pch_dma.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049
  1. /*
  2. * Topcliff PCH DMA controller driver
  3. * Copyright (c) 2010 Intel Corporation
  4. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/dmaengine.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/init.h>
  22. #include <linux/pci.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/module.h>
  25. #include <linux/pch_dma.h>
  26. #include "dmaengine.h"
  27. #define DRV_NAME "pch-dma"
  28. #define DMA_CTL0_DISABLE 0x0
  29. #define DMA_CTL0_SG 0x1
  30. #define DMA_CTL0_ONESHOT 0x2
  31. #define DMA_CTL0_MODE_MASK_BITS 0x3
  32. #define DMA_CTL0_DIR_SHIFT_BITS 2
  33. #define DMA_CTL0_BITS_PER_CH 4
  34. #define DMA_CTL2_START_SHIFT_BITS 8
  35. #define DMA_CTL2_IRQ_ENABLE_MASK ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1)
  36. #define DMA_STATUS_IDLE 0x0
  37. #define DMA_STATUS_DESC_READ 0x1
  38. #define DMA_STATUS_WAIT 0x2
  39. #define DMA_STATUS_ACCESS 0x3
  40. #define DMA_STATUS_BITS_PER_CH 2
  41. #define DMA_STATUS_MASK_BITS 0x3
  42. #define DMA_STATUS_SHIFT_BITS 16
  43. #define DMA_STATUS_IRQ(x) (0x1 << (x))
  44. #define DMA_STATUS0_ERR(x) (0x1 << ((x) + 8))
  45. #define DMA_STATUS2_ERR(x) (0x1 << (x))
  46. #define DMA_DESC_WIDTH_SHIFT_BITS 12
  47. #define DMA_DESC_WIDTH_1_BYTE (0x3 << DMA_DESC_WIDTH_SHIFT_BITS)
  48. #define DMA_DESC_WIDTH_2_BYTES (0x2 << DMA_DESC_WIDTH_SHIFT_BITS)
  49. #define DMA_DESC_WIDTH_4_BYTES (0x0 << DMA_DESC_WIDTH_SHIFT_BITS)
  50. #define DMA_DESC_MAX_COUNT_1_BYTE 0x3FF
  51. #define DMA_DESC_MAX_COUNT_2_BYTES 0x3FF
  52. #define DMA_DESC_MAX_COUNT_4_BYTES 0x7FF
  53. #define DMA_DESC_END_WITHOUT_IRQ 0x0
  54. #define DMA_DESC_END_WITH_IRQ 0x1
  55. #define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2
  56. #define DMA_DESC_FOLLOW_WITH_IRQ 0x3
  57. #define MAX_CHAN_NR 12
  58. #define DMA_MASK_CTL0_MODE 0x33333333
  59. #define DMA_MASK_CTL2_MODE 0x00003333
  60. static unsigned int init_nr_desc_per_channel = 64;
  61. module_param(init_nr_desc_per_channel, uint, 0644);
  62. MODULE_PARM_DESC(init_nr_desc_per_channel,
  63. "initial descriptors per channel (default: 64)");
  64. struct pch_dma_desc_regs {
  65. u32 dev_addr;
  66. u32 mem_addr;
  67. u32 size;
  68. u32 next;
  69. };
  70. struct pch_dma_regs {
  71. u32 dma_ctl0;
  72. u32 dma_ctl1;
  73. u32 dma_ctl2;
  74. u32 dma_ctl3;
  75. u32 dma_sts0;
  76. u32 dma_sts1;
  77. u32 dma_sts2;
  78. u32 reserved3;
  79. struct pch_dma_desc_regs desc[MAX_CHAN_NR];
  80. };
  81. struct pch_dma_desc {
  82. struct pch_dma_desc_regs regs;
  83. struct dma_async_tx_descriptor txd;
  84. struct list_head desc_node;
  85. struct list_head tx_list;
  86. };
  87. struct pch_dma_chan {
  88. struct dma_chan chan;
  89. void __iomem *membase;
  90. enum dma_transfer_direction dir;
  91. struct tasklet_struct tasklet;
  92. unsigned long err_status;
  93. spinlock_t lock;
  94. struct list_head active_list;
  95. struct list_head queue;
  96. struct list_head free_list;
  97. unsigned int descs_allocated;
  98. };
  99. #define PDC_DEV_ADDR 0x00
  100. #define PDC_MEM_ADDR 0x04
  101. #define PDC_SIZE 0x08
  102. #define PDC_NEXT 0x0C
  103. #define channel_readl(pdc, name) \
  104. readl((pdc)->membase + PDC_##name)
  105. #define channel_writel(pdc, name, val) \
  106. writel((val), (pdc)->membase + PDC_##name)
  107. struct pch_dma {
  108. struct dma_device dma;
  109. void __iomem *membase;
  110. struct pci_pool *pool;
  111. struct pch_dma_regs regs;
  112. struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
  113. struct pch_dma_chan channels[MAX_CHAN_NR];
  114. };
  115. #define PCH_DMA_CTL0 0x00
  116. #define PCH_DMA_CTL1 0x04
  117. #define PCH_DMA_CTL2 0x08
  118. #define PCH_DMA_CTL3 0x0C
  119. #define PCH_DMA_STS0 0x10
  120. #define PCH_DMA_STS1 0x14
