sh_mmcif.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455
  1. /*
  2. * MMCIF eMMC driver.
  3. *
  4. * Copyright (C) 2010 Renesas Solutions Corp.
  5. * Yusuke Goda <yusuke.goda.sx@renesas.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License.
  10. *
  11. *
  12. * TODO
  13. * 1. DMA
  14. * 2. Power management
  15. * 3. Handle MMC errors better
  16. *
  17. */
  18. /*
  19. * The MMCIF driver is now processing MMC requests asynchronously, according
  20. * to the Linux MMC API requirement.
  21. *
  22. * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  23. * data, and optional stop. To achieve asynchronous processing each of these
  24. * stages is split into two halves: a top and a bottom half. The top half
  25. * initialises the hardware, installs a timeout handler to handle completion
  26. * timeouts, and returns. In case of the command stage this immediately returns
  27. * control to the caller, leaving all further processing to run asynchronously.
  28. * All further request processing is performed by the bottom halves.
  29. *
  30. * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  31. * thread, a DMA completion callback, if DMA is used, a timeout work, and
  32. * request- and stage-specific handler methods.
  33. *
  34. * Each bottom half run begins with either a hardware interrupt, a DMA callback
  35. * invocation, or a timeout work run. In case of an error or a successful
  36. * processing completion, the MMC core is informed and the request processing is
  37. * finished. In case processing has to continue, i.e., if data has to be read
  38. * from or written to the card, or if a stop command has to be sent, the next
  39. * top half is called, which performs the necessary hardware handling and
  40. * reschedules the timeout work. This returns the driver state machine into the
  41. * bottom half waiting state.
  42. */
  43. #include <linux/bitops.h>
  44. #include <linux/clk.h>
  45. #include <linux/completion.h>
  46. #include <linux/delay.h>
  47. #include <linux/dma-mapping.h>
  48. #include <linux/dmaengine.h>
  49. #include <linux/mmc/card.h>
  50. #include <linux/mmc/core.h>
  51. #include <linux/mmc/host.h>
  52. #include <linux/mmc/mmc.h>
  53. #include <linux/mmc/sdio.h>
  54. #include <linux/mmc/sh_mmcif.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/platform_device.h>
  57. #include <linux/pm_qos.h>
  58. #include <linux/pm_runtime.h>
  59. #include <linux/spinlock.h>
  60. #include <linux/module.h>
  61. #define DRIVER_NAME "sh_mmcif"
  62. #define DRIVER_VERSION "2010-04-28"
  63. /* CE_CMD_SET */
  64. #define CMD_MASK 0x3f000000
  65. #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
  66. #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  67. #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
  68. #define CMD_SET_RBSY (1 << 21) /* R1b */
  69. #define CMD_SET_CCSEN (1 << 20)
  70. #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
  71. #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
  72. #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
  73. #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
  74. #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
  75. #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
  76. #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
  77. #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
  78. #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
  79. #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  80. #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
  81. #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
  82. #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
  83. #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
  84. #define CMD_SET_CCSH (1 << 5)
  85. #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
  86. #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
  87. #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
  88. /* CE_CMD_CTRL */
  89. #define CMD_CTRL_BREAK (1 << 0)
  90. /* CE_BLOCK_SET */
  91. #define BLOCK_SIZE_MASK 0x0000ffff
  92. /* CE_INT */
  93. #define INT_CCSDE (1 << 29)
  94. #define INT_CMD12DRE (1 << 26)
  95. #define INT_CMD12RBE (1 << 25)
  96. #define INT_CMD12CRE (1 << 24)
  97. #define INT_DTRANE (1 << 23)
  98. #define INT_BUFRE (1 << 22)
  99. #define INT_BUFWEN (1 << 21)
  100. #define INT_BUFREN (1 << 20)
  101. #define INT_CCSRCV (1 << 19)
  102. #define INT_RBSYE (1 << 17)
  103. #define INT_CRSPE (1 << 16)
  104. #define INT_CMDVIO (1 << 15)
  105. #define INT_BUFVIO (1 << 14)
  106. #define INT_WDATERR (1 << 11)
  107. #define INT_RDATERR (1 << 10)
  108. #define INT_RIDXERR (1 << 9)
  109. #define INT_RSPERR (1 << 8)
  110. #define INT_CCSTO (1 << 5)
  111. #define INT_CRCSTO (1 << 4)
  112. #define INT_WDATTO (1 << 3)
  113. #define INT_RDATTO (1 << 2)
  114. #define INT_RBSYTO (1 << 1)
  115. #define INT_RSPTO (1 << 0)
  116. #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
  117. INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
  118. INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
  119. INT_RDATTO | INT_RBSYTO | INT_RSPTO)
  120. /* CE_INT_MASK */
  121. #define MASK_ALL 0x00000000
  122. #define MASK_MCCSDE (1 << 29)
  123. #define MASK_MCMD12DRE (1 << 26)
  124. #define MASK_MCMD12RBE (1 << 25)
  125. #define MASK_MCMD12CRE (1 << 24)
  126. #define MASK_MDTRANE (1 << 23)
  127. #define MASK_MBUFRE (1 << 22)
  128. #define MASK_MBUFWEN (1 << 21)
  129. #define MASK_MBUFREN (1 << 20)
  130. #define MASK_MCCSRCV (1 << 19)
  131. #define MASK_MRBSYE (1 << 17)
