123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636 |
- /*
- * drivers/cpufreq/cpufreq_conservative.c
- *
- * Copyright (C) 2001 Russell King
- * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
- * Jun Nakajima <jun.nakajima@intel.com>
- * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #include <linux/kernel.h>
- #include <linux/module.h>
- #include <linux/init.h>
- #include <linux/cpufreq.h>
- #include <linux/cpu.h>
- #include <linux/jiffies.h>
- #include <linux/kernel_stat.h>
- #include <linux/mutex.h>
- #include <linux/hrtimer.h>
- #include <linux/tick.h>
- #include <linux/ktime.h>
- #include <linux/sched.h>
- /*
- * dbs is used in this file as a shortform for demandbased switching
- * It helps to keep variable names smaller, simpler
- */
- #define DEF_FREQUENCY_UP_THRESHOLD (80)
- #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
- /*
- * The polling frequency of this governor depends on the capability of
- * the processor. Default polling frequency is 1000 times the transition
- * latency of the processor. The governor will work on any processor with
- * transition latency <= 10mS, using appropriate sampling
- * rate.
- * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
- * this governor will not work.
- * All times here are in uS.
- */
- #define MIN_SAMPLING_RATE_RATIO (2)
- static unsigned int min_sampling_rate;
- #define LATENCY_MULTIPLIER (1000)
- #define MIN_LATENCY_MULTIPLIER (100)
- #define DEF_SAMPLING_DOWN_FACTOR (1)
- #define MAX_SAMPLING_DOWN_FACTOR (10)
- #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
- static void do_dbs_timer(struct work_struct *work);
- struct cpu_dbs_info_s {
- cputime64_t prev_cpu_idle;
- cputime64_t prev_cpu_wall;
- cputime64_t prev_cpu_nice;
- struct cpufreq_policy *cur_policy;
- struct delayed_work work;
- unsigned int down_skip;
- unsigned int requested_freq;
- int cpu;
- unsigned int enable:1;
- /*
- * percpu mutex that serializes governor limit change with
- * do_dbs_timer invocation. We do not want do_dbs_timer to run
- * when user is changing the governor or limits.
- */
- struct mutex timer_mutex;
- };
- static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
- static unsigned int dbs_enable; /* number of CPUs using this policy */
- /*
- * dbs_mutex protects dbs_enable in governor start/stop.
- */
- static DEFINE_MUTEX(dbs_mutex);
- static struct workqueue_struct *dbs_wq;
- static struct dbs_tuners {
- unsigned int sampling_rate;
- unsigned int sampling_down_factor;
- unsigned int up_threshold;
- unsigned int down_threshold;
- unsigned int ignore_nice;
- unsigned int freq_step;
- } dbs_tuners_ins = {
- .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
- .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
- .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
- .ignore_nice = 0,
- .freq_step = 5,
- };
- static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
- {
- u64 idle_time;
- u64 cur_wall_time;
- u64 busy_time;
- cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
- busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
- busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
- busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
- busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
- busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
- busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
- idle_time = cur_wall_time - busy_time;
- if (wall)
- *wall = jiffies_to_usecs(cur_wall_time);
- return jiffies_to_usecs(idle_time);
- }
- static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
- {
- u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
- if (idle_time == -1ULL)
- return get_cpu_idle_time_jiffy(cpu, wall);
- else
- idle_time += get_cpu_iowait_time_us(cpu, wall);
- return idle_time;
- }
- /* keep track of frequency transitions */
- static int
- dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
- void *data)
- {
- struct cpufreq_freqs *freq = data;
- struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
- freq->cpu);
- struct cpufreq_policy *policy;
- if (!this_dbs_info->enable)
- return 0;
- policy = this_dbs_info->cur_policy;
- /*
- * we only care if our internally tracked freq moves outside
- * the 'valid' ranges of freqency available to us otherwise
- * we do not change it
- */
- if (this_dbs_info->requested_freq > policy->max
- || this_dbs_info->requested_freq < policy->min)
- this_dbs_info->requested_freq = freq->new;
- return 0;
- }
- static struct notifier_block dbs_cpufreq_notifier_block = {