  121. #define PCH_DMA_STS2 0x18
  122. #define dma_readl(pd, name) \
  123. readl((pd)->membase + PCH_DMA_##name)
  124. #define dma_writel(pd, name, val) \
  125. writel((val), (pd)->membase + PCH_DMA_##name)
  126. static inline
  127. struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd)
  128. {
  129. return container_of(txd, struct pch_dma_desc, txd);
  130. }
  131. static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan)
  132. {
  133. return container_of(chan, struct pch_dma_chan, chan);
  134. }
  135. static inline struct pch_dma *to_pd(struct dma_device *ddev)
  136. {
  137. return container_of(ddev, struct pch_dma, dma);
  138. }
  139. static inline struct device *chan2dev(struct dma_chan *chan)
  140. {
  141. return &chan->dev->device;
  142. }
  143. static inline struct device *chan2parent(struct dma_chan *chan)
  144. {
  145. return chan->dev->device.parent;
  146. }
  147. static inline
  148. struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan)
  149. {
  150. return list_first_entry(&pd_chan->active_list,
  151. struct pch_dma_desc, desc_node);
  152. }
  153. static inline
  154. struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan)
  155. {
  156. return list_first_entry(&pd_chan->queue,
  157. struct pch_dma_desc, desc_node);
  158. }
  159. static void pdc_enable_irq(struct dma_chan *chan, int enable)
  160. {
  161. struct pch_dma *pd = to_pd(chan->device);
  162. u32 val;
  163. int pos;
  164. if (chan->chan_id < 8)
  165. pos = chan->chan_id;
  166. else
  167. pos = chan->chan_id + 8;
  168. val = dma_readl(pd, CTL2);
  169. if (enable)
  170. val |= 0x1 << pos;
  171. else
  172. val &= ~(0x1 << pos);
  173. dma_writel(pd, CTL2, val);
  174. dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n",
  175. chan->chan_id, val);
  176. }
  177. static void pdc_set_dir(struct dma_chan *chan)
  178. {
  179. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  180. struct pch_dma *pd = to_pd(chan->device);
  181. u32 val;
  182. u32 mask_mode;
  183. u32 mask_ctl;
  184. if (chan->chan_id < 8) {
  185. val = dma_readl(pd, CTL0);
  186. mask_mode = DMA_CTL0_MODE_MASK_BITS <<
  187. (DMA_CTL0_BITS_PER_CH * chan->chan_id);
  188. mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
  189. (DMA_CTL0_BITS_PER_CH * chan->chan_id));
  190. val &= mask_mode;
  191. if (pd_chan->dir == DMA_MEM_TO_DEV)
  192. val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  193. DMA_CTL0_DIR_SHIFT_BITS);
  194. else
  195. val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  196. DMA_CTL0_DIR_SHIFT_BITS));
  197. val |= mask_ctl;
  198. dma_writel(pd, CTL0, val);
  199. } else {
  200. int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
  201. val = dma_readl(pd, CTL3);
  202. mask_mode = DMA_CTL0_MODE_MASK_BITS <<
  203. (DMA_CTL0_BITS_PER_CH * ch);
  204. mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
  205. (DMA_CTL0_BITS_PER_CH * ch));
  206. val &= mask_mode;
  207. if (pd_chan->dir == DMA_MEM_TO_DEV)
  208. val |= 0x1 << (DMA_CTL0_BITS_PER_CH * ch +
  209. DMA_CTL0_DIR_SHIFT_BITS);
  210. else
  211. val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * ch +
  212. DMA_CTL0_DIR_SHIFT_BITS));
  213. val |= mask_ctl;
  214. dma_writel(pd, CTL3, val);
  215. }
  216. dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n",
  217. chan->chan_id, val);
  218. }
  219. static void pdc_set_mode(struct dma_chan *chan, u32 mode)
  220. {
  221. struct pch_dma *pd = to_pd(chan->device);
  222. u32 val;
  223. u32 mask_ctl;
  224. u32 mask_dir;
  225. if (chan->chan_id < 8) {
  226. mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
  227. (DMA_CTL0_BITS_PER_CH * chan->chan_id));
  228. mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +\
  229. DMA_CTL0_DIR_SHIFT_BITS);
  230. val = dma_readl(pd, CTL0);
  231. val &= mask_dir;
