page_alloc.c 175 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/memory.h>
  54. #include <linux/compaction.h>
  55. #include <trace/events/kmem.h>
  56. #include <linux/ftrace_event.h>
  57. #include <linux/memcontrol.h>
  58. #include <linux/prefetch.h>
  59. #include <linux/mm_inline.h>
  60. #include <linux/migrate.h>
  61. #include <linux/page-debug-flags.h>
  62. #include <asm/tlbflush.h>
  63. #include <asm/div64.h>
  64. #include "internal.h"
  65. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  66. DEFINE_PER_CPU(int, numa_node);
  67. EXPORT_PER_CPU_SYMBOL(numa_node);
  68. #endif
  69. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  70. /*
  71. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  72. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  73. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  74. * defined in <linux/topology.h>.
  75. */
  76. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  77. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  78. #endif
  79. /*
  80. * Array of node states.
  81. */
  82. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  83. [N_POSSIBLE] = NODE_MASK_ALL,
  84. [N_ONLINE] = { { [0] = 1UL } },
  85. #ifndef CONFIG_NUMA
  86. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  87. #ifdef CONFIG_HIGHMEM
  88. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  89. #endif
  90. [N_CPU] = { { [0] = 1UL } },
  91. #endif /* NUMA */
  92. };
  93. EXPORT_SYMBOL(node_states);
  94. unsigned long totalram_pages __read_mostly;
  95. unsigned long totalreserve_pages __read_mostly;
  96. /*
  97. * When calculating the number of globally allowed dirty pages, there
  98. * is a certain number of per-zone reserves that should not be
  99. * considered dirtyable memory. This is the sum of those reserves
  100. * over all existing zones that contribute dirtyable memory.
  101. */
  102. unsigned long dirty_balance_reserve __read_mostly;
  103. #ifdef CONFIG_FIX_MOVABLE_ZONE
  104. unsigned long total_unmovable_pages __read_mostly;
  105. #endif
  106. int percpu_pagelist_fraction;
  107. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  108. static unsigned int boot_mode = 0;
  109. static int __init setup_bootmode(char *str)
  110. {
  111. if (get_option(&str, &boot_mode)) {
  112. printk("%s: boot_mode is %u\n", __func__, boot_mode);
  113. return 0;
  114. }
  115. return -EINVAL;
  116. }
  117. early_param("androidboot.boot_recovery", setup_bootmode);
  118. #ifdef CONFIG_PM_SLEEP
  119. /*
  120. * The following functions are used by the suspend/hibernate code to temporarily
  121. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  122. * while devices are suspended. To avoid races with the suspend/hibernate code,
  123. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  124. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  125. * guaranteed not to run in parallel with that modification).
  126. */
  127. static gfp_t saved_gfp_mask;
  128. void pm_restore_gfp_mask(void)
  129. {
  130. WARN_ON(!mutex_is_locked(&pm_mutex));
  131. if (saved_gfp_mask) {
  132. gfp_allowed_mask = saved_gfp_mask;
  133. saved_gfp_mask = 0;
  134. }
  135. }
  136. void pm_restrict_gfp_mask(void)
  137. {
  138. WARN_ON(!mutex_is_locked(&pm_mutex));
  139. WARN_ON(saved_gfp_mask);
  140. saved_gfp_mask = gfp_allowed_mask;
  141. gfp_allowed_mask &= ~GFP_IOFS;
  142. }
  143. bool pm_suspended_storage(void)
  144. {
  145. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  146. return false;
  147. return true;
  148. }
  149. #endif /* CONFIG_PM_SLEEP */
  150. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  151. int pageblock_order __read_mostly;
  152. #endif
  153. static void __free_pages_ok(struct page *page, unsigned int order);
  154. /*
  155. * results with 256, 32 in the lowmem_reserve sysctl:
  156. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  157. * 1G machine -> (16M dma, 784M normal, 224M high)
  158. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  159. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  160. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  161. *
  162. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  163. * don't need any ZONE_NORMAL reservation
  164. */
  165. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  166. #ifdef CONFIG_ZONE_DMA
  167. 256,
  168. #endif
  169. #ifdef CONFIG_ZONE_DMA32
  170. 256,
  171. #endif
  172. #ifdef CONFIG_HIGHMEM
  173. 96,
  174. #endif
  175. 96,
  176. };
  177. EXPORT_SYMBOL(totalram_pages);
  178. #ifdef CONFIG_FIX_MOVABLE_ZONE
  179. EXPORT_SYMBOL(total_unmovable_pages);
  180. #endif
  181. static char * const zone_names[MAX_NR_ZONES] = {
  182. #ifdef CONFIG_ZONE_DMA
  183. "DMA",
  184. #endif
  185. #ifdef CONFIG_ZONE_DMA32
  186. "DMA32",
  187. #endif
  188. "Normal",
  189. #ifdef CONFIG_HIGHMEM
  190. "HighMem",
  191. #endif
  192. "Movable",
  193. };
  194. /*
  195. * Try to keep at least this much lowmem free. Do not allow normal
  196. * allocations below this point, only high priority ones. Automatically
  197. * tuned according to the amount of memory in the system.
  198. */
  199. int min_free_kbytes = 1024;
  200. int min_free_order_shift = 1;
  201. /*
  202. * Extra memory for the system to try freeing. Used to temporarily
  203. * free memory, to make space for new workloads. Anyone can allocate
  204. * down to the min watermarks controlled by min_free_kbytes above.
  205. */
  206. int extra_free_kbytes = 0;
  207. static unsigned long __meminitdata nr_kernel_pages;
  208. static unsigned long __meminitdata nr_all_pages;
  209. static unsigned long __meminitdata dma_reserve;
  210. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  211. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  212. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  213. static unsigned long __initdata required_kernelcore;
  214. static unsigned long __initdata required_movablecore;
  215. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  216. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  217. int movable_zone;
  218. EXPORT_SYMBOL(movable_zone);
  219. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  220. #if MAX_NUMNODES > 1
  221. int nr_node_ids __read_mostly = MAX_NUMNODES;
  222. int nr_online_nodes __read_mostly = 1;
  223. EXPORT_SYMBOL(nr_node_ids);
  224. EXPORT_SYMBOL(nr_online_nodes);
  225. #endif
  226. int page_group_by_mobility_disabled __read_mostly;
  227. static void set_pageblock_migratetype(struct page *page, int migratetype)
  228. {
  229. if (unlikely(page_group_by_mobility_disabled))
  230. migratetype = MIGRATE_UNMOVABLE;
  231. set_pageblock_flags_group(page, (unsigned long)migratetype,
  232. PB_migrate, PB_migrate_end);
  233. }
  234. bool oom_killer_disabled __read_mostly;
  235. #ifdef CONFIG_DEBUG_VM
  236. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  237. {
  238. int ret = 0;
  239. unsigned seq;
  240. unsigned long pfn = page_to_pfn(page);
  241. do {
  242. seq = zone_span_seqbegin(zone);
  243. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  244. ret = 1;
  245. else if (pfn < zone->zone_start_pfn)
  246. ret = 1;
  247. } while (zone_span_seqretry(zone, seq));
  248. return ret;
  249. }
  250. static int page_is_consistent(struct zone *zone, struct page *page)
  251. {
  252. if (!pfn_valid_within(page_to_pfn(page)))
  253. return 0;
  254. if (zone != page_zone(page))
  255. return 0;
  256. return 1;
  257. }
  258. /*
  259. * Temporary debugging check for pages not lying within a given zone.
  260. */
  261. static int bad_range(struct zone *zone, struct page *page)
  262. {
  263. if (page_outside_zone_boundaries(zone, page))
  264. return 1;
  265. if (!page_is_consistent(zone, page))
  266. return 1;
  267. return 0;
  268. }
  269. #else
  270. static inline int bad_range(struct zone *zone, struct page *page)
  271. {
  272. return 0;
  273. }
  274. #endif
  275. static void bad_page(struct page *page)
  276. {
  277. static unsigned long resume;
  278. static unsigned long nr_shown;
  279. static unsigned long nr_unshown;
  280. /* Don't complain about poisoned pages */
  281. if (PageHWPoison(page)) {
  282. reset_page_mapcount(page); /* remove PageBuddy */
  283. return;
  284. }
  285. /*
  286. * Allow a burst of 60 reports, then keep quiet for that minute;
  287. * or allow a steady drip of one report per second.
  288. */
  289. if (nr_shown == 60) {
  290. if (time_before(jiffies, resume)) {
  291. nr_unshown++;
  292. goto out;
  293. }
  294. if (nr_unshown) {
  295. printk(KERN_ALERT
  296. "BUG: Bad page state: %lu messages suppressed\n",
  297. nr_unshown);
  298. nr_unshown = 0;
  299. }
  300. nr_shown = 0;
  301. }
  302. if (nr_shown++ == 0)
  303. resume = jiffies + 60 * HZ;
  304. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  305. current->comm, page_to_pfn(page));
  306. dump_page(page);
  307. print_modules();
  308. dump_stack();
  309. out:
  310. /* Leave bad fields for debug, except PageBuddy could make trouble */
  311. reset_page_mapcount(page); /* remove PageBuddy */
  312. add_taint(TAINT_BAD_PAGE);
  313. }
  314. /*
  315. * Higher-order pages are called "compound pages". They are structured thusly:
  316. *
  317. * The first PAGE_SIZE page is called the "head page".
  318. *
  319. * The remaining PAGE_SIZE pages are called "tail pages".
  320. *
  321. * All pages have PG_compound set. All tail pages have their ->first_page
  322. * pointing at the head page.
  323. *
  324. * The first tail page's ->lru.next holds the address of the compound page's
  325. * put_page() function. Its ->lru.prev holds the order of allocation.
  326. * This usage means that zero-order pages may not be compound.
  327. */
  328. static void free_compound_page(struct page *page)
  329. {
  330. __free_pages_ok(page, compound_order(page));
  331. }
  332. void prep_compound_page(struct page *page, unsigned long order)
  333. {
  334. int i;
  335. int nr_pages = 1 << order;
  336. set_compound_page_dtor(page, free_compound_page);
  337. set_compound_order(page, order);
  338. __SetPageHead(page);
  339. for (i = 1; i < nr_pages; i++) {
  340. struct page *p = page + i;
  341. __SetPageTail(p);
  342. set_page_count(p, 0);
  343. p->first_page = page;
  344. }
  345. }
  346. /* update __split_huge_page_refcount if you change this function */
  347. static int destroy_compound_page(struct page *page, unsigned long order)
  348. {
  349. int i;
  350. int nr_pages = 1 << order;
  351. int bad = 0;
  352. if (unlikely(compound_order(page) != order) ||
  353. unlikely(!PageHead(page))) {
  354. bad_page(page);
  355. bad++;
  356. }
  357. __ClearPageHead(page);
  358. for (i = 1; i < nr_pages; i++) {
  359. struct page *p = page + i;
  360. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  361. bad_page(page);
  362. bad++;
  363. }
  364. __ClearPageTail(p);
  365. }
  366. return bad;
  367. }
  368. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  369. {
  370. int i;
  371. /*
  372. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  373. * and __GFP_HIGHMEM from hard or soft interrupt context.
  374. */
  375. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  376. for (i = 0; i < (1 << order); i++)
  377. clear_highpage(page + i);
  378. }
  379. #ifdef CONFIG_DEBUG_PAGEALLOC
  380. unsigned int _debug_guardpage_minorder;
  381. static int __init debug_guardpage_minorder_setup(char *buf)
  382. {
  383. unsigned long res;
  384. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  385. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  386. return 0;
  387. }
  388. _debug_guardpage_minorder = res;
  389. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  390. return 0;
  391. }
  392. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  393. static inline void set_page_guard_flag(struct page *page)
  394. {
  395. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  396. }
  397. static inline void clear_page_guard_flag(struct page *page)
  398. {
  399. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  400. }
  401. #else
  402. static inline void set_page_guard_flag(struct page *page) { }
  403. static inline void clear_page_guard_flag(struct page *page) { }
  404. #endif
  405. static inline void set_page_order(struct page *page, int order)
  406. {
  407. set_page_private(page, order);
  408. __SetPageBuddy(page);
  409. }
  410. static inline void rmv_page_order(struct page *page)
  411. {
  412. __ClearPageBuddy(page);
  413. set_page_private(page, 0);
  414. }
  415. /*
  416. * Locate the struct page for both the matching buddy in our
  417. * pair (buddy1) and the combined O(n+1) page they form (page).
  418. *
  419. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  420. * the following equation:
  421. * B2 = B1 ^ (1 << O)
  422. * For example, if the starting buddy (buddy2) is #8 its order
  423. * 1 buddy is #10:
  424. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  425. *
  426. * 2) Any buddy B will have an order O+1 parent P which
  427. * satisfies the following equation:
  428. * P = B & ~(1 << O)
  429. *
  430. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  431. */
  432. static inline unsigned long
  433. __find_buddy_index(unsigned long page_idx, unsigned int order)
  434. {
  435. return page_idx ^ (1 << order);
  436. }
  437. /*
  438. * This function checks whether a page is free && is the buddy
  439. * we can do coalesce a page and its buddy if
  440. * (a) the buddy is not in a hole &&
  441. * (b) the buddy is in the buddy system &&
  442. * (c) a page and its buddy have the same order &&
  443. * (d) a page and its buddy are in the same zone.
  444. *
  445. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  446. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  447. *
  448. * For recording page's order, we use page_private(page).
  449. */
  450. static inline int page_is_buddy(struct page *page, struct page *buddy,
  451. int order)
  452. {
  453. if (!pfn_valid_within(page_to_pfn(buddy)))
  454. return 0;
  455. if (page_zone_id(page) != page_zone_id(buddy))
  456. return 0;
  457. if (page_is_guard(buddy) && page_order(buddy) == order) {
  458. VM_BUG_ON(page_count(buddy) != 0);
  459. return 1;
  460. }
  461. if (PageBuddy(buddy) && page_order(buddy) == order) {
  462. VM_BUG_ON(page_count(buddy) != 0);
  463. return 1;
  464. }
  465. return 0;
  466. }
  467. /*
  468. * Freeing function for a buddy system allocator.
  469. *
  470. * The concept of a buddy system is to maintain direct-mapped table
  471. * (containing bit values) for memory blocks of various "orders".
  472. * The bottom level table contains the map for the smallest allocatable
  473. * units of memory (here, pages), and each level above it describes
  474. * pairs of units from the levels below, hence, "buddies".
  475. * At a high level, all that happens here is marking the table entry
  476. * at the bottom level available, and propagating the changes upward
  477. * as necessary, plus some accounting needed to play nicely with other
  478. * parts of the VM system.
  479. * At each level, we keep a list of pages, which are heads of continuous
  480. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  481. * order is recorded in page_private(page) field.
  482. * So when we are allocating or freeing one, we can derive the state of the
  483. * other. That is, if we allocate a small block, and both were
  484. * free, the remainder of the region must be split into blocks.
  485. * If a block is freed, and its buddy is also free, then this
  486. * triggers coalescing into a block of larger size.
  487. *
  488. * -- wli
  489. */
  490. static inline void __free_one_page(struct page *page,
  491. struct zone *zone, unsigned int order,
  492. int migratetype)
  493. {
  494. unsigned long page_idx;
  495. unsigned long combined_idx;
  496. unsigned long uninitialized_var(buddy_idx);
  497. struct page *buddy = NULL;
  498. if (unlikely(PageCompound(page)))
  499. if (unlikely(destroy_compound_page(page, order)))
  500. return;
  501. VM_BUG_ON(migratetype == -1);
  502. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  503. VM_BUG_ON(page_idx & ((1 << order) - 1));
  504. VM_BUG_ON(bad_range(zone, page));
  505. while (order < MAX_ORDER-1) {
  506. buddy_idx = __find_buddy_index(page_idx, order);
  507. buddy = page + (buddy_idx - page_idx);
  508. if (!page_is_buddy(page, buddy, order))
  509. break;
  510. /*
  511. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  512. * merge with it and move up one order.
  513. */
  514. if (page_is_guard(buddy)) {
  515. clear_page_guard_flag(buddy);
  516. set_page_private(page, 0);
  517. __mod_zone_freepage_state(zone, 1 << order,
  518. migratetype);
  519. } else {
  520. list_del(&buddy->lru);
  521. zone->free_area[order].nr_free--;
  522. rmv_page_order(buddy);
  523. }
  524. combined_idx = buddy_idx & page_idx;
  525. page = page + (combined_idx - page_idx);
  526. page_idx = combined_idx;
  527. order++;
  528. }
  529. set_page_order(page, order);
  530. /*
  531. * If this is not the largest possible page, check if the buddy
  532. * of the next-highest order is free. If it is, it's possible
  533. * that pages are being freed that will coalesce soon. In case,
  534. * that is happening, add the free page to the tail of the list
  535. * so it's less likely to be used soon and more likely to be merged
  536. * as a higher order page
  537. */
  538. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  539. struct page *higher_page, *higher_buddy;
  540. combined_idx = buddy_idx & page_idx;
  541. higher_page = page + (combined_idx - page_idx);
  542. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  543. higher_buddy = higher_page + (buddy_idx - combined_idx);
  544. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  545. list_add_tail(&page->lru,
  546. &zone->free_area[order].free_list[migratetype]);
  547. goto out;
  548. }
  549. }
  550. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  551. out:
  552. zone->free_area[order].nr_free++;
  553. }
  554. /*
  555. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  556. * Page should not be on lru, so no need to fix that up.
  557. * free_pages_check() will verify...
  558. */
  559. static inline void free_page_mlock(struct page *page)
  560. {
  561. __dec_zone_page_state(page, NR_MLOCK);
  562. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  563. }
  564. static inline int free_pages_check(struct page *page)
  565. {
  566. if (unlikely(page_mapcount(page) |
  567. (page->mapping != NULL) |
  568. (atomic_read(&page->_count) != 0) |
  569. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  570. (mem_cgroup_bad_page_check(page)))) {
  571. bad_page(page);
  572. return 1;
  573. }
  574. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  575. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  576. return 0;
  577. }
  578. /*
  579. * Frees a number of pages from the PCP lists
  580. * Assumes all pages on list are in same zone, and of same order.
  581. * count is the number of pages to free.
  582. *
  583. * If the zone was previously in an "all pages pinned" state then look to
  584. * see if this freeing clears that state.
  585. *
  586. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  587. * pinned" detection logic.
  588. */
  589. static void free_pcppages_bulk(struct zone *zone, int count,
  590. struct per_cpu_pages *pcp)
  591. {
  592. int migratetype = 0;
  593. int batch_free = 0;
  594. int to_free = count;
  595. spin_lock(&zone->lock);
  596. zone->pages_scanned = 0;
  597. /*
  598. * Ensure proper count is passed which otherwise would stuck in the
  599. * below while (list_empty(list)) loop.
  600. */
  601. count = min(pcp->count, count);
  602. while (to_free) {
  603. struct page *page;
  604. struct list_head *list;
  605. /*
  606. * Remove pages from lists in a round-robin fashion. A
  607. * batch_free count is maintained that is incremented when an
  608. * empty list is encountered. This is so more pages are freed
  609. * off fuller lists instead of spinning excessively around empty
  610. * lists
  611. */
  612. do {
  613. batch_free++;
  614. if (++migratetype == MIGRATE_PCPTYPES)
  615. migratetype = 0;
  616. list = &pcp->lists[migratetype];
  617. } while (list_empty(list));
  618. /* This is the only non-empty list. Free them all. */
  619. if (batch_free == MIGRATE_PCPTYPES)
  620. batch_free = to_free;
  621. do {
  622. int mt; /* migratetype of the to-be-freed page */
  623. page = list_entry(list->prev, struct page, lru);
  624. /* must delete as __free_one_page list manipulates */
  625. list_del(&page->lru);
  626. mt = get_freepage_migratetype(page);
  627. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  628. __free_one_page(page, zone, 0, mt);
  629. trace_mm_page_pcpu_drain(page, 0, mt);
  630. if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
  631. __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
  632. if (is_migrate_cma(mt))
  633. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
  634. }
  635. } while (--to_free && --batch_free && !list_empty(list));
  636. }
  637. spin_unlock(&zone->lock);
  638. }
  639. static void free_one_page(struct zone *zone, struct page *page, int order,
  640. int migratetype)
  641. {
  642. spin_lock(&zone->lock);
  643. zone->pages_scanned = 0;
  644. __free_one_page(page, zone, order, migratetype);
  645. if (unlikely(migratetype != MIGRATE_ISOLATE))
  646. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  647. spin_unlock(&zone->lock);
  648. }
  649. static bool free_pages_prepare(struct page *page, unsigned int order)
  650. {
  651. int i;
  652. int bad = 0;
  653. trace_mm_page_free(page, order);
  654. kmemcheck_free_shadow(page, order);
  655. if (PageAnon(page))
  656. page->mapping = NULL;
  657. for (i = 0; i < (1 << order); i++)
  658. bad += free_pages_check(page + i);
  659. if (bad)
  660. return false;
  661. if (!PageHighMem(page)) {
  662. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  663. debug_check_no_obj_freed(page_address(page),
  664. PAGE_SIZE << order);
  665. }
  666. arch_free_page(page, order);
  667. kernel_map_pages(page, 1 << order, 0);
  668. return true;
  669. }
  670. static void __free_pages_ok(struct page *page, unsigned int order)
  671. {
  672. unsigned long flags;
  673. int wasMlocked = __TestClearPageMlocked(page);
  674. int migratetype;
  675. if (!free_pages_prepare(page, order))
  676. return;
  677. local_irq_save(flags);
  678. if (unlikely(wasMlocked))
  679. free_page_mlock(page);
  680. __count_vm_events(PGFREE, 1 << order);
  681. migratetype = get_pageblock_migratetype(page);
  682. set_freepage_migratetype(page, migratetype);
  683. free_one_page(page_zone(page), page, order, migratetype);
  684. local_irq_restore(flags);
  685. }
  686. void __free_pages_bootmem(struct page *page, unsigned int order)
  687. {
  688. unsigned int nr_pages = 1 << order;
  689. unsigned int loop;
  690. prefetchw(page);
  691. for (loop = 0; loop < nr_pages; loop++) {
  692. struct page *p = &page[loop];
  693. if (loop + 1 < nr_pages)
  694. prefetchw(p + 1);
  695. __ClearPageReserved(p);
  696. set_page_count(p, 0);
  697. }
  698. set_page_refcounted(page);
  699. __free_pages(page, order);
  700. }
  701. #ifdef CONFIG_CMA
  702. bool is_cma_pageblock(struct page *page)
  703. {
  704. return get_pageblock_migratetype(page) == MIGRATE_CMA;
  705. }
  706. /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
  707. void __init init_cma_reserved_pageblock(struct page *page)
  708. {
  709. unsigned i = pageblock_nr_pages;
  710. struct page *p = page;
  711. do {
  712. __ClearPageReserved(p);
  713. set_page_count(p, 0);
  714. #if defined(CONFIG_CMA_PAGE_COUNTING)
  715. SetPageCMA(p);
  716. #endif
  717. } while (++p, --i);
  718. set_page_refcounted(page);
  719. set_pageblock_migratetype(page, MIGRATE_CMA);
  720. __free_pages(page, pageblock_order);
  721. totalram_pages += pageblock_nr_pages;
  722. #ifdef CONFIG_HIGHMEM
  723. if (PageHighMem(page))
  724. totalhigh_pages += pageblock_nr_pages;
  725. #endif
  726. }
  727. #endif
  728. /*
  729. * The order of subdivision here is critical for the IO subsystem.