- .notifier_call = dbs_cpufreq_notifier
- };
- /************************** sysfs interface ************************/
- static ssize_t show_sampling_rate_min(struct kobject *kobj,
- struct attribute *attr, char *buf)
- {
- return sprintf(buf, "%u\n", min_sampling_rate);
- }
- define_one_global_ro(sampling_rate_min);
- /* cpufreq_conservative Governor Tunables */
- #define show_one(file_name, object) \
- static ssize_t show_##file_name \
- (struct kobject *kobj, struct attribute *attr, char *buf) \
- { \
- return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
- }
- show_one(sampling_rate, sampling_rate);
- show_one(sampling_down_factor, sampling_down_factor);
- show_one(up_threshold, up_threshold);
- show_one(down_threshold, down_threshold);
- show_one(ignore_nice_load, ignore_nice);
- show_one(freq_step, freq_step);
- static ssize_t store_sampling_down_factor(struct kobject *a,
- struct attribute *b,
- const char *buf, size_t count)
- {
- unsigned int input;
- int ret;
- ret = sscanf(buf, "%u", &input);
- if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
- return -EINVAL;
- dbs_tuners_ins.sampling_down_factor = input;
- return count;
- }
- static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
- const char *buf, size_t count)
- {
- unsigned int input;
- int ret;
- ret = sscanf(buf, "%u", &input);
- if (ret != 1)
- return -EINVAL;
- dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
- return count;
- }
- static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
- const char *buf, size_t count)
- {
- unsigned int input;
- int ret;
- ret = sscanf(buf, "%u", &input);
- if (ret != 1 || input > 100 ||
- input <= dbs_tuners_ins.down_threshold)
- return -EINVAL;
- dbs_tuners_ins.up_threshold = input;
- return count;
- }
- static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
- const char *buf, size_t count)
- {
- unsigned int input;
- int ret;
- ret = sscanf(buf, "%u", &input);
- /* cannot be lower than 11 otherwise freq will not fall */
- if (ret != 1 || input < 11 || input > 100 ||
- input >= dbs_tuners_ins.up_threshold)
- return -EINVAL;
- dbs_tuners_ins.down_threshold = input;
- return count;
- }
- static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
- const char *buf, size_t count)
- {
- unsigned int input;
- int ret;
- unsigned int j;
- ret = sscanf(buf, "%u", &input);
- if (ret != 1)
- return -EINVAL;
- if (input > 1)
- input = 1;
- if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
- return count;
- dbs_tuners_ins.ignore_nice = input;
- /* we need to re-evaluate prev_cpu_idle */
- for_each_online_cpu(j) {
- struct cpu_dbs_info_s *dbs_info;
- dbs_info = &per_cpu(cs_cpu_dbs_info, j);
- dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
- &dbs_info->prev_cpu_wall);
- if (dbs_tuners_ins.ignore_nice)
- dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
- }
- return count;
- }
- static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
- const char *buf, size_t count)
- {
- unsigned int input;
- int ret;
- ret = sscanf(buf, "%u", &input);
- if (ret != 1)
- return -EINVAL;
- if (input > 100)
- input = 100;
- /* no need to test here if freq_step is zero as the user might actually
- * want this, they would be crazy though :) */
- dbs_tuners_ins.freq_step = input;
- return count;
- }
- define_one_global_rw(sampling_rate);
- define_one_global_rw(sampling_down_factor);
- define_one_global_rw(up_threshold);
- define_one_global_rw(down_threshold);
- define_one_global_rw(ignore_nice_load);
- define_one_global_rw(freq_step);
- static struct attribute *dbs_attributes[] = {
- &sampling_rate_min.attr,
- &sampling_rate.attr,
- &sampling_down_factor.attr,
- &up_threshold.attr,
- &down_threshold.attr,
- &ignore_nice_load.attr,
- &freq_step.attr,
- NULL
- };
- static struct attribute_group dbs_attr_group = {
- .attrs = dbs_attributes,
- .name = "conservative",
- };
- /************************** sysfs end ************************/
- static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
- {
- unsigned int load = 0;
- unsigned int max_load = 0;
- unsigned int freq_target;
- struct cpufreq_policy *policy;
- unsigned int j;
- policy = this_dbs_info->cur_policy;
- /*
- * Every sampling_rate, we check, if current idle time is less
- * than 20% (default), then we try to increase frequency
- * Every sampling_rate*sampling_down_factor, we check, if current
- * idle time is more than 80%, then we try to decrease frequency
- *
- * Any frequency increase takes it to the maximum frequency.