  232. val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id);
  233. val |= mask_ctl;
  234. dma_writel(pd, CTL0, val);
  235. } else {
  236. int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
  237. mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
  238. (DMA_CTL0_BITS_PER_CH * ch));
  239. mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * ch +\
  240. DMA_CTL0_DIR_SHIFT_BITS);
  241. val = dma_readl(pd, CTL3);
  242. val &= mask_dir;
  243. val |= mode << (DMA_CTL0_BITS_PER_CH * ch);
  244. val |= mask_ctl;
  245. dma_writel(pd, CTL3, val);
  246. }
  247. dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n",
  248. chan->chan_id, val);
  249. }
  250. static u32 pdc_get_status0(struct pch_dma_chan *pd_chan)
  251. {
  252. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  253. u32 val;
  254. val = dma_readl(pd, STS0);
  255. return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
  256. DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id));
  257. }
  258. static u32 pdc_get_status2(struct pch_dma_chan *pd_chan)
  259. {
  260. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  261. u32 val;
  262. val = dma_readl(pd, STS2);
  263. return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
  264. DMA_STATUS_BITS_PER_CH * (pd_chan->chan.chan_id - 8)));
  265. }
  266. static bool pdc_is_idle(struct pch_dma_chan *pd_chan)
  267. {
  268. u32 sts;
  269. if (pd_chan->chan.chan_id < 8)
  270. sts = pdc_get_status0(pd_chan);
  271. else
  272. sts = pdc_get_status2(pd_chan);
  273. if (sts == DMA_STATUS_IDLE)
  274. return true;
  275. else
  276. return false;
  277. }
  278. static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc)
  279. {
  280. if (!pdc_is_idle(pd_chan)) {
  281. dev_err(chan2dev(&pd_chan->chan),
  282. "BUG: Attempt to start non-idle channel\n");
  283. return;
  284. }
  285. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n",
  286. pd_chan->chan.chan_id, desc->regs.dev_addr);
  287. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n",
  288. pd_chan->chan.chan_id, desc->regs.mem_addr);
  289. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n",
  290. pd_chan->chan.chan_id, desc->regs.size);
  291. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n",
  292. pd_chan->chan.chan_id, desc->regs.next);
  293. if (list_empty(&desc->tx_list)) {
  294. channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr);
  295. channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr);
  296. channel_writel(pd_chan, SIZE, desc->regs.size);
  297. channel_writel(pd_chan, NEXT, desc->regs.next);
  298. pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT);
  299. } else {
  300. channel_writel(pd_chan, NEXT, desc->txd.phys);
  301. pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG);
  302. }
  303. }
  304. static void pdc_chain_complete(struct pch_dma_chan *pd_chan,
  305. struct pch_dma_desc *desc)
  306. {
  307. struct dma_async_tx_descriptor *txd = &desc->txd;
  308. dma_async_tx_callback callback = txd->callback;
  309. void *param = txd->callback_param;
  310. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  311. list_move(&desc->desc_node, &pd_chan->free_list);
  312. if (callback)
  313. callback(param);
  314. }
  315. static void pdc_complete_all(struct pch_dma_chan *pd_chan)
  316. {
  317. struct pch_dma_desc *desc, *_d;
  318. LIST_HEAD(list);
  319. BUG_ON(!pdc_is_idle(pd_chan));
  320. if (!list_empty(&pd_chan->queue))
  321. pdc_dostart(pd_chan, pdc_first_queued(pd_chan));
  322. list_splice_init(&pd_chan->active_list, &list);
  323. list_splice_init(&pd_chan->queue, &pd_chan->active_list);
  324. list_for_each_entry_safe(desc, _d, &list, desc_node)
  325. pdc_chain_complete(pd_chan, desc);
  326. }
  327. static void pdc_handle_error(struct pch_dma_chan *pd_chan)
  328. {