  730. * Please do not alter this order without good reasons and regression
  731. * testing. Specifically, as large blocks of memory are subdivided,
  732. * the order in which smaller blocks are delivered depends on the order
  733. * they're subdivided in this function. This is the primary factor
  734. * influencing the order in which pages are delivered to the IO
  735. * subsystem according to empirical testing, and this is also justified
  736. * by considering the behavior of a buddy system containing a single
  737. * large block of memory acted on by a series of small allocations.
  738. * This behavior is a critical factor in sglist merging's success.
  739. *
  740. * -- wli
  741. */
  742. static inline void expand(struct zone *zone, struct page *page,
  743. int low, int high, struct free_area *area,
  744. int migratetype)
  745. {
  746. unsigned long size = 1 << high;
  747. while (high > low) {
  748. area--;
  749. high--;
  750. size >>= 1;
  751. VM_BUG_ON(bad_range(zone, &page[size]));
  752. #ifdef CONFIG_DEBUG_PAGEALLOC
  753. if (high < debug_guardpage_minorder()) {
  754. /*
  755. * Mark as guard pages (or page), that will allow to
  756. * merge back to allocator when buddy will be freed.
  757. * Corresponding page table entries will not be touched,
  758. * pages will stay not present in virtual address space
  759. */
  760. INIT_LIST_HEAD(&page[size].lru);
  761. set_page_guard_flag(&page[size]);
  762. set_page_private(&page[size], high);
  763. /* Guard pages are not available for any usage */
  764. __mod_zone_freepage_state(zone, -(1 << high),
  765. migratetype);
  766. continue;
  767. }
  768. #endif
  769. list_add(&page[size].lru, &area->free_list[migratetype]);
  770. area->nr_free++;
  771. set_page_order(&page[size], high);
  772. }
  773. }
  774. /*
  775. * This page is about to be returned from the page allocator
  776. */
  777. static inline int check_new_page(struct page *page)
  778. {
  779. if (unlikely(page_mapcount(page) |
  780. (page->mapping != NULL) |
  781. (atomic_read(&page->_count) != 0) |
  782. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  783. (mem_cgroup_bad_page_check(page)))) {
  784. bad_page(page);
  785. return 1;
  786. }
  787. return 0;
  788. }
  789. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  790. {
  791. int i;
  792. for (i = 0; i < (1 << order); i++) {
  793. struct page *p = page + i;
  794. if (unlikely(check_new_page(p)))
  795. return 1;
  796. }
  797. set_page_private(page, 0);
  798. set_page_refcounted(page);
  799. arch_alloc_page(page, order);
  800. kernel_map_pages(page, 1 << order, 1);
  801. if (gfp_flags & __GFP_ZERO)
  802. prep_zero_page(page, order, gfp_flags);
  803. if (order && (gfp_flags & __GFP_COMP))
  804. prep_compound_page(page, order);
  805. return 0;
  806. }
  807. /*
  808. * Go through the free lists for the given migratetype and remove
  809. * the smallest available page from the freelists
  810. */
  811. static inline
  812. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  813. int migratetype)
  814. {
  815. unsigned int current_order;
  816. struct free_area * area;
  817. struct page *page;
  818. /* Find a page of the appropriate size in the preferred list */
  819. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  820. area = &(zone->free_area[current_order]);
  821. if (list_empty(&area->free_list[migratetype]))
  822. continue;
  823. page = list_entry(area->free_list[migratetype].next,
  824. struct page, lru);
  825. list_del(&page->lru);
  826. rmv_page_order(page);
  827. area->nr_free--;
  828. expand(zone, page, order, current_order, area, migratetype);
  829. return page;
  830. }
  831. return NULL;
  832. }
  833. /*
  834. * This array describes the order lists are fallen back to when
  835. * the free lists for the desirable migrate type are depleted
  836. */
  837. static int fallbacks[MIGRATE_TYPES][4] = {
  838. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  839. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  840. #ifdef CONFIG_CMA
  841. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  842. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  843. #else
  844. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  845. #endif
  846. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  847. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  848. };
  849. int *get_migratetype_fallbacks(int mtype)
  850. {
  851. return fallbacks[mtype];
  852. }
  853. /*
  854. * Move the free pages in a range to the free lists of the requested type.
  855. * Note that start_page and end_pages are not aligned on a pageblock
  856. * boundary. If alignment is required, use move_freepages_block()
  857. */
  858. int move_freepages(struct zone *zone,
  859. struct page *start_page, struct page *end_page,
  860. int migratetype)
  861. {
  862. struct page *page;
  863. unsigned long order;
  864. int pages_moved = 0;
  865. #ifndef CONFIG_HOLES_IN_ZONE
  866. /*
  867. * page_zone is not safe to call in this context when
  868. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  869. * anyway as we check zone boundaries in move_freepages_block().
  870. * Remove at a later date when no bug reports exist related to
  871. * grouping pages by mobility
  872. */
  873. BUG_ON(page_zone(start_page) != page_zone(end_page));
  874. #endif
  875. for (page = start_page; page <= end_page;) {
  876. /* Make sure we are not inadvertently changing nodes */
  877. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  878. if (!pfn_valid_within(page_to_pfn(page))) {
  879. page++;
  880. continue;
  881. }
  882. if (!PageBuddy(page)) {
  883. page++;
  884. continue;
  885. }
  886. order = page_order(page);
  887. list_move(&page->lru,
  888. &zone->free_area[order].free_list[migratetype]);
  889. set_freepage_migratetype(page, migratetype);
  890. page += 1 << order;
  891. pages_moved += 1 << order;
  892. }
  893. return pages_moved;
  894. }
  895. static int move_freepages_block(struct zone *zone, struct page *page,
  896. int migratetype)
  897. {
  898. unsigned long start_pfn, end_pfn;
  899. struct page *start_page, *end_page;
  900. start_pfn = page_to_pfn(page);
  901. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  902. start_page = pfn_to_page(start_pfn);
  903. end_page = start_page + pageblock_nr_pages - 1;
  904. end_pfn = start_pfn + pageblock_nr_pages - 1;
  905. /* Do not cross zone boundaries */
  906. if (start_pfn < zone->zone_start_pfn)
  907. start_page = page;
  908. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  909. return 0;
  910. return move_freepages(zone, start_page, end_page, migratetype);
  911. }
  912. static void change_pageblock_range(struct page *pageblock_page,
  913. int start_order, int migratetype)
  914. {
  915. int nr_pageblocks = 1 << (start_order - pageblock_order);
  916. while (nr_pageblocks--) {
  917. set_pageblock_migratetype(pageblock_page, migratetype);
  918. pageblock_page += pageblock_nr_pages;
  919. }
  920. }
  921. /* Remove an element from the buddy allocator from the fallback list */
  922. static inline struct page *
  923. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  924. {
  925. struct free_area * area;
  926. int current_order;
  927. struct page *page;
  928. int migratetype, i;
  929. /* Find the largest possible block of pages in the other list */
  930. for (current_order = MAX_ORDER-1; current_order >= order;
  931. --current_order) {
  932. for (i = 0;; i++) {
  933. migratetype = fallbacks[start_migratetype][i];
  934. /* MIGRATE_RESERVE handled later if necessary */
  935. if (migratetype == MIGRATE_RESERVE)
  936. break;
  937. area = &(zone->free_area[current_order]);
  938. if (list_empty(&area->free_list[migratetype]))
  939. continue;
  940. page = list_entry(area->free_list[migratetype].next,
  941. struct page, lru);
  942. area->nr_free--;
  943. /*
  944. * If breaking a large block of pages, move all free
  945. * pages to the preferred allocation list. If falling
  946. * back for a reclaimable kernel allocation, be more
  947. * aggressive about taking ownership of free pages
  948. *
  949. * On the other hand, never change migration
  950. * type of MIGRATE_CMA pageblocks nor move CMA
  951. * pages on different free lists. We don't
  952. * want unmovable pages to be allocated from
  953. * MIGRATE_CMA areas.
  954. */
  955. if (!is_migrate_cma(migratetype) &&
  956. (unlikely(current_order >= pageblock_order / 2) ||
  957. start_migratetype == MIGRATE_RECLAIMABLE ||
  958. start_migratetype == MIGRATE_UNMOVABLE ||
  959. start_migratetype == MIGRATE_MOVABLE ||
  960. page_group_by_mobility_disabled)) {
  961. int pages;
  962. pages = move_freepages_block(zone, page,
  963. start_migratetype);
  964. /* Claim the whole block if over half of it is free */
  965. if (pages >= (1 << (pageblock_order-1)) ||
  966. start_migratetype == MIGRATE_MOVABLE ||
  967. page_group_by_mobility_disabled)
  968. set_pageblock_migratetype(page,
  969. start_migratetype);
  970. migratetype = start_migratetype;
  971. }
  972. /* Remove the page from the freelists */
  973. list_del(&page->lru);
  974. rmv_page_order(page);
  975. /* Take ownership for orders >= pageblock_order */
  976. if (current_order >= pageblock_order &&
  977. !is_migrate_cma(migratetype))
  978. change_pageblock_range(page, current_order,
  979. start_migratetype);
  980. expand(zone, page, order, current_order, area,
  981. is_migrate_cma(migratetype)
  982. ? migratetype : start_migratetype);
  983. trace_mm_page_alloc_extfrag(page, order, current_order,
  984. start_migratetype, migratetype);
  985. return page;
  986. }
  987. }
  988. return NULL;
  989. }
  990. /*
  991. * Do the hard work of removing an element from the buddy allocator.
  992. * Call me with the zone->lock already held.
  993. */
  994. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  995. int migratetype)
  996. {
  997. struct page *page;
  998. retry_reserve:
  999. page = __rmqueue_smallest(zone, order, migratetype);
  1000. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  1001. page = __rmqueue_fallback(zone, order, migratetype);
  1002. /*
  1003. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  1004. * is used because __rmqueue_smallest is an inline function
  1005. * and we want just one call site
  1006. */
  1007. if (!page) {
  1008. migratetype = MIGRATE_RESERVE;
  1009. goto retry_reserve;
  1010. }
  1011. }
  1012. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1013. return page;
  1014. }
  1015. static struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
  1016. int migratetype)
  1017. {
  1018. struct page *page = 0;
  1019. #ifdef CONFIG_CMA
  1020. if (migratetype == MIGRATE_MOVABLE && !zone->cma_alloc)
  1021. page = __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1022. if (!page)
  1023. #endif
  1024. retry_reserve :
  1025. page = __rmqueue_smallest(zone, order, migratetype);
  1026. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  1027. page = __rmqueue_fallback(zone, order, migratetype);
  1028. /*
  1029. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  1030. * is used because __rmqueue_smallest is an inline function
  1031. * and we want just one call site
  1032. */
  1033. if (!page) {
  1034. migratetype = MIGRATE_RESERVE;
  1035. goto retry_reserve;
  1036. }
  1037. }
  1038. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1039. return page;
  1040. }
  1041. /*
  1042. * Obtain a specified number of elements from the buddy allocator, all under
  1043. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1044. * Returns the number of new pages which were placed at *list.
  1045. */
  1046. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1047. unsigned long count, struct list_head *list,
  1048. int migratetype, int cold, int cma)
  1049. {
  1050. int mt = migratetype, i;
  1051. spin_lock(&zone->lock);
  1052. for (i = 0; i < count; ++i) {
  1053. struct page *page;
  1054. if (cma)
  1055. page = __rmqueue_cma(zone, order, migratetype);
  1056. else
  1057. page = __rmqueue(zone, order, migratetype);
  1058. if (unlikely(page == NULL))
  1059. break;
  1060. /*
  1061. * Split buddy pages returned by expand() are received here
  1062. * in physical page order. The page is added to the callers and
  1063. * list and the list head then moves forward. From the callers
  1064. * perspective, the linked list is ordered by page number in
  1065. * some conditions. This is useful for IO devices that can
  1066. * merge IO requests if the physical pages are ordered
  1067. * properly.
  1068. */
  1069. if (likely(cold == 0))
  1070. list_add(&page->lru, list);
  1071. else
  1072. list_add_tail(&page->lru, list);
  1073. if (IS_ENABLED(CONFIG_CMA)) {
  1074. mt = get_pageblock_migratetype(page);
  1075. if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
  1076. mt = migratetype;
  1077. }
  1078. set_freepage_migratetype(page, mt);
  1079. list = &page->lru;
  1080. if (is_migrate_cma(mt))
  1081. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1082. -(1 << order));
  1083. }
  1084. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1085. spin_unlock(&zone->lock);
  1086. return i;
  1087. }
  1088. #ifdef CONFIG_NUMA
  1089. /*
  1090. * Called from the vmstat counter updater to drain pagesets of this
  1091. * currently executing processor on remote nodes after they have
  1092. * expired.
  1093. *
  1094. * Note that this function must be called with the thread pinned to
  1095. * a single processor.
  1096. */
  1097. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1098. {
  1099. unsigned long flags;
  1100. int to_drain;
  1101. local_irq_save(flags);
  1102. if (pcp->count >= pcp->batch)
  1103. to_drain = pcp->batch;
  1104. else
  1105. to_drain = pcp->count;
  1106. free_pcppages_bulk(zone, to_drain, pcp);
  1107. pcp->count -= to_drain;
  1108. local_irq_restore(flags);
  1109. }
  1110. #endif
  1111. /*
  1112. * Drain pages of the indicated processor.
  1113. *
  1114. * The processor must either be the current processor and the
  1115. * thread pinned to the current processor or a processor that
  1116. * is not online.
  1117. */
  1118. static void drain_pages(unsigned int cpu)
  1119. {
  1120. unsigned long flags;
  1121. struct zone *zone;
  1122. for_each_populated_zone(zone) {
  1123. struct per_cpu_pageset *pset;
  1124. struct per_cpu_pages *pcp;
  1125. local_irq_save(flags);
  1126. pset = per_cpu_ptr(zone->pageset, cpu);
  1127. pcp = &pset->pcp;
  1128. if (pcp->count) {
  1129. free_pcppages_bulk(zone, pcp->count, pcp);
  1130. pcp->count = 0;
  1131. }
  1132. local_irq_restore(flags);
  1133. }
  1134. }
  1135. /*
  1136. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1137. */
  1138. void drain_local_pages(void *arg)
  1139. {
  1140. drain_pages(smp_processor_id());
  1141. }
  1142. /*
  1143. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1144. *
  1145. * Note that this code is protected against sending an IPI to an offline
  1146. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1147. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1148. * nothing keeps CPUs from showing up after we populated the cpumask and
  1149. * before the call to on_each_cpu_mask().
  1150. */
  1151. void drain_all_pages(void)
  1152. {
  1153. int cpu;
  1154. struct per_cpu_pageset *pcp;
  1155. struct zone *zone;
  1156. /*
  1157. * Allocate in the BSS so we wont require allocation in
  1158. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1159. */
  1160. static cpumask_t cpus_with_pcps;
  1161. /*
  1162. * We don't care about racing with CPU hotplug event
  1163. * as offline notification will cause the notified
  1164. * cpu to drain that CPU pcps and on_each_cpu_mask
  1165. * disables preemption as part of its processing
  1166. */
  1167. for_each_online_cpu(cpu) {
  1168. bool has_pcps = false;
  1169. for_each_populated_zone(zone) {
  1170. pcp = per_cpu_ptr(zone->pageset, cpu);
  1171. if (pcp->pcp.count) {
  1172. has_pcps = true;
  1173. break;
  1174. }
  1175. }
  1176. if (has_pcps)
  1177. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1178. else
  1179. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1180. }
  1181. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1182. }
  1183. #ifdef CONFIG_HIBERNATION
  1184. void mark_free_pages(struct zone *zone)
  1185. {
  1186. unsigned long pfn, max_zone_pfn;
  1187. unsigned long flags;
  1188. int order, t;
  1189. struct list_head *curr;
  1190. if (!zone->spanned_pages)
  1191. return;
  1192. spin_lock_irqsave(&zone->lock, flags);
  1193. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1194. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1195. if (pfn_valid(pfn)) {
  1196. struct page *page = pfn_to_page(pfn);
  1197. if (!swsusp_page_is_forbidden(page))
  1198. swsusp_unset_page_free(page);
  1199. }
  1200. for_each_migratetype_order(order, t) {
  1201. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1202. unsigned long i;
  1203. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1204. for (i = 0; i < (1UL << order); i++)
  1205. swsusp_set_page_free(pfn_to_page(pfn + i));
  1206. }
  1207. }
  1208. spin_unlock_irqrestore(&zone->lock, flags);
  1209. }
  1210. #endif /* CONFIG_PM */
  1211. /*
  1212. * Free a 0-order page
  1213. * cold == 1 ? free a cold page : free a hot page
  1214. */
  1215. void free_hot_cold_page(struct page *page, int cold)
  1216. {
  1217. struct zone *zone = page_zone(page);
  1218. struct per_cpu_pages *pcp;
  1219. unsigned long flags;
  1220. int migratetype;
  1221. int wasMlocked = __TestClearPageMlocked(page);
  1222. #ifdef CONFIG_SCFS_LOWER_PAGECACHE_INVALIDATION
  1223. /*
  1224. struct scfs_sb_info *sbi;
  1225. if (PageScfslower(page) || PageNocache(page)) {
  1226. sbi = SCFS_S(page->mapping->host->i_sb);
  1227. sbi->scfs_lowerpage_reclaim_count++;
  1228. }
  1229. */
  1230. #endif
  1231. if (!free_pages_prepare(page, 0))
  1232. return;
  1233. migratetype = get_pageblock_migratetype(page);
  1234. set_freepage_migratetype(page, migratetype);
  1235. local_irq_save(flags);
  1236. if (unlikely(wasMlocked))
  1237. free_page_mlock(page);
  1238. __count_vm_event(PGFREE);
  1239. /*
  1240. * We only track unmovable, reclaimable and movable on pcp lists.
  1241. * Free ISOLATE pages back to the allocator because they are being
  1242. * offlined but treat RESERVE as movable pages so we can get those
  1243. * areas back if necessary. Otherwise, we may have to free
  1244. * excessively into the page allocator
  1245. */
  1246. if (migratetype >= MIGRATE_PCPTYPES) {
  1247. if (unlikely(migratetype == MIGRATE_ISOLATE) ||
  1248. is_migrate_cma(migratetype)) {
  1249. free_one_page(zone, page, 0, migratetype);
  1250. goto out;
  1251. }
  1252. migratetype = MIGRATE_MOVABLE;
  1253. }
  1254. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1255. if (cold)
  1256. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1257. else
  1258. list_add(&page->lru, &pcp->lists[migratetype]);
  1259. pcp->count++;
  1260. if (pcp->count >= pcp->high) {
  1261. free_pcppages_bulk(zone, pcp->batch, pcp);
  1262. pcp->count -= pcp->batch;
  1263. }
  1264. out:
  1265. local_irq_restore(flags);
  1266. }
  1267. /*
  1268. * Free a list of 0-order pages
  1269. */
  1270. void free_hot_cold_page_list(struct list_head *list, int cold)
  1271. {
  1272. struct page *page, *next;
  1273. list_for_each_entry_safe(page, next, list, lru) {
  1274. trace_mm_page_free_batched(page, cold);
  1275. free_hot_cold_page(page, cold);
  1276. }
  1277. }
  1278. /*
  1279. * split_page takes a non-compound higher-order page, and splits it into
  1280. * n (1<<order) sub-pages: page[0..n]
  1281. * Each sub-page must be freed individually.
  1282. *
  1283. * Note: this is probably too low level an operation for use in drivers.
  1284. * Please consult with lkml before using this in your driver.
  1285. */
  1286. void split_page(struct page *page, unsigned int order)
  1287. {
  1288. int i;
  1289. VM_BUG_ON(PageCompound(page));
  1290. VM_BUG_ON(!page_count(page));
  1291. #ifdef CONFIG_KMEMCHECK
  1292. /*
  1293. * Split shadow pages too, because free(page[0]) would
  1294. * otherwise free the whole shadow.
  1295. */
  1296. if (kmemcheck_page_is_tracked(page))
  1297. split_page(virt_to_page(page[0].shadow), order);
  1298. #endif
  1299. for (i = 1; i < (1 << order); i++)
  1300. set_page_refcounted(page + i);
  1301. }
  1302. static int __isolate_free_page(struct page *page, unsigned int order)
  1303. {
  1304. unsigned long watermark;
  1305. struct zone *zone;
  1306. int mt;
  1307. BUG_ON(!PageBuddy(page));
  1308. zone = page_zone(page);
  1309. mt = get_pageblock_migratetype(page);
  1310. if (mt != MIGRATE_ISOLATE) {
  1311. /* Obey watermarks as if the page was being allocated */
  1312. watermark = low_wmark_pages(zone) + (1 << order);
  1313. if (!is_migrate_cma(mt) &&
  1314. !zone_watermark_ok(zone, 0, watermark, 0, 0))
  1315. return 0;
  1316. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1317. }
  1318. /* Remove page from free list */
  1319. list_del(&page->lru);
  1320. zone->free_area[order].nr_free--;
  1321. rmv_page_order(page);
  1322. /* Set the pageblock if the isolated page is at least a pageblock */
  1323. if (order >= pageblock_order - 1) {
  1324. struct page *endpage = page + (1 << order) - 1;
  1325. for (; page < endpage; page += pageblock_nr_pages) {
  1326. mt = get_pageblock_migratetype(page);
  1327. if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
  1328. set_pageblock_migratetype(page,
  1329. MIGRATE_MOVABLE);
  1330. }
  1331. }
  1332. return 1UL << order;
  1333. }
  1334. /*
  1335. * Similar to split_page except the page is already free. As this is only
  1336. * being used for migration, the migratetype of the block also changes.
  1337. * As this is called with interrupts disabled, the caller is responsible
  1338. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1339. * are enabled.
  1340. *
  1341. * Note: this is probably too low level an operation for use in drivers.
  1342. * Please consult with lkml before using this in your driver.
