cls_rsvp.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671
  1. /*
  2. * net/sched/cls_rsvp.h Template file for RSVPv[46] classifiers.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  10. */
  11. /*
  12. Comparing to general packet classification problem,
  13. RSVP needs only sevaral relatively simple rules:
  14. * (dst, protocol) are always specified,
  15. so that we are able to hash them.
  16. * src may be exact, or may be wildcard, so that
  17. we can keep a hash table plus one wildcard entry.
  18. * source port (or flow label) is important only if src is given.
  19. IMPLEMENTATION.
  20. We use a two level hash table: The top level is keyed by
  21. destination address and protocol ID, every bucket contains a list
  22. of "rsvp sessions", identified by destination address, protocol and
  23. DPI(="Destination Port ID"): triple (key, mask, offset).
  24. Every bucket has a smaller hash table keyed by source address
  25. (cf. RSVP flowspec) and one wildcard entry for wildcard reservations.
  26. Every bucket is again a list of "RSVP flows", selected by
  27. source address and SPI(="Source Port ID" here rather than
  28. "security parameter index"): triple (key, mask, offset).
  29. NOTE 1. All the packets with IPv6 extension headers (but AH and ESP)
  30. and all fragmented packets go to the best-effort traffic class.
  31. NOTE 2. Two "port id"'s seems to be redundant, rfc2207 requires
  32. only one "Generalized Port Identifier". So that for classic
  33. ah, esp (and udp,tcp) both *pi should coincide or one of them
  34. should be wildcard.
  35. At first sight, this redundancy is just a waste of CPU
  36. resources. But DPI and SPI add the possibility to assign different
  37. priorities to GPIs. Look also at note 4 about tunnels below.
  38. NOTE 3. One complication is the case of tunneled packets.
  39. We implement it as following: if the first lookup
  40. matches a special session with "tunnelhdr" value not zero,
  41. flowid doesn't contain the true flow ID, but the tunnel ID (1...255).
  42. In this case, we pull tunnelhdr bytes and restart lookup
  43. with tunnel ID added to the list of keys. Simple and stupid 8)8)
  44. It's enough for PIMREG and IPIP.
  45. NOTE 4. Two GPIs make it possible to parse even GRE packets.
  46. F.e. DPI can select ETH_P_IP (and necessary flags to make
  47. tunnelhdr correct) in GRE protocol field and SPI matches
  48. GRE key. Is it not nice? 8)8)
  49. Well, as result, despite its simplicity, we get a pretty
  50. powerful classification engine. */
  51. struct rsvp_head {
  52. u32 tmap[256/32];
  53. u32 hgenerator;
  54. u8 tgenerator;
  55. struct rsvp_session *ht[256];
  56. };
  57. struct rsvp_session {
  58. struct rsvp_session *next;
  59. __be32 dst[RSVP_DST_LEN];
  60. struct tc_rsvp_gpi dpi;
  61. u8 protocol;
  62. u8 tunnelid;
  63. /* 16 (src,sport) hash slots, and one wildcard source slot */