  329. struct pch_dma_desc *bad_desc;
  330. bad_desc = pdc_first_active(pd_chan);
  331. list_del(&bad_desc->desc_node);
  332. list_splice_init(&pd_chan->queue, pd_chan->active_list.prev);
  333. if (!list_empty(&pd_chan->active_list))
  334. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  335. dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n");
  336. dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n",
  337. bad_desc->txd.cookie);
  338. pdc_chain_complete(pd_chan, bad_desc);
  339. }
  340. static void pdc_advance_work(struct pch_dma_chan *pd_chan)
  341. {
  342. if (list_empty(&pd_chan->active_list) ||
  343. list_is_singular(&pd_chan->active_list)) {
  344. pdc_complete_all(pd_chan);
  345. } else {
  346. pdc_chain_complete(pd_chan, pdc_first_active(pd_chan));
  347. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  348. }
  349. }
  350. static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
  351. {
  352. struct pch_dma_desc *desc = to_pd_desc(txd);
  353. struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
  354. dma_cookie_t cookie;
  355. spin_lock(&pd_chan->lock);
  356. cookie = dma_cookie_assign(txd);
  357. if (list_empty(&pd_chan->active_list)) {
  358. list_add_tail(&desc->desc_node, &pd_chan->active_list);
  359. pdc_dostart(pd_chan, desc);
  360. } else {
  361. list_add_tail(&desc->desc_node, &pd_chan->queue);
  362. }
  363. spin_unlock(&pd_chan->lock);
  364. return 0;
  365. }
  366. static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
  367. {
  368. struct pch_dma_desc *desc = NULL;
  369. struct pch_dma *pd = to_pd(chan->device);
  370. dma_addr_t addr;
  371. desc = pci_pool_alloc(pd->pool, flags, &addr);
  372. if (desc) {
  373. memset(desc, 0, sizeof(struct pch_dma_desc));
  374. INIT_LIST_HEAD(&desc->tx_list);
  375. dma_async_tx_descriptor_init(&desc->txd, chan);
  376. desc->txd.tx_submit = pd_tx_submit;
  377. desc->txd.flags = DMA_CTRL_ACK;
  378. desc->txd.phys = addr;
  379. }
  380. return desc;
  381. }
  382. static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
  383. {
  384. struct pch_dma_desc *desc, *_d;
  385. struct pch_dma_desc *ret = NULL;
  386. int i = 0;
  387. spin_lock(&pd_chan->lock);
  388. list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
  389. i++;
  390. if (async_tx_test_ack(&desc->txd)) {
  391. list_del(&desc->desc_node);
  392. ret = desc;
  393. break;
  394. }
  395. dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
  396. }
  397. spin_unlock(&pd_chan->lock);
  398. dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
  399. if (!ret) {
  400. ret = pdc_alloc_desc(&pd_chan->chan, GFP_ATOMIC);
  401. if (ret) {
  402. spin_lock(&pd_chan->lock);
  403. pd_chan->descs_allocated++;
  404. spin_unlock(&pd_chan->lock);
  405. } else {
  406. dev_err(chan2dev(&pd_chan->chan),
  407. "failed to alloc desc\n");
  408. }
  409. }
  410. return ret;
  411. }
  412. static void pdc_desc_put(struct pch_dma_chan *pd_chan,
  413. struct pch_dma_desc *desc)
  414. {
  415. if (desc) {
  416. spin_lock(&pd_chan->lock);
  417. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  418. list_add(&desc->desc_node, &pd_chan->free_list);
  419. spin_unlock(&pd_chan->lock);
  420. }
  421. }
  422. static int pd_alloc_chan_resources(struct dma_chan *chan)
  423. {
  424. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  425. struct pch_dma_desc *desc;
  426. LIST_HEAD(tmp_list);
  427. int i;
  428. if (!pdc_is_idle(pd_chan)) {
  429. dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
  430. return -EIO;
  431. }
  432. if (!list_empty(&pd_chan->free_list))
  433. return pd_chan->descs_allocated;
  434. for (i = 0; i < init_nr_desc_per_channel; i++) {
  435. desc = pdc_alloc_desc(chan, GFP_KERNEL);
  436. if (!desc) {
  437. dev_warn(chan2dev(chan),