  1343. */
  1344. int split_free_page(struct page *page)
  1345. {
  1346. unsigned int order;
  1347. int nr_pages;
  1348. order = page_order(page);
  1349. nr_pages = __isolate_free_page(page, order);
  1350. if (!nr_pages)
  1351. return 0;
  1352. /* Split into individual pages */
  1353. set_page_refcounted(page);
  1354. split_page(page, order);
  1355. return nr_pages;
  1356. }
  1357. /*
  1358. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1359. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1360. * or two.
  1361. */
  1362. static inline
  1363. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1364. struct zone *zone, int order, gfp_t gfp_flags,
  1365. int migratetype)
  1366. {
  1367. unsigned long flags;
  1368. struct page *page;
  1369. int cold = !!(gfp_flags & __GFP_COLD);
  1370. again:
  1371. if (likely(order == 0)) {
  1372. struct per_cpu_pages *pcp;
  1373. struct list_head *list;
  1374. local_irq_save(flags);
  1375. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1376. list = &pcp->lists[migratetype];
  1377. if (list_empty(list)) {
  1378. pcp->count += rmqueue_bulk(zone, 0,
  1379. pcp->batch, list,
  1380. migratetype, cold,
  1381. gfp_flags & __GFP_CMA);
  1382. if (unlikely(list_empty(list)))
  1383. goto failed;
  1384. }
  1385. if (cold)
  1386. page = list_entry(list->prev, struct page, lru);
  1387. else
  1388. page = list_entry(list->next, struct page, lru);
  1389. list_del(&page->lru);
  1390. pcp->count--;
  1391. } else {
  1392. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1393. /*
  1394. * __GFP_NOFAIL is not to be used in new code.
  1395. *
  1396. * All __GFP_NOFAIL callers should be fixed so that they
  1397. * properly detect and handle allocation failures.
  1398. *
  1399. * We most definitely don't want callers attempting to
  1400. * allocate greater than order-1 page units with
  1401. * __GFP_NOFAIL.
  1402. */
  1403. WARN_ON_ONCE(order > 1);
  1404. }
  1405. spin_lock_irqsave(&zone->lock, flags);
  1406. if (gfp_flags & __GFP_CMA)
  1407. page = __rmqueue_cma(zone, order, migratetype);
  1408. else
  1409. page = __rmqueue(zone, order, migratetype);
  1410. spin_unlock(&zone->lock);
  1411. if (!page)
  1412. goto failed;
  1413. __mod_zone_freepage_state(zone, -(1 << order),
  1414. get_pageblock_migratetype(page));
  1415. }
  1416. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1417. zone_statistics(preferred_zone, zone, gfp_flags);
  1418. local_irq_restore(flags);
  1419. VM_BUG_ON(bad_range(zone, page));
  1420. if (prep_new_page(page, order, gfp_flags))
  1421. goto again;
  1422. return page;
  1423. failed:
  1424. local_irq_restore(flags);
  1425. return NULL;
  1426. }
  1427. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1428. static struct {
  1429. struct fault_attr attr;
  1430. u32 ignore_gfp_highmem;
  1431. u32 ignore_gfp_wait;
  1432. u32 min_order;
  1433. } fail_page_alloc = {
  1434. .attr = FAULT_ATTR_INITIALIZER,
  1435. .ignore_gfp_wait = 1,
  1436. .ignore_gfp_highmem = 1,
  1437. .min_order = 1,
  1438. };
  1439. static int __init setup_fail_page_alloc(char *str)
  1440. {
  1441. return setup_fault_attr(&fail_page_alloc.attr, str);
  1442. }
  1443. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1444. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1445. {
  1446. if (order < fail_page_alloc.min_order)
  1447. return 0;
  1448. if (gfp_mask & __GFP_NOFAIL)
  1449. return 0;
  1450. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1451. return 0;
  1452. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1453. return 0;
  1454. return should_fail(&fail_page_alloc.attr, 1 << order);
  1455. }
  1456. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1457. static int __init fail_page_alloc_debugfs(void)
  1458. {
  1459. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1460. struct dentry *dir;
  1461. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1462. &fail_page_alloc.attr);
  1463. if (IS_ERR(dir))
  1464. return PTR_ERR(dir);
  1465. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1466. &fail_page_alloc.ignore_gfp_wait))
  1467. goto fail;
  1468. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1469. &fail_page_alloc.ignore_gfp_highmem))
  1470. goto fail;
  1471. if (!debugfs_create_u32("min-order", mode, dir,
  1472. &fail_page_alloc.min_order))
  1473. goto fail;
  1474. return 0;
  1475. fail:
  1476. debugfs_remove_recursive(dir);
  1477. return -ENOMEM;
  1478. }
  1479. late_initcall(fail_page_alloc_debugfs);
  1480. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1481. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1482. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1483. {
  1484. return 0;
  1485. }
  1486. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1487. /*
  1488. * Return true if free pages are above 'mark'. This takes into account the order
  1489. * of the allocation.
  1490. */
  1491. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1492. int classzone_idx, int alloc_flags, long free_pages)
  1493. {
  1494. /* free_pages may go negative - that's OK */
  1495. long min = mark;
  1496. long lowmem_reserve = z->lowmem_reserve[classzone_idx];
  1497. int o;
  1498. long free_cma = 0;
  1499. free_pages -= (1 << order) - 1;
  1500. if (alloc_flags & ALLOC_HIGH)
  1501. min -= min / 2;
  1502. if (alloc_flags & ALLOC_HARDER)
  1503. min -= min / 4;
  1504. #ifdef CONFIG_CMA
  1505. /* If allocation can't use CMA areas don't use free CMA pages */
  1506. if (!(alloc_flags & ALLOC_CMA))
  1507. free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
  1508. #endif
  1509. if (free_pages - free_cma <= min + lowmem_reserve)
  1510. return false;
  1511. for (o = 0; o < order; o++) {
  1512. /* At the next order, this order's pages become unavailable */
  1513. free_pages -= z->free_area[o].nr_free << o;
  1514. /* Require fewer higher order pages to be free */
  1515. min >>= min_free_order_shift;
  1516. if (free_pages <= min)
  1517. return false;
  1518. }
  1519. return true;
  1520. }
  1521. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1522. int classzone_idx, int alloc_flags)
  1523. {
  1524. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1525. zone_page_state(z, NR_FREE_PAGES));
  1526. }
  1527. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1528. int classzone_idx, int alloc_flags)
  1529. {
  1530. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1531. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1532. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1533. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1534. free_pages);
  1535. }
  1536. #ifdef CONFIG_NUMA
  1537. /*
  1538. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1539. * skip over zones that are not allowed by the cpuset, or that have
  1540. * been recently (in last second) found to be nearly full. See further
  1541. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1542. * that have to skip over a lot of full or unallowed zones.
  1543. *
  1544. * If the zonelist cache is present in the passed in zonelist, then
  1545. * returns a pointer to the allowed node mask (either the current
  1546. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1547. *
  1548. * If the zonelist cache is not available for this zonelist, does
  1549. * nothing and returns NULL.
  1550. *
  1551. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1552. * a second since last zap'd) then we zap it out (clear its bits.)
  1553. *
  1554. * We hold off even calling zlc_setup, until after we've checked the
  1555. * first zone in the zonelist, on the theory that most allocations will
  1556. * be satisfied from that first zone, so best to examine that zone as
  1557. * quickly as we can.
  1558. */
  1559. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1560. {
  1561. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1562. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1563. zlc = zonelist->zlcache_ptr;
  1564. if (!zlc)
  1565. return NULL;
  1566. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1567. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1568. zlc->last_full_zap = jiffies;
  1569. }
  1570. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1571. &cpuset_current_mems_allowed :
  1572. &node_states[N_HIGH_MEMORY];
  1573. return allowednodes;
  1574. }
  1575. /*
  1576. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1577. * if it is worth looking at further for free memory:
  1578. * 1) Check that the zone isn't thought to be full (doesn't have its
  1579. * bit set in the zonelist_cache fullzones BITMAP).
  1580. * 2) Check that the zones node (obtained from the zonelist_cache
  1581. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1582. * Return true (non-zero) if zone is worth looking at further, or
  1583. * else return false (zero) if it is not.
  1584. *
  1585. * This check -ignores- the distinction between various watermarks,
  1586. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1587. * found to be full for any variation of these watermarks, it will
  1588. * be considered full for up to one second by all requests, unless
  1589. * we are so low on memory on all allowed nodes that we are forced
  1590. * into the second scan of the zonelist.
  1591. *
  1592. * In the second scan we ignore this zonelist cache and exactly
  1593. * apply the watermarks to all zones, even it is slower to do so.
  1594. * We are low on memory in the second scan, and should leave no stone
  1595. * unturned looking for a free page.
  1596. */
  1597. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1598. nodemask_t *allowednodes)
  1599. {
  1600. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1601. int i; /* index of *z in zonelist zones */
  1602. int n; /* node that zone *z is on */
  1603. zlc = zonelist->zlcache_ptr;
  1604. if (!zlc)
  1605. return 1;
  1606. i = z - zonelist->_zonerefs;
  1607. n = zlc->z_to_n[i];
  1608. /* This zone is worth trying if it is allowed but not full */
  1609. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1610. }
  1611. /*
  1612. * Given 'z' scanning a zonelist, set the corresponding bit in
  1613. * zlc->fullzones, so that subsequent attempts to allocate a page
  1614. * from that zone don't waste time re-examining it.
  1615. */
  1616. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1617. {
  1618. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1619. int i; /* index of *z in zonelist zones */
  1620. zlc = zonelist->zlcache_ptr;
  1621. if (!zlc)
  1622. return;
  1623. i = z - zonelist->_zonerefs;
  1624. set_bit(i, zlc->fullzones);
  1625. }
  1626. /*
  1627. * clear all zones full, called after direct reclaim makes progress so that
  1628. * a zone that was recently full is not skipped over for up to a second
  1629. */
  1630. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1631. {
  1632. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1633. zlc = zonelist->zlcache_ptr;
  1634. if (!zlc)
  1635. return;
  1636. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1637. }
  1638. #else /* CONFIG_NUMA */
  1639. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1640. {
  1641. return NULL;
  1642. }
  1643. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1644. nodemask_t *allowednodes)
  1645. {
  1646. return 1;
  1647. }
  1648. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1649. {
  1650. }
  1651. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1652. {
  1653. }
  1654. #endif /* CONFIG_NUMA */
  1655. /*
  1656. * get_page_from_freelist goes through the zonelist trying to allocate
  1657. * a page.
  1658. */
  1659. static struct page *
  1660. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1661. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1662. struct zone *preferred_zone, int migratetype)
  1663. {
  1664. struct zoneref *z;
  1665. struct page *page = NULL;
  1666. int classzone_idx;
  1667. struct zone *zone;
  1668. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1669. int zlc_active = 0; /* set if using zonelist_cache */
  1670. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1671. classzone_idx = zone_idx(preferred_zone);
  1672. zonelist_scan:
  1673. /*
  1674. * Scan zonelist, looking for a zone with enough free.
  1675. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1676. */
  1677. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1678. high_zoneidx, nodemask) {
  1679. if (NUMA_BUILD && zlc_active &&
  1680. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1681. continue;
  1682. if ((alloc_flags & ALLOC_CPUSET) &&
  1683. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1684. continue;
  1685. /*
  1686. * When allocating a page cache page for writing, we
  1687. * want to get it from a zone that is within its dirty
  1688. * limit, such that no single zone holds more than its
  1689. * proportional share of globally allowed dirty pages.
  1690. * The dirty limits take into account the zone's
  1691. * lowmem reserves and high watermark so that kswapd
  1692. * should be able to balance it without having to
  1693. * write pages from its LRU list.
  1694. *
  1695. * This may look like it could increase pressure on
  1696. * lower zones by failing allocations in higher zones
  1697. * before they are full. But the pages that do spill
  1698. * over are limited as the lower zones are protected
  1699. * by this very same mechanism. It should not become
  1700. * a practical burden to them.
  1701. *
  1702. * XXX: For now, allow allocations to potentially
  1703. * exceed the per-zone dirty limit in the slowpath
  1704. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1705. * which is important when on a NUMA setup the allowed
  1706. * zones are together not big enough to reach the
  1707. * global limit. The proper fix for these situations
  1708. * will require awareness of zones in the
  1709. * dirty-throttling and the flusher threads.
  1710. */
  1711. if ((alloc_flags & ALLOC_WMARK_LOW) &&
  1712. (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
  1713. goto this_zone_full;
  1714. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1715. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1716. unsigned long mark;
  1717. int ret;
  1718. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1719. if (zone_watermark_ok(zone, order, mark,
  1720. classzone_idx, alloc_flags))
  1721. goto try_this_zone;
  1722. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1723. /*
  1724. * we do zlc_setup if there are multiple nodes
  1725. * and before considering the first zone allowed
  1726. * by the cpuset.
  1727. */
  1728. allowednodes = zlc_setup(zonelist, alloc_flags);
  1729. zlc_active = 1;
  1730. did_zlc_setup = 1;
  1731. }
  1732. if (zone_reclaim_mode == 0)
  1733. goto this_zone_full;
  1734. /*
  1735. * As we may have just activated ZLC, check if the first
  1736. * eligible zone has failed zone_reclaim recently.
  1737. */
  1738. if (NUMA_BUILD && zlc_active &&
  1739. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1740. continue;
  1741. ret = zone_reclaim(zone, gfp_mask, order);
  1742. switch (ret) {
  1743. case ZONE_RECLAIM_NOSCAN:
  1744. /* did not scan */
  1745. continue;
  1746. case ZONE_RECLAIM_FULL:
  1747. /* scanned but unreclaimable */
  1748. continue;
  1749. default:
  1750. /* did we reclaim enough */
  1751. if (!zone_watermark_ok(zone, order, mark,
  1752. classzone_idx, alloc_flags))
  1753. goto this_zone_full;
  1754. }
  1755. }
  1756. try_this_zone:
  1757. page = buffered_rmqueue(preferred_zone, zone, order,
  1758. gfp_mask, migratetype);
  1759. if (page)
  1760. break;
  1761. this_zone_full:
  1762. if (NUMA_BUILD)
  1763. zlc_mark_zone_full(zonelist, z);
  1764. }
  1765. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1766. /* Disable zlc cache for second zonelist scan */
  1767. zlc_active = 0;
  1768. goto zonelist_scan;
  1769. }
  1770. return page;
  1771. }
  1772. /*
  1773. * Large machines with many possible nodes should not always dump per-node
  1774. * meminfo in irq context.
  1775. */
  1776. static inline bool should_suppress_show_mem(void)
  1777. {
  1778. bool ret = false;
  1779. #if NODES_SHIFT > 8
  1780. ret = in_interrupt();
  1781. #endif
  1782. return ret;
  1783. }
  1784. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1785. DEFAULT_RATELIMIT_INTERVAL,
  1786. DEFAULT_RATELIMIT_BURST);
  1787. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1788. {
  1789. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1790. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1791. debug_guardpage_minorder() > 0)
  1792. return;
  1793. /*
  1794. * Walking all memory to count page types is very expensive and should
  1795. * be inhibited in non-blockable contexts.
  1796. */
  1797. if (!(gfp_mask & __GFP_WAIT))
  1798. filter |= SHOW_MEM_FILTER_PAGE_COUNT;
  1799. /*
  1800. * This documents exceptions given to allocations in certain
  1801. * contexts that are allowed to allocate outside current's set
  1802. * of allowed nodes.
  1803. */
  1804. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1805. if (test_thread_flag(TIF_MEMDIE) ||
  1806. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1807. filter &= ~SHOW_MEM_FILTER_NODES;
  1808. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1809. filter &= ~SHOW_MEM_FILTER_NODES;
  1810. if (fmt) {
  1811. struct va_format vaf;
  1812. va_list args;
  1813. va_start(args, fmt);
  1814. vaf.fmt = fmt;
  1815. vaf.va = &args;
  1816. pr_warn("%pV", &vaf);
  1817. va_end(args);
  1818. }
  1819. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1820. current->comm, order, gfp_mask);
  1821. dump_stack();
  1822. if (!should_suppress_show_mem())
  1823. show_mem(filter);
  1824. }
  1825. static inline int
  1826. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1827. unsigned long did_some_progress,
  1828. unsigned long pages_reclaimed)
  1829. {
  1830. /* Do not loop if specifically requested */
  1831. if (gfp_mask & __GFP_NORETRY)
  1832. return 0;
  1833. /* Always retry if specifically requested */
  1834. if (gfp_mask & __GFP_NOFAIL)
  1835. return 1;
  1836. /*
  1837. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1838. * making forward progress without invoking OOM. Suspend also disables
  1839. * storage devices so kswapd will not help. Bail if we are suspending.
  1840. */
  1841. if (!did_some_progress && pm_suspended_storage())
  1842. return 0;
  1843. /*
  1844. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1845. * means __GFP_NOFAIL, but that may not be true in other
  1846. * implementations.
  1847. */
  1848. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1849. return 1;
  1850. /*
  1851. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1852. * specified, then we retry until we no longer reclaim any pages
  1853. * (above), or we've reclaimed an order of pages at least as
  1854. * large as the allocation's order. In both cases, if the
  1855. * allocation still fails, we stop retrying.
  1856. */
  1857. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1858. return 1;
  1859. return 0;
  1860. }
  1861. static inline struct page *
  1862. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1863. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1864. nodemask_t *nodemask, struct zone *preferred_zone,
  1865. int migratetype)
  1866. {
  1867. struct page *page;
  1868. /* Acquire the OOM killer lock for the zones in zonelist */
  1869. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1870. schedule_timeout_uninterruptible(1);
  1871. return NULL;
  1872. }
  1873. /*
  1874. * PM-freezer should be notified that there might be an OOM killer on
  1875. * its way to kill and wake somebody up. This is too early and we might
  1876. * end up not killing anything but false positives are acceptable.
  1877. * See freeze_processes.
  1878. */
  1879. note_oom_kill();
  1880. /*
  1881. * Go through the zonelist yet one more time, keep very high watermark
  1882. * here, this is only to catch a parallel oom killing, we must fail if
  1883. * we're still under heavy pressure.
  1884. */
  1885. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1886. order, zonelist, high_zoneidx,
  1887. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1888. preferred_zone, migratetype);
  1889. if (page)
  1890. goto out;
  1891. if (!(gfp_mask & __GFP_NOFAIL)) {
  1892. /* The OOM killer will not help higher order allocs */
  1893. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1894. goto out;
  1895. /* The OOM killer does not needlessly kill tasks for lowmem */
  1896. if (high_zoneidx < ZONE_NORMAL)
  1897. goto out;
  1898. /*
  1899. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1900. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1901. * The caller should handle page allocation failure by itself if
  1902. * it specifies __GFP_THISNODE.
  1903. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1904. */
  1905. if (gfp_mask & __GFP_THISNODE)
  1906. goto out;
  1907. }
  1908. /* Exhausted what can be done so it's blamo time */
  1909. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1910. out:
  1911. clear_zonelist_oom(zonelist, gfp_mask);
  1912. return page;
  1913. }
  1914. #ifdef CONFIG_COMPACTION
  1915. /* Try memory compaction for high-order allocations before reclaim */
  1916. static struct page *
  1917. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1918. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1919. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1920. int migratetype, bool sync_migration,
  1921. bool *contended_compaction, bool *deferred_compaction,
  1922. unsigned long *did_some_progress)
  1923. {
  1924. if (!order)
  1925. return NULL;
  1926. if (compaction_deferred(preferred_zone, order)) {
  1927. *deferred_compaction = true;
  1928. return NULL;
  1929. }
  1930. current->flags |= PF_MEMALLOC;
  1931. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1932. nodemask, sync_migration,
  1933. contended_compaction);
  1934. current->flags &= ~PF_MEMALLOC;
  1935. if (*did_some_progress != COMPACT_SKIPPED) {
  1936. struct page *page;
  1937. /* Page migration frees to the PCP lists but we want merging */
  1938. drain_pages(get_cpu());
  1939. put_cpu();
  1940. page = get_page_from_freelist(gfp_mask, nodemask,
  1941. order, zonelist, high_zoneidx,
  1942. alloc_flags, preferred_zone,
  1943. migratetype);
  1944. if (page) {
  1945. preferred_zone->compact_blockskip_flush = false;
  1946. preferred_zone->compact_considered = 0;
  1947. preferred_zone->compact_defer_shift = 0;
  1948. if (order >= preferred_zone->compact_order_failed)
  1949. preferred_zone->compact_order_failed = order + 1;
  1950. count_vm_event(COMPACTSUCCESS);
  1951. return page;
  1952. }
  1953. /*
  1954. * It's bad if compaction run occurs and fails.
  1955. * The most likely reason is that pages exist,
  1956. * but not enough to satisfy watermarks.
  1957. */
  1958. count_vm_event(COMPACTFAIL);
  1959. /*
  1960. * As async compaction considers a subset of pageblocks, only
  1961. * defer if the failure was a sync compaction failure.
  1962. */
  1963. if (sync_migration)
  1964. defer_compaction(preferred_zone, order);
  1965. cond_resched();
  1966. }
  1967. return NULL;
  1968. }
  1969. #else
  1970. static inline struct page *
  1971. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1972. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1973. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1974. int migratetype, bool sync_migration,
  1975. bool *contended_compaction, bool *deferred_compaction,
  1976. unsigned long *did_some_progress)
  1977. {
  1978. return NULL;
  1979. }
  1980. #endif /* CONFIG_COMPACTION */
  1981. /* Perform direct synchronous page reclaim */
  1982. static int
  1983. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  1984. nodemask_t *nodemask)
  1985. {
  1986. struct reclaim_state reclaim_state;
  1987. int progress;
  1988. cond_resched();
  1989. /* We now go into synchronous reclaim */
  1990. cpuset_memory_pressure_bump();
  1991. current->flags |= PF_MEMALLOC;
  1992. lockdep_set_current_reclaim_state(gfp_mask);
  1993. reclaim_state.reclaimed_slab = 0;
  1994. current->reclaim_state = &reclaim_state;
  1995. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1996. current->reclaim_state = NULL;
  1997. lockdep_clear_current_reclaim_state();
  1998. current->flags &= ~PF_MEMALLOC;
  1999. cond_resched();
  2000. return progress;
  2001. }
  2002. /* The really slow allocator path where we enter direct reclaim */
  2003. static inline struct page *
  2004. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2005. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2006. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  2007. int migratetype, unsigned long *did_some_progress)
  2008. {
  2009. struct page *page = NULL;
  2010. bool drained = false;
  2011. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  2012. nodemask);
  2013. if (unlikely(!(*did_some_progress)))
  2014. return NULL;
  2015. /* After successful reclaim, reconsider all zones for allocation */
  2016. if (NUMA_BUILD)
  2017. zlc_clear_zones_full(zonelist);
  2018. retry:
  2019. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2020. zonelist, high_zoneidx,
  2021. alloc_flags, preferred_zone,
  2022. migratetype);
  2023. /*
  2024. * If an allocation failed after direct reclaim, it could be because
  2025. * pages are pinned on the per-cpu lists. Drain them and try again
  2026. */
  2027. if (!page && !drained) {
  2028. drain_all_pages();
  2029. drained = true;
  2030. goto retry;
  2031. }
  2032. return page;
  2033. }
  2034. /*
  2035. * This is called in the allocator slow-path if the allocation request is of
  2036. * sufficient urgency to ignore watermarks and take other desperate measures
  2037. */
  2038. static inline struct page *
  2039. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2040. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2041. nodemask_t *nodemask, struct zone *preferred_zone,
  2042. int migratetype)
  2043. {
  2044. struct page *page;
  2045. do {
  2046. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2047. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  2048. preferred_zone, migratetype);
  2049. if (!page && gfp_mask & __GFP_NOFAIL)
  2050. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2051. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2052. return page;
  2053. }
  2054. static inline
  2055. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  2056. enum zone_type high_zoneidx,
  2057. enum zone_type classzone_idx)
  2058. {
  2059. struct zoneref *z;
  2060. struct zone *zone;
  2061. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  2062. wakeup_kswapd(zone, order, classzone_idx);
  2063. }
  2064. static inline int
  2065. gfp_to_alloc_flags(gfp_t gfp_mask)
  2066. {
  2067. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2068. const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
  2069. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2070. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2071. /*
  2072. * The caller may dip into page reserves a bit more if the caller
  2073. * cannot run direct reclaim, or if the caller has realtime scheduling
  2074. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2075. * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
  2076. */
  2077. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2078. if (atomic) {
  2079. /*
  2080. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2081. * if it can't schedule.