  64. struct rsvp_filter *ht[16 + 1];
  65. };
  66. struct rsvp_filter {
  67. struct rsvp_filter *next;
  68. __be32 src[RSVP_DST_LEN];
  69. struct tc_rsvp_gpi spi;
  70. u8 tunnelhdr;
  71. struct tcf_result res;
  72. struct tcf_exts exts;
  73. u32 handle;
  74. struct rsvp_session *sess;
  75. };
  76. static inline unsigned int hash_dst(__be32 *dst, u8 protocol, u8 tunnelid)
  77. {
  78. unsigned int h = (__force __u32)dst[RSVP_DST_LEN - 1];
  79. h ^= h>>16;
  80. h ^= h>>8;
  81. return (h ^ protocol ^ tunnelid) & 0xFF;
  82. }
  83. static inline unsigned int hash_src(__be32 *src)
  84. {
  85. unsigned int h = (__force __u32)src[RSVP_DST_LEN-1];
  86. h ^= h>>16;
  87. h ^= h>>8;
  88. h ^= h>>4;
  89. return h & 0xF;
  90. }
  91. static struct tcf_ext_map rsvp_ext_map = {
  92. .police = TCA_RSVP_POLICE,
  93. .action = TCA_RSVP_ACT
  94. };
  95. #define RSVP_APPLY_RESULT() \
  96. { \
  97. int r = tcf_exts_exec(skb, &f->exts, res); \
  98. if (r < 0) \
  99. continue; \
  100. else if (r > 0) \
  101. return r; \
  102. }
  103. static int rsvp_classify(struct sk_buff *skb, const struct tcf_proto *tp,
  104. struct tcf_result *res)
  105. {
  106. struct rsvp_session **sht = ((struct rsvp_head *)tp->root)->ht;
  107. struct rsvp_session *s;
  108. struct rsvp_filter *f;
  109. unsigned int h1, h2;
  110. __be32 *dst, *src;
  111. u8 protocol;
  112. u8 tunnelid = 0;
  113. u8 *xprt;
  114. #if RSVP_DST_LEN == 4
  115. struct ipv6hdr *nhptr;
  116. if (!pskb_network_may_pull(skb, sizeof(*nhptr)))
  117. return -1;
  118. nhptr = ipv6_hdr(skb);
  119. #else
  120. struct iphdr *nhptr;
  121. if (!pskb_network_may_pull(skb, sizeof(*nhptr)))
  122. return -1;
  123. nhptr = ip_hdr(skb);
  124. #endif
  125. restart:
  126. #if RSVP_DST_LEN == 4
  127. src = &nhptr->saddr.s6_addr32[0];
  128. dst = &nhptr->daddr.s6_addr32[0];
  129. protocol = nhptr->nexthdr;
  130. xprt = ((u8 *)nhptr) + sizeof(struct ipv6hdr);
  131. #else
  132. src = &nhptr->saddr;
  133. dst = &nhptr->daddr;
  134. protocol = nhptr->protocol;
  135. xprt = ((u8 *)nhptr) + (nhptr->ihl<<2);
  136. if (ip_is_fragment(nhptr))
  137. return -1;
  138. #endif
  139. h1 = hash_dst(dst, protocol, tunnelid);
  140. h2 = hash_src(src);
  141. for (s = sht[h1]; s; s = s->next) {
  142. if (dst[RSVP_DST_LEN-1] == s->dst[RSVP_DST_LEN - 1] &&
  143. protocol == s->protocol &&
  144. !(s->dpi.mask &
  145. (*(u32 *)(xprt + s->dpi.offset) ^ s->dpi.key)) &&
  146. #if RSVP_DST_LEN == 4
  147. dst[0] == s->dst[0] &&
  148. dst[1] == s->dst[1] &&
  149. dst[2] == s->dst[2] &&
  150. #endif
  151. tunnelid == s->tunnelid) {
  152. for (f = s->ht[h2]; f; f = f->next) {
  153. if (src[RSVP_DST_LEN-1] == f->src[RSVP_DST_LEN - 1] &&
  154. !(f->spi.mask & (*(u32 *)(xprt + f->spi.offset) ^ f->spi.key))
  155. #if RSVP_DST_LEN == 4
  156. &&
  157. src[0] == f->src[0] &&