  438. "Only allocated %d initial descriptors\n", i);
  439. break;
  440. }
  441. list_add_tail(&desc->desc_node, &tmp_list);
  442. }
  443. spin_lock_irq(&pd_chan->lock);
  444. list_splice(&tmp_list, &pd_chan->free_list);
  445. pd_chan->descs_allocated = i;
  446. dma_cookie_init(chan);
  447. spin_unlock_irq(&pd_chan->lock);
  448. pdc_enable_irq(chan, 1);
  449. return pd_chan->descs_allocated;
  450. }
  451. static void pd_free_chan_resources(struct dma_chan *chan)
  452. {
  453. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  454. struct pch_dma *pd = to_pd(chan->device);
  455. struct pch_dma_desc *desc, *_d;
  456. LIST_HEAD(tmp_list);
  457. BUG_ON(!pdc_is_idle(pd_chan));
  458. BUG_ON(!list_empty(&pd_chan->active_list));
  459. BUG_ON(!list_empty(&pd_chan->queue));
  460. spin_lock_irq(&pd_chan->lock);
  461. list_splice_init(&pd_chan->free_list, &tmp_list);
  462. pd_chan->descs_allocated = 0;
  463. spin_unlock_irq(&pd_chan->lock);
  464. list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
  465. pci_pool_free(pd->pool, desc, desc->txd.phys);
  466. pdc_enable_irq(chan, 0);
  467. }
  468. static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
  469. struct dma_tx_state *txstate)
  470. {
  471. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  472. enum dma_status ret;
  473. spin_lock_irq(&pd_chan->lock);
  474. ret = dma_cookie_status(chan, cookie, txstate);
  475. spin_unlock_irq(&pd_chan->lock);
  476. return ret;
  477. }
  478. static void pd_issue_pending(struct dma_chan *chan)
  479. {
  480. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  481. if (pdc_is_idle(pd_chan)) {
  482. spin_lock(&pd_chan->lock);
  483. pdc_advance_work(pd_chan);
  484. spin_unlock(&pd_chan->lock);
  485. }
  486. }
  487. static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
  488. struct scatterlist *sgl, unsigned int sg_len,
  489. enum dma_transfer_direction direction, unsigned long flags,
  490. void *context)
  491. {
  492. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  493. struct pch_dma_slave *pd_slave = chan->private;
  494. struct pch_dma_desc *first = NULL;
  495. struct pch_dma_desc *prev = NULL;
  496. struct pch_dma_desc *desc = NULL;
  497. struct scatterlist *sg;
  498. dma_addr_t reg;
  499. int i;
  500. if (unlikely(!sg_len)) {
  501. dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n");
  502. return NULL;
  503. }
  504. if (direction == DMA_DEV_TO_MEM)
  505. reg = pd_slave->rx_reg;
  506. else if (direction == DMA_MEM_TO_DEV)
  507. reg = pd_slave->tx_reg;
  508. else
  509. return NULL;
  510. pd_chan->dir = direction;
  511. pdc_set_dir(chan);
  512. for_each_sg(sgl, sg, sg_len, i) {
  513. desc = pdc_desc_get(pd_chan);
  514. if (!desc)
  515. goto err_desc_get;
  516. desc->regs.dev_addr = reg;
  517. desc->regs.mem_addr = sg_phys(sg);
  518. desc->regs.size = sg_dma_len(sg);
  519. desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ;
  520. switch (pd_slave->width) {
  521. case PCH_DMA_WIDTH_1_BYTE:
  522. if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE)
  523. goto err_desc_get;
  524. desc->regs.size |= DMA_DESC_WIDTH_1_BYTE;
  525. break;
  526. case PCH_DMA_WIDTH_2_BYTES:
  527. if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES)
  528. goto err_desc_get;
  529. desc->regs.size |= DMA_DESC_WIDTH_2_BYTES;
  530. break;
  531. case PCH_DMA_WIDTH_4_BYTES:
  532. if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES)
  533. goto err_desc_get;
  534. desc->regs.size |= DMA_DESC_WIDTH_4_BYTES;
  535. break;
  536. default:
  537. goto err_desc_get;
  538. }
  539. if (!first) {
  540. first = desc;
  541. } else {
  542. prev->regs.next |= desc->txd.phys;
  543. list_add_tail(&desc->desc_node, &first->tx_list);
  544. }
  545. prev = desc;
  546. }
  547. if (flags & DMA_PREP_INTERRUPT)