  132. #define MASK_MCRSPE (1 << 16)
  133. #define MASK_MCMDVIO (1 << 15)
  134. #define MASK_MBUFVIO (1 << 14)
  135. #define MASK_MWDATERR (1 << 11)
  136. #define MASK_MRDATERR (1 << 10)
  137. #define MASK_MRIDXERR (1 << 9)
  138. #define MASK_MRSPERR (1 << 8)
  139. #define MASK_MCCSTO (1 << 5)
  140. #define MASK_MCRCSTO (1 << 4)
  141. #define MASK_MWDATTO (1 << 3)
  142. #define MASK_MRDATTO (1 << 2)
  143. #define MASK_MRBSYTO (1 << 1)
  144. #define MASK_MRSPTO (1 << 0)
  145. #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
  146. MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
  147. MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
  148. MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
  149. /* CE_HOST_STS1 */
  150. #define STS1_CMDSEQ (1 << 31)
  151. /* CE_HOST_STS2 */
  152. #define STS2_CRCSTE (1 << 31)
  153. #define STS2_CRC16E (1 << 30)
  154. #define STS2_AC12CRCE (1 << 29)
  155. #define STS2_RSPCRC7E (1 << 28)
  156. #define STS2_CRCSTEBE (1 << 27)
  157. #define STS2_RDATEBE (1 << 26)
  158. #define STS2_AC12REBE (1 << 25)
  159. #define STS2_RSPEBE (1 << 24)
  160. #define STS2_AC12IDXE (1 << 23)
  161. #define STS2_RSPIDXE (1 << 22)
  162. #define STS2_CCSTO (1 << 15)
  163. #define STS2_RDATTO (1 << 14)
  164. #define STS2_DATBSYTO (1 << 13)
  165. #define STS2_CRCSTTO (1 << 12)
  166. #define STS2_AC12BSYTO (1 << 11)
  167. #define STS2_RSPBSYTO (1 << 10)
  168. #define STS2_AC12RSPTO (1 << 9)
  169. #define STS2_RSPTO (1 << 8)
  170. #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
  171. STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
  172. #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
  173. STS2_DATBSYTO | STS2_CRCSTTO | \
  174. STS2_AC12BSYTO | STS2_RSPBSYTO | \
  175. STS2_AC12RSPTO | STS2_RSPTO)
  176. #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
  177. #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
  178. #define CLKDEV_INIT 400000 /* 400 KHz */
  179. enum mmcif_state {
  180. STATE_IDLE,
  181. STATE_REQUEST,
  182. STATE_IOS,
  183. };
  184. enum mmcif_wait_for {
  185. MMCIF_WAIT_FOR_REQUEST,
  186. MMCIF_WAIT_FOR_CMD,
  187. MMCIF_WAIT_FOR_MREAD,
  188. MMCIF_WAIT_FOR_MWRITE,
  189. MMCIF_WAIT_FOR_READ,
  190. MMCIF_WAIT_FOR_WRITE,
  191. MMCIF_WAIT_FOR_READ_END,
  192. MMCIF_WAIT_FOR_WRITE_END,
  193. MMCIF_WAIT_FOR_STOP,
  194. };
  195. struct sh_mmcif_host {
  196. struct mmc_host *mmc;
  197. struct mmc_request *mrq;
  198. struct platform_device *pd;
  199. struct sh_dmae_slave dma_slave_tx;
  200. struct sh_dmae_slave dma_slave_rx;
  201. struct clk *hclk;
  202. unsigned int clk;
  203. int bus_width;
  204. bool sd_error;
  205. bool dying;
  206. long timeout;
  207. void __iomem *addr;
  208. u32 *pio_ptr;
  209. spinlock_t lock; /* protect sh_mmcif_host::state */
  210. enum mmcif_state state;
  211. enum mmcif_wait_for wait_for;
  212. struct delayed_work timeout_work;
  213. size_t blocksize;
  214. int sg_idx;
  215. int sg_blkidx;
  216. bool power;
  217. bool card_present;
  218. /* DMA support */
  219. struct dma_chan *chan_rx;
  220. struct dma_chan *chan_tx;
  221. struct completion dma_complete;
  222. bool dma_active;
  223. };
  224. static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
  225. unsigned int reg, u32 val)
  226. {
  227. writel(val | readl(host->addr + reg), host->addr + reg);
  228. }
  229. static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
  230. unsigned int reg, u32 val)
  231. {
  232. writel(~val & readl(host->addr + reg), host->addr + reg);
  233. }
  234. static void mmcif_dma_complete(void *arg)
  235. {
  236. struct sh_mmcif_host *host = arg;
  237. struct mmc_data *data = host->mrq->data;
  238. dev_dbg(&host->pd->dev, "Command completed\n");
  239. if (WARN(!data, "%s: NULL data in DMA completion!\n",
  240. dev_name(&host->pd->dev)))
  241. return;
  242. if (data->flags & MMC_DATA_READ)
  243. dma_unmap_sg(host->chan_rx->device->dev,
  244. data->sg, data->sg_len,
  245. DMA_FROM_DEVICE);
  246. else
  247. dma_unmap_sg(host->chan_tx->device->dev,
  248. data->sg, data->sg_len,
  249. DMA_TO_DEVICE);
  250. complete(&host->dma_complete);
  251. }
  252. static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
  253. {
  254. struct mmc_data *data = host->mrq->data;
  255. struct scatterlist *sg = data->sg;
  256. struct dma_async_tx_descriptor *desc = NULL;
  257. struct dma_chan *chan = host->chan_rx;
  258. dma_cookie_t cookie = -EINVAL;
  259. int ret;
  260. ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
  261. DMA_FROM_DEVICE);
  262. if (ret > 0) {
  263. host->dma_active = true;
  264. desc = dmaengine_prep_slave_sg(chan, sg, ret,
  265. DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  266. }
  267. if (desc) {
  268. desc->callback = mmcif_dma_complete;
  269. desc->callback_param = host;
  270. cookie = dmaengine_submit(desc);
  271. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
  272. dma_async_issue_pending(chan);
  273. }
  274. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  275. __func__, data->sg_len, ret, cookie);
  276. if (!desc) {
  277. /* DMA failed, fall back to PIO */
  278. if (ret >= 0)
  279. ret = -EIO;
  280. host->chan_rx = NULL;
  281. host->dma_active = false;
  282. dma_release_channel(chan);
  283. /* Free the Tx channel too */
  284. chan = host->chan_tx;
  285. if (chan) {
  286. host->chan_tx = NULL;
  287. dma_release_channel(chan);
  288. }
  289. dev_warn(&host->pd->dev,
  290. "DMA failed: %d, falling back to PIO\n", ret);
  291. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  292. }