  2082. */
  2083. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2084. alloc_flags |= ALLOC_HARDER;
  2085. /*
  2086. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2087. * comment for __cpuset_node_allowed_softwall().
  2088. */
  2089. alloc_flags &= ~ALLOC_CPUSET;
  2090. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2091. alloc_flags |= ALLOC_HARDER;
  2092. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2093. if (!in_interrupt() &&
  2094. ((current->flags & PF_MEMALLOC) ||
  2095. unlikely(test_thread_flag(TIF_MEMDIE))))
  2096. alloc_flags |= ALLOC_NO_WATERMARKS;
  2097. }
  2098. #ifdef CONFIG_CMA
  2099. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2100. alloc_flags |= ALLOC_CMA;
  2101. #endif
  2102. return alloc_flags;
  2103. }
  2104. #if defined(CONFIG_SEC_SLOWPATH)
  2105. unsigned int oomk_state; /* 0 none, bit_0 time's up, bit_1 OOMK */
  2106. struct slowpath_pressure {
  2107. unsigned int total_jiffies;
  2108. struct mutex slow_lock;
  2109. } slowpath;
  2110. /* slowtime - milliseconds time spend int __alloc_pages_slowpath() */
  2111. static void slowpath_pressure(unsigned int slowtime)
  2112. {
  2113. mutex_lock(&slowpath.slow_lock);
  2114. if (unlikely(slowpath.total_jiffies + slowtime >= UINT_MAX))
  2115. slowpath.total_jiffies = UINT_MAX;
  2116. else
  2117. slowpath.total_jiffies += slowtime;
  2118. mutex_unlock(&slowpath.slow_lock);
  2119. }
  2120. unsigned int get_and_reset_timeup(void)
  2121. {
  2122. bool val = 0;
  2123. val = oomk_state;
  2124. oomk_state = 0;
  2125. pr_debug("%s: timeup %u\n", __func__, val);
  2126. return val;
  2127. }
  2128. unsigned int get_and_reset_slowtime(void)
  2129. {
  2130. static bool first_read = false;
  2131. unsigned int slowtime = 0;
  2132. slowtime = slowpath.total_jiffies;
  2133. if (unlikely(first_read == false)) {
  2134. first_read = true;
  2135. slowtime = 0;
  2136. }
  2137. slowpath.total_jiffies = 0;
  2138. pr_debug("%s: slowtime %u\n", __func__, slowtime);
  2139. return slowtime;
  2140. }
  2141. static int __init slowpath_init(void)
  2142. {
  2143. mutex_init(&slowpath.slow_lock);
  2144. return 0;
  2145. }
  2146. module_init(slowpath_init)
  2147. #endif
  2148. static inline struct page *
  2149. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2150. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2151. nodemask_t *nodemask, struct zone *preferred_zone,
  2152. int migratetype)
  2153. {
  2154. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2155. struct page *page = NULL;
  2156. int alloc_flags;
  2157. unsigned long pages_reclaimed = 0;
  2158. unsigned long did_some_progress;
  2159. bool sync_migration = false;
  2160. bool deferred_compaction = false;
  2161. bool contended_compaction = false;
  2162. #ifdef CONFIG_SEC_OOM_KILLER
  2163. unsigned long oom_invoke_timeout = jiffies + HZ/32;
  2164. #endif
  2165. #ifdef CONFIG_SEC_SLOWPATH
  2166. unsigned long slowpath_time = jiffies;
  2167. #endif
  2168. /*
  2169. * In the slowpath, we sanity check order to avoid ever trying to
  2170. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2171. * be using allocators in order of preference for an area that is
  2172. * too large.
  2173. */
  2174. if (order >= MAX_ORDER) {
  2175. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2176. return NULL;
  2177. }
  2178. /*
  2179. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2180. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2181. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2182. * using a larger set of nodes after it has established that the
  2183. * allowed per node queues are empty and that nodes are
  2184. * over allocated.
  2185. */
  2186. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2187. goto nopage;
  2188. restart:
  2189. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2190. wake_all_kswapd(order, zonelist, high_zoneidx,
  2191. zone_idx(preferred_zone));
  2192. /*
  2193. * OK, we're below the kswapd watermark and have kicked background
  2194. * reclaim. Now things get more complex, so set up alloc_flags according
  2195. * to how we want to proceed.
  2196. */
  2197. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2198. /*
  2199. * Find the true preferred zone if the allocation is unconstrained by
  2200. * cpusets.
  2201. */
  2202. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  2203. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  2204. &preferred_zone);
  2205. rebalance:
  2206. /* This is the last chance, in general, before the goto nopage. */
  2207. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2208. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2209. preferred_zone, migratetype);
  2210. if (page)
  2211. goto got_pg;
  2212. /* Allocate without watermarks if the context allows */
  2213. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2214. page = __alloc_pages_high_priority(gfp_mask, order,
  2215. zonelist, high_zoneidx, nodemask,
  2216. preferred_zone, migratetype);
  2217. if (page)
  2218. goto got_pg;
  2219. }
  2220. /* Atomic allocations - we can't balance anything */
  2221. if (!wait)
  2222. goto nopage;
  2223. /* Avoid recursion of direct reclaim */
  2224. if (current->flags & PF_MEMALLOC)
  2225. goto nopage;
  2226. /* Avoid allocations with no watermarks from looping endlessly */
  2227. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2228. goto nopage;
  2229. /*
  2230. * Try direct compaction. The first pass is asynchronous. Subsequent
  2231. * attempts after direct reclaim are synchronous
  2232. */
  2233. page = __alloc_pages_direct_compact(gfp_mask, order,
  2234. zonelist, high_zoneidx,
  2235. nodemask,
  2236. alloc_flags, preferred_zone,
  2237. migratetype, sync_migration,
  2238. &contended_compaction,
  2239. &deferred_compaction,
  2240. &did_some_progress);
  2241. if (page)
  2242. goto got_pg;
  2243. sync_migration = true;
  2244. /*
  2245. * If compaction is deferred for high-order allocations, it is because
  2246. * sync compaction recently failed. In this is the case and the caller
  2247. * requested a movable allocation that does not heavily disrupt the
  2248. * system then fail the allocation instead of entering direct reclaim.
  2249. */
  2250. if ((deferred_compaction || contended_compaction) &&
  2251. (gfp_mask & __GFP_NO_KSWAPD))
  2252. goto nopage;
  2253. /* Try direct reclaim and then allocating */
  2254. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2255. zonelist, high_zoneidx,
  2256. nodemask,
  2257. alloc_flags, preferred_zone,
  2258. migratetype, &did_some_progress);
  2259. if (page)
  2260. goto got_pg;
  2261. /*
  2262. * If we failed to make any progress reclaiming, then we are
  2263. * running out of options and have to consider going OOM
  2264. */
  2265. #ifdef CONFIG_SEC_OOM_KILLER
  2266. #define SHOULD_CONSIDER_OOM (!did_some_progress \
  2267. || time_after(jiffies, oom_invoke_timeout)) && boot_mode != 1
  2268. #else
  2269. #define SHOULD_CONSIDER_OOM !did_some_progress && boot_mode != 1
  2270. #endif
  2271. if (SHOULD_CONSIDER_OOM) {
  2272. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  2273. if (oom_killer_disabled)
  2274. goto nopage;
  2275. /* Coredumps can quickly deplete all memory reserves */
  2276. if ((current->flags & PF_DUMPCORE) &&
  2277. !(gfp_mask & __GFP_NOFAIL))
  2278. goto nopage;
  2279. #ifdef CONFIG_SEC_OOM_KILLER
  2280. if (did_some_progress) {
  2281. pr_info("time's up : calling "
  2282. "__alloc_pages_may_oom(o:%d, gfp:0x%x)\n", order, gfp_mask);
  2283. #if defined(CONFIG_SEC_SLOWPATH)
  2284. oomk_state |= 0x01;
  2285. #endif
  2286. }
  2287. #endif
  2288. page = __alloc_pages_may_oom(gfp_mask, order,
  2289. zonelist, high_zoneidx,
  2290. nodemask, preferred_zone,
  2291. migratetype);
  2292. if (page)
  2293. goto got_pg;
  2294. if (!(gfp_mask & __GFP_NOFAIL)) {
  2295. /*
  2296. * The oom killer is not called for high-order
  2297. * allocations that may fail, so if no progress
  2298. * is being made, there are no other options and
  2299. * retrying is unlikely to help.
  2300. */
  2301. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2302. goto nopage;
  2303. /*
  2304. * The oom killer is not called for lowmem
  2305. * allocations to prevent needlessly killing
  2306. * innocent tasks.
  2307. */
  2308. if (high_zoneidx < ZONE_NORMAL)
  2309. goto nopage;
  2310. }
  2311. #ifdef CONFIG_SEC_OOM_KILLER
  2312. oom_invoke_timeout = jiffies + HZ/32;
  2313. #endif
  2314. goto restart;
  2315. }
  2316. }
  2317. /* Check if we should retry the allocation */
  2318. pages_reclaimed += did_some_progress;
  2319. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2320. pages_reclaimed)) {
  2321. /* Wait for some write requests to complete then retry */
  2322. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2323. goto rebalance;
  2324. } else {
  2325. /*
  2326. * High-order allocations do not necessarily loop after
  2327. * direct reclaim and reclaim/compaction depends on compaction
  2328. * being called after reclaim so call directly if necessary
  2329. */
  2330. page = __alloc_pages_direct_compact(gfp_mask, order,
  2331. zonelist, high_zoneidx,
  2332. nodemask,
  2333. alloc_flags, preferred_zone,
  2334. migratetype, sync_migration,
  2335. &contended_compaction,
  2336. &deferred_compaction,
  2337. &did_some_progress);
  2338. if (page)
  2339. goto got_pg;
  2340. }
  2341. nopage:
  2342. warn_alloc_failed(gfp_mask, order, NULL);
  2343. #if defined(CONFIG_SEC_SLOWPATH)
  2344. slowpath_time = jiffies - slowpath_time;
  2345. if (wait && slowpath_time)
  2346. slowpath_pressure(slowpath_time);
  2347. #endif
  2348. return page;
  2349. got_pg:
  2350. if (kmemcheck_enabled)
  2351. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2352. #if defined(CONFIG_SEC_SLOWPATH)
  2353. slowpath_time = jiffies - slowpath_time;
  2354. if (wait && slowpath_time)
  2355. slowpath_pressure(slowpath_time);
  2356. #endif
  2357. return page;
  2358. }
  2359. /*
  2360. * This is the 'heart' of the zoned buddy allocator.
  2361. */
  2362. struct page *
  2363. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2364. struct zonelist *zonelist, nodemask_t *nodemask)
  2365. {
  2366. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2367. struct zone *preferred_zone;
  2368. struct page *page = NULL;
  2369. int migratetype = allocflags_to_migratetype(gfp_mask);
  2370. unsigned int cpuset_mems_cookie;
  2371. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
  2372. gfp_mask &= gfp_allowed_mask;
  2373. lockdep_trace_alloc(gfp_mask);
  2374. might_sleep_if(gfp_mask & __GFP_WAIT);
  2375. if (should_fail_alloc_page(gfp_mask, order))
  2376. return NULL;
  2377. /*
  2378. * Check the zones suitable for the gfp_mask contain at least one
  2379. * valid zone. It's possible to have an empty zonelist as a result
  2380. * of GFP_THISNODE and a memoryless node
  2381. */
  2382. if (unlikely(!zonelist->_zonerefs->zone))
  2383. return NULL;
  2384. retry_cpuset:
  2385. cpuset_mems_cookie = get_mems_allowed();
  2386. /* The preferred zone is used for statistics later */
  2387. first_zones_zonelist(zonelist, high_zoneidx,
  2388. nodemask ? : &cpuset_current_mems_allowed,
  2389. &preferred_zone);
  2390. if (!preferred_zone)
  2391. goto out;
  2392. #ifdef CONFIG_CMA
  2393. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2394. alloc_flags |= ALLOC_CMA;
  2395. #endif
  2396. /* First allocation attempt */
  2397. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2398. zonelist, high_zoneidx, alloc_flags,
  2399. preferred_zone, migratetype);
  2400. if (unlikely(!page))
  2401. page = __alloc_pages_slowpath(gfp_mask, order,
  2402. zonelist, high_zoneidx, nodemask,
  2403. preferred_zone, migratetype);
  2404. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2405. out:
  2406. /*
  2407. * When updating a task's mems_allowed, it is possible to race with
  2408. * parallel threads in such a way that an allocation can fail while
  2409. * the mask is being updated. If a page allocation is about to fail,
  2410. * check if the cpuset changed during allocation and if so, retry.
  2411. */
  2412. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  2413. goto retry_cpuset;
  2414. return page;
  2415. }
  2416. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2417. /*
  2418. * Common helper functions.
  2419. */
  2420. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2421. {
  2422. struct page *page;
  2423. /*
  2424. * __get_free_pages() returns a 32-bit address, which cannot represent
  2425. * a highmem page
  2426. */
  2427. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2428. page = alloc_pages(gfp_mask, order);
  2429. if (!page)
  2430. return 0;
  2431. return (unsigned long) page_address(page);
  2432. }
  2433. EXPORT_SYMBOL(__get_free_pages);
  2434. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2435. {
  2436. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2437. }
  2438. EXPORT_SYMBOL(get_zeroed_page);
  2439. void __free_pages(struct page *page, unsigned int order)
  2440. {
  2441. if (put_page_testzero(page)) {
  2442. if (order == 0)
  2443. free_hot_cold_page(page, 0);
  2444. else
  2445. __free_pages_ok(page, order);
  2446. }
  2447. }
  2448. EXPORT_SYMBOL(__free_pages);
  2449. void free_pages(unsigned long addr, unsigned int order)
  2450. {
  2451. if (addr != 0) {
  2452. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2453. __free_pages(virt_to_page((void *)addr), order);
  2454. }
  2455. }
  2456. EXPORT_SYMBOL(free_pages);
  2457. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2458. {
  2459. if (addr) {
  2460. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2461. unsigned long used = addr + PAGE_ALIGN(size);
  2462. split_page(virt_to_page((void *)addr), order);
  2463. while (used < alloc_end) {
  2464. free_page(used);
  2465. used += PAGE_SIZE;
  2466. }
  2467. }
  2468. return (void *)addr;
  2469. }
  2470. /**
  2471. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2472. * @size: the number of bytes to allocate
  2473. * @gfp_mask: GFP flags for the allocation
  2474. *
  2475. * This function is similar to alloc_pages(), except that it allocates the
  2476. * minimum number of pages to satisfy the request. alloc_pages() can only
  2477. * allocate memory in power-of-two pages.
  2478. *
  2479. * This function is also limited by MAX_ORDER.
  2480. *
  2481. * Memory allocated by this function must be released by free_pages_exact().
  2482. */
  2483. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2484. {
  2485. unsigned int order = get_order(size);
  2486. unsigned long addr;
  2487. addr = __get_free_pages(gfp_mask, order);
  2488. return make_alloc_exact(addr, order, size);
  2489. }
  2490. EXPORT_SYMBOL(alloc_pages_exact);
  2491. /**
  2492. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2493. * pages on a node.
  2494. * @nid: the preferred node ID where memory should be allocated
  2495. * @size: the number of bytes to allocate
  2496. * @gfp_mask: GFP flags for the allocation
  2497. *
  2498. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2499. * back.
  2500. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2501. * but is not exact.
  2502. */
  2503. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2504. {
  2505. unsigned order = get_order(size);
  2506. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2507. if (!p)
  2508. return NULL;
  2509. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2510. }
  2511. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2512. /**
  2513. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2514. * @virt: the value returned by alloc_pages_exact.
  2515. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2516. *
  2517. * Release the memory allocated by a previous call to alloc_pages_exact.
  2518. */
  2519. void free_pages_exact(void *virt, size_t size)
  2520. {
  2521. unsigned long addr = (unsigned long)virt;
  2522. unsigned long end = addr + PAGE_ALIGN(size);
  2523. while (addr < end) {
  2524. free_page(addr);
  2525. addr += PAGE_SIZE;
  2526. }
  2527. }
  2528. EXPORT_SYMBOL(free_pages_exact);
  2529. static unsigned int nr_free_zone_pages(int offset)
  2530. {
  2531. struct zoneref *z;
  2532. struct zone *zone;
  2533. /* Just pick one node, since fallback list is circular */
  2534. unsigned int sum = 0;
  2535. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2536. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2537. unsigned long size = zone->present_pages;
  2538. unsigned long high = high_wmark_pages(zone);
  2539. if (size > high)
  2540. sum += size - high;
  2541. }
  2542. return sum;
  2543. }
  2544. /*
  2545. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2546. */
  2547. unsigned int nr_free_buffer_pages(void)
  2548. {
  2549. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2550. }
  2551. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2552. /*
  2553. * Amount of free RAM allocatable within all zones
  2554. */
  2555. unsigned int nr_free_pagecache_pages(void)
  2556. {
  2557. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2558. }
  2559. static inline void show_node(struct zone *zone)
  2560. {
  2561. if (NUMA_BUILD)
  2562. printk("Node %d ", zone_to_nid(zone));
  2563. }
  2564. long si_mem_available(void)
  2565. {
  2566. long available;
  2567. unsigned long pagecache;
  2568. unsigned long wmark_low = 0;
  2569. unsigned long pages[NR_LRU_LISTS];
  2570. struct zone *zone;
  2571. int lru;
  2572. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  2573. pages[lru] = global_page_state(NR_LRU_BASE + lru);
  2574. for_each_zone(zone)
  2575. wmark_low += zone->watermark[WMARK_LOW];
  2576. /*
  2577. * Estimate the amount of memory available for userspace allocations,
  2578. * without causing swapping.
  2579. */
  2580. available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
  2581. /*
  2582. * Not all the page cache can be freed, otherwise the system will
  2583. * start swapping. Assume at least half of the page cache, or the
  2584. * low watermark worth of cache, needs to stay.
  2585. */
  2586. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  2587. pagecache -= min(pagecache / 2, wmark_low);
  2588. available += pagecache;
  2589. /*
  2590. * Part of the reclaimable slab consists of items that are in use,
  2591. * and cannot be freed. Cap this estimate at the low watermark.
  2592. */
  2593. available += global_page_state(NR_SLAB_RECLAIMABLE) -
  2594. min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
  2595. if (available < 0)
  2596. available = 0;
  2597. return available;
  2598. }
  2599. EXPORT_SYMBOL_GPL(si_mem_available);
  2600. void si_meminfo(struct sysinfo *val)
  2601. {
  2602. val->totalram = totalram_pages;
  2603. val->sharedram = global_page_state(NR_SHMEM);
  2604. val->freeram = global_page_state(NR_FREE_PAGES);
  2605. val->bufferram = nr_blockdev_pages();
  2606. val->totalhigh = totalhigh_pages;
  2607. val->freehigh = nr_free_highpages();
  2608. val->mem_unit = PAGE_SIZE;
  2609. }
  2610. EXPORT_SYMBOL(si_meminfo);
  2611. #ifdef CONFIG_NUMA
  2612. void si_meminfo_node(struct sysinfo *val, int nid)
  2613. {
  2614. pg_data_t *pgdat = NODE_DATA(nid);
  2615. val->totalram = pgdat->node_present_pages;
  2616. val->sharedram = node_page_state(nid, NR_SHMEM);
  2617. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2618. #ifdef CONFIG_HIGHMEM
  2619. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2620. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2621. NR_FREE_PAGES);
  2622. #else
  2623. val->totalhigh = 0;
  2624. val->freehigh = 0;
  2625. #endif
  2626. val->mem_unit = PAGE_SIZE;
  2627. }
  2628. #endif
  2629. /*
  2630. * Determine whether the node should be displayed or not, depending on whether
  2631. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2632. */
  2633. bool skip_free_areas_node(unsigned int flags, int nid)
  2634. {
  2635. bool ret = false;
  2636. unsigned int cpuset_mems_cookie;
  2637. if (!(flags & SHOW_MEM_FILTER_NODES))
  2638. goto out;
  2639. do {
  2640. cpuset_mems_cookie = get_mems_allowed();
  2641. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2642. } while (!put_mems_allowed(cpuset_mems_cookie));
  2643. out:
  2644. return ret;
  2645. }
  2646. #define K(x) ((x) << (PAGE_SHIFT-10))
  2647. static void show_migration_types(unsigned char type)
  2648. {
  2649. static const char types[MIGRATE_TYPES] = {
  2650. [MIGRATE_UNMOVABLE] = 'U',
  2651. [MIGRATE_RECLAIMABLE] = 'E',
  2652. [MIGRATE_MOVABLE] = 'M',
  2653. [MIGRATE_RESERVE] = 'R',
  2654. #ifdef CONFIG_CMA
  2655. [MIGRATE_CMA] = 'C',
  2656. #endif
  2657. [MIGRATE_ISOLATE] = 'I',
  2658. };
  2659. char tmp[MIGRATE_TYPES + 1];
  2660. char *p = tmp;
  2661. int i;
  2662. for (i = 0; i < MIGRATE_TYPES; i++) {
  2663. if (type & (1 << i))
  2664. *p++ = types[i];
  2665. }
  2666. *p = '\0';
  2667. printk("(%s) ", tmp);
  2668. }
  2669. /*
  2670. * Show free area list (used inside shift_scroll-lock stuff)
  2671. * We also calculate the percentage fragmentation. We do this by counting the
  2672. * memory on each free list with the exception of the first item on the list.