- * Frequency reduction happens at minimum steps of
- * 5% (default) of maximum frequency
- */
- /* Get Absolute Load */
- for_each_cpu(j, policy->cpus) {
- struct cpu_dbs_info_s *j_dbs_info;
- cputime64_t cur_wall_time, cur_idle_time;
- unsigned int idle_time, wall_time;
- j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
- cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
- wall_time = (unsigned int)
- (cur_wall_time - j_dbs_info->prev_cpu_wall);
- j_dbs_info->prev_cpu_wall = cur_wall_time;
- idle_time = (unsigned int)
- (cur_idle_time - j_dbs_info->prev_cpu_idle);
- j_dbs_info->prev_cpu_idle = cur_idle_time;
- if (dbs_tuners_ins.ignore_nice) {
- u64 cur_nice;
- unsigned long cur_nice_jiffies;
- cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
- j_dbs_info->prev_cpu_nice;
- /*
- * Assumption: nice time between sampling periods will
- * be less than 2^32 jiffies for 32 bit sys
- */
- cur_nice_jiffies = (unsigned long)
- cputime64_to_jiffies64(cur_nice);
- j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
- idle_time += jiffies_to_usecs(cur_nice_jiffies);
- }
- if (unlikely(!wall_time || wall_time < idle_time))
- continue;
- load = 100 * (wall_time - idle_time) / wall_time;
- if (load > max_load)
- max_load = load;
- }
- /*
- * break out if we 'cannot' reduce the speed as the user might
- * want freq_step to be zero
- */
- if (dbs_tuners_ins.freq_step == 0)
- return;
- /* Check for frequency increase */
- if (max_load > dbs_tuners_ins.up_threshold) {
- this_dbs_info->down_skip = 0;
- /* if we are already at full speed then break out early */
- if (this_dbs_info->requested_freq == policy->max)
- return;
- freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
- /* max freq cannot be less than 100. But who knows.... */
- if (unlikely(freq_target == 0))
- freq_target = 5;
- this_dbs_info->requested_freq += freq_target;
- if (this_dbs_info->requested_freq > policy->max)
- this_dbs_info->requested_freq = policy->max;
- __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
- CPUFREQ_RELATION_H);
- return;
- }
- /*
- * The optimal frequency is the frequency that is the lowest that
- * can support the current CPU usage without triggering the up
- * policy. To be safe, we focus 10 points under the threshold.
- */
- if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
- freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
- this_dbs_info->requested_freq -= freq_target;
- if (this_dbs_info->requested_freq < policy->min)
- this_dbs_info->requested_freq = policy->min;
- /*
- * if we cannot reduce the frequency anymore, break out early
- */
- if (policy->cur == policy->min)
- return;
- __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
- CPUFREQ_RELATION_H);
- return;
- }
- }
- static void do_dbs_timer(struct work_struct *work)
- {
- struct cpu_dbs_info_s *dbs_info =
- container_of(work, struct cpu_dbs_info_s, work.work);
- unsigned int cpu = dbs_info->cpu;
- /* We want all CPUs to do sampling nearly on same jiffy */
- int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
- delay -= jiffies % delay;
- mutex_lock(&dbs_info->timer_mutex);
- dbs_check_cpu(dbs_info);
- queue_delayed_work_on(cpu, dbs_wq, &dbs_info->work, delay);
- mutex_unlock(&dbs_info->timer_mutex);
- }
- static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
- {
- /* We want all CPUs to do sampling nearly on same jiffy */
- int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
- delay -= jiffies % delay;
- dbs_info->enable = 1;
- INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
- queue_delayed_work_on(dbs_info->cpu, dbs_wq, &dbs_info->work, delay);
- }
- static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
- {
- dbs_info->enable = 0;
- cancel_delayed_work_sync(&dbs_info->work);
- }
- static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
- unsigned int event)
- {