  548. desc->regs.next = DMA_DESC_END_WITH_IRQ;
  549. else
  550. desc->regs.next = DMA_DESC_END_WITHOUT_IRQ;
  551. first->txd.cookie = -EBUSY;
  552. desc->txd.flags = flags;
  553. return &first->txd;
  554. err_desc_get:
  555. dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n");
  556. pdc_desc_put(pd_chan, first);
  557. return NULL;
  558. }
  559. static int pd_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  560. unsigned long arg)
  561. {
  562. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  563. struct pch_dma_desc *desc, *_d;
  564. LIST_HEAD(list);
  565. if (cmd != DMA_TERMINATE_ALL)
  566. return -ENXIO;
  567. spin_lock_irq(&pd_chan->lock);
  568. pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE);
  569. list_splice_init(&pd_chan->active_list, &list);
  570. list_splice_init(&pd_chan->queue, &list);
  571. list_for_each_entry_safe(desc, _d, &list, desc_node)
  572. pdc_chain_complete(pd_chan, desc);
  573. spin_unlock_irq(&pd_chan->lock);
  574. return 0;
  575. }
  576. static void pdc_tasklet(unsigned long data)
  577. {
  578. struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data;
  579. unsigned long flags;
  580. if (!pdc_is_idle(pd_chan)) {
  581. dev_err(chan2dev(&pd_chan->chan),
  582. "BUG: handle non-idle channel in tasklet\n");
  583. return;
  584. }
  585. spin_lock_irqsave(&pd_chan->lock, flags);
  586. if (test_and_clear_bit(0, &pd_chan->err_status))
  587. pdc_handle_error(pd_chan);
  588. else
  589. pdc_advance_work(pd_chan);
  590. spin_unlock_irqrestore(&pd_chan->lock, flags);
  591. }
  592. static irqreturn_t pd_irq(int irq, void *devid)
  593. {
  594. struct pch_dma *pd = (struct pch_dma *)devid;
  595. struct pch_dma_chan *pd_chan;
  596. u32 sts0;
  597. u32 sts2;
  598. int i;
  599. int ret0 = IRQ_NONE;
  600. int ret2 = IRQ_NONE;
  601. sts0 = dma_readl(pd, STS0);
  602. sts2 = dma_readl(pd, STS2);
  603. dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0);
  604. for (i = 0; i < pd->dma.chancnt; i++) {
  605. pd_chan = &pd->channels[i];
  606. if (i < 8) {
  607. if (sts0 & DMA_STATUS_IRQ(i)) {
  608. if (sts0 & DMA_STATUS0_ERR(i))
  609. set_bit(0, &pd_chan->err_status);
  610. tasklet_schedule(&pd_chan->tasklet);
  611. ret0 = IRQ_HANDLED;
  612. }
  613. } else {
  614. if (sts2 & DMA_STATUS_IRQ(i - 8)) {
  615. if (sts2 & DMA_STATUS2_ERR(i))
  616. set_bit(0, &pd_chan->err_status);
  617. tasklet_schedule(&pd_chan->tasklet);
  618. ret2 = IRQ_HANDLED;
  619. }
  620. }
  621. }
  622. /* clear interrupt bits in status register */
  623. if (ret0)
  624. dma_writel(pd, STS0, sts0);
  625. if (ret2)
  626. dma_writel(pd, STS2, sts2);
  627. return ret0 | ret2;
  628. }
  629. #ifdef CONFIG_PM
  630. static void pch_dma_save_regs(struct pch_dma *pd)
  631. {
  632. struct pch_dma_chan *pd_chan;
  633. struct dma_chan *chan, *_c;
  634. int i = 0;
  635. pd->regs.dma_ctl0 = dma_readl(pd, CTL0);
  636. pd->regs.dma_ctl1 = dma_readl(pd, CTL1);
  637. pd->regs.dma_ctl2 = dma_readl(pd, CTL2);
  638. pd->regs.dma_ctl3 = dma_readl(pd, CTL3);
  639. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  640. pd_chan = to_pd_chan(chan);
  641. pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR);
  642. pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR);
  643. pd->ch_regs[i].size = channel_readl(pd_chan, SIZE);
  644. pd->ch_regs[i].next = channel_readl(pd_chan, NEXT);
  645. i++;
  646. }
  647. }
  648. static void pch_dma_restore_regs(struct pch_dma *pd)
  649. {
  650. struct pch_dma_chan *pd_chan;
  651. struct dma_chan *chan, *_c;
  652. int i = 0;
  653. dma_writel(pd, CTL0, pd->regs.dma_ctl0);
  654. dma_writel(pd, CTL1, pd->regs.dma_ctl1);
  655. dma_writel(pd, CTL2, pd->regs.dma_ctl2);
  656. dma_writel(pd, CTL3, pd->regs.dma_ctl3);
  657. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  658. pd_chan = to_pd_chan(chan);