  158. src[1] == f->src[1] &&
  159. src[2] == f->src[2]
  160. #endif
  161. ) {
  162. *res = f->res;
  163. RSVP_APPLY_RESULT();
  164. matched:
  165. if (f->tunnelhdr == 0)
  166. return 0;
  167. tunnelid = f->res.classid;
  168. nhptr = (void *)(xprt + f->tunnelhdr - sizeof(*nhptr));
  169. goto restart;
  170. }
  171. }
  172. /* And wildcard bucket... */
  173. for (f = s->ht[16]; f; f = f->next) {
  174. *res = f->res;
  175. RSVP_APPLY_RESULT();
  176. goto matched;
  177. }
  178. return -1;
  179. }
  180. }
  181. return -1;
  182. }
  183. static unsigned long rsvp_get(struct tcf_proto *tp, u32 handle)
  184. {
  185. struct rsvp_session **sht = ((struct rsvp_head *)tp->root)->ht;
  186. struct rsvp_session *s;
  187. struct rsvp_filter *f;
  188. unsigned int h1 = handle & 0xFF;
  189. unsigned int h2 = (handle >> 8) & 0xFF;
  190. if (h2 > 16)
  191. return 0;
  192. for (s = sht[h1]; s; s = s->next) {
  193. for (f = s->ht[h2]; f; f = f->next) {
  194. if (f->handle == handle)
  195. return (unsigned long)f;
  196. }
  197. }
  198. return 0;
  199. }
  200. static void rsvp_put(struct tcf_proto *tp, unsigned long f)
  201. {
  202. }
  203. static int rsvp_init(struct tcf_proto *tp)
  204. {
  205. struct rsvp_head *data;
  206. data = kzalloc(sizeof(struct rsvp_head), GFP_KERNEL);
  207. if (data) {
  208. tp->root = data;
  209. return 0;
  210. }
  211. return -ENOBUFS;
  212. }
  213. static void
  214. rsvp_delete_filter(struct tcf_proto *tp, struct rsvp_filter *f)
  215. {
  216. tcf_unbind_filter(tp, &f->res);
  217. tcf_exts_destroy(tp, &f->exts);
  218. kfree(f);
  219. }
  220. static void rsvp_destroy(struct tcf_proto *tp)
  221. {
  222. struct rsvp_head *data = xchg(&tp->root, NULL);
  223. struct rsvp_session **sht;
  224. int h1, h2;
  225. if (data == NULL)
  226. return;
  227. sht = data->ht;
  228. for (h1 = 0; h1 < 256; h1++) {
  229. struct rsvp_session *s;
  230. while ((s = sht[h1]) != NULL) {
  231. sht[h1] = s->next;
  232. for (h2 = 0; h2 <= 16; h2++) {
  233. struct rsvp_filter *f;
  234. while ((f = s->ht[h2]) != NULL) {
  235. s->ht[h2] = f->next;
  236. rsvp_delete_filter(tp, f);
  237. }
  238. }
  239. kfree(s);
  240. }
  241. }
  242. kfree(data);
  243. }
  244. static int rsvp_delete(struct tcf_proto *tp, unsigned long arg)
  245. {
  246. struct rsvp_filter **fp, *f = (struct rsvp_filter *)arg;
  247. unsigned int h = f->handle;
  248. struct rsvp_session **sp;
  249. struct rsvp_session *s = f->sess;
  250. int i;
  251. for (fp = &s->ht[(h >> 8) & 0xFF]; *fp; fp = &(*fp)->next) {
  252. if (*fp == f) {
  253. tcf_tree_lock(tp);
  254. *fp = f->next;
  255. tcf_tree_unlock(tp);
  256. rsvp_delete_filter(tp, f);
  257. /* Strip tree */
  258. for (i = 0; i <= 16; i++)
  259. if (s->ht[i])
  260. return 0;
  261. /* OK, session has no flows */
  262. for (sp = &((struct rsvp_head *)tp->root)->ht[h & 0xFF];
