aligned_len -= n;
  723. len -= n;
  724. written += n;
  725. }
  726. spin_lock(&wbuf->lock);
  727. if (aligned_len)
  728. /*
  729. * And now we have what's left and what does not take whole
  730. * max. write unit, so write it to the write-buffer and we are
  731. * done.
  732. */
  733. memcpy(wbuf->buf, buf + written, len);
  734. if (c->leb_size - wbuf->offs >= c->max_write_size)
  735. wbuf->size = c->max_write_size;
  736. else
  737. wbuf->size = c->leb_size - wbuf->offs;
  738. wbuf->avail = wbuf->size - aligned_len;
  739. wbuf->used = aligned_len;
  740. wbuf->next_ino = 0;
  741. spin_unlock(&wbuf->lock);
  742. exit:
  743. if (wbuf->sync_callback) {
  744. int free = c->leb_size - wbuf->offs - wbuf->used;
  745. err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
  746. if (err)
  747. goto out;
  748. }
  749. if (wbuf->used)
  750. new_wbuf_timer_nolock(wbuf);
  751. return 0;
  752. out:
  753. ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
  754. len, wbuf->lnum, wbuf->offs, err);
  755. dbg_dump_node(c, buf);
  756. dbg_dump_stack();
  757. dbg_dump_leb(c, wbuf->lnum);
  758. return err;
  759. }
  760. /**
  761. * ubifs_write_node - write node to the media.
  762. * @c: UBIFS file-system description object
  763. * @buf: the node to write
  764. * @len: node length
  765. * @lnum: logical eraseblock number
  766. * @offs: offset within the logical eraseblock
  767. * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
  768. *
  769. * This function automatically fills node magic number, assigns sequence
  770. * number, and calculates node CRC checksum. The length of the @buf buffer has
  771. * to be aligned to the minimal I/O unit size. This function automatically
  772. * appends padding node and padding bytes if needed. Returns zero in case of
  773. * success and a negative error code in case of failure.
  774. */
  775. int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
  776. int offs, int dtype)
  777. {
  778. int err, buf_len = ALIGN(len, c->min_io_size);
  779. dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
  780. lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
  781. buf_len);
  782. ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
  783. ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
  784. ubifs_assert(!c->ro_media && !c->ro_mount);
  785. ubifs_assert(!c->space_fixup);
  786. if (c->ro_error)
  787. return -EROFS;
  788. ubifs_prepare_node(c, buf, len, 1);
  789. err = ubifs_leb_write(c, lnum, buf, offs, buf_len, dtype);
  790. if (err)
  791. dbg_dump_node(c, buf);
  792. return err;
  793. }
  794. /**
  795. * ubifs_read_node_wbuf - read node from the media or write-buffer.
  796. * @wbuf: wbuf to check for un-written data
  797. * @buf: buffer to read to
  798. * @type: node type
  799. * @len: node length
  800. * @lnum: logical eraseblock number
  801. * @offs: offset within the logical eraseblock
  802. *
  803. * This function reads a node of known type and length, checks it and stores
  804. * in @buf. If the node partially or fully sits in the write-buffer, this
  805. * function takes data from the buffer, otherwise it reads the flash media.
  806. * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
  807. * error code in case of failure.
  808. */
  809. int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
  810. int lnum, int offs)
  811. {
  812. const struct ubifs_info *c = wbuf->c;
  813. int err, rlen, overlap;
  814. struct ubifs_ch *ch = buf;
  815. dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
  816. dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
  817. ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
  818. ubifs_assert(!(offs & 7) && offs < c->leb_size);
  819. ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
  820. spin_lock(&wbuf->lock);
  821. overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
  822. if (!overlap) {
  823. /* We may safely unlock the write-buffer and read the data */
  824. spin_unlock(&wbuf->lock);
  825. return ubifs_read_node(c, buf, type, len, lnum, offs);
  826. }
  827. /* Don't read under wbuf */
  828. rlen = wbuf->offs - offs;
  829. if (rlen < 0)
  830. rlen = 0;
  831. /* Copy the rest from the write-buffer */
  832. memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
  833. spin_unlock(&wbuf->lock);
  834. if (rlen > 0) {
  835. /* Read everything that goes before write-buffer */
  836. err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
  837. if (err && err != -EBADMSG)
  838. return err;
  839. }
  840. if (type != ch->node_type) {
  841. ubifs_err("bad node type (%d but expected %d)",
  842. ch->node_type, type);
  843. goto out;
  844. }
  845. err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
  846. if (err) {
  847. ubifs_err("expected node type %d", type);
  848. return err;
  849. }
  850. rlen = le32_to_cpu(ch->len);
  851. if (rlen != len) {
  852. ubifs_err("bad node length %d, expected %d", rlen, len);
  853. goto out;
  854. }
  855. return 0;
  856. out:
  857. ubifs_err("bad node at LEB %d:%d", lnum, offs);
  858. dbg_dump_node(c, buf);
  859. dbg_dump_stack();
  860. return -EINVAL;
  861. }
  862. /**
  863. * ubifs_read_node - read node.
  864. * @c: UBIFS file-system description object
  865. * @buf: buffer to read to
  866. * @type: node type
  867. * @len: node length (not aligned)
  868. * @lnum: logical eraseblock number
  869. * @offs: offset within the logical eraseblock
  870. *
  871. * This function reads a node of known type and and length, checks it and
  872. * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
  873. * and a negative error code in case of failure.