  2673. * Suppresses nodes that are not allowed by current's cpuset if
  2674. * SHOW_MEM_FILTER_NODES is passed.
  2675. */
  2676. void show_free_areas(unsigned int filter)
  2677. {
  2678. int cpu;
  2679. struct zone *zone;
  2680. for_each_populated_zone(zone) {
  2681. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2682. continue;
  2683. show_node(zone);
  2684. printk("%s per-cpu:\n", zone->name);
  2685. for_each_online_cpu(cpu) {
  2686. struct per_cpu_pageset *pageset;
  2687. pageset = per_cpu_ptr(zone->pageset, cpu);
  2688. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2689. cpu, pageset->pcp.high,
  2690. pageset->pcp.batch, pageset->pcp.count);
  2691. }
  2692. }
  2693. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2694. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2695. " unevictable:%lu"
  2696. " dirty:%lu writeback:%lu unstable:%lu\n"
  2697. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2698. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2699. #if defined(CONFIG_CMA_PAGE_COUNTING)
  2700. " free_cma:%lu cma_active_anon:%lu cma_inactive_anon:%lu\n"
  2701. " cma_active_file:%lu cma_inactive_file:%lu\n",
  2702. #else
  2703. " free cma:%lu\n",
  2704. #endif
  2705. global_page_state(NR_ACTIVE_ANON),
  2706. global_page_state(NR_INACTIVE_ANON),
  2707. global_page_state(NR_ISOLATED_ANON),
  2708. global_page_state(NR_ACTIVE_FILE),
  2709. global_page_state(NR_INACTIVE_FILE),
  2710. global_page_state(NR_ISOLATED_FILE),
  2711. global_page_state(NR_UNEVICTABLE),
  2712. global_page_state(NR_FILE_DIRTY),
  2713. global_page_state(NR_WRITEBACK),
  2714. global_page_state(NR_UNSTABLE_NFS),
  2715. global_page_state(NR_FREE_PAGES),
  2716. global_page_state(NR_SLAB_RECLAIMABLE),
  2717. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2718. global_page_state(NR_FILE_MAPPED),
  2719. global_page_state(NR_SHMEM),
  2720. global_page_state(NR_PAGETABLE),
  2721. global_page_state(NR_BOUNCE),
  2722. #if defined(CONFIG_CMA_PAGE_COUNTING)
  2723. global_page_state(NR_FREE_CMA_PAGES),
  2724. global_page_state(NR_CMA_ACTIVE_ANON),
  2725. global_page_state(NR_CMA_INACTIVE_ANON),
  2726. global_page_state(NR_CMA_ACTIVE_FILE),
  2727. global_page_state(NR_CMA_INACTIVE_FILE));
  2728. #else
  2729. global_page_state(NR_FREE_CMA_PAGES));
  2730. #endif
  2731. for_each_populated_zone(zone) {
  2732. int i;
  2733. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2734. continue;
  2735. show_node(zone);
  2736. printk("%s"
  2737. " free:%lukB"
  2738. " min:%lukB"
  2739. " low:%lukB"
  2740. " high:%lukB"
  2741. " active_anon:%lukB"
  2742. " inactive_anon:%lukB"
  2743. " active_file:%lukB"
  2744. " inactive_file:%lukB"
  2745. " unevictable:%lukB"
  2746. " isolated(anon):%lukB"
  2747. " isolated(file):%lukB"
  2748. " present:%lukB"
  2749. " mlocked:%lukB"
  2750. " dirty:%lukB"
  2751. " writeback:%lukB"
  2752. " mapped:%lukB"
  2753. " shmem:%lukB"
  2754. " slab_reclaimable:%lukB"
  2755. " slab_unreclaimable:%lukB"
  2756. " kernel_stack:%lukB"
  2757. " pagetables:%lukB"
  2758. " unstable:%lukB"
  2759. " bounce:%lukB"
  2760. " free_cma:%lukB"
  2761. " writeback_tmp:%lukB"
  2762. " pages_scanned:%lu"
  2763. " all_unreclaimable? %s"
  2764. "\n",
  2765. zone->name,
  2766. K(zone_page_state(zone, NR_FREE_PAGES)),
  2767. K(min_wmark_pages(zone)),
  2768. K(low_wmark_pages(zone)),
  2769. K(high_wmark_pages(zone)),
  2770. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2771. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2772. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2773. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2774. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2775. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2776. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2777. K(zone->present_pages),
  2778. K(zone_page_state(zone, NR_MLOCK)),
  2779. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2780. K(zone_page_state(zone, NR_WRITEBACK)),
  2781. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2782. K(zone_page_state(zone, NR_SHMEM)),
  2783. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2784. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2785. zone_page_state(zone, NR_KERNEL_STACK) *
  2786. THREAD_SIZE / 1024,
  2787. K(zone_page_state(zone, NR_PAGETABLE)),
  2788. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2789. K(zone_page_state(zone, NR_BOUNCE)),
  2790. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2791. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2792. zone->pages_scanned,
  2793. (!zone_reclaimable(zone) ? "yes" : "no")
  2794. );
  2795. printk("lowmem_reserve[]:");
  2796. for (i = 0; i < MAX_NR_ZONES; i++)
  2797. printk(" %lu", zone->lowmem_reserve[i]);
  2798. printk("\n");
  2799. }
  2800. for_each_populated_zone(zone) {
  2801. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2802. unsigned char types[MAX_ORDER];
  2803. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2804. continue;
  2805. show_node(zone);
  2806. printk("%s: ", zone->name);
  2807. spin_lock_irqsave(&zone->lock, flags);
  2808. for (order = 0; order < MAX_ORDER; order++) {
  2809. struct free_area *area = &zone->free_area[order];
  2810. int type;
  2811. nr[order] = area->nr_free;
  2812. total += nr[order] << order;
  2813. types[order] = 0;
  2814. for (type = 0; type < MIGRATE_TYPES; type++) {
  2815. if (!list_empty(&area->free_list[type]))
  2816. types[order] |= 1 << type;
  2817. }
  2818. }
  2819. spin_unlock_irqrestore(&zone->lock, flags);
  2820. for (order = 0; order < MAX_ORDER; order++) {
  2821. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2822. if (nr[order])
  2823. show_migration_types(types[order]);
  2824. }
  2825. printk("= %lukB\n", K(total));
  2826. }
  2827. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2828. show_swap_cache_info();
  2829. }
  2830. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2831. {
  2832. zoneref->zone = zone;
  2833. zoneref->zone_idx = zone_idx(zone);
  2834. }
  2835. /*
  2836. * Builds allocation fallback zone lists.
  2837. *
  2838. * Add all populated zones of a node to the zonelist.
  2839. */
  2840. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2841. int nr_zones, enum zone_type zone_type)
  2842. {
  2843. struct zone *zone;
  2844. BUG_ON(zone_type >= MAX_NR_ZONES);
  2845. zone_type++;
  2846. do {
  2847. zone_type--;
  2848. zone = pgdat->node_zones + zone_type;
  2849. if (populated_zone(zone)) {
  2850. zoneref_set_zone(zone,
  2851. &zonelist->_zonerefs[nr_zones++]);
  2852. check_highest_zone(zone_type);
  2853. }
  2854. } while (zone_type);
  2855. return nr_zones;
  2856. }
  2857. /*
  2858. * zonelist_order:
  2859. * 0 = automatic detection of better ordering.
  2860. * 1 = order by ([node] distance, -zonetype)
  2861. * 2 = order by (-zonetype, [node] distance)
  2862. *
  2863. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2864. * the same zonelist. So only NUMA can configure this param.
  2865. */
  2866. #define ZONELIST_ORDER_DEFAULT 0
  2867. #define ZONELIST_ORDER_NODE 1
  2868. #define ZONELIST_ORDER_ZONE 2
  2869. /* zonelist order in the kernel.
  2870. * set_zonelist_order() will set this to NODE or ZONE.
  2871. */
  2872. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2873. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2874. #ifdef CONFIG_NUMA
  2875. /* The value user specified ....changed by config */
  2876. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2877. /* string for sysctl */
  2878. #define NUMA_ZONELIST_ORDER_LEN 16
  2879. char numa_zonelist_order[16] = "default";
  2880. /*
  2881. * interface for configure zonelist ordering.
  2882. * command line option "numa_zonelist_order"
  2883. * = "[dD]efault - default, automatic configuration.
  2884. * = "[nN]ode - order by node locality, then by zone within node
  2885. * = "[zZ]one - order by zone, then by locality within zone
  2886. */
  2887. static int __parse_numa_zonelist_order(char *s)
  2888. {
  2889. if (*s == 'd' || *s == 'D') {
  2890. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2891. } else if (*s == 'n' || *s == 'N') {
  2892. user_zonelist_order = ZONELIST_ORDER_NODE;
  2893. } else if (*s == 'z' || *s == 'Z') {
  2894. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2895. } else {
  2896. printk(KERN_WARNING
  2897. "Ignoring invalid numa_zonelist_order value: "
  2898. "%s\n", s);
  2899. return -EINVAL;
  2900. }
  2901. return 0;
  2902. }
  2903. static __init int setup_numa_zonelist_order(char *s)
  2904. {
  2905. int ret;
  2906. if (!s)
  2907. return 0;
  2908. ret = __parse_numa_zonelist_order(s);
  2909. if (ret == 0)
  2910. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2911. return ret;
  2912. }
  2913. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2914. /*
  2915. * sysctl handler for numa_zonelist_order
  2916. */
  2917. int numa_zonelist_order_handler(ctl_table *table, int write,
  2918. void __user *buffer, size_t *length,
  2919. loff_t *ppos)
  2920. {
  2921. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2922. int ret;
  2923. static DEFINE_MUTEX(zl_order_mutex);
  2924. mutex_lock(&zl_order_mutex);
  2925. if (write)
  2926. strcpy(saved_string, (char*)table->data);
  2927. ret = proc_dostring(table, write, buffer, length, ppos);
  2928. if (ret)
  2929. goto out;
  2930. if (write) {
  2931. int oldval = user_zonelist_order;
  2932. if (__parse_numa_zonelist_order((char*)table->data)) {
  2933. /*
  2934. * bogus value. restore saved string
  2935. */
  2936. strncpy((char*)table->data, saved_string,
  2937. NUMA_ZONELIST_ORDER_LEN);
  2938. user_zonelist_order = oldval;
  2939. } else if (oldval != user_zonelist_order) {
  2940. mutex_lock(&zonelists_mutex);
  2941. build_all_zonelists(NULL);
  2942. mutex_unlock(&zonelists_mutex);
  2943. }
  2944. }
  2945. out:
  2946. mutex_unlock(&zl_order_mutex);
  2947. return ret;
  2948. }
  2949. #define MAX_NODE_LOAD (nr_online_nodes)
  2950. static int node_load[MAX_NUMNODES];
  2951. /**
  2952. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2953. * @node: node whose fallback list we're appending
  2954. * @used_node_mask: nodemask_t of already used nodes
  2955. *
  2956. * We use a number of factors to determine which is the next node that should
  2957. * appear on a given node's fallback list. The node should not have appeared
  2958. * already in @node's fallback list, and it should be the next closest node
  2959. * according to the distance array (which contains arbitrary distance values
  2960. * from each node to each node in the system), and should also prefer nodes
  2961. * with no CPUs, since presumably they'll have very little allocation pressure
  2962. * on them otherwise.
  2963. * It returns -1 if no node is found.
  2964. */
  2965. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2966. {
  2967. int n, val;
  2968. int min_val = INT_MAX;
  2969. int best_node = -1;
  2970. const struct cpumask *tmp = cpumask_of_node(0);
  2971. /* Use the local node if we haven't already */
  2972. if (!node_isset(node, *used_node_mask)) {
  2973. node_set(node, *used_node_mask);
  2974. return node;
  2975. }
  2976. for_each_node_state(n, N_HIGH_MEMORY) {
  2977. /* Don't want a node to appear more than once */
  2978. if (node_isset(n, *used_node_mask))
  2979. continue;
  2980. /* Use the distance array to find the distance */
  2981. val = node_distance(node, n);
  2982. /* Penalize nodes under us ("prefer the next node") */
  2983. val += (n < node);
  2984. /* Give preference to headless and unused nodes */
  2985. tmp = cpumask_of_node(n);
  2986. if (!cpumask_empty(tmp))
  2987. val += PENALTY_FOR_NODE_WITH_CPUS;
  2988. /* Slight preference for less loaded node */
  2989. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2990. val += node_load[n];
  2991. if (val < min_val) {
  2992. min_val = val;
  2993. best_node = n;
  2994. }
  2995. }
  2996. if (best_node >= 0)
  2997. node_set(best_node, *used_node_mask);
  2998. return best_node;
  2999. }
  3000. /*
  3001. * Build zonelists ordered by node and zones within node.
  3002. * This results in maximum locality--normal zone overflows into local
  3003. * DMA zone, if any--but risks exhausting DMA zone.
  3004. */
  3005. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3006. {
  3007. int j;
  3008. struct zonelist *zonelist;
  3009. zonelist = &pgdat->node_zonelists[0];
  3010. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3011. ;
  3012. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3013. MAX_NR_ZONES - 1);
  3014. zonelist->_zonerefs[j].zone = NULL;
  3015. zonelist->_zonerefs[j].zone_idx = 0;
  3016. }
  3017. /*
  3018. * Build gfp_thisnode zonelists
  3019. */
  3020. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3021. {
  3022. int j;
  3023. struct zonelist *zonelist;
  3024. zonelist = &pgdat->node_zonelists[1];
  3025. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  3026. zonelist->_zonerefs[j].zone = NULL;
  3027. zonelist->_zonerefs[j].zone_idx = 0;
  3028. }
  3029. /*
  3030. * Build zonelists ordered by zone and nodes within zones.
  3031. * This results in conserving DMA zone[s] until all Normal memory is
  3032. * exhausted, but results in overflowing to remote node while memory
  3033. * may still exist in local DMA zone.
  3034. */
  3035. static int node_order[MAX_NUMNODES];
  3036. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3037. {
  3038. int pos, j, node;
  3039. int zone_type; /* needs to be signed */
  3040. struct zone *z;
  3041. struct zonelist *zonelist;
  3042. zonelist = &pgdat->node_zonelists[0];
  3043. pos = 0;
  3044. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3045. for (j = 0; j < nr_nodes; j++) {
  3046. node = node_order[j];
  3047. z = &NODE_DATA(node)->node_zones[zone_type];
  3048. if (populated_zone(z)) {
  3049. zoneref_set_zone(z,
  3050. &zonelist->_zonerefs[pos++]);
  3051. check_highest_zone(zone_type);
  3052. }
  3053. }
  3054. }
  3055. zonelist->_zonerefs[pos].zone = NULL;
  3056. zonelist->_zonerefs[pos].zone_idx = 0;
  3057. }
  3058. static int default_zonelist_order(void)
  3059. {
  3060. int nid, zone_type;
  3061. unsigned long low_kmem_size,total_size;
  3062. struct zone *z;
  3063. int average_size;
  3064. /*
  3065. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  3066. * If they are really small and used heavily, the system can fall
  3067. * into OOM very easily.
  3068. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  3069. */
  3070. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  3071. low_kmem_size = 0;
  3072. total_size = 0;
  3073. for_each_online_node(nid) {
  3074. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3075. z = &NODE_DATA(nid)->node_zones[zone_type];
  3076. if (populated_zone(z)) {
  3077. if (zone_type < ZONE_NORMAL)
  3078. low_kmem_size += z->present_pages;
  3079. total_size += z->present_pages;
  3080. } else if (zone_type == ZONE_NORMAL) {
  3081. /*
  3082. * If any node has only lowmem, then node order
  3083. * is preferred to allow kernel allocations
  3084. * locally; otherwise, they can easily infringe
  3085. * on other nodes when there is an abundance of
  3086. * lowmem available to allocate from.
  3087. */
  3088. return ZONELIST_ORDER_NODE;
  3089. }
  3090. }
  3091. }
  3092. if (!low_kmem_size || /* there are no DMA area. */
  3093. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  3094. return ZONELIST_ORDER_NODE;
  3095. /*
  3096. * look into each node's config.
  3097. * If there is a node whose DMA/DMA32 memory is very big area on
  3098. * local memory, NODE_ORDER may be suitable.
  3099. */
  3100. average_size = total_size /
  3101. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  3102. for_each_online_node(nid) {
  3103. low_kmem_size = 0;
  3104. total_size = 0;
  3105. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3106. z = &NODE_DATA(nid)->node_zones[zone_type];
  3107. if (populated_zone(z)) {
  3108. if (zone_type < ZONE_NORMAL)
  3109. low_kmem_size += z->present_pages;
  3110. total_size += z->present_pages;
  3111. }
  3112. }
  3113. if (low_kmem_size &&
  3114. total_size > average_size && /* ignore small node */
  3115. low_kmem_size > total_size * 70/100)
  3116. return ZONELIST_ORDER_NODE;
  3117. }
  3118. return ZONELIST_ORDER_ZONE;
  3119. }
  3120. static void set_zonelist_order(void)
  3121. {
  3122. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3123. current_zonelist_order = default_zonelist_order();
  3124. else
  3125. current_zonelist_order = user_zonelist_order;
  3126. }
  3127. static void build_zonelists(pg_data_t *pgdat)
  3128. {
  3129. int j, node, load;
  3130. enum zone_type i;
  3131. nodemask_t used_mask;
  3132. int local_node, prev_node;
  3133. struct zonelist *zonelist;
  3134. int order = current_zonelist_order;
  3135. /* initialize zonelists */
  3136. for (i = 0; i < MAX_ZONELISTS; i++) {
  3137. zonelist = pgdat->node_zonelists + i;
  3138. zonelist->_zonerefs[0].zone = NULL;
  3139. zonelist->_zonerefs[0].zone_idx = 0;
  3140. }
  3141. /* NUMA-aware ordering of nodes */
  3142. local_node = pgdat->node_id;
  3143. load = nr_online_nodes;
  3144. prev_node = local_node;
  3145. nodes_clear(used_mask);
  3146. memset(node_order, 0, sizeof(node_order));
  3147. j = 0;
  3148. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3149. int distance = node_distance(local_node, node);
  3150. /*
  3151. * If another node is sufficiently far away then it is better
  3152. * to reclaim pages in a zone before going off node.
  3153. */
  3154. if (distance > RECLAIM_DISTANCE)
  3155. zone_reclaim_mode = 1;
  3156. /*
  3157. * We don't want to pressure a particular node.
  3158. * So adding penalty to the first node in same
  3159. * distance group to make it round-robin.
  3160. */
  3161. if (distance != node_distance(local_node, prev_node))
  3162. node_load[node] = load;
  3163. prev_node = node;
  3164. load--;
  3165. if (order == ZONELIST_ORDER_NODE)
  3166. build_zonelists_in_node_order(pgdat, node);
  3167. else
  3168. node_order[j++] = node; /* remember order */
  3169. }
  3170. if (order == ZONELIST_ORDER_ZONE) {
  3171. /* calculate node order -- i.e., DMA last! */
  3172. build_zonelists_in_zone_order(pgdat, j);
  3173. }
  3174. build_thisnode_zonelists(pgdat);
  3175. }
  3176. /* Construct the zonelist performance cache - see further mmzone.h */
  3177. static void build_zonelist_cache(pg_data_t *pgdat)
  3178. {
  3179. struct zonelist *zonelist;
  3180. struct zonelist_cache *zlc;
  3181. struct zoneref *z;
  3182. zonelist = &pgdat->node_zonelists[0];
  3183. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3184. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3185. for (z = zonelist->_zonerefs; z->zone; z++)
  3186. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3187. }
  3188. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3189. /*
  3190. * Return node id of node used for "local" allocations.
  3191. * I.e., first node id of first zone in arg node's generic zonelist.
  3192. * Used for initializing percpu 'numa_mem', which is used primarily
  3193. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3194. */
  3195. int local_memory_node(int node)
  3196. {
  3197. struct zone *zone;
  3198. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3199. gfp_zone(GFP_KERNEL),
  3200. NULL,
  3201. &zone);
  3202. return zone->node;
  3203. }
  3204. #endif
  3205. #else /* CONFIG_NUMA */
  3206. static void set_zonelist_order(void)
  3207. {
  3208. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3209. }
  3210. static void build_zonelists(pg_data_t *pgdat)
  3211. {
  3212. int node, local_node;
  3213. enum zone_type j;
  3214. struct zonelist *zonelist;
  3215. local_node = pgdat->node_id;
  3216. zonelist = &pgdat->node_zonelists[0];
  3217. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  3218. /*
  3219. * Now we build the zonelist so that it contains the zones
  3220. * of all the other nodes.
  3221. * We don't want to pressure a particular node, so when
  3222. * building the zones for node N, we make sure that the
  3223. * zones coming right after the local ones are those from
  3224. * node N+1 (modulo N)
  3225. */
  3226. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3227. if (!node_online(node))
  3228. continue;
  3229. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3230. MAX_NR_ZONES - 1);
  3231. }
  3232. for (node = 0; node < local_node; node++) {
  3233. if (!node_online(node))
  3234. continue;
  3235. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3236. MAX_NR_ZONES - 1);
  3237. }
  3238. zonelist->_zonerefs[j].zone = NULL;
  3239. zonelist->_zonerefs[j].zone_idx = 0;
  3240. }
  3241. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3242. static void build_zonelist_cache(pg_data_t *pgdat)
  3243. {
  3244. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3245. }
  3246. #endif /* CONFIG_NUMA */
  3247. /*
  3248. * Boot pageset table. One per cpu which is going to be used for all
  3249. * zones and all nodes. The parameters will be set in such a way
  3250. * that an item put on a list will immediately be handed over to
  3251. * the buddy list. This is safe since pageset manipulation is done
  3252. * with interrupts disabled.
  3253. *
  3254. * The boot_pagesets must be kept even after bootup is complete for
  3255. * unused processors and/or zones. They do play a role for bootstrapping
  3256. * hotplugged processors.
  3257. *
  3258. * zoneinfo_show() and maybe other functions do
  3259. * not check if the processor is online before following the pageset pointer.
  3260. * Other parts of the kernel may not check if the zone is available.
  3261. */
  3262. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3263. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3264. static void setup_zone_pageset(struct zone *zone);
  3265. /*
  3266. * Global mutex to protect against size modification of zonelists
  3267. * as well as to serialize pageset setup for the new populated zone.