  293. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
  294. desc, cookie, data->sg_len);
  295. }
  296. static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
  297. {
  298. struct mmc_data *data = host->mrq->data;
  299. struct scatterlist *sg = data->sg;
  300. struct dma_async_tx_descriptor *desc = NULL;
  301. struct dma_chan *chan = host->chan_tx;
  302. dma_cookie_t cookie = -EINVAL;
  303. int ret;
  304. ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
  305. DMA_TO_DEVICE);
  306. if (ret > 0) {
  307. host->dma_active = true;
  308. desc = dmaengine_prep_slave_sg(chan, sg, ret,
  309. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  310. }
  311. if (desc) {
  312. desc->callback = mmcif_dma_complete;
  313. desc->callback_param = host;
  314. cookie = dmaengine_submit(desc);
  315. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
  316. dma_async_issue_pending(chan);
  317. }
  318. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  319. __func__, data->sg_len, ret, cookie);
  320. if (!desc) {
  321. /* DMA failed, fall back to PIO */
  322. if (ret >= 0)
  323. ret = -EIO;
  324. host->chan_tx = NULL;
  325. host->dma_active = false;
  326. dma_release_channel(chan);
  327. /* Free the Rx channel too */
  328. chan = host->chan_rx;
  329. if (chan) {
  330. host->chan_rx = NULL;
  331. dma_release_channel(chan);
  332. }
  333. dev_warn(&host->pd->dev,
  334. "DMA failed: %d, falling back to PIO\n", ret);
  335. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  336. }
  337. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
  338. desc, cookie);
  339. }
  340. static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
  341. {
  342. dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
  343. chan->private = arg;
  344. return true;
  345. }
  346. static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
  347. struct sh_mmcif_plat_data *pdata)
  348. {
  349. struct sh_dmae_slave *tx, *rx;
  350. host->dma_active = false;
  351. /* We can only either use DMA for both Tx and Rx or not use it at all */
  352. if (pdata->dma) {
  353. dev_warn(&host->pd->dev,
  354. "Update your platform to use embedded DMA slave IDs\n");
  355. tx = &pdata->dma->chan_priv_tx;
  356. rx = &pdata->dma->chan_priv_rx;
  357. } else {
  358. tx = &host->dma_slave_tx;
  359. tx->slave_id = pdata->slave_id_tx;
  360. rx = &host->dma_slave_rx;
  361. rx->slave_id = pdata->slave_id_rx;
  362. }
  363. if (tx->slave_id > 0 && rx->slave_id > 0) {
  364. dma_cap_mask_t mask;
  365. dma_cap_zero(mask);
  366. dma_cap_set(DMA_SLAVE, mask);
  367. host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
  368. dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
  369. host->chan_tx);
  370. if (!host->chan_tx)
  371. return;
  372. host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
  373. dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
  374. host->chan_rx);
  375. if (!host->chan_rx) {
  376. dma_release_channel(host->chan_tx);
  377. host->chan_tx = NULL;
  378. return;
  379. }
  380. init_completion(&host->dma_complete);
  381. }
  382. }
  383. static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
  384. {
  385. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  386. /* Descriptors are freed automatically */
  387. if (host->chan_tx) {
  388. struct dma_chan *chan = host->chan_tx;
  389. host->chan_tx = NULL;
  390. dma_release_channel(chan);
  391. }
  392. if (host->chan_rx) {
  393. struct dma_chan *chan = host->chan_rx;
  394. host->chan_rx = NULL;
  395. dma_release_channel(chan);
  396. }
  397. host->dma_active = false;
  398. }
  399. static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
  400. {
  401. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  402. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  403. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
  404. if (!clk)
  405. return;
  406. if (p->sup_pclk && clk == host->clk)
  407. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
  408. else
  409. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
  410. ((fls(DIV_ROUND_UP(host->clk,
  411. clk) - 1) - 1) << 16));
  412. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  413. }
  414. static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
  415. {
  416. u32 tmp;
  417. tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
  418. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
  419. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
  420. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
  421. SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
  422. /* byte swap on */
  423. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
  424. }
  425. static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
  426. {
  427. u32 state1, state2;
  428. int ret, timeout;
  429. host->sd_error = false;
  430. state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
  431. state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
  432. dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
  433. dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
  434. if (state1 & STS1_CMDSEQ) {
  435. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
  436. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
  437. for (timeout = 10000000; timeout; timeout--) {
  438. if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
  439. & STS1_CMDSEQ))
  440. break;
  441. mdelay(1);
  442. }
  443. if (!timeout) {
  444. dev_err(&host->pd->dev,
  445. "Forced end of command sequence timeout err\n");
  446. return -EIO;
  447. }