  874. */
  875. int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
  876. int lnum, int offs)
  877. {
  878. int err, l;
  879. struct ubifs_ch *ch = buf;
  880. dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
  881. ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
  882. ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
  883. ubifs_assert(!(offs & 7) && offs < c->leb_size);
  884. ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
  885. err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
  886. if (err && err != -EBADMSG)
  887. return err;
  888. if (type != ch->node_type) {
  889. ubifs_err("bad node type (%d but expected %d)",
  890. ch->node_type, type);
  891. goto out;
  892. }
  893. err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
  894. if (err) {
  895. ubifs_err("expected node type %d", type);
  896. return err;
  897. }
  898. l = le32_to_cpu(ch->len);
  899. if (l != len) {
  900. ubifs_err("bad node length %d, expected %d", l, len);
  901. goto out;
  902. }
  903. return 0;
  904. out:
  905. ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs,
  906. ubi_is_mapped(c->ubi, lnum));
  907. dbg_dump_node(c, buf);
  908. dbg_dump_stack();
  909. return -EINVAL;
  910. }
  911. /**
  912. * ubifs_wbuf_init - initialize write-buffer.
  913. * @c: UBIFS file-system description object
  914. * @wbuf: write-buffer to initialize
  915. *
  916. * This function initializes write-buffer. Returns zero in case of success
  917. * %-ENOMEM in case of failure.
  918. */
  919. int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
  920. {
  921. size_t size;
  922. wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
  923. if (!wbuf->buf)
  924. return -ENOMEM;
  925. size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
  926. wbuf->inodes = kmalloc(size, GFP_KERNEL);
  927. if (!wbuf->inodes) {
  928. kfree(wbuf->buf);
  929. wbuf->buf = NULL;
  930. return -ENOMEM;
  931. }
  932. wbuf->used = 0;
  933. wbuf->lnum = wbuf->offs = -1;
  934. /*
  935. * If the LEB starts at the max. write size aligned address, then
  936. * write-buffer size has to be set to @c->max_write_size. Otherwise,
  937. * set it to something smaller so that it ends at the closest max.
  938. * write size boundary.
  939. */
  940. size = c->max_write_size - (c->leb_start % c->max_write_size);
  941. wbuf->avail = wbuf->size = size;
  942. wbuf->dtype = UBI_UNKNOWN;
  943. wbuf->sync_callback = NULL;
  944. mutex_init(&wbuf->io_mutex);
  945. spin_lock_init(&wbuf->lock);
  946. wbuf->c = c;
  947. wbuf->next_ino = 0;
  948. hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  949. wbuf->timer.function = wbuf_timer_callback_nolock;
  950. wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
  951. wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
  952. wbuf->delta *= 1000000000ULL;
  953. ubifs_assert(wbuf->delta <= ULONG_MAX);
  954. return 0;
  955. }
  956. /**
  957. * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
  958. * @wbuf: the write-buffer where to add
  959. * @inum: the inode number
  960. *
  961. * This function adds an inode number to the inode array of the write-buffer.
  962. */
  963. void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
  964. {
  965. if (!wbuf->buf)
  966. /* NOR flash or something similar */
  967. return;
  968. spin_lock(&wbuf->lock);
  969. if (wbuf->used)
  970. wbuf->inodes[wbuf->next_ino++] = inum;
  971. spin_unlock(&wbuf->lock);
  972. }
  973. /**
  974. * wbuf_has_ino - returns if the wbuf contains data from the inode.
  975. * @wbuf: the write-buffer
  976. * @inum: the inode number
  977. *
  978. * This function returns with %1 if the write-buffer contains some data from the
  979. * given inode otherwise it returns with %0.
  980. */
  981. static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
  982. {
  983. int i, ret = 0;
  984. spin_lock(&wbuf->lock);
  985. for (i = 0; i < wbuf->next_ino; i++)
  986. if (inum == wbuf->inodes[i]) {
  987. ret = 1;
  988. break;
  989. }
  990. spin_unlock(&wbuf->lock);
  991. return ret;
  992. }
  993. /**
  994. * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
  995. * @c: UBIFS file-system description object
  996. * @inode: inode to synchronize
  997. *
  998. * This function synchronizes write-buffers which contain nodes belonging to
  999. * @inode. Returns zero in case of success and a negative error code in case of
  1000. * failure.
  1001. */
  1002. int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
  1003. {
  1004. int i, err = 0;
  1005. for (i = 0; i < c->jhead_cnt; i++) {
  1006. struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
  1007. if (i == GCHD)
  1008. /*
  1009. * GC head is special, do not look at it. Even if the
  1010. * head contains something related to this inode, it is
  1011. * a _copy_ of corresponding on-flash node which sits
  1012. * somewhere else.
  1013. */
  1014. continue;
  1015. if (!wbuf_has_ino(wbuf, inode->i_ino))
  1016. continue;
  1017. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  1018. if (wbuf_has_ino(wbuf, inode->i_ino))
  1019. err = ubifs_wbuf_sync_nolock(wbuf);
  1020. mutex_unlock(&wbuf->io_mutex);
  1021. if (err) {
  1022. ubifs_ro_mode(c, err);
  1023. return err;
  1024. }
  1025. }
  1026. return 0;
  1027. }