  659. channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr);
  660. channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr);
  661. channel_writel(pd_chan, SIZE, pd->ch_regs[i].size);
  662. channel_writel(pd_chan, NEXT, pd->ch_regs[i].next);
  663. i++;
  664. }
  665. }
  666. static int pch_dma_suspend(struct pci_dev *pdev, pm_message_t state)
  667. {
  668. struct pch_dma *pd = pci_get_drvdata(pdev);
  669. if (pd)
  670. pch_dma_save_regs(pd);
  671. pci_save_state(pdev);
  672. pci_disable_device(pdev);
  673. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  674. return 0;
  675. }
  676. static int pch_dma_resume(struct pci_dev *pdev)
  677. {
  678. struct pch_dma *pd = pci_get_drvdata(pdev);
  679. int err;
  680. pci_set_power_state(pdev, PCI_D0);
  681. pci_restore_state(pdev);
  682. err = pci_enable_device(pdev);
  683. if (err) {
  684. dev_dbg(&pdev->dev, "failed to enable device\n");
  685. return err;
  686. }
  687. if (pd)
  688. pch_dma_restore_regs(pd);
  689. return 0;
  690. }
  691. #endif
  692. static int __devinit pch_dma_probe(struct pci_dev *pdev,
  693. const struct pci_device_id *id)
  694. {
  695. struct pch_dma *pd;
  696. struct pch_dma_regs *regs;
  697. unsigned int nr_channels;
  698. int err;
  699. int i;
  700. nr_channels = id->driver_data;
  701. pd = kzalloc(sizeof(*pd), GFP_KERNEL);
  702. if (!pd)
  703. return -ENOMEM;
  704. pci_set_drvdata(pdev, pd);
  705. err = pci_enable_device(pdev);
  706. if (err) {
  707. dev_err(&pdev->dev, "Cannot enable PCI device\n");
  708. goto err_free_mem;
  709. }
  710. if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
  711. dev_err(&pdev->dev, "Cannot find proper base address\n");
  712. goto err_disable_pdev;
  713. }
  714. err = pci_request_regions(pdev, DRV_NAME);
  715. if (err) {
  716. dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
  717. goto err_disable_pdev;
  718. }
  719. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  720. if (err) {
  721. dev_err(&pdev->dev, "Cannot set proper DMA config\n");
  722. goto err_free_res;
  723. }
  724. regs = pd->membase = pci_iomap(pdev, 1, 0);
  725. if (!pd->membase) {
  726. dev_err(&pdev->dev, "Cannot map MMIO registers\n");
  727. err = -ENOMEM;
  728. goto err_free_res;
  729. }
  730. pci_set_master(pdev);
  731. err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd);
  732. if (err) {
  733. dev_err(&pdev->dev, "Failed to request IRQ\n");
  734. goto err_iounmap;
  735. }
  736. pd->pool = pci_pool_create("pch_dma_desc_pool", pdev,
  737. sizeof(struct pch_dma_desc), 4, 0);
  738. if (!pd->pool) {
  739. dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
  740. err = -ENOMEM;
  741. goto err_free_irq;
  742. }
  743. pd->dma.dev = &pdev->dev;
  744. INIT_LIST_HEAD(&pd->dma.channels);
  745. for (i = 0; i < nr_channels; i++) {
  746. struct pch_dma_chan *pd_chan = &pd->channels[i];
  747. pd_chan->chan.device = &pd->dma;
  748. dma_cookie_init(&pd_chan->chan);
  749. pd_chan->membase = &regs->desc[i];
  750. spin_lock_init(&pd_chan->lock);
  751. INIT_LIST_HEAD(&pd_chan->active_list);
  752. INIT_LIST_HEAD(&pd_chan->queue);
  753. INIT_LIST_HEAD(&pd_chan->free_list);
  754. tasklet_init(&pd_chan->tasklet, pdc_tasklet,
  755. (unsigned long)pd_chan);
  756. list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels);
  757. }
  758. dma_cap_zero(pd->dma.cap_mask);
  759. dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask);
  760. dma_cap_set(DMA_SLAVE, pd->dma.cap_mask);
  761. pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources;
  762. pd->dma.device_free_chan_resources = pd_free_chan_resources;
  763. pd->dma.device_tx_status = pd_tx_status;
  764. pd->dma.device_issue_pending = pd_issue_pending;
  765. pd->dma.device_prep_slave_sg = pd_prep_slave_sg;