  448. sh_mmcif_sync_reset(host);
  449. dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
  450. return -EIO;
  451. }
  452. if (state2 & STS2_CRC_ERR) {
  453. dev_dbg(&host->pd->dev, ": CRC error\n");
  454. ret = -EIO;
  455. } else if (state2 & STS2_TIMEOUT_ERR) {
  456. dev_dbg(&host->pd->dev, ": Timeout\n");
  457. ret = -ETIMEDOUT;
  458. } else {
  459. dev_dbg(&host->pd->dev, ": End/Index error\n");
  460. ret = -EIO;
  461. }
  462. return ret;
  463. }
  464. static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
  465. {
  466. struct mmc_data *data = host->mrq->data;
  467. host->sg_blkidx += host->blocksize;
  468. /* data->sg->length must be a multiple of host->blocksize? */
  469. BUG_ON(host->sg_blkidx > data->sg->length);
  470. if (host->sg_blkidx == data->sg->length) {
  471. host->sg_blkidx = 0;
  472. if (++host->sg_idx < data->sg_len)
  473. host->pio_ptr = sg_virt(++data->sg);
  474. } else {
  475. host->pio_ptr = p;
  476. }
  477. if (host->sg_idx == data->sg_len)
  478. return false;
  479. return true;
  480. }
  481. static void sh_mmcif_single_read(struct sh_mmcif_host *host,
  482. struct mmc_request *mrq)
  483. {
  484. host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
  485. BLOCK_SIZE_MASK) + 3;
  486. host->wait_for = MMCIF_WAIT_FOR_READ;
  487. schedule_delayed_work(&host->timeout_work, host->timeout);
  488. /* buf read enable */
  489. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  490. }
  491. static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
  492. {
  493. struct mmc_data *data = host->mrq->data;
  494. u32 *p = sg_virt(data->sg);
  495. int i;
  496. if (host->sd_error) {
  497. data->error = sh_mmcif_error_manage(host);
  498. return false;
  499. }
  500. for (i = 0; i < host->blocksize / 4; i++)
  501. *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
  502. /* buffer read end */
  503. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  504. host->wait_for = MMCIF_WAIT_FOR_READ_END;
  505. return true;
  506. }
  507. static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
  508. struct mmc_request *mrq)
  509. {
  510. struct mmc_data *data = mrq->data;
  511. if (!data->sg_len || !data->sg->length)
  512. return;
  513. host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
  514. BLOCK_SIZE_MASK;
  515. host->wait_for = MMCIF_WAIT_FOR_MREAD;
  516. host->sg_idx = 0;
  517. host->sg_blkidx = 0;
  518. host->pio_ptr = sg_virt(data->sg);
  519. schedule_delayed_work(&host->timeout_work, host->timeout);
  520. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  521. }
  522. static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
  523. {
  524. struct mmc_data *data = host->mrq->data;
  525. u32 *p = host->pio_ptr;
  526. int i;
  527. if (host->sd_error) {
  528. data->error = sh_mmcif_error_manage(host);
  529. return false;
  530. }
  531. BUG_ON(!data->sg->length);
  532. for (i = 0; i < host->blocksize / 4; i++)
  533. *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
  534. if (!sh_mmcif_next_block(host, p))
  535. return false;
  536. schedule_delayed_work(&host->timeout_work, host->timeout);
  537. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  538. return true;
  539. }
  540. static void sh_mmcif_single_write(struct sh_mmcif_host *host,
  541. struct mmc_request *mrq)
  542. {
  543. host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
  544. BLOCK_SIZE_MASK) + 3;
  545. host->wait_for = MMCIF_WAIT_FOR_WRITE;
  546. schedule_delayed_work(&host->timeout_work, host->timeout);
  547. /* buf write enable */
  548. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  549. }
  550. static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
  551. {
  552. struct mmc_data *data = host->mrq->data;
  553. u32 *p = sg_virt(data->sg);
  554. int i;
  555. if (host->sd_error) {
  556. data->error = sh_mmcif_error_manage(host);
  557. return false;
  558. }
  559. for (i = 0; i < host->blocksize / 4; i++)
  560. sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
  561. /* buffer write end */
  562. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  563. host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
  564. return true;
  565. }
  566. static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
  567. struct mmc_request *mrq)
  568. {
  569. struct mmc_data *data = mrq->data;
  570. if (!data->sg_len || !data->sg->length)
  571. return;
  572. host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
  573. BLOCK_SIZE_MASK;
  574. host->wait_for = MMCIF_WAIT_FOR_MWRITE;
  575. host->sg_idx = 0;
  576. host->sg_blkidx = 0;
  577. host->pio_ptr = sg_virt(data->sg);
  578. schedule_delayed_work(&host->timeout_work, host->timeout);
  579. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  580. }
  581. static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
  582. {
  583. struct mmc_data *data = host->mrq->data;
  584. u32 *p = host->pio_ptr;
  585. int i;
  586. if (host->sd_error) {
  587. data->error = sh_mmcif_error_manage(host);
  588. return false;
  589. }
  590. BUG_ON(!data->sg->length);
  591. for (i = 0; i < host->blocksize / 4; i++)
  592. sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
  593. if (!sh_mmcif_next_block(host, p))
  594. return false;
  595. schedule_delayed_work(&host->timeout_work, host->timeout);
  596. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  597. return true;
  598. }
  599. static void sh_mmcif_get_response(struct sh_mmcif_host *host,
  600. struct mmc_command *cmd)
  601. {
  602. if (cmd->flags & MMC_RSP_136) {
  603. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