  263. *sp; sp = &(*sp)->next) {
  264. if (*sp == s) {
  265. tcf_tree_lock(tp);
  266. *sp = s->next;
  267. tcf_tree_unlock(tp);
  268. kfree(s);
  269. return 0;
  270. }
  271. }
  272. return 0;
  273. }
  274. }
  275. return 0;
  276. }
  277. static unsigned int gen_handle(struct tcf_proto *tp, unsigned salt)
  278. {
  279. struct rsvp_head *data = tp->root;
  280. int i = 0xFFFF;
  281. while (i-- > 0) {
  282. u32 h;
  283. if ((data->hgenerator += 0x10000) == 0)
  284. data->hgenerator = 0x10000;
  285. h = data->hgenerator|salt;
  286. if (rsvp_get(tp, h) == 0)
  287. return h;
  288. }
  289. return 0;
  290. }
  291. static int tunnel_bts(struct rsvp_head *data)
  292. {
  293. int n = data->tgenerator >> 5;
  294. u32 b = 1 << (data->tgenerator & 0x1F);
  295. if (data->tmap[n] & b)
  296. return 0;
  297. data->tmap[n] |= b;
  298. return 1;
  299. }
  300. static void tunnel_recycle(struct rsvp_head *data)
  301. {
  302. struct rsvp_session **sht = data->ht;
  303. u32 tmap[256/32];
  304. int h1, h2;
  305. memset(tmap, 0, sizeof(tmap));
  306. for (h1 = 0; h1 < 256; h1++) {
  307. struct rsvp_session *s;
  308. for (s = sht[h1]; s; s = s->next) {
  309. for (h2 = 0; h2 <= 16; h2++) {
  310. struct rsvp_filter *f;
  311. for (f = s->ht[h2]; f; f = f->next) {
  312. if (f->tunnelhdr == 0)
  313. continue;
  314. data->tgenerator = f->res.classid;
  315. tunnel_bts(data);
  316. }
  317. }
  318. }
  319. }
  320. memcpy(data->tmap, tmap, sizeof(tmap));
  321. }
  322. static u32 gen_tunnel(struct rsvp_head *data)
  323. {
  324. int i, k;
  325. for (k = 0; k < 2; k++) {
  326. for (i = 255; i > 0; i--) {
  327. if (++data->tgenerator == 0)
  328. data->tgenerator = 1;
  329. if (tunnel_bts(data))
  330. return data->tgenerator;
  331. }
  332. tunnel_recycle(data);
  333. }
  334. return 0;
  335. }
  336. static const struct nla_policy rsvp_policy[TCA_RSVP_MAX + 1] = {
  337. [TCA_RSVP_CLASSID] = { .type = NLA_U32 },
  338. [TCA_RSVP_DST] = { .type = NLA_BINARY,
  339. .len = RSVP_DST_LEN * sizeof(u32) },
  340. [TCA_RSVP_SRC] = { .type = NLA_BINARY,
  341. .len = RSVP_DST_LEN * sizeof(u32) },
  342. [TCA_RSVP_PINFO] = { .len = sizeof(struct tc_rsvp_pinfo) },
  343. };
  344. static int rsvp_change(struct tcf_proto *tp, unsigned long base,
  345. u32 handle,
  346. struct nlattr **tca,
  347. unsigned long *arg)
  348. {
  349. struct rsvp_head *data = tp->root;
  350. struct rsvp_filter *f, **fp;
  351. struct rsvp_session *s, **sp;
  352. struct tc_rsvp_pinfo *pinfo = NULL;
  353. struct nlattr *opt = tca[TCA_OPTIONS];
  354. struct nlattr *tb[TCA_RSVP_MAX + 1];
  355. struct tcf_exts e;
  356. unsigned int h1, h2;
  357. __be32 *dst;
  358. int err;
  359. if (opt == NULL)
  360. return handle ? -EINVAL : 0;
  361. err = nla_parse_nested(tb, TCA_RSVP_MAX, opt, rsvp_policy);
  362. if (err < 0)
  363. return err;