  3268. */
  3269. DEFINE_MUTEX(zonelists_mutex);
  3270. /* return values int ....just for stop_machine() */
  3271. static __init_refok int __build_all_zonelists(void *data)
  3272. {
  3273. int nid;
  3274. int cpu;
  3275. #ifdef CONFIG_NUMA
  3276. memset(node_load, 0, sizeof(node_load));
  3277. #endif
  3278. for_each_online_node(nid) {
  3279. pg_data_t *pgdat = NODE_DATA(nid);
  3280. build_zonelists(pgdat);
  3281. build_zonelist_cache(pgdat);
  3282. }
  3283. /*
  3284. * Initialize the boot_pagesets that are going to be used
  3285. * for bootstrapping processors. The real pagesets for
  3286. * each zone will be allocated later when the per cpu
  3287. * allocator is available.
  3288. *
  3289. * boot_pagesets are used also for bootstrapping offline
  3290. * cpus if the system is already booted because the pagesets
  3291. * are needed to initialize allocators on a specific cpu too.
  3292. * F.e. the percpu allocator needs the page allocator which
  3293. * needs the percpu allocator in order to allocate its pagesets
  3294. * (a chicken-egg dilemma).
  3295. */
  3296. for_each_possible_cpu(cpu) {
  3297. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3298. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3299. /*
  3300. * We now know the "local memory node" for each node--
  3301. * i.e., the node of the first zone in the generic zonelist.
  3302. * Set up numa_mem percpu variable for on-line cpus. During
  3303. * boot, only the boot cpu should be on-line; we'll init the
  3304. * secondary cpus' numa_mem as they come on-line. During
  3305. * node/memory hotplug, we'll fixup all on-line cpus.
  3306. */
  3307. if (cpu_online(cpu))
  3308. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3309. #endif
  3310. }
  3311. return 0;
  3312. }
  3313. /*
  3314. * Called with zonelists_mutex held always
  3315. * unless system_state == SYSTEM_BOOTING.
  3316. */
  3317. void __ref build_all_zonelists(void *data)
  3318. {
  3319. set_zonelist_order();
  3320. if (system_state == SYSTEM_BOOTING) {
  3321. __build_all_zonelists(NULL);
  3322. mminit_verify_zonelist();
  3323. cpuset_init_current_mems_allowed();
  3324. } else {
  3325. /* we have to stop all cpus to guarantee there is no user
  3326. of zonelist */
  3327. #ifdef CONFIG_MEMORY_HOTPLUG
  3328. if (data)
  3329. setup_zone_pageset((struct zone *)data);
  3330. #endif
  3331. stop_machine(__build_all_zonelists, NULL, NULL);
  3332. /* cpuset refresh routine should be here */
  3333. }
  3334. vm_total_pages = nr_free_pagecache_pages();
  3335. /*
  3336. * Disable grouping by mobility if the number of pages in the
  3337. * system is too low to allow the mechanism to work. It would be
  3338. * more accurate, but expensive to check per-zone. This check is
  3339. * made on memory-hotadd so a system can start with mobility
  3340. * disabled and enable it later
  3341. */
  3342. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3343. page_group_by_mobility_disabled = 1;
  3344. else
  3345. page_group_by_mobility_disabled = 0;
  3346. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3347. "Total pages: %ld\n",
  3348. nr_online_nodes,
  3349. zonelist_order_name[current_zonelist_order],
  3350. page_group_by_mobility_disabled ? "off" : "on",
  3351. vm_total_pages);
  3352. #ifdef CONFIG_NUMA
  3353. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3354. #endif
  3355. }
  3356. /*
  3357. * Helper functions to size the waitqueue hash table.
  3358. * Essentially these want to choose hash table sizes sufficiently
  3359. * large so that collisions trying to wait on pages are rare.
  3360. * But in fact, the number of active page waitqueues on typical
  3361. * systems is ridiculously low, less than 200. So this is even
  3362. * conservative, even though it seems large.
  3363. *
  3364. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3365. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3366. */
  3367. #define PAGES_PER_WAITQUEUE 256
  3368. #ifndef CONFIG_MEMORY_HOTPLUG
  3369. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3370. {
  3371. unsigned long size = 1;
  3372. pages /= PAGES_PER_WAITQUEUE;
  3373. while (size < pages)
  3374. size <<= 1;
  3375. /*
  3376. * Once we have dozens or even hundreds of threads sleeping
  3377. * on IO we've got bigger problems than wait queue collision.
  3378. * Limit the size of the wait table to a reasonable size.
  3379. */
  3380. size = min(size, 4096UL);
  3381. return max(size, 4UL);
  3382. }
  3383. #else
  3384. /*
  3385. * A zone's size might be changed by hot-add, so it is not possible to determine
  3386. * a suitable size for its wait_table. So we use the maximum size now.
  3387. *
  3388. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3389. *
  3390. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3391. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3392. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3393. *
  3394. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3395. * or more by the traditional way. (See above). It equals:
  3396. *
  3397. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3398. * ia64(16K page size) : = ( 8G + 4M)byte.
  3399. * powerpc (64K page size) : = (32G +16M)byte.
  3400. */
  3401. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3402. {
  3403. return 4096UL;
  3404. }
  3405. #endif
  3406. /*
  3407. * This is an integer logarithm so that shifts can be used later
  3408. * to extract the more random high bits from the multiplicative
  3409. * hash function before the remainder is taken.
  3410. */
  3411. static inline unsigned long wait_table_bits(unsigned long size)
  3412. {
  3413. return ffz(~size);
  3414. }
  3415. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  3416. /*
  3417. * Check if a pageblock contains reserved pages
  3418. */
  3419. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3420. {
  3421. unsigned long pfn;
  3422. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3423. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3424. return 1;
  3425. }
  3426. return 0;
  3427. }
  3428. /*
  3429. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3430. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3431. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3432. * higher will lead to a bigger reserve which will get freed as contiguous
  3433. * blocks as reclaim kicks in
  3434. */
  3435. static void setup_zone_migrate_reserve(struct zone *zone)
  3436. {
  3437. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3438. struct page *page;
  3439. unsigned long block_migratetype;
  3440. int reserve;
  3441. /*
  3442. * Get the start pfn, end pfn and the number of blocks to reserve
  3443. * We have to be careful to be aligned to pageblock_nr_pages to
  3444. * make sure that we always check pfn_valid for the first page in
  3445. * the block.
  3446. */
  3447. start_pfn = zone->zone_start_pfn;
  3448. end_pfn = start_pfn + zone->spanned_pages;
  3449. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3450. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3451. pageblock_order;
  3452. /*
  3453. * Reserve blocks are generally in place to help high-order atomic
  3454. * allocations that are short-lived. A min_free_kbytes value that
  3455. * would result in more than 2 reserve blocks for atomic allocations
  3456. * is assumed to be in place to help anti-fragmentation for the
  3457. * future allocation of hugepages at runtime.
  3458. */
  3459. reserve = min(2, reserve);
  3460. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3461. if (!pfn_valid(pfn))
  3462. continue;
  3463. page = pfn_to_page(pfn);
  3464. /* Watch out for overlapping nodes */
  3465. if (page_to_nid(page) != zone_to_nid(zone))
  3466. continue;
  3467. block_migratetype = get_pageblock_migratetype(page);
  3468. /* Only test what is necessary when the reserves are not met */
  3469. if (reserve > 0) {
  3470. /*
  3471. * Blocks with reserved pages will never free, skip
  3472. * them.
  3473. */
  3474. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3475. if (pageblock_is_reserved(pfn, block_end_pfn))
  3476. continue;
  3477. /* If this block is reserved, account for it */
  3478. if (block_migratetype == MIGRATE_RESERVE) {
  3479. reserve--;
  3480. continue;
  3481. }
  3482. /* Suitable for reserving if this block is movable */
  3483. if (block_migratetype == MIGRATE_MOVABLE) {
  3484. set_pageblock_migratetype(page,
  3485. MIGRATE_RESERVE);
  3486. move_freepages_block(zone, page,
  3487. MIGRATE_RESERVE);
  3488. reserve--;
  3489. continue;
  3490. }
  3491. }
  3492. /*
  3493. * If the reserve is met and this is a previous reserved block,
  3494. * take it back
  3495. */
  3496. if (block_migratetype == MIGRATE_RESERVE) {
  3497. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3498. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3499. }
  3500. }
  3501. }
  3502. /*
  3503. * Initially all pages are reserved - free ones are freed
  3504. * up by free_all_bootmem() once the early boot process is
  3505. * done. Non-atomic initialization, single-pass.
  3506. */
  3507. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3508. unsigned long start_pfn, enum memmap_context context)
  3509. {
  3510. struct page *page;
  3511. unsigned long end_pfn = start_pfn + size;
  3512. unsigned long pfn;
  3513. struct zone *z;
  3514. if (highest_memmap_pfn < end_pfn - 1)
  3515. highest_memmap_pfn = end_pfn - 1;
  3516. z = &NODE_DATA(nid)->node_zones[zone];
  3517. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3518. /*
  3519. * There can be holes in boot-time mem_map[]s
  3520. * handed to this function. They do not
  3521. * exist on hotplugged memory.
  3522. */
  3523. if (context == MEMMAP_EARLY) {
  3524. if (!early_pfn_valid(pfn))
  3525. continue;
  3526. if (!early_pfn_in_nid(pfn, nid))
  3527. continue;
  3528. }
  3529. page = pfn_to_page(pfn);
  3530. set_page_links(page, zone, nid, pfn);
  3531. mminit_verify_page_links(page, zone, nid, pfn);
  3532. init_page_count(page);
  3533. reset_page_mapcount(page);
  3534. SetPageReserved(page);
  3535. /*
  3536. * Mark the block movable so that blocks are reserved for
  3537. * movable at startup. This will force kernel allocations
  3538. * to reserve their blocks rather than leaking throughout
  3539. * the address space during boot when many long-lived
  3540. * kernel allocations are made. Later some blocks near
  3541. * the start are marked MIGRATE_RESERVE by
  3542. * setup_zone_migrate_reserve()
  3543. *
  3544. * bitmap is created for zone's valid pfn range. but memmap
  3545. * can be created for invalid pages (for alignment)
  3546. * check here not to call set_pageblock_migratetype() against
  3547. * pfn out of zone.
  3548. */
  3549. if ((z->zone_start_pfn <= pfn)
  3550. && (pfn < z->zone_start_pfn + z->spanned_pages)
  3551. && !(pfn & (pageblock_nr_pages - 1)))
  3552. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3553. INIT_LIST_HEAD(&page->lru);
  3554. #ifdef WANT_PAGE_VIRTUAL
  3555. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3556. if (!is_highmem_idx(zone))
  3557. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3558. #endif
  3559. }
  3560. }
  3561. static void __meminit zone_init_free_lists(struct zone *zone)
  3562. {
  3563. int order, t;
  3564. for_each_migratetype_order(order, t) {
  3565. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3566. zone->free_area[order].nr_free = 0;
  3567. }
  3568. }
  3569. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3570. #define memmap_init(size, nid, zone, start_pfn) \
  3571. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3572. #endif
  3573. static int zone_batchsize(struct zone *zone)
  3574. {
  3575. #ifdef CONFIG_MMU
  3576. int batch;
  3577. /*
  3578. * The per-cpu-pages pools are set to around 1000th of the
  3579. * size of the zone. But no more than 1/2 of a meg.
  3580. *
  3581. * OK, so we don't know how big the cache is. So guess.
  3582. */
  3583. batch = zone->present_pages / 1024;
  3584. if (batch * PAGE_SIZE > 512 * 1024)
  3585. batch = (512 * 1024) / PAGE_SIZE;
  3586. batch /= 4; /* We effectively *= 4 below */
  3587. if (batch < 1)
  3588. batch = 1;
  3589. /*
  3590. * Clamp the batch to a 2^n - 1 value. Having a power
  3591. * of 2 value was found to be more likely to have
  3592. * suboptimal cache aliasing properties in some cases.
  3593. *
  3594. * For example if 2 tasks are alternately allocating
  3595. * batches of pages, one task can end up with a lot
  3596. * of pages of one half of the possible page colors
  3597. * and the other with pages of the other colors.
  3598. */
  3599. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3600. return batch;
  3601. #else
  3602. /* The deferral and batching of frees should be suppressed under NOMMU
  3603. * conditions.
  3604. *
  3605. * The problem is that NOMMU needs to be able to allocate large chunks
  3606. * of contiguous memory as there's no hardware page translation to
  3607. * assemble apparent contiguous memory from discontiguous pages.
  3608. *
  3609. * Queueing large contiguous runs of pages for batching, however,
  3610. * causes the pages to actually be freed in smaller chunks. As there
  3611. * can be a significant delay between the individual batches being
  3612. * recycled, this leads to the once large chunks of space being
  3613. * fragmented and becoming unavailable for high-order allocations.
  3614. */
  3615. return 0;
  3616. #endif
  3617. }
  3618. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3619. {
  3620. struct per_cpu_pages *pcp;
  3621. int migratetype;
  3622. memset(p, 0, sizeof(*p));
  3623. pcp = &p->pcp;
  3624. pcp->count = 0;
  3625. pcp->high = 6 * batch;
  3626. pcp->batch = max(1UL, 1 * batch);
  3627. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3628. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3629. }
  3630. /*
  3631. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3632. * to the value high for the pageset p.
  3633. */
  3634. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3635. unsigned long high)
  3636. {
  3637. struct per_cpu_pages *pcp;
  3638. pcp = &p->pcp;
  3639. pcp->high = high;
  3640. pcp->batch = max(1UL, high/4);
  3641. if ((high/4) > (PAGE_SHIFT * 8))
  3642. pcp->batch = PAGE_SHIFT * 8;
  3643. }
  3644. static void setup_zone_pageset(struct zone *zone)
  3645. {
  3646. int cpu;
  3647. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3648. for_each_possible_cpu(cpu) {
  3649. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3650. setup_pageset(pcp, zone_batchsize(zone));
  3651. if (percpu_pagelist_fraction)
  3652. setup_pagelist_highmark(pcp,
  3653. (zone->present_pages /
  3654. percpu_pagelist_fraction));
  3655. }
  3656. }
  3657. /*
  3658. * Allocate per cpu pagesets and initialize them.
  3659. * Before this call only boot pagesets were available.
  3660. */
  3661. void __init setup_per_cpu_pageset(void)
  3662. {
  3663. struct zone *zone;
  3664. for_each_populated_zone(zone)
  3665. setup_zone_pageset(zone);
  3666. }
  3667. static noinline __init_refok
  3668. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3669. {
  3670. int i;
  3671. struct pglist_data *pgdat = zone->zone_pgdat;
  3672. size_t alloc_size;
  3673. /*
  3674. * The per-page waitqueue mechanism uses hashed waitqueues
  3675. * per zone.
  3676. */
  3677. zone->wait_table_hash_nr_entries =
  3678. wait_table_hash_nr_entries(zone_size_pages);
  3679. zone->wait_table_bits =
  3680. wait_table_bits(zone->wait_table_hash_nr_entries);
  3681. alloc_size = zone->wait_table_hash_nr_entries
  3682. * sizeof(wait_queue_head_t);
  3683. if (!slab_is_available()) {
  3684. zone->wait_table = (wait_queue_head_t *)
  3685. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3686. } else {
  3687. /*
  3688. * This case means that a zone whose size was 0 gets new memory
  3689. * via memory hot-add.
  3690. * But it may be the case that a new node was hot-added. In
  3691. * this case vmalloc() will not be able to use this new node's
  3692. * memory - this wait_table must be initialized to use this new
  3693. * node itself as well.
  3694. * To use this new node's memory, further consideration will be
  3695. * necessary.
  3696. */
  3697. zone->wait_table = vmalloc(alloc_size);
  3698. }
  3699. if (!zone->wait_table)
  3700. return -ENOMEM;
  3701. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3702. init_waitqueue_head(zone->wait_table + i);
  3703. return 0;
  3704. }
  3705. static int __zone_pcp_update(void *data)
  3706. {
  3707. struct zone *zone = data;
  3708. int cpu;
  3709. unsigned long batch = zone_batchsize(zone), flags;
  3710. for_each_possible_cpu(cpu) {
  3711. struct per_cpu_pageset *pset;
  3712. struct per_cpu_pages *pcp;
  3713. pset = per_cpu_ptr(zone->pageset, cpu);
  3714. pcp = &pset->pcp;
  3715. local_irq_save(flags);
  3716. free_pcppages_bulk(zone, pcp->count, pcp);
  3717. setup_pageset(pset, batch);
  3718. local_irq_restore(flags);
  3719. }
  3720. return 0;
  3721. }
  3722. void zone_pcp_update(struct zone *zone)
  3723. {
  3724. stop_machine(__zone_pcp_update, zone, NULL);
  3725. }
  3726. static __meminit void zone_pcp_init(struct zone *zone)
  3727. {
  3728. /*
  3729. * per cpu subsystem is not up at this point. The following code
  3730. * relies on the ability of the linker to provide the
  3731. * offset of a (static) per cpu variable into the per cpu area.
  3732. */
  3733. zone->pageset = &boot_pageset;
  3734. if (zone->present_pages)
  3735. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3736. zone->name, zone->present_pages,
  3737. zone_batchsize(zone));
  3738. }
  3739. __meminit int init_currently_empty_zone(struct zone *zone,
  3740. unsigned long zone_start_pfn,
  3741. unsigned long size,
  3742. enum memmap_context context)
  3743. {
  3744. struct pglist_data *pgdat = zone->zone_pgdat;
  3745. int ret;
  3746. ret = zone_wait_table_init(zone, size);
  3747. if (ret)
  3748. return ret;
  3749. pgdat->nr_zones = zone_idx(zone) + 1;
  3750. zone->zone_start_pfn = zone_start_pfn;
  3751. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3752. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3753. pgdat->node_id,
  3754. (unsigned long)zone_idx(zone),
  3755. zone_start_pfn, (zone_start_pfn + size));
  3756. zone_init_free_lists(zone);
  3757. return 0;
  3758. }
  3759. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3760. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3761. /*
  3762. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3763. * Architectures may implement their own version but if add_active_range()
  3764. * was used and there are no special requirements, this is a convenient
  3765. * alternative
  3766. */
  3767. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3768. {
  3769. unsigned long start_pfn, end_pfn;
  3770. int i, nid;
  3771. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3772. if (start_pfn <= pfn && pfn < end_pfn)
  3773. return nid;
  3774. /* This is a memory hole */
  3775. return -1;
  3776. }
  3777. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3778. int __meminit early_pfn_to_nid(unsigned long pfn)
  3779. {
  3780. int nid;
  3781. nid = __early_pfn_to_nid(pfn);
  3782. if (nid >= 0)
  3783. return nid;
  3784. /* just returns 0 */
  3785. return 0;
  3786. }
  3787. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3788. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3789. {
  3790. int nid;
  3791. nid = __early_pfn_to_nid(pfn);
  3792. if (nid >= 0 && nid != node)
  3793. return false;
  3794. return true;
  3795. }
  3796. #endif
  3797. /**
  3798. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3799. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3800. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3801. *
  3802. * If an architecture guarantees that all ranges registered with
  3803. * add_active_ranges() contain no holes and may be freed, this
  3804. * this function may be used instead of calling free_bootmem() manually.
  3805. */
  3806. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3807. {
  3808. unsigned long start_pfn, end_pfn;
  3809. int i, this_nid;
  3810. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3811. start_pfn = min(start_pfn, max_low_pfn);
  3812. end_pfn = min(end_pfn, max_low_pfn);
  3813. if (start_pfn < end_pfn)
  3814. free_bootmem_node(NODE_DATA(this_nid),
  3815. PFN_PHYS(start_pfn),
  3816. (end_pfn - start_pfn) << PAGE_SHIFT);
  3817. }
  3818. }
  3819. /**
  3820. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3821. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3822. *
  3823. * If an architecture guarantees that all ranges registered with
  3824. * add_active_ranges() contain no holes and may be freed, this
  3825. * function may be used instead of calling memory_present() manually.
  3826. */
  3827. void __init sparse_memory_present_with_active_regions(int nid)
  3828. {
  3829. unsigned long start_pfn, end_pfn;
  3830. int i, this_nid;
  3831. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3832. memory_present(this_nid, start_pfn, end_pfn);
  3833. }
  3834. /**
  3835. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3836. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3837. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3838. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3839. *
  3840. * It returns the start and end page frame of a node based on information
  3841. * provided by an arch calling add_active_range(). If called for a node
  3842. * with no available memory, a warning is printed and the start and end
  3843. * PFNs will be 0.
  3844. */
  3845. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3846. unsigned long *start_pfn, unsigned long *end_pfn)
  3847. {
  3848. unsigned long this_start_pfn, this_end_pfn;
  3849. int i;
  3850. *start_pfn = -1UL;
  3851. *end_pfn = 0;
  3852. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3853. *start_pfn = min(*start_pfn, this_start_pfn);
  3854. *end_pfn = max(*end_pfn, this_end_pfn);
  3855. }
  3856. if (*start_pfn == -1UL)
  3857. *start_pfn = 0;
  3858. }
  3859. /*
  3860. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3861. * assumption is made that zones within a node are ordered in monotonic
  3862. * increasing memory addresses so that the "highest" populated zone is used
  3863. */
  3864. static void __init find_usable_zone_for_movable(void)
  3865. {
  3866. int zone_index;
  3867. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3868. if (zone_index == ZONE_MOVABLE)
  3869. continue;
  3870. if (arch_zone_highest_possible_pfn[zone_index] >
  3871. arch_zone_lowest_possible_pfn[zone_index])
  3872. break;
  3873. }
  3874. VM_BUG_ON(zone_index == -1);
  3875. movable_zone = zone_index;
  3876. }
  3877. /*
  3878. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3879. * because it is sized independent of architecture. Unlike the other zones,
  3880. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3881. * in each node depending on the size of each node and how evenly kernelcore
  3882. * is distributed. This helper function adjusts the zone ranges
  3883. * provided by the architecture for a given node by using the end of the
  3884. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3885. * zones within a node are in order of monotonic increases memory addresses
  3886. */
  3887. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3888. unsigned long zone_type,
  3889. unsigned long node_start_pfn,
  3890. unsigned long node_end_pfn,
  3891. unsigned long *zone_start_pfn,
  3892. unsigned long *zone_end_pfn)
  3893. {
  3894. /* Only adjust if ZONE_MOVABLE is on this node */
  3895. if (zone_movable_pfn[nid]) {
  3896. /* Size ZONE_MOVABLE */
  3897. if (zone_type == ZONE_MOVABLE) {
  3898. *zone_start_pfn = zone_movable_pfn[nid];
  3899. *zone_end_pfn = min(node_end_pfn,
  3900. arch_zone_highest_possible_pfn[movable_zone]);
  3901. /* Adjust for ZONE_MOVABLE starting within this range */
  3902. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3903. *zone_end_pfn > zone_movable_pfn[nid]) {
  3904. *zone_end_pfn = zone_movable_pfn[nid];
  3905. /* Check if this whole range is within ZONE_MOVABLE */
  3906. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3907. *zone_start_pfn = *zone_end_pfn;
  3908. }
  3909. }
  3910. /*
  3911. * Return the number of pages a zone spans in a node, including holes
  3912. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3913. */
  3914. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3915. unsigned long zone_type,
  3916. unsigned long *ignored)
  3917. {
  3918. unsigned long node_start_pfn, node_end_pfn;
  3919. unsigned long zone_start_pfn, zone_end_pfn;
  3920. /* Get the start and end of the node and zone */
  3921. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3922. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3923. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3924. adjust_zone_range_for_zone_movable(nid, zone_type,
  3925. node_start_pfn, node_end_pfn,
  3926. &zone_start_pfn, &zone_end_pfn);
  3927. /* Check that this node has pages within the zone's required range */
  3928. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3929. return 0;
  3930. /* Move the zone boundaries inside the node if necessary */
  3931. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3932. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3933. /* Return the spanned pages */
  3934. return zone_end_pfn - zone_start_pfn;
  3935. }
  3936. /*
  3937. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3938. * then all holes in the requested range will be accounted for.