  604. cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
  605. cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
  606. cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  607. } else
  608. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  609. }
  610. static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
  611. struct mmc_command *cmd)
  612. {
  613. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
  614. }
  615. static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
  616. struct mmc_request *mrq)
  617. {
  618. struct mmc_data *data = mrq->data;
  619. struct mmc_command *cmd = mrq->cmd;
  620. u32 opc = cmd->opcode;
  621. u32 tmp = 0;
  622. /* Response Type check */
  623. switch (mmc_resp_type(cmd)) {
  624. case MMC_RSP_NONE:
  625. tmp |= CMD_SET_RTYP_NO;
  626. break;
  627. case MMC_RSP_R1:
  628. case MMC_RSP_R1B:
  629. case MMC_RSP_R3:
  630. tmp |= CMD_SET_RTYP_6B;
  631. break;
  632. case MMC_RSP_R2:
  633. tmp |= CMD_SET_RTYP_17B;
  634. break;
  635. default:
  636. dev_err(&host->pd->dev, "Unsupported response type.\n");
  637. break;
  638. }
  639. switch (opc) {
  640. /* RBSY */
  641. case MMC_SWITCH:
  642. case MMC_STOP_TRANSMISSION:
  643. case MMC_SET_WRITE_PROT:
  644. case MMC_CLR_WRITE_PROT:
  645. case MMC_ERASE:
  646. tmp |= CMD_SET_RBSY;
  647. break;
  648. }
  649. /* WDAT / DATW */
  650. if (data) {
  651. tmp |= CMD_SET_WDAT;
  652. switch (host->bus_width) {
  653. case MMC_BUS_WIDTH_1:
  654. tmp |= CMD_SET_DATW_1;
  655. break;
  656. case MMC_BUS_WIDTH_4:
  657. tmp |= CMD_SET_DATW_4;
  658. break;
  659. case MMC_BUS_WIDTH_8:
  660. tmp |= CMD_SET_DATW_8;
  661. break;
  662. default:
  663. dev_err(&host->pd->dev, "Unsupported bus width.\n");
  664. break;
  665. }
  666. }
  667. /* DWEN */
  668. if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
  669. tmp |= CMD_SET_DWEN;
  670. /* CMLTE/CMD12EN */
  671. if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
  672. tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
  673. sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
  674. data->blocks << 16);
  675. }
  676. /* RIDXC[1:0] check bits */
  677. if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
  678. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  679. tmp |= CMD_SET_RIDXC_BITS;
  680. /* RCRC7C[1:0] check bits */
  681. if (opc == MMC_SEND_OP_COND)
  682. tmp |= CMD_SET_CRC7C_BITS;
  683. /* RCRC7C[1:0] internal CRC7 */
  684. if (opc == MMC_ALL_SEND_CID ||
  685. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  686. tmp |= CMD_SET_CRC7C_INTERNAL;
  687. return (opc << 24) | tmp;
  688. }
  689. static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
  690. struct mmc_request *mrq, u32 opc)
  691. {
  692. switch (opc) {
  693. case MMC_READ_MULTIPLE_BLOCK:
  694. sh_mmcif_multi_read(host, mrq);
  695. return 0;
  696. case MMC_WRITE_MULTIPLE_BLOCK:
  697. sh_mmcif_multi_write(host, mrq);
  698. return 0;
  699. case MMC_WRITE_BLOCK:
  700. sh_mmcif_single_write(host, mrq);
  701. return 0;
  702. case MMC_READ_SINGLE_BLOCK:
  703. case MMC_SEND_EXT_CSD:
  704. sh_mmcif_single_read(host, mrq);
  705. return 0;
  706. default:
  707. dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
  708. return -EINVAL;
  709. }
  710. }
  711. static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
  712. struct mmc_request *mrq)
  713. {
  714. struct mmc_command *cmd = mrq->cmd;
  715. u32 opc = cmd->opcode;
  716. u32 mask;
  717. switch (opc) {
  718. /* response busy check */
  719. case MMC_SWITCH:
  720. case MMC_STOP_TRANSMISSION:
  721. case MMC_SET_WRITE_PROT:
  722. case MMC_CLR_WRITE_PROT:
  723. case MMC_ERASE:
  724. mask = MASK_START_CMD | MASK_MRBSYE;
  725. break;
  726. default:
  727. mask = MASK_START_CMD | MASK_MCRSPE;
  728. break;
  729. }
  730. if (mrq->data) {
  731. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
  732. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
  733. mrq->data->blksz);
  734. }
  735. opc = sh_mmcif_set_cmd(host, mrq);
  736. sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
  737. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
  738. /* set arg */
  739. sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
  740. /* set cmd */
  741. sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
  742. host->wait_for = MMCIF_WAIT_FOR_CMD;
  743. schedule_delayed_work(&host->timeout_work, host->timeout);
  744. }
  745. static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
  746. struct mmc_request *mrq)
  747. {
  748. switch (mrq->cmd->opcode) {
  749. case MMC_READ_MULTIPLE_BLOCK:
  750. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  751. break;
  752. case MMC_WRITE_MULTIPLE_BLOCK:
  753. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  754. break;
  755. default:
  756. dev_err(&host->pd->dev, "unsupported stop cmd\n");
  757. mrq->stop->error = sh_mmcif_error_manage(host);
  758. return;
  759. }
  760. host->wait_for = MMCIF_WAIT_FOR_STOP;
  761. schedule_delayed_work(&host->timeout_work, host->timeout);
  762. }
  763. static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
  764. {
  765. struct sh_mmcif_host *host = mmc_priv(mmc);
  766. unsigned long flags;
  767. spin_lock_irqsave(&host->lock, flags);
  768. if (host->state != STATE_IDLE) {
  769. spin_unlock_irqrestore(&host->lock, flags);
  770. mrq->cmd->error = -EAGAIN;
  771. mmc_request_done(mmc, mrq);
  772. return;
  773. }
  774. host->state = STATE_REQUEST;
  775. spin_unlock_irqrestore(&host->lock, flags);
  776. switch (mrq->cmd->opcode) {