  364. err = tcf_exts_validate(tp, tb, tca[TCA_RATE], &e, &rsvp_ext_map);
  365. if (err < 0)
  366. return err;
  367. f = (struct rsvp_filter *)*arg;
  368. if (f) {
  369. /* Node exists: adjust only classid */
  370. if (f->handle != handle && handle)
  371. goto errout2;
  372. if (tb[TCA_RSVP_CLASSID]) {
  373. f->res.classid = nla_get_u32(tb[TCA_RSVP_CLASSID]);
  374. tcf_bind_filter(tp, &f->res, base);
  375. }
  376. tcf_exts_change(tp, &f->exts, &e);
  377. return 0;
  378. }
  379. /* Now more serious part... */
  380. err = -EINVAL;
  381. if (handle)
  382. goto errout2;
  383. if (tb[TCA_RSVP_DST] == NULL)
  384. goto errout2;
  385. err = -ENOBUFS;
  386. f = kzalloc(sizeof(struct rsvp_filter), GFP_KERNEL);
  387. if (f == NULL)
  388. goto errout2;
  389. h2 = 16;
  390. if (tb[TCA_RSVP_SRC]) {
  391. memcpy(f->src, nla_data(tb[TCA_RSVP_SRC]), sizeof(f->src));
  392. h2 = hash_src(f->src);
  393. }
  394. if (tb[TCA_RSVP_PINFO]) {
  395. pinfo = nla_data(tb[TCA_RSVP_PINFO]);
  396. f->spi = pinfo->spi;
  397. f->tunnelhdr = pinfo->tunnelhdr;
  398. }
  399. if (tb[TCA_RSVP_CLASSID])
  400. f->res.classid = nla_get_u32(tb[TCA_RSVP_CLASSID]);
  401. dst = nla_data(tb[TCA_RSVP_DST]);
  402. h1 = hash_dst(dst, pinfo ? pinfo->protocol : 0, pinfo ? pinfo->tunnelid : 0);
  403. err = -ENOMEM;
  404. if ((f->handle = gen_handle(tp, h1 | (h2<<8))) == 0)
  405. goto errout;
  406. if (f->tunnelhdr) {
  407. err = -EINVAL;
  408. if (f->res.classid > 255)
  409. goto errout;
  410. err = -ENOMEM;
  411. if (f->res.classid == 0 &&
  412. (f->res.classid = gen_tunnel(data)) == 0)
  413. goto errout;
  414. }
  415. for (sp = &data->ht[h1]; (s = *sp) != NULL; sp = &s->next) {
  416. if (dst[RSVP_DST_LEN-1] == s->dst[RSVP_DST_LEN-1] &&
  417. pinfo && pinfo->protocol == s->protocol &&
  418. memcmp(&pinfo->dpi, &s->dpi, sizeof(s->dpi)) == 0 &&
  419. #if RSVP_DST_LEN == 4
  420. dst[0] == s->dst[0] &&
  421. dst[1] == s->dst[1] &&
  422. dst[2] == s->dst[2] &&
  423. #endif
  424. pinfo->tunnelid == s->tunnelid) {
  425. insert:
  426. /* OK, we found appropriate session */
  427. fp = &s->ht[h2];
  428. f->sess = s;
  429. if (f->tunnelhdr == 0)
  430. tcf_bind_filter(tp, &f->res, base);
  431. tcf_exts_change(tp, &f->exts, &e);
  432. for (fp = &s->ht[h2]; *fp; fp = &(*fp)->next)
  433. if (((*fp)->spi.mask & f->spi.mask) != f->spi.mask)
  434. break;
  435. f->next = *fp;
  436. wmb();
  437. *fp = f;
  438. *arg = (unsigned long)f;
  439. return 0;
  440. }
  441. }
  442. /* No session found. Create new one. */
  443. err = -ENOBUFS;
  444. s = kzalloc(sizeof(struct rsvp_session), GFP_KERNEL);
  445. if (s == NULL)
  446. goto errout;
  447. memcpy(s->dst, dst, sizeof(s->dst));
  448. if (pinfo) {
  449. s->dpi = pinfo->dpi;
  450. s->protocol = pinfo->protocol;
  451. s->tunnelid = pinfo->tunnelid;
  452. }
  453. for (sp = &data->ht[h1]; *sp; sp = &(*sp)->next) {