  3939. */
  3940. unsigned long __meminit __absent_pages_in_range(int nid,
  3941. unsigned long range_start_pfn,
  3942. unsigned long range_end_pfn)
  3943. {
  3944. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3945. unsigned long start_pfn, end_pfn;
  3946. int i;
  3947. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3948. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3949. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3950. nr_absent -= end_pfn - start_pfn;
  3951. }
  3952. return nr_absent;
  3953. }
  3954. /**
  3955. * absent_pages_in_range - Return number of page frames in holes within a range
  3956. * @start_pfn: The start PFN to start searching for holes
  3957. * @end_pfn: The end PFN to stop searching for holes
  3958. *
  3959. * It returns the number of pages frames in memory holes within a range.
  3960. */
  3961. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3962. unsigned long end_pfn)
  3963. {
  3964. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3965. }
  3966. /* Return the number of page frames in holes in a zone on a node */
  3967. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3968. unsigned long zone_type,
  3969. unsigned long *ignored)
  3970. {
  3971. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3972. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3973. unsigned long node_start_pfn, node_end_pfn;
  3974. unsigned long zone_start_pfn, zone_end_pfn;
  3975. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3976. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3977. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3978. adjust_zone_range_for_zone_movable(nid, zone_type,
  3979. node_start_pfn, node_end_pfn,
  3980. &zone_start_pfn, &zone_end_pfn);
  3981. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3982. }
  3983. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3984. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3985. unsigned long zone_type,
  3986. unsigned long *zones_size)
  3987. {
  3988. return zones_size[zone_type];
  3989. }
  3990. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3991. unsigned long zone_type,
  3992. unsigned long *zholes_size)
  3993. {
  3994. if (!zholes_size)
  3995. return 0;
  3996. return zholes_size[zone_type];
  3997. }
  3998. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3999. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4000. unsigned long *zones_size, unsigned long *zholes_size)
  4001. {
  4002. unsigned long realtotalpages, totalpages = 0;
  4003. enum zone_type i;
  4004. for (i = 0; i < MAX_NR_ZONES; i++)
  4005. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  4006. zones_size);
  4007. pgdat->node_spanned_pages = totalpages;
  4008. realtotalpages = totalpages;
  4009. for (i = 0; i < MAX_NR_ZONES; i++)
  4010. realtotalpages -=
  4011. zone_absent_pages_in_node(pgdat->node_id, i,
  4012. zholes_size);
  4013. pgdat->node_present_pages = realtotalpages;
  4014. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4015. realtotalpages);
  4016. }
  4017. #ifndef CONFIG_SPARSEMEM
  4018. /*
  4019. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4020. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4021. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4022. * round what is now in bits to nearest long in bits, then return it in
  4023. * bytes.
  4024. */
  4025. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4026. {
  4027. unsigned long usemapsize;
  4028. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4029. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4030. usemapsize = usemapsize >> pageblock_order;
  4031. usemapsize *= NR_PAGEBLOCK_BITS;
  4032. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4033. return usemapsize / 8;
  4034. }
  4035. static void __init setup_usemap(struct pglist_data *pgdat,
  4036. struct zone *zone,
  4037. unsigned long zone_start_pfn,
  4038. unsigned long zonesize)
  4039. {
  4040. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4041. zone->pageblock_flags = NULL;
  4042. if (usemapsize)
  4043. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  4044. usemapsize);
  4045. }
  4046. #else
  4047. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4048. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4049. #endif /* CONFIG_SPARSEMEM */
  4050. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4051. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4052. void __init set_pageblock_order(void)
  4053. {
  4054. unsigned int order;
  4055. /* Check that pageblock_nr_pages has not already been setup */
  4056. if (pageblock_order)
  4057. return;
  4058. if (HPAGE_SHIFT > PAGE_SHIFT)
  4059. order = HUGETLB_PAGE_ORDER;
  4060. else
  4061. order = MAX_ORDER - 1;
  4062. /*
  4063. * Assume the largest contiguous order of interest is a huge page.
  4064. * This value may be variable depending on boot parameters on IA64 and
  4065. * powerpc.
  4066. */
  4067. pageblock_order = order;
  4068. }
  4069. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4070. /*
  4071. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4072. * is unused as pageblock_order is set at compile-time. See
  4073. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4074. * the kernel config
  4075. */
  4076. void __init set_pageblock_order(void)
  4077. {
  4078. }
  4079. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4080. /*
  4081. * Set up the zone data structures:
  4082. * - mark all pages reserved
  4083. * - mark all memory queues empty
  4084. * - clear the memory bitmaps
  4085. */
  4086. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  4087. unsigned long *zones_size, unsigned long *zholes_size)
  4088. {
  4089. enum zone_type j;
  4090. int nid = pgdat->node_id;
  4091. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4092. int ret;
  4093. pgdat_resize_init(pgdat);
  4094. pgdat->nr_zones = 0;
  4095. init_waitqueue_head(&pgdat->kswapd_wait);
  4096. pgdat->kswapd_max_order = 0;
  4097. pgdat_page_cgroup_init(pgdat);
  4098. for (j = 0; j < MAX_NR_ZONES; j++) {
  4099. struct zone *zone = pgdat->node_zones + j;
  4100. unsigned long size, realsize, memmap_pages;
  4101. enum lru_list lru;
  4102. size = zone_spanned_pages_in_node(nid, j, zones_size);
  4103. realsize = size - zone_absent_pages_in_node(nid, j,
  4104. zholes_size);
  4105. /*
  4106. * Adjust realsize so that it accounts for how much memory
  4107. * is used by this zone for memmap. This affects the watermark
  4108. * and per-cpu initialisations
  4109. */
  4110. memmap_pages =
  4111. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  4112. if (realsize >= memmap_pages) {
  4113. realsize -= memmap_pages;
  4114. if (memmap_pages)
  4115. printk(KERN_DEBUG
  4116. " %s zone: %lu pages used for memmap\n",
  4117. zone_names[j], memmap_pages);
  4118. } else
  4119. printk(KERN_WARNING
  4120. " %s zone: %lu pages exceeds realsize %lu\n",
  4121. zone_names[j], memmap_pages, realsize);
  4122. /* Account for reserved pages */
  4123. if (j == 0 && realsize > dma_reserve) {
  4124. realsize -= dma_reserve;
  4125. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4126. zone_names[0], dma_reserve);
  4127. }
  4128. if (!is_highmem_idx(j))
  4129. nr_kernel_pages += realsize;
  4130. nr_all_pages += realsize;
  4131. zone->spanned_pages = size;
  4132. zone->present_pages = realsize;
  4133. #ifdef CONFIG_NUMA
  4134. zone->node = nid;
  4135. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  4136. / 100;
  4137. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  4138. #endif
  4139. zone->name = zone_names[j];
  4140. spin_lock_init(&zone->lock);
  4141. spin_lock_init(&zone->lru_lock);
  4142. zone_seqlock_init(zone);
  4143. zone->zone_pgdat = pgdat;
  4144. zone_pcp_init(zone);
  4145. for_each_lru(lru)
  4146. INIT_LIST_HEAD(&zone->lruvec.lists[lru]);
  4147. zone->reclaim_stat.recent_rotated[0] = 0;
  4148. zone->reclaim_stat.recent_rotated[1] = 0;
  4149. zone->reclaim_stat.recent_scanned[0] = 0;
  4150. zone->reclaim_stat.recent_scanned[1] = 0;
  4151. zap_zone_vm_stats(zone);
  4152. zone->flags = 0;
  4153. if (!size)
  4154. continue;
  4155. set_pageblock_order();
  4156. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4157. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4158. size, MEMMAP_EARLY);
  4159. BUG_ON(ret);
  4160. memmap_init(size, nid, j, zone_start_pfn);
  4161. zone_start_pfn += size;
  4162. }
  4163. }
  4164. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4165. {
  4166. /* Skip empty nodes */
  4167. if (!pgdat->node_spanned_pages)
  4168. return;
  4169. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4170. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4171. if (!pgdat->node_mem_map) {
  4172. unsigned long size, start, end;
  4173. struct page *map;
  4174. /*
  4175. * The zone's endpoints aren't required to be MAX_ORDER
  4176. * aligned but the node_mem_map endpoints must be in order
  4177. * for the buddy allocator to function correctly.
  4178. */
  4179. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4180. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  4181. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4182. size = (end - start) * sizeof(struct page);
  4183. map = alloc_remap(pgdat->node_id, size);
  4184. if (!map)
  4185. map = alloc_bootmem_node_nopanic(pgdat, size);
  4186. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4187. }
  4188. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4189. /*
  4190. * With no DISCONTIG, the global mem_map is just set as node 0's
  4191. */
  4192. if (pgdat == NODE_DATA(0)) {
  4193. mem_map = NODE_DATA(0)->node_mem_map;
  4194. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4195. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4196. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4197. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4198. }
  4199. #endif
  4200. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4201. }
  4202. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4203. unsigned long node_start_pfn, unsigned long *zholes_size)
  4204. {
  4205. pg_data_t *pgdat = NODE_DATA(nid);
  4206. pgdat->node_id = nid;
  4207. pgdat->node_start_pfn = node_start_pfn;
  4208. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  4209. alloc_node_mem_map(pgdat);
  4210. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4211. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4212. nid, (unsigned long)pgdat,
  4213. (unsigned long)pgdat->node_mem_map);
  4214. #endif
  4215. free_area_init_core(pgdat, zones_size, zholes_size);
  4216. }
  4217. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4218. #if MAX_NUMNODES > 1
  4219. /*
  4220. * Figure out the number of possible node ids.
  4221. */
  4222. static void __init setup_nr_node_ids(void)
  4223. {
  4224. unsigned int node;
  4225. unsigned int highest = 0;
  4226. for_each_node_mask(node, node_possible_map)
  4227. highest = node;
  4228. nr_node_ids = highest + 1;
  4229. }
  4230. #else
  4231. static inline void setup_nr_node_ids(void)
  4232. {
  4233. }
  4234. #endif
  4235. /**
  4236. * node_map_pfn_alignment - determine the maximum internode alignment
  4237. *
  4238. * This function should be called after node map is populated and sorted.
  4239. * It calculates the maximum power of two alignment which can distinguish
  4240. * all the nodes.
  4241. *
  4242. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4243. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4244. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4245. * shifted, 1GiB is enough and this function will indicate so.
  4246. *
  4247. * This is used to test whether pfn -> nid mapping of the chosen memory
  4248. * model has fine enough granularity to avoid incorrect mapping for the
  4249. * populated node map.
  4250. *
  4251. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4252. * requirement (single node).
  4253. */
  4254. unsigned long __init node_map_pfn_alignment(void)
  4255. {
  4256. unsigned long accl_mask = 0, last_end = 0;
  4257. unsigned long start, end, mask;
  4258. int last_nid = -1;
  4259. int i, nid;
  4260. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4261. if (!start || last_nid < 0 || last_nid == nid) {
  4262. last_nid = nid;
  4263. last_end = end;
  4264. continue;
  4265. }
  4266. /*
  4267. * Start with a mask granular enough to pin-point to the
  4268. * start pfn and tick off bits one-by-one until it becomes
  4269. * too coarse to separate the current node from the last.
  4270. */
  4271. mask = ~((1 << __ffs(start)) - 1);
  4272. while (mask && last_end <= (start & (mask << 1)))
  4273. mask <<= 1;
  4274. /* accumulate all internode masks */
  4275. accl_mask |= mask;
  4276. }
  4277. /* convert mask to number of pages */
  4278. return ~accl_mask + 1;
  4279. }
  4280. /* Find the lowest pfn for a node */
  4281. static unsigned long __init find_min_pfn_for_node(int nid)
  4282. {
  4283. unsigned long min_pfn = ULONG_MAX;
  4284. unsigned long start_pfn;
  4285. int i;
  4286. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4287. min_pfn = min(min_pfn, start_pfn);
  4288. if (min_pfn == ULONG_MAX) {
  4289. printk(KERN_WARNING
  4290. "Could not find start_pfn for node %d\n", nid);
  4291. return 0;
  4292. }
  4293. return min_pfn;
  4294. }
  4295. /**
  4296. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4297. *
  4298. * It returns the minimum PFN based on information provided via
  4299. * add_active_range().
  4300. */
  4301. unsigned long __init find_min_pfn_with_active_regions(void)
  4302. {
  4303. return find_min_pfn_for_node(MAX_NUMNODES);
  4304. }
  4305. /*
  4306. * early_calculate_totalpages()
  4307. * Sum pages in active regions for movable zone.
  4308. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  4309. */
  4310. static unsigned long __init early_calculate_totalpages(void)
  4311. {
  4312. unsigned long totalpages = 0;
  4313. unsigned long start_pfn, end_pfn;
  4314. int i, nid;
  4315. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4316. unsigned long pages = end_pfn - start_pfn;
  4317. totalpages += pages;
  4318. if (pages)
  4319. node_set_state(nid, N_HIGH_MEMORY);
  4320. }
  4321. return totalpages;
  4322. }
  4323. /*
  4324. * Find the PFN the Movable zone begins in each node. Kernel memory
  4325. * is spread evenly between nodes as long as the nodes have enough
  4326. * memory. When they don't, some nodes will have more kernelcore than
  4327. * others
  4328. */
  4329. static void __init find_zone_movable_pfns_for_nodes(void)
  4330. {
  4331. int i, nid;
  4332. unsigned long usable_startpfn;
  4333. unsigned long kernelcore_node, kernelcore_remaining;
  4334. /* save the state before borrow the nodemask */
  4335. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  4336. unsigned long totalpages = early_calculate_totalpages();
  4337. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  4338. #ifdef CONFIG_FIX_MOVABLE_ZONE
  4339. required_movablecore = movable_reserved_size >> PAGE_SHIFT;
  4340. #endif
  4341. /*
  4342. * If movablecore was specified, calculate what size of
  4343. * kernelcore that corresponds so that memory usable for
  4344. * any allocation type is evenly spread. If both kernelcore
  4345. * and movablecore are specified, then the value of kernelcore
  4346. * will be used for required_kernelcore if it's greater than
  4347. * what movablecore would have allowed.
  4348. */
  4349. if (required_movablecore) {
  4350. unsigned long corepages;
  4351. /*
  4352. * Round-up so that ZONE_MOVABLE is at least as large as what
  4353. * was requested by the user
  4354. */
  4355. required_movablecore =
  4356. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4357. corepages = totalpages - required_movablecore;
  4358. required_kernelcore = max(required_kernelcore, corepages);
  4359. }
  4360. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4361. if (!required_kernelcore)
  4362. goto out;
  4363. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4364. find_usable_zone_for_movable();
  4365. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4366. restart:
  4367. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4368. kernelcore_node = required_kernelcore / usable_nodes;
  4369. for_each_node_state(nid, N_HIGH_MEMORY) {
  4370. unsigned long start_pfn, end_pfn;
  4371. /*
  4372. * Recalculate kernelcore_node if the division per node
  4373. * now exceeds what is necessary to satisfy the requested
  4374. * amount of memory for the kernel
  4375. */
  4376. if (required_kernelcore < kernelcore_node)
  4377. kernelcore_node = required_kernelcore / usable_nodes;
  4378. /*
  4379. * As the map is walked, we track how much memory is usable
  4380. * by the kernel using kernelcore_remaining. When it is
  4381. * 0, the rest of the node is usable by ZONE_MOVABLE
  4382. */
  4383. kernelcore_remaining = kernelcore_node;
  4384. /* Go through each range of PFNs within this node */
  4385. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4386. unsigned long size_pages;
  4387. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4388. if (start_pfn >= end_pfn)
  4389. continue;
  4390. /* Account for what is only usable for kernelcore */
  4391. if (start_pfn < usable_startpfn) {
  4392. unsigned long kernel_pages;
  4393. kernel_pages = min(end_pfn, usable_startpfn)
  4394. - start_pfn;
  4395. kernelcore_remaining -= min(kernel_pages,
  4396. kernelcore_remaining);
  4397. required_kernelcore -= min(kernel_pages,
  4398. required_kernelcore);
  4399. /* Continue if range is now fully accounted */
  4400. if (end_pfn <= usable_startpfn) {
  4401. /*
  4402. * Push zone_movable_pfn to the end so
  4403. * that if we have to rebalance
  4404. * kernelcore across nodes, we will
  4405. * not double account here
  4406. */
  4407. zone_movable_pfn[nid] = end_pfn;
  4408. continue;
  4409. }
  4410. start_pfn = usable_startpfn;
  4411. }
  4412. /*
  4413. * The usable PFN range for ZONE_MOVABLE is from
  4414. * start_pfn->end_pfn. Calculate size_pages as the
  4415. * number of pages used as kernelcore
  4416. */
  4417. size_pages = end_pfn - start_pfn;
  4418. if (size_pages > kernelcore_remaining)
  4419. size_pages = kernelcore_remaining;
  4420. zone_movable_pfn[nid] = start_pfn + size_pages;
  4421. /*
  4422. * Some kernelcore has been met, update counts and
  4423. * break if the kernelcore for this node has been
  4424. * satisified
  4425. */
  4426. required_kernelcore -= min(required_kernelcore,
  4427. size_pages);
  4428. kernelcore_remaining -= size_pages;
  4429. if (!kernelcore_remaining)
  4430. break;
  4431. }
  4432. }
  4433. /*
  4434. * If there is still required_kernelcore, we do another pass with one
  4435. * less node in the count. This will push zone_movable_pfn[nid] further
  4436. * along on the nodes that still have memory until kernelcore is
  4437. * satisified
  4438. */
  4439. usable_nodes--;
  4440. if (usable_nodes && required_kernelcore > usable_nodes)
  4441. goto restart;
  4442. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4443. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4444. zone_movable_pfn[nid] =
  4445. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4446. out:
  4447. /* restore the node_state */
  4448. node_states[N_HIGH_MEMORY] = saved_node_state;
  4449. }
  4450. /* Any regular memory on that node ? */
  4451. static void check_for_regular_memory(pg_data_t *pgdat)
  4452. {
  4453. #ifdef CONFIG_HIGHMEM
  4454. enum zone_type zone_type;
  4455. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  4456. struct zone *zone = &pgdat->node_zones[zone_type];
  4457. if (zone->present_pages) {
  4458. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  4459. break;
  4460. }
  4461. }
  4462. #endif
  4463. }
  4464. /**
  4465. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4466. * @max_zone_pfn: an array of max PFNs for each zone
  4467. *
  4468. * This will call free_area_init_node() for each active node in the system.
  4469. * Using the page ranges provided by add_active_range(), the size of each
  4470. * zone in each node and their holes is calculated. If the maximum PFN
  4471. * between two adjacent zones match, it is assumed that the zone is empty.
  4472. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4473. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4474. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4475. * at arch_max_dma_pfn.
  4476. */
  4477. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4478. {
  4479. unsigned long start_pfn, end_pfn;
  4480. int i, nid;
  4481. /* Record where the zone boundaries are */
  4482. memset(arch_zone_lowest_possible_pfn, 0,
  4483. sizeof(arch_zone_lowest_possible_pfn));
  4484. memset(arch_zone_highest_possible_pfn, 0,
  4485. sizeof(arch_zone_highest_possible_pfn));
  4486. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4487. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4488. for (i = 1; i < MAX_NR_ZONES; i++) {
  4489. if (i == ZONE_MOVABLE)
  4490. continue;
  4491. arch_zone_lowest_possible_pfn[i] =
  4492. arch_zone_highest_possible_pfn[i-1];
  4493. arch_zone_highest_possible_pfn[i] =
  4494. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4495. }
  4496. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4497. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4498. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4499. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4500. find_zone_movable_pfns_for_nodes();
  4501. /* Print out the zone ranges */
  4502. printk("Zone PFN ranges:\n");
  4503. for (i = 0; i < MAX_NR_ZONES; i++) {
  4504. if (i == ZONE_MOVABLE)
  4505. continue;
  4506. printk(" %-8s ", zone_names[i]);
  4507. if (arch_zone_lowest_possible_pfn[i] ==
  4508. arch_zone_highest_possible_pfn[i])
  4509. printk("empty\n");
  4510. else
  4511. printk("%0#10lx -> %0#10lx\n",
  4512. arch_zone_lowest_possible_pfn[i],
  4513. arch_zone_highest_possible_pfn[i]);
  4514. }
  4515. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4516. printk("Movable zone start PFN for each node\n");
  4517. for (i = 0; i < MAX_NUMNODES; i++) {
  4518. if (zone_movable_pfn[i])
  4519. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  4520. }
  4521. /* Print out the early_node_map[] */
  4522. printk("Early memory PFN ranges\n");
  4523. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4524. printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
  4525. /* Initialise every node */
  4526. mminit_verify_pageflags_layout();
  4527. setup_nr_node_ids();
  4528. for_each_online_node(nid) {
  4529. pg_data_t *pgdat = NODE_DATA(nid);
  4530. free_area_init_node(nid, NULL,
  4531. find_min_pfn_for_node(nid), NULL);
  4532. /* Any memory on that node */
  4533. if (pgdat->node_present_pages)
  4534. node_set_state(nid, N_HIGH_MEMORY);
  4535. check_for_regular_memory(pgdat);
  4536. }
  4537. }
  4538. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4539. {
  4540. unsigned long long coremem;
  4541. if (!p)
  4542. return -EINVAL;
  4543. coremem = memparse(p, &p);
  4544. *core = coremem >> PAGE_SHIFT;
  4545. /* Paranoid check that UL is enough for the coremem value */
  4546. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4547. return 0;
  4548. }
  4549. /*
  4550. * kernelcore=size sets the amount of memory for use for allocations that
  4551. * cannot be reclaimed or migrated.