  777. /* MMCIF does not support SD/SDIO command */
  778. case SD_IO_SEND_OP_COND:
  779. case MMC_APP_CMD:
  780. host->state = STATE_IDLE;
  781. mrq->cmd->error = -ETIMEDOUT;
  782. mmc_request_done(mmc, mrq);
  783. return;
  784. case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
  785. if (!mrq->data) {
  786. /* send_if_cond cmd (not support) */
  787. host->state = STATE_IDLE;
  788. mrq->cmd->error = -ETIMEDOUT;
  789. mmc_request_done(mmc, mrq);
  790. return;
  791. }
  792. break;
  793. default:
  794. break;
  795. }
  796. host->mrq = mrq;
  797. sh_mmcif_start_cmd(host, mrq);
  798. }
  799. static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  800. {
  801. struct sh_mmcif_host *host = mmc_priv(mmc);
  802. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  803. unsigned long flags;
  804. spin_lock_irqsave(&host->lock, flags);
  805. if (host->state != STATE_IDLE) {
  806. spin_unlock_irqrestore(&host->lock, flags);
  807. return;
  808. }
  809. host->state = STATE_IOS;
  810. spin_unlock_irqrestore(&host->lock, flags);
  811. if (ios->power_mode == MMC_POWER_UP) {
  812. if (!host->card_present) {
  813. /* See if we also get DMA */
  814. sh_mmcif_request_dma(host, host->pd->dev.platform_data);
  815. host->card_present = true;
  816. }
  817. } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
  818. /* clock stop */
  819. sh_mmcif_clock_control(host, 0);
  820. if (ios->power_mode == MMC_POWER_OFF) {
  821. if (host->card_present) {
  822. sh_mmcif_release_dma(host);
  823. host->card_present = false;
  824. }
  825. }
  826. if (host->power) {
  827. pm_runtime_put(&host->pd->dev);
  828. host->power = false;
  829. if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
  830. p->down_pwr(host->pd);
  831. }
  832. host->state = STATE_IDLE;
  833. return;
  834. }
  835. if (ios->clock) {
  836. if (!host->power) {
  837. if (p->set_pwr)
  838. p->set_pwr(host->pd, ios->power_mode);
  839. pm_runtime_get_sync(&host->pd->dev);
  840. host->power = true;
  841. sh_mmcif_sync_reset(host);
  842. }
  843. sh_mmcif_clock_control(host, ios->clock);
  844. }
  845. host->bus_width = ios->bus_width;
  846. host->state = STATE_IDLE;
  847. }
  848. static int sh_mmcif_get_cd(struct mmc_host *mmc)
  849. {
  850. struct sh_mmcif_host *host = mmc_priv(mmc);
  851. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  852. if (!p->get_cd)
  853. return -ENOSYS;
  854. else
  855. return p->get_cd(host->pd);
  856. }
  857. static struct mmc_host_ops sh_mmcif_ops = {
  858. .request = sh_mmcif_request,
  859. .set_ios = sh_mmcif_set_ios,
  860. .get_cd = sh_mmcif_get_cd,
  861. };
  862. static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
  863. {
  864. struct mmc_command *cmd = host->mrq->cmd;
  865. struct mmc_data *data = host->mrq->data;
  866. long time;
  867. if (host->sd_error) {
  868. switch (cmd->opcode) {
  869. case MMC_ALL_SEND_CID:
  870. case MMC_SELECT_CARD:
  871. case MMC_APP_CMD:
  872. cmd->error = -ETIMEDOUT;
  873. host->sd_error = false;
  874. break;
  875. default:
  876. cmd->error = sh_mmcif_error_manage(host);
  877. dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
  878. cmd->opcode, cmd->error);
  879. break;
  880. }
  881. return false;
  882. }
  883. if (!(cmd->flags & MMC_RSP_PRESENT)) {
  884. cmd->error = 0;
  885. return false;
  886. }
  887. sh_mmcif_get_response(host, cmd);
  888. if (!data)
  889. return false;
  890. if (data->flags & MMC_DATA_READ) {
  891. if (host->chan_rx)
  892. sh_mmcif_start_dma_rx(host);
  893. } else {
  894. if (host->chan_tx)
  895. sh_mmcif_start_dma_tx(host);
  896. }
  897. if (!host->dma_active) {
  898. data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
  899. if (!data->error)
  900. return true;
  901. return false;
  902. }
  903. /* Running in the IRQ thread, can sleep */
  904. time = wait_for_completion_interruptible_timeout(&host->dma_complete,
  905. host->timeout);
  906. if (host->sd_error) {
  907. dev_err(host->mmc->parent,
  908. "Error IRQ while waiting for DMA completion!\n");
  909. /* Woken up by an error IRQ: abort DMA */
  910. if (data->flags & MMC_DATA_READ)
  911. dmaengine_terminate_all(host->chan_rx);
  912. else
  913. dmaengine_terminate_all(host->chan_tx);
  914. data->error = sh_mmcif_error_manage(host);
  915. } else if (!time) {
  916. data->error = -ETIMEDOUT;
  917. } else if (time < 0) {
  918. data->error = time;
  919. }
  920. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
  921. BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  922. host->dma_active = false;
  923. if (data->error)
  924. data->bytes_xfered = 0;
  925. return false;
  926. }
  927. static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
  928. {
  929. struct sh_mmcif_host *host = dev_id;
  930. struct mmc_request *mrq = host->mrq;
  931. cancel_delayed_work_sync(&host->timeout_work);
  932. /*
  933. * All handlers return true, if processing continues, and false, if the
  934. * request has to be completed - successfully or not
  935. */
  936. switch (host->wait_for) {
  937. case MMCIF_WAIT_FOR_REQUEST:
  938. /* We're too late, the timeout has already kicked in */
  939. return IRQ_HANDLED;
  940. case MMCIF_WAIT_FOR_CMD:
  941. if (sh_mmcif_end_cmd(host))
  942. /* Wait for data */
  943. return IRQ_HANDLED;
  944. break;
  945. case MMCIF_WAIT_FOR_MREAD:
  946. if (sh_mmcif_mread_block(host))
  947. /* Wait for more data */
  948. return IRQ_HANDLED;
  949. break;
  950. case MMCIF_WAIT_FOR_READ:
  951. if (sh_mmcif_read_block(host))
  952. /* Wait for data end */
