123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- #ifndef BLK_INTERNAL_H
- #define BLK_INTERNAL_H
- #include <linux/idr.h>
- /* Amount of time in which a process may batch requests */
- #define BLK_BATCH_TIME (HZ/50UL)
- /* Number of requests a "batching" process may submit */
- #define BLK_BATCH_REQ 32
- extern struct kmem_cache *blk_requestq_cachep;
- extern struct kobj_type blk_queue_ktype;
- extern struct ida blk_queue_ida;
- static inline void __blk_get_queue(struct request_queue *q)
- {
- kobject_get(&q->kobj);
- }
- void init_request_from_bio(struct request *req, struct bio *bio);
- void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
- struct bio *bio);
- int blk_rq_append_bio(struct request_queue *q, struct request *rq,
- struct bio *bio);
- void blk_queue_bypass_start(struct request_queue *q);
- void blk_queue_bypass_end(struct request_queue *q);
- void blk_dequeue_request(struct request *rq);
- void __blk_queue_free_tags(struct request_queue *q);
- bool __blk_end_bidi_request(struct request *rq, int error,
- unsigned int nr_bytes, unsigned int bidi_bytes);
- void blk_rq_timed_out_timer(unsigned long data);
- void blk_delete_timer(struct request *);
- void blk_add_timer(struct request *);
- void __generic_unplug_device(struct request_queue *);
- /*
- * Internal atomic flags for request handling
- */
- enum rq_atomic_flags {
- REQ_ATOM_COMPLETE = 0,
- };
- /*
- * EH timer and IO completion will both attempt to 'grab' the request, make
- * sure that only one of them succeeds
- */
- static inline int blk_mark_rq_complete(struct request *rq)
- {
- return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
- }
- static inline void blk_clear_rq_complete(struct request *rq)
- {
- clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
- }
- /*
- * Internal elevator interface
- */
- #define ELV_ON_HASH(rq) hash_hashed(&(rq)->hash)
- void blk_insert_flush(struct request *rq);
- void blk_abort_flushes(struct request_queue *q);
- static inline struct request *__elv_next_request(struct request_queue *q)
- {
- struct request *rq;
- while (1) {
- if (!list_empty(&q->queue_head)) {
- rq = list_entry_rq(q->queue_head.next);
- return rq;
- }
- /*
- * Flush request is running and flush request isn't queueable
- * in the drive, we can hold the queue till flush request is
- * finished. Even we don't do this, driver can't dispatch next
- * requests and will requeue them. And this can improve
- * throughput too. For example, we have request flush1, write1,
- * flush 2. flush1 is dispatched, then queue is hold, write1
- * isn't inserted to queue. After flush1 is finished, flush2
- * will be dispatched. Since disk cache is already clean,
- * flush2 will be finished very soon, so looks like flush2 is
- * folded to flush1.
- * Since the queue is hold, a flag is set to indicate the queue
- * should be restarted later. Please see flush_end_io() for
- * details.
- */
- if (q->flush_pending_idx != q->flush_running_idx &&
- !queue_flush_queueable(q)) {
- q->flush_queue_delayed = 1;
- return NULL;
- }
- if (unlikely(blk_queue_dead(q)) ||
- !q->elevator->type->ops.elevator_dispatch_fn(q, 0))
- return NULL;
- }
- }
- static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
- {
- struct elevator_queue *e = q->elevator;
- if (e->type->ops.elevator_activate_req_fn)
- e->type->ops.elevator_activate_req_fn(q, rq);
- }
- static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
- {
- struct elevator_queue *e = q->elevator;
- if (e->type->ops.elevator_deactivate_req_fn)
- e->type->ops.elevator_deactivate_req_fn(q, rq);
- }
- #ifdef CONFIG_FAIL_IO_TIMEOUT
- int blk_should_fake_timeout(struct request_queue *);
- ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
- ssize_t part_timeout_store(struct device *, struct device_attribute *,
- const char *, size_t);
- #else
- static inline int blk_should_fake_timeout(struct request_queue *q)
- {
- return 0;
- }
- #endif
- int ll_back_merge_fn(struct request_queue *q, struct request *req,
- struct bio *bio);
- int ll_front_merge_fn(struct request_queue *q, struct request *req,
- struct bio *bio);
- int attempt_back_merge(struct request_queue *q, struct request *rq);
- int attempt_front_merge(struct request_queue *q, struct request *rq);
- int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
- struct request *next);
- void blk_recalc_rq_segments(struct request *rq);
- void blk_rq_set_mixed_merge(struct request *rq);
- bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
- int blk_try_merge(struct request *rq, struct bio *bio);
- void blk_queue_congestion_threshold(struct request_queue *q);
- int blk_dev_init(void);
- /*
- * Return the threshold (number of used requests) at which the queue is
- * considered to be congested. It include a little hysteresis to keep the
- * context switch rate down.
- */
- static inline int queue_congestion_on_threshold(struct request_queue *q)
- {
- return q->nr_congestion_on;
- }
- /*
- * The threshold at which a queue is considered to be uncongested
- */
- static inline int queue_congestion_off_threshold(struct request_queue *q)
- {
- return q->nr_congestion_off;
- }
- /*
- * Contribute to IO statistics IFF:
- *
- * a) it's attached to a gendisk, and
- * b) the queue had IO stats enabled when this request was started, and
- * c) it's a file system request or a discard request
- */
- static inline int blk_do_io_stat(struct request *rq)
- {
- return rq->rq_disk &&
- (rq->cmd_flags & REQ_IO_STAT) &&
- (rq->cmd_type == REQ_TYPE_FS ||
- (rq->cmd_flags & REQ_DISCARD));
- }
- /*
- * Internal io_context interface
- */
- void get_io_context(struct io_context *ioc);
- struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
- struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
- gfp_t gfp_mask);
- void ioc_clear_queue(struct request_queue *q);
- int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
- /**
- * create_io_context - try to create task->io_context
- * @gfp_mask: allocation mask
- * @node: allocation node
- *
- * If %current->io_context is %NULL, allocate a new io_context and install
- * it. Returns the current %current->io_context which may be %NULL if
- * allocation failed.
- *
- * Note that this function can't be called with IRQ disabled because
- * task_lock which protects %current->io_context is IRQ-unsafe.
- */
- static inline struct io_context *create_io_context(gfp_t gfp_mask, int node)
- {
- WARN_ON_ONCE(irqs_disabled());
- if (unlikely(!current->io_context))
- create_task_io_context(current, gfp_mask, node);
- return current->io_context;
- }
- /*
- * Internal throttling interface
- */
- #ifdef CONFIG_BLK_DEV_THROTTLING
- extern bool blk_throtl_bio(struct request_queue *q, struct bio *bio);
- extern void blk_throtl_drain(struct request_queue *q);
- extern int blk_throtl_init(struct request_queue *q);
- extern void blk_throtl_exit(struct request_queue *q);
- extern void blk_throtl_release(struct request_queue *q);
- #else /* CONFIG_BLK_DEV_THROTTLING */
- static inline bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
- {
- return false;
- }
- static inline void blk_throtl_drain(struct request_queue *q) { }
- static inline int blk_throtl_init(struct request_queue *q) { return 0; }
- static inline void blk_throtl_exit(struct request_queue *q) { }
- static inline void blk_throtl_release(struct request_queue *q) { }
- #endif /* CONFIG_BLK_DEV_THROTTLING */
- #endif /* BLK_INTERNAL_H */
|