  4552. */
  4553. static int __init cmdline_parse_kernelcore(char *p)
  4554. {
  4555. return cmdline_parse_core(p, &required_kernelcore);
  4556. }
  4557. /*
  4558. * movablecore=size sets the amount of memory for use for allocations that
  4559. * can be reclaimed or migrated.
  4560. */
  4561. static int __init cmdline_parse_movablecore(char *p)
  4562. {
  4563. return cmdline_parse_core(p, &required_movablecore);
  4564. }
  4565. early_param("kernelcore", cmdline_parse_kernelcore);
  4566. early_param("movablecore", cmdline_parse_movablecore);
  4567. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4568. /**
  4569. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4570. * @new_dma_reserve: The number of pages to mark reserved
  4571. *
  4572. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4573. * In the DMA zone, a significant percentage may be consumed by kernel image
  4574. * and other unfreeable allocations which can skew the watermarks badly. This
  4575. * function may optionally be used to account for unfreeable pages in the
  4576. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4577. * smaller per-cpu batchsize.
  4578. */
  4579. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4580. {
  4581. dma_reserve = new_dma_reserve;
  4582. }
  4583. void __init free_area_init(unsigned long *zones_size)
  4584. {
  4585. free_area_init_node(0, zones_size,
  4586. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4587. }
  4588. static int page_alloc_cpu_notify(struct notifier_block *self,
  4589. unsigned long action, void *hcpu)
  4590. {
  4591. int cpu = (unsigned long)hcpu;
  4592. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4593. lru_add_drain_cpu(cpu);
  4594. drain_pages(cpu);
  4595. /*
  4596. * Spill the event counters of the dead processor
  4597. * into the current processors event counters.
  4598. * This artificially elevates the count of the current
  4599. * processor.
  4600. */
  4601. vm_events_fold_cpu(cpu);
  4602. /*
  4603. * Zero the differential counters of the dead processor
  4604. * so that the vm statistics are consistent.
  4605. *
  4606. * This is only okay since the processor is dead and cannot
  4607. * race with what we are doing.
  4608. */
  4609. refresh_cpu_vm_stats(cpu);
  4610. }
  4611. return NOTIFY_OK;
  4612. }
  4613. void __init page_alloc_init(void)
  4614. {
  4615. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4616. }
  4617. /*
  4618. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4619. * or min_free_kbytes changes.
  4620. */
  4621. static void calculate_totalreserve_pages(void)
  4622. {
  4623. struct pglist_data *pgdat;
  4624. unsigned long reserve_pages = 0;
  4625. enum zone_type i, j;
  4626. for_each_online_pgdat(pgdat) {
  4627. for (i = 0; i < MAX_NR_ZONES; i++) {
  4628. struct zone *zone = pgdat->node_zones + i;
  4629. unsigned long max = 0;
  4630. /* Find valid and maximum lowmem_reserve in the zone */
  4631. for (j = i; j < MAX_NR_ZONES; j++) {
  4632. if (zone->lowmem_reserve[j] > max)
  4633. max = zone->lowmem_reserve[j];
  4634. }
  4635. /* we treat the high watermark as reserved pages. */
  4636. max += high_wmark_pages(zone);
  4637. if (max > zone->present_pages)
  4638. max = zone->present_pages;
  4639. reserve_pages += max;
  4640. /*
  4641. * Lowmem reserves are not available to
  4642. * GFP_HIGHUSER page cache allocations and
  4643. * kswapd tries to balance zones to their high
  4644. * watermark. As a result, neither should be
  4645. * regarded as dirtyable memory, to prevent a
  4646. * situation where reclaim has to clean pages
  4647. * in order to balance the zones.
  4648. */
  4649. zone->dirty_balance_reserve = max;
  4650. }
  4651. }
  4652. dirty_balance_reserve = reserve_pages;
  4653. totalreserve_pages = reserve_pages;
  4654. }
  4655. /*
  4656. * setup_per_zone_lowmem_reserve - called whenever
  4657. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4658. * has a correct pages reserved value, so an adequate number of
  4659. * pages are left in the zone after a successful __alloc_pages().
  4660. */
  4661. static void setup_per_zone_lowmem_reserve(void)
  4662. {
  4663. struct pglist_data *pgdat;
  4664. enum zone_type j, idx;
  4665. for_each_online_pgdat(pgdat) {
  4666. for (j = 0; j < MAX_NR_ZONES; j++) {
  4667. struct zone *zone = pgdat->node_zones + j;
  4668. unsigned long present_pages = zone->present_pages;
  4669. zone->lowmem_reserve[j] = 0;
  4670. idx = j;
  4671. while (idx) {
  4672. struct zone *lower_zone;
  4673. idx--;
  4674. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4675. sysctl_lowmem_reserve_ratio[idx] = 1;
  4676. lower_zone = pgdat->node_zones + idx;
  4677. lower_zone->lowmem_reserve[j] = present_pages /
  4678. sysctl_lowmem_reserve_ratio[idx];
  4679. present_pages += lower_zone->present_pages;
  4680. }
  4681. }
  4682. }
  4683. /* update totalreserve_pages */
  4684. calculate_totalreserve_pages();
  4685. }
  4686. static void __setup_per_zone_wmarks(void)
  4687. {
  4688. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4689. unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
  4690. unsigned long lowmem_pages = 0;
  4691. struct zone *zone;
  4692. unsigned long flags;
  4693. /* Calculate total number of !ZONE_HIGHMEM pages */
  4694. for_each_zone(zone) {
  4695. if (!is_highmem(zone))
  4696. lowmem_pages += zone->present_pages;
  4697. }
  4698. for_each_zone(zone) {
  4699. u64 min, low;
  4700. spin_lock_irqsave(&zone->lock, flags);
  4701. min = (u64)pages_min * zone->present_pages;
  4702. do_div(min, lowmem_pages);
  4703. low = (u64)pages_low * zone->present_pages;
  4704. do_div(low, vm_total_pages);
  4705. if (is_highmem(zone)) {
  4706. /*
  4707. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4708. * need highmem pages, so cap pages_min to a small
  4709. * value here.
  4710. *
  4711. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4712. * deltas controls asynch page reclaim, and so should
  4713. * not be capped for highmem.
  4714. */
  4715. int min_pages;
  4716. min_pages = zone->present_pages / 1024;
  4717. if (min_pages < SWAP_CLUSTER_MAX)
  4718. min_pages = SWAP_CLUSTER_MAX;
  4719. if (min_pages > 128)
  4720. min_pages = 128;
  4721. zone->watermark[WMARK_MIN] = min_pages;
  4722. } else {
  4723. /*
  4724. * If it's a lowmem zone, reserve a number of pages
  4725. * proportionate to the zone's size.
  4726. */
  4727. zone->watermark[WMARK_MIN] = min;
  4728. }
  4729. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) +
  4730. low + (min >> 2);
  4731. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) +
  4732. low + (min >> 1);
  4733. setup_zone_migrate_reserve(zone);
  4734. spin_unlock_irqrestore(&zone->lock, flags);
  4735. }
  4736. /* update totalreserve_pages */
  4737. calculate_totalreserve_pages();
  4738. }
  4739. /**
  4740. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4741. * or when memory is hot-{added|removed}
  4742. *
  4743. * Ensures that the watermark[min,low,high] values for each zone are set
  4744. * correctly with respect to min_free_kbytes.
  4745. */
  4746. void setup_per_zone_wmarks(void)
  4747. {
  4748. mutex_lock(&zonelists_mutex);
  4749. __setup_per_zone_wmarks();
  4750. mutex_unlock(&zonelists_mutex);
  4751. }
  4752. /*
  4753. * The inactive anon list should be small enough that the VM never has to
  4754. * do too much work, but large enough that each inactive page has a chance
  4755. * to be referenced again before it is swapped out.
  4756. *
  4757. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4758. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4759. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4760. * the anonymous pages are kept on the inactive list.
  4761. *
  4762. * total target max
  4763. * memory ratio inactive anon
  4764. * -------------------------------------
  4765. * 10MB 1 5MB
  4766. * 100MB 1 50MB
  4767. * 1GB 3 250MB
  4768. * 10GB 10 0.9GB
  4769. * 100GB 31 3GB
  4770. * 1TB 101 10GB
  4771. * 10TB 320 32GB
  4772. */
  4773. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4774. {
  4775. #ifdef CONFIG_FIX_INACTIVE_RATIO
  4776. zone->inactive_ratio = 1;
  4777. #else
  4778. unsigned int gb, ratio;
  4779. /* Zone size in gigabytes */
  4780. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4781. if (gb)
  4782. ratio = int_sqrt(10 * gb);
  4783. else
  4784. ratio = 1;
  4785. zone->inactive_ratio = ratio;
  4786. #endif
  4787. }
  4788. static void __meminit setup_per_zone_inactive_ratio(void)
  4789. {
  4790. struct zone *zone;
  4791. for_each_zone(zone)
  4792. calculate_zone_inactive_ratio(zone);
  4793. }
  4794. /*
  4795. * Initialise min_free_kbytes.
  4796. *
  4797. * For small machines we want it small (128k min). For large machines
  4798. * we want it large (64MB max). But it is not linear, because network
  4799. * bandwidth does not increase linearly with machine size. We use
  4800. *
  4801. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4802. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4803. *
  4804. * which yields
  4805. *
  4806. * 16MB: 512k
  4807. * 32MB: 724k
  4808. * 64MB: 1024k
  4809. * 128MB: 1448k
  4810. * 256MB: 2048k
  4811. * 512MB: 2896k
  4812. * 1024MB: 4096k
  4813. * 2048MB: 5792k
  4814. * 4096MB: 8192k
  4815. * 8192MB: 11584k
  4816. * 16384MB: 16384k
  4817. */
  4818. int __meminit init_per_zone_wmark_min(void)
  4819. {
  4820. unsigned long lowmem_kbytes;
  4821. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4822. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4823. if (min_free_kbytes < 128)
  4824. min_free_kbytes = 128;
  4825. if (min_free_kbytes > 65536)
  4826. min_free_kbytes = 65536;
  4827. setup_per_zone_wmarks();
  4828. refresh_zone_stat_thresholds();
  4829. setup_per_zone_lowmem_reserve();
  4830. setup_per_zone_inactive_ratio();
  4831. return 0;
  4832. }
  4833. module_init(init_per_zone_wmark_min)
  4834. /*
  4835. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4836. * that we can call two helper functions whenever min_free_kbytes
  4837. * or extra_free_kbytes changes.
  4838. */
  4839. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4840. void __user *buffer, size_t *length, loff_t *ppos)
  4841. {
  4842. proc_dointvec(table, write, buffer, length, ppos);
  4843. if (write)
  4844. setup_per_zone_wmarks();
  4845. return 0;
  4846. }
  4847. #ifdef CONFIG_NUMA
  4848. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4849. void __user *buffer, size_t *length, loff_t *ppos)
  4850. {
  4851. struct zone *zone;
  4852. int rc;
  4853. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4854. if (rc)
  4855. return rc;
  4856. for_each_zone(zone)
  4857. zone->min_unmapped_pages = (zone->present_pages *
  4858. sysctl_min_unmapped_ratio) / 100;
  4859. return 0;
  4860. }
  4861. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4862. void __user *buffer, size_t *length, loff_t *ppos)
  4863. {
  4864. struct zone *zone;
  4865. int rc;
  4866. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4867. if (rc)
  4868. return rc;
  4869. for_each_zone(zone)
  4870. zone->min_slab_pages = (zone->present_pages *
  4871. sysctl_min_slab_ratio) / 100;
  4872. return 0;
  4873. }
  4874. #endif
  4875. /*
  4876. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4877. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4878. * whenever sysctl_lowmem_reserve_ratio changes.
  4879. *
  4880. * The reserve ratio obviously has absolutely no relation with the
  4881. * minimum watermarks. The lowmem reserve ratio can only make sense
  4882. * if in function of the boot time zone sizes.
  4883. */
  4884. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4885. void __user *buffer, size_t *length, loff_t *ppos)
  4886. {
  4887. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4888. setup_per_zone_lowmem_reserve();
  4889. return 0;
  4890. }
  4891. /*
  4892. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4893. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4894. * can have before it gets flushed back to buddy allocator.
  4895. */
  4896. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4897. void __user *buffer, size_t *length, loff_t *ppos)
  4898. {
  4899. struct zone *zone;
  4900. unsigned int cpu;
  4901. int ret;
  4902. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4903. if (!write || (ret < 0))
  4904. return ret;
  4905. for_each_populated_zone(zone) {
  4906. for_each_possible_cpu(cpu) {
  4907. unsigned long high;
  4908. high = zone->present_pages / percpu_pagelist_fraction;
  4909. setup_pagelist_highmark(
  4910. per_cpu_ptr(zone->pageset, cpu), high);
  4911. }
  4912. }
  4913. return 0;
  4914. }
  4915. int hashdist = HASHDIST_DEFAULT;
  4916. #ifdef CONFIG_NUMA
  4917. static int __init set_hashdist(char *str)
  4918. {
  4919. if (!str)
  4920. return 0;
  4921. hashdist = simple_strtoul(str, &str, 0);
  4922. return 1;
  4923. }
  4924. __setup("hashdist=", set_hashdist);
  4925. #endif
  4926. /*
  4927. * allocate a large system hash table from bootmem
  4928. * - it is assumed that the hash table must contain an exact power-of-2
  4929. * quantity of entries
  4930. * - limit is the number of hash buckets, not the total allocation size
  4931. */
  4932. void *__init alloc_large_system_hash(const char *tablename,
  4933. unsigned long bucketsize,
  4934. unsigned long numentries,
  4935. int scale,
  4936. int flags,
  4937. unsigned int *_hash_shift,
  4938. unsigned int *_hash_mask,
  4939. unsigned long low_limit,
  4940. unsigned long high_limit)
  4941. {
  4942. unsigned long long max = high_limit;
  4943. unsigned long log2qty, size;
  4944. void *table = NULL;
  4945. /* allow the kernel cmdline to have a say */
  4946. if (!numentries) {
  4947. /* round applicable memory size up to nearest megabyte */
  4948. numentries = nr_kernel_pages;
  4949. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4950. numentries >>= 20 - PAGE_SHIFT;
  4951. numentries <<= 20 - PAGE_SHIFT;
  4952. /* limit to 1 bucket per 2^scale bytes of low memory */
  4953. if (scale > PAGE_SHIFT)
  4954. numentries >>= (scale - PAGE_SHIFT);
  4955. else
  4956. numentries <<= (PAGE_SHIFT - scale);
  4957. /* Make sure we've got at least a 0-order allocation.. */
  4958. if (unlikely(flags & HASH_SMALL)) {
  4959. /* Makes no sense without HASH_EARLY */
  4960. WARN_ON(!(flags & HASH_EARLY));
  4961. if (!(numentries >> *_hash_shift)) {
  4962. numentries = 1UL << *_hash_shift;
  4963. BUG_ON(!numentries);
  4964. }
  4965. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4966. numentries = PAGE_SIZE / bucketsize;
  4967. }
  4968. numentries = roundup_pow_of_two(numentries);
  4969. /* limit allocation size to 1/16 total memory by default */
  4970. if (max == 0) {
  4971. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4972. do_div(max, bucketsize);
  4973. }
  4974. max = min(max, 0x80000000ULL);
  4975. if (numentries < low_limit)
  4976. numentries = low_limit;
  4977. if (numentries > max)
  4978. numentries = max;
  4979. log2qty = ilog2(numentries);
  4980. do {
  4981. size = bucketsize << log2qty;
  4982. if (flags & HASH_EARLY)
  4983. table = alloc_bootmem_nopanic(size);
  4984. else if (hashdist)
  4985. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4986. else {
  4987. /*
  4988. * If bucketsize is not a power-of-two, we may free
  4989. * some pages at the end of hash table which
  4990. * alloc_pages_exact() automatically does
  4991. */
  4992. if (get_order(size) < MAX_ORDER) {
  4993. table = alloc_pages_exact(size, GFP_ATOMIC);
  4994. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4995. }
  4996. }
  4997. } while (!table && size > PAGE_SIZE && --log2qty);
  4998. if (!table)
  4999. panic("Failed to allocate %s hash table\n", tablename);
  5000. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5001. tablename,
  5002. (1UL << log2qty),
  5003. ilog2(size) - PAGE_SHIFT,
  5004. size);
  5005. if (_hash_shift)
  5006. *_hash_shift = log2qty;
  5007. if (_hash_mask)
  5008. *_hash_mask = (1 << log2qty) - 1;
  5009. return table;
  5010. }
  5011. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5012. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5013. unsigned long pfn)
  5014. {
  5015. #ifdef CONFIG_SPARSEMEM
  5016. return __pfn_to_section(pfn)->pageblock_flags;
  5017. #else
  5018. return zone->pageblock_flags;
  5019. #endif /* CONFIG_SPARSEMEM */
  5020. }
  5021. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5022. {
  5023. #ifdef CONFIG_SPARSEMEM
  5024. pfn &= (PAGES_PER_SECTION-1);
  5025. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5026. #else
  5027. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5028. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5029. #endif /* CONFIG_SPARSEMEM */
  5030. }
  5031. /**
  5032. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  5033. * @page: The page within the block of interest
  5034. * @start_bitidx: The first bit of interest to retrieve
  5035. * @end_bitidx: The last bit of interest
  5036. * returns pageblock_bits flags
  5037. */
  5038. unsigned long get_pageblock_flags_group(struct page *page,
  5039. int start_bitidx, int end_bitidx)
  5040. {
  5041. struct zone *zone;
  5042. unsigned long *bitmap;
  5043. unsigned long pfn, bitidx;
  5044. unsigned long flags = 0;
  5045. unsigned long value = 1;
  5046. zone = page_zone(page);
  5047. pfn = page_to_pfn(page);
  5048. bitmap = get_pageblock_bitmap(zone, pfn);
  5049. bitidx = pfn_to_bitidx(zone, pfn);
  5050. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  5051. if (test_bit(bitidx + start_bitidx, bitmap))
  5052. flags |= value;
  5053. return flags;
  5054. }
  5055. /**
  5056. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  5057. * @page: The page within the block of interest
  5058. * @start_bitidx: The first bit of interest
  5059. * @end_bitidx: The last bit of interest
  5060. * @flags: The flags to set
  5061. */
  5062. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  5063. int start_bitidx, int end_bitidx)
  5064. {
  5065. struct zone *zone;
  5066. unsigned long *bitmap;
  5067. unsigned long pfn, bitidx;
  5068. unsigned long value = 1;
  5069. zone = page_zone(page);
  5070. pfn = page_to_pfn(page);
  5071. bitmap = get_pageblock_bitmap(zone, pfn);
  5072. bitidx = pfn_to_bitidx(zone, pfn);
  5073. VM_BUG_ON(pfn < zone->zone_start_pfn);
  5074. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  5075. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  5076. if (flags & value)
  5077. __set_bit(bitidx + start_bitidx, bitmap);
  5078. else
  5079. __clear_bit(bitidx + start_bitidx, bitmap);
  5080. }
  5081. /*
  5082. * This function checks whether pageblock includes unmovable pages or not.
  5083. * If @count is not zero, it is okay to include less @count unmovable pages
  5084. *
  5085. * PageLRU check wihtout isolation or lru_lock could race so that
  5086. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5087. * expect this function should be exact.
  5088. */
  5089. static bool
  5090. __has_unmovable_pages(struct zone *zone, struct page *page, int count)
  5091. {
  5092. unsigned long pfn, iter, found;
  5093. int mt;
  5094. /*
  5095. * For avoiding noise data, lru_add_drain_all() should be called
  5096. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5097. */
  5098. if (zone_idx(zone) == ZONE_MOVABLE)
  5099. return false;
  5100. mt = get_pageblock_migratetype(page);
  5101. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5102. return false;
  5103. pfn = page_to_pfn(page);
  5104. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5105. unsigned long check = pfn + iter;
  5106. if (!pfn_valid_within(check))
  5107. continue;
  5108. page = pfn_to_page(check);
  5109. /*
  5110. * We can't use page_count without pin a page
  5111. * because another CPU can free compound page.
  5112. * This check already skips compound tails of THP
  5113. * because their page->_count is zero at all time.
  5114. */
  5115. if (!atomic_read(&page->_count)) {
  5116. if (PageBuddy(page))
  5117. iter += (1 << page_order(page)) - 1;
  5118. continue;
  5119. }
  5120. if (!PageLRU(page))
  5121. found++;
  5122. /*
  5123. * If there are RECLAIMABLE pages, we need to check it.
  5124. * But now, memory offline itself doesn't call shrink_slab()
  5125. * and it still to be fixed.
  5126. */
  5127. /*
  5128. * If the page is not RAM, page_count()should be 0.
  5129. * we don't need more check. This is an _used_ not-movable page.
  5130. *
  5131. * The problematic thing here is PG_reserved pages. PG_reserved
  5132. * is set to both of a memory hole page and a _used_ kernel
  5133. * page at boot.
  5134. */
  5135. if (found > count)
  5136. return true;
  5137. }
  5138. return false;
  5139. }
  5140. bool is_pageblock_removable_nolock(struct page *page)
  5141. {
  5142. struct zone *zone;
  5143. unsigned long pfn;
  5144. /*
  5145. * We have to be careful here because we are iterating over memory
  5146. * sections which are not zone aware so we might end up outside of
  5147. * the zone but still within the section.
  5148. * We have to take care about the node as well. If the node is offline
  5149. * its NODE_DATA will be NULL - see page_zone.
  5150. */
  5151. if (!node_online(page_to_nid(page)))
  5152. return false;
  5153. zone = page_zone(page);
  5154. pfn = page_to_pfn(page);
  5155. if (zone->zone_start_pfn > pfn ||
  5156. zone->zone_start_pfn + zone->spanned_pages <= pfn)
  5157. return false;
  5158. return !__has_unmovable_pages(zone, page, 0);
  5159. }
  5160. int set_migratetype_isolate(struct page *page)
  5161. {
  5162. struct zone *zone;
  5163. unsigned long flags, pfn;
  5164. struct memory_isolate_notify arg;
  5165. int notifier_ret;
  5166. int ret = -EBUSY;
  5167. zone = page_zone(page);
  5168. spin_lock_irqsave(&zone->lock, flags);
  5169. pfn = page_to_pfn(page);
  5170. arg.start_pfn = pfn;
  5171. arg.nr_pages = pageblock_nr_pages;
  5172. arg.pages_found = 0;
  5173. /*
  5174. * It may be possible to isolate a pageblock