  766. pd->dma.device_control = pd_device_control;
  767. err = dma_async_device_register(&pd->dma);
  768. if (err) {
  769. dev_err(&pdev->dev, "Failed to register DMA device\n");
  770. goto err_free_pool;
  771. }
  772. return 0;
  773. err_free_pool:
  774. pci_pool_destroy(pd->pool);
  775. err_free_irq:
  776. free_irq(pdev->irq, pd);
  777. err_iounmap:
  778. pci_iounmap(pdev, pd->membase);
  779. err_free_res:
  780. pci_release_regions(pdev);
  781. err_disable_pdev:
  782. pci_disable_device(pdev);
  783. err_free_mem:
  784. return err;
  785. }
  786. static void __devexit pch_dma_remove(struct pci_dev *pdev)
  787. {
  788. struct pch_dma *pd = pci_get_drvdata(pdev);
  789. struct pch_dma_chan *pd_chan;
  790. struct dma_chan *chan, *_c;
  791. if (pd) {
  792. dma_async_device_unregister(&pd->dma);
  793. list_for_each_entry_safe(chan, _c, &pd->dma.channels,
  794. device_node) {
  795. pd_chan = to_pd_chan(chan);
  796. tasklet_disable(&pd_chan->tasklet);
  797. tasklet_kill(&pd_chan->tasklet);
  798. }
  799. pci_pool_destroy(pd->pool);
  800. free_irq(pdev->irq, pd);
  801. pci_iounmap(pdev, pd->membase);
  802. pci_release_regions(pdev);
  803. pci_disable_device(pdev);
  804. kfree(pd);
  805. }
  806. }
  807. /* PCI Device ID of DMA device */
  808. #define PCI_VENDOR_ID_ROHM 0x10DB
  809. #define PCI_DEVICE_ID_EG20T_PCH_DMA_8CH 0x8810
  810. #define PCI_DEVICE_ID_EG20T_PCH_DMA_4CH 0x8815
  811. #define PCI_DEVICE_ID_ML7213_DMA1_8CH 0x8026
  812. #define PCI_DEVICE_ID_ML7213_DMA2_8CH 0x802B
  813. #define PCI_DEVICE_ID_ML7213_DMA3_4CH 0x8034
  814. #define PCI_DEVICE_ID_ML7213_DMA4_12CH 0x8032
  815. #define PCI_DEVICE_ID_ML7223_DMA1_4CH 0x800B
  816. #define PCI_DEVICE_ID_ML7223_DMA2_4CH 0x800E
  817. #define PCI_DEVICE_ID_ML7223_DMA3_4CH 0x8017
  818. #define PCI_DEVICE_ID_ML7223_DMA4_4CH 0x803B
  819. #define PCI_DEVICE_ID_ML7831_DMA1_8CH 0x8810
  820. #define PCI_DEVICE_ID_ML7831_DMA2_4CH 0x8815
  821. DEFINE_PCI_DEVICE_TABLE(pch_dma_id_table) = {
  822. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_8CH), 8 },
  823. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_4CH), 4 },
  824. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA1_8CH), 8}, /* UART Video */
  825. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA2_8CH), 8}, /* PCMIF SPI */
  826. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA3_4CH), 4}, /* FPGA */
  827. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA4_12CH), 12}, /* I2S */
  828. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA1_4CH), 4}, /* UART */
  829. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA2_4CH), 4}, /* Video SPI */
  830. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA3_4CH), 4}, /* Security */
  831. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA4_4CH), 4}, /* FPGA */
  832. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA1_8CH), 8}, /* UART */
  833. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA2_4CH), 4}, /* SPI */
  834. { 0, },
  835. };
  836. static struct pci_driver pch_dma_driver = {
  837. .name = DRV_NAME,
  838. .id_table = pch_dma_id_table,
  839. .probe = pch_dma_probe,
  840. .remove = __devexit_p(pch_dma_remove),
  841. #ifdef CONFIG_PM
  842. .suspend = pch_dma_suspend,
  843. .resume = pch_dma_resume,
  844. #endif
  845. };
  846. static int __init pch_dma_init(void)
  847. {
  848. return pci_register_driver(&pch_dma_driver);
  849. }
  850. static void __exit pch_dma_exit(void)
  851. {
  852. pci_unregister_driver(&pch_dma_driver);
  853. }
  854. module_init(pch_dma_init);
  855. module_exit(pch_dma_exit);
  856. MODULE_DESCRIPTION("Intel EG20T PCH / LAPIS Semicon ML7213/ML7223/ML7831 IOH "
  857. "DMA controller driver");
  858. MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>");
  859. MODULE_LICENSE("GPL v2");