  454. if (((*sp)->dpi.mask&s->dpi.mask) != s->dpi.mask)
  455. break;
  456. }
  457. s->next = *sp;
  458. wmb();
  459. *sp = s;
  460. goto insert;
  461. errout:
  462. kfree(f);
  463. errout2:
  464. tcf_exts_destroy(tp, &e);
  465. return err;
  466. }
  467. static void rsvp_walk(struct tcf_proto *tp, struct tcf_walker *arg)
  468. {
  469. struct rsvp_head *head = tp->root;
  470. unsigned int h, h1;
  471. if (arg->stop)
  472. return;
  473. for (h = 0; h < 256; h++) {
  474. struct rsvp_session *s;
  475. for (s = head->ht[h]; s; s = s->next) {
  476. for (h1 = 0; h1 <= 16; h1++) {
  477. struct rsvp_filter *f;
  478. for (f = s->ht[h1]; f; f = f->next) {
  479. if (arg->count < arg->skip) {
  480. arg->count++;
  481. continue;
  482. }
  483. if (arg->fn(tp, (unsigned long)f, arg) < 0) {
  484. arg->stop = 1;
  485. return;
  486. }
  487. arg->count++;
  488. }
  489. }
  490. }
  491. }
  492. }
  493. static int rsvp_dump(struct tcf_proto *tp, unsigned long fh,
  494. struct sk_buff *skb, struct tcmsg *t)
  495. {
  496. struct rsvp_filter *f = (struct rsvp_filter *)fh;
  497. struct rsvp_session *s;
  498. unsigned char *b = skb_tail_pointer(skb);
  499. struct nlattr *nest;
  500. struct tc_rsvp_pinfo pinfo;
  501. if (f == NULL)
  502. return skb->len;
  503. s = f->sess;
  504. t->tcm_handle = f->handle;
  505. nest = nla_nest_start(skb, TCA_OPTIONS);
  506. if (nest == NULL)
  507. goto nla_put_failure;
  508. NLA_PUT(skb, TCA_RSVP_DST, sizeof(s->dst), &s->dst);
  509. pinfo.dpi = s->dpi;
  510. pinfo.spi = f->spi;
  511. pinfo.protocol = s->protocol;
  512. pinfo.tunnelid = s->tunnelid;
  513. pinfo.tunnelhdr = f->tunnelhdr;
  514. pinfo.pad = 0;
  515. NLA_PUT(skb, TCA_RSVP_PINFO, sizeof(pinfo), &pinfo);
  516. if (f->res.classid)
  517. NLA_PUT_U32(skb, TCA_RSVP_CLASSID, f->res.classid);
  518. if (((f->handle >> 8) & 0xFF) != 16)
  519. NLA_PUT(skb, TCA_RSVP_SRC, sizeof(f->src), f->src);
  520. if (tcf_exts_dump(skb, &f->exts, &rsvp_ext_map) < 0)
  521. goto nla_put_failure;
  522. nla_nest_end(skb, nest);
  523. if (tcf_exts_dump_stats(skb, &f->exts, &rsvp_ext_map) < 0)
  524. goto nla_put_failure;
  525. return skb->len;
  526. nla_put_failure:
  527. nlmsg_trim(skb, b);
  528. return -1;
  529. }
  530. static struct tcf_proto_ops RSVP_OPS __read_mostly = {
  531. .kind = RSVP_ID,
  532. .classify = rsvp_classify,
  533. .init = rsvp_init,
  534. .destroy = rsvp_destroy,
  535. .get = rsvp_get,
  536. .put = rsvp_put,
  537. .change = rsvp_change,
  538. .delete = rsvp_delete,
  539. .walk = rsvp_walk,
  540. .dump = rsvp_dump,
  541. .owner = THIS_MODULE,
  542. };
  543. static int __init init_rsvp(void)
  544. {
  545. return register_tcf_proto_ops(&RSVP_OPS);
  546. }
  547. static void __exit exit_rsvp(void)
  548. {
  549. unregister_tcf_proto_ops(&RSVP_OPS);
  550. }
  551. module_init(init_rsvp)
  552. module_exit(exit_rsvp)