  953. return IRQ_HANDLED;
  954. break;
  955. case MMCIF_WAIT_FOR_MWRITE:
  956. if (sh_mmcif_mwrite_block(host))
  957. /* Wait data to write */
  958. return IRQ_HANDLED;
  959. break;
  960. case MMCIF_WAIT_FOR_WRITE:
  961. if (sh_mmcif_write_block(host))
  962. /* Wait for data end */
  963. return IRQ_HANDLED;
  964. break;
  965. case MMCIF_WAIT_FOR_STOP:
  966. if (host->sd_error) {
  967. mrq->stop->error = sh_mmcif_error_manage(host);
  968. break;
  969. }
  970. sh_mmcif_get_cmd12response(host, mrq->stop);
  971. mrq->stop->error = 0;
  972. break;
  973. case MMCIF_WAIT_FOR_READ_END:
  974. case MMCIF_WAIT_FOR_WRITE_END:
  975. if (host->sd_error)
  976. mrq->data->error = sh_mmcif_error_manage(host);
  977. break;
  978. default:
  979. BUG();
  980. }
  981. if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
  982. struct mmc_data *data = mrq->data;
  983. if (!mrq->cmd->error && data && !data->error)
  984. data->bytes_xfered =
  985. data->blocks * data->blksz;
  986. if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
  987. sh_mmcif_stop_cmd(host, mrq);
  988. if (!mrq->stop->error)
  989. return IRQ_HANDLED;
  990. }
  991. }
  992. host->wait_for = MMCIF_WAIT_FOR_REQUEST;
  993. host->state = STATE_IDLE;
  994. host->mrq = NULL;
  995. mmc_request_done(host->mmc, mrq);
  996. return IRQ_HANDLED;
  997. }
  998. static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
  999. {
  1000. struct sh_mmcif_host *host = dev_id;
  1001. u32 state;
  1002. int err = 0;
  1003. state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
  1004. if (state & INT_ERR_STS) {
  1005. /* error interrupts - process first */
  1006. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  1007. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  1008. err = 1;
  1009. } else if (state & INT_RBSYE) {
  1010. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  1011. ~(INT_RBSYE | INT_CRSPE));
  1012. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
  1013. } else if (state & INT_CRSPE) {
  1014. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
  1015. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
  1016. } else if (state & INT_BUFREN) {
  1017. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
  1018. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  1019. } else if (state & INT_BUFWEN) {
  1020. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
  1021. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  1022. } else if (state & INT_CMD12DRE) {
  1023. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  1024. ~(INT_CMD12DRE | INT_CMD12RBE |
  1025. INT_CMD12CRE | INT_BUFRE));
  1026. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  1027. } else if (state & INT_BUFRE) {
  1028. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
  1029. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  1030. } else if (state & INT_DTRANE) {
  1031. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
  1032. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  1033. } else if (state & INT_CMD12RBE) {
  1034. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  1035. ~(INT_CMD12RBE | INT_CMD12CRE));
  1036. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  1037. } else {
  1038. dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
  1039. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  1040. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  1041. err = 1;
  1042. }
  1043. if (err) {
  1044. host->sd_error = true;
  1045. dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
  1046. }
  1047. if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
  1048. if (!host->dma_active)
  1049. return IRQ_WAKE_THREAD;
  1050. else if (host->sd_error)
  1051. mmcif_dma_complete(host);
  1052. } else {
  1053. dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
  1054. }
  1055. return IRQ_HANDLED;
  1056. }
  1057. static void mmcif_timeout_work(struct work_struct *work)
  1058. {
  1059. struct delayed_work *d = container_of(work, struct delayed_work, work);
  1060. struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
  1061. struct mmc_request *mrq = host->mrq;
  1062. if (host->dying)
  1063. /* Don't run after mmc_remove_host() */
  1064. return;
  1065. /*
  1066. * Handle races with cancel_delayed_work(), unless
  1067. * cancel_delayed_work_sync() is used
  1068. */
  1069. switch (host->wait_for) {
  1070. case MMCIF_WAIT_FOR_CMD:
  1071. mrq->cmd->error = sh_mmcif_error_manage(host);
  1072. break;
  1073. case MMCIF_WAIT_FOR_STOP:
  1074. mrq->stop->error = sh_mmcif_error_manage(host);
  1075. break;
  1076. case MMCIF_WAIT_FOR_MREAD:
  1077. case MMCIF_WAIT_FOR_MWRITE:
  1078. case MMCIF_WAIT_FOR_READ:
  1079. case MMCIF_WAIT_FOR_WRITE:
  1080. case MMCIF_WAIT_FOR_READ_END:
  1081. case MMCIF_WAIT_FOR_WRITE_END:
  1082. mrq->data->error = sh_mmcif_error_manage(host);
  1083. break;
  1084. default:
  1085. BUG();
  1086. }
  1087. host->state = STATE_IDLE;
  1088. host->wait_for = MMCIF_WAIT_FOR_REQUEST;
  1089. host->mrq = NULL;
  1090. mmc_request_done(host->mmc, mrq);
  1091. }
  1092. static int __devinit sh_mmcif_probe(struct platform_device *pdev)
  1093. {
  1094. int ret = 0, irq[2];
  1095. struct mmc_host *mmc;
  1096. struct sh_mmcif_host *host;
  1097. struct sh_mmcif_plat_data *pd;
  1098. struct resource *res;
  1099. void __iomem *reg;
  1100. char clk_name[8];
  1101. irq[0] = platform_get_irq(pdev, 0);
  1102. irq[1] = platform_get_irq(pdev, 1);
  1103. if (irq[0] < 0 || irq[1] < 0) {
  1104. dev_err(&pdev->dev, "Get irq error\n");
  1105. return -ENXIO;
  1106. }