- unsigned int cpu = policy->cpu;
- struct cpu_dbs_info_s *this_dbs_info;
- unsigned int j;
- int rc;
- this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
- switch (event) {
- case CPUFREQ_GOV_START:
- if ((!cpu_online(cpu)) || (!policy->cur))
- return -EINVAL;
- mutex_lock(&dbs_mutex);
- for_each_cpu(j, policy->cpus) {
- struct cpu_dbs_info_s *j_dbs_info;
- j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
- j_dbs_info->cur_policy = policy;
- j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
- &j_dbs_info->prev_cpu_wall);
- if (dbs_tuners_ins.ignore_nice)
- j_dbs_info->prev_cpu_nice =
- kcpustat_cpu(j).cpustat[CPUTIME_NICE];
- }
- this_dbs_info->cpu = cpu;
- this_dbs_info->down_skip = 0;
- this_dbs_info->requested_freq = policy->cur;
- mutex_init(&this_dbs_info->timer_mutex);
- dbs_enable++;
- /*
- * Start the timerschedule work, when this governor
- * is used for first time
- */
- if (dbs_enable == 1) {
- unsigned int latency;
- /* policy latency is in nS. Convert it to uS first */
- latency = policy->cpuinfo.transition_latency / 1000;
- if (latency == 0)
- latency = 1;
- rc = sysfs_create_group(cpufreq_global_kobject,
- &dbs_attr_group);
- if (rc) {
- mutex_unlock(&dbs_mutex);
- return rc;
- }
- /*
- * conservative does not implement micro like ondemand
- * governor, thus we are bound to jiffes/HZ
- */
- min_sampling_rate =
- MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
- /* Bring kernel and HW constraints together */
- min_sampling_rate = max(min_sampling_rate,
- MIN_LATENCY_MULTIPLIER * latency);
- dbs_tuners_ins.sampling_rate =
- max(min_sampling_rate,
- latency * LATENCY_MULTIPLIER);
- cpufreq_register_notifier(
- &dbs_cpufreq_notifier_block,
- CPUFREQ_TRANSITION_NOTIFIER);
- }
- mutex_unlock(&dbs_mutex);
- dbs_timer_init(this_dbs_info);
- break;
- case CPUFREQ_GOV_STOP:
- dbs_timer_exit(this_dbs_info);
- mutex_lock(&dbs_mutex);
- dbs_enable--;
- mutex_destroy(&this_dbs_info->timer_mutex);
- /*
- * Stop the timerschedule work, when this governor
- * is used for first time
- */
- if (dbs_enable == 0)
- cpufreq_unregister_notifier(
- &dbs_cpufreq_notifier_block,
- CPUFREQ_TRANSITION_NOTIFIER);
- mutex_unlock(&dbs_mutex);
- if (!dbs_enable)
- sysfs_remove_group(cpufreq_global_kobject,
- &dbs_attr_group);
- break;
- case CPUFREQ_GOV_LIMITS:
- mutex_lock(&this_dbs_info->timer_mutex);
- if (policy->max < this_dbs_info->cur_policy->cur)
- __cpufreq_driver_target(
- this_dbs_info->cur_policy,
- policy->max, CPUFREQ_RELATION_H);
- else if (policy->min > this_dbs_info->cur_policy->cur)
- __cpufreq_driver_target(
- this_dbs_info->cur_policy,
- policy->min, CPUFREQ_RELATION_L);
- mutex_unlock(&this_dbs_info->timer_mutex);
- break;
- }
- return 0;
- }
- #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
- static
- #endif
- struct cpufreq_governor cpufreq_gov_conservative = {
- .name = "conservative",
- .governor = cpufreq_governor_dbs,
- .max_transition_latency = TRANSITION_LATENCY_LIMIT,
- .owner = THIS_MODULE,
- };
- static int __init cpufreq_gov_dbs_init(void)
- {
- dbs_wq = alloc_workqueue("conservative_dbs_wq", WQ_HIGHPRI, 0);
- if (!dbs_wq) {
- printk(KERN_ERR "Failed to create conservative_dbs_wq workqueue\n");
- return -EFAULT;
- }
- return cpufreq_register_governor(&cpufreq_gov_conservative);
- }
- static void __exit cpufreq_gov_dbs_exit(void)
- {
- cpufreq_unregister_governor(&cpufreq_gov_conservative);
- destroy_workqueue(dbs_wq);
- }
- MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
- MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
- "Low Latency Frequency Transition capable processors "
- "optimised for use in a battery environment");
- MODULE_LICENSE("GPL");
- #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
- fs_initcall(cpufreq_gov_dbs_init);
- #else
- module_init(cpufreq_gov_dbs_init);
- #endif
- module_exit(cpufreq_gov_dbs_exit);
|