  1107. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1108. if (!res) {
  1109. dev_err(&pdev->dev, "platform_get_resource error.\n");
  1110. return -ENXIO;
  1111. }
  1112. reg = ioremap(res->start, resource_size(res));
  1113. if (!reg) {
  1114. dev_err(&pdev->dev, "ioremap error.\n");
  1115. return -ENOMEM;
  1116. }
  1117. pd = pdev->dev.platform_data;
  1118. if (!pd) {
  1119. dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
  1120. ret = -ENXIO;
  1121. goto clean_up;
  1122. }
  1123. mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
  1124. if (!mmc) {
  1125. ret = -ENOMEM;
  1126. goto clean_up;
  1127. }
  1128. host = mmc_priv(mmc);
  1129. host->mmc = mmc;
  1130. host->addr = reg;
  1131. host->timeout = 1000;
  1132. snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
  1133. host->hclk = clk_get(&pdev->dev, clk_name);
  1134. if (IS_ERR(host->hclk)) {
  1135. dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
  1136. ret = PTR_ERR(host->hclk);
  1137. goto clean_up1;
  1138. }
  1139. clk_enable(host->hclk);
  1140. host->clk = clk_get_rate(host->hclk);
  1141. host->pd = pdev;
  1142. spin_lock_init(&host->lock);
  1143. mmc->ops = &sh_mmcif_ops;
  1144. mmc->f_max = host->clk / 2;
  1145. mmc->f_min = host->clk / 512;
  1146. if (pd->ocr)
  1147. mmc->ocr_avail = pd->ocr;
  1148. mmc->caps = MMC_CAP_MMC_HIGHSPEED;
  1149. if (pd->caps)
  1150. mmc->caps |= pd->caps;
  1151. mmc->max_segs = 32;
  1152. mmc->max_blk_size = 512;
  1153. mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
  1154. mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
  1155. mmc->max_seg_size = mmc->max_req_size;
  1156. sh_mmcif_sync_reset(host);
  1157. platform_set_drvdata(pdev, host);
  1158. pm_runtime_enable(&pdev->dev);
  1159. host->power = false;
  1160. ret = pm_runtime_resume(&pdev->dev);
  1161. if (ret < 0)
  1162. goto clean_up2;
  1163. INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
  1164. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1165. ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
  1166. if (ret) {
  1167. dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
  1168. goto clean_up3;
  1169. }
  1170. ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
  1171. if (ret) {
  1172. dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
  1173. goto clean_up4;
  1174. }
  1175. ret = mmc_add_host(mmc);
  1176. if (ret < 0)
  1177. goto clean_up5;
  1178. dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
  1179. dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
  1180. dev_dbg(&pdev->dev, "chip ver H'%04x\n",
  1181. sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
  1182. return ret;
  1183. clean_up5:
  1184. free_irq(irq[1], host);
  1185. clean_up4:
  1186. free_irq(irq[0], host);
  1187. clean_up3:
  1188. pm_runtime_suspend(&pdev->dev);
  1189. clean_up2:
  1190. pm_runtime_disable(&pdev->dev);
  1191. clk_disable(host->hclk);
  1192. clean_up1:
  1193. mmc_free_host(mmc);
  1194. clean_up:
  1195. if (reg)
  1196. iounmap(reg);
  1197. return ret;
  1198. }
  1199. static int __devexit sh_mmcif_remove(struct platform_device *pdev)
  1200. {
  1201. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1202. int irq[2];
  1203. host->dying = true;
  1204. pm_runtime_get_sync(&pdev->dev);
  1205. dev_pm_qos_hide_latency_limit(&pdev->dev);
  1206. mmc_remove_host(host->mmc);
  1207. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1208. /*
  1209. * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
  1210. * mmc_remove_host() call above. But swapping order doesn't help either
  1211. * (a query on the linux-mmc mailing list didn't bring any replies).
  1212. */
  1213. cancel_delayed_work_sync(&host->timeout_work);
  1214. if (host->addr)
  1215. iounmap(host->addr);
  1216. irq[0] = platform_get_irq(pdev, 0);
  1217. irq[1] = platform_get_irq(pdev, 1);
  1218. free_irq(irq[0], host);
  1219. free_irq(irq[1], host);
  1220. platform_set_drvdata(pdev, NULL);
  1221. clk_disable(host->hclk);
  1222. mmc_free_host(host->mmc);
  1223. pm_runtime_put_sync(&pdev->dev);
  1224. pm_runtime_disable(&pdev->dev);
  1225. return 0;
  1226. }
  1227. #ifdef CONFIG_PM
  1228. static int sh_mmcif_suspend(struct device *dev)
  1229. {
  1230. struct platform_device *pdev = to_platform_device(dev);
  1231. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1232. int ret = mmc_suspend_host(host->mmc);
  1233. if (!ret) {
  1234. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1235. clk_disable(host->hclk);
  1236. }
  1237. return ret;
  1238. }
  1239. static int sh_mmcif_resume(struct device *dev)
  1240. {
  1241. struct platform_device *pdev = to_platform_device(dev);
  1242. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1243. clk_enable(host->hclk);
  1244. return mmc_resume_host(host->mmc);
  1245. }
  1246. #else
  1247. #define sh_mmcif_suspend NULL
  1248. #define sh_mmcif_resume NULL
  1249. #endif /* CONFIG_PM */
  1250. static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
  1251. .suspend = sh_mmcif_suspend,
  1252. .resume = sh_mmcif_resume,
  1253. };
  1254. static struct platform_driver sh_mmcif_driver = {
  1255. .probe = sh_mmcif_probe,
  1256. .remove = sh_mmcif_remove,
  1257. .driver = {
  1258. .name = DRIVER_NAME,
  1259. .pm = &sh_mmcif_dev_pm_ops,
  1260. },
  1261. };
  1262. module_platform_driver(sh_mmcif_driver);
  1263. MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
  1264. MODULE_LICENSE("GPL");
  1265. MODULE_ALIAS("platform:" DRIVER_NAME);
  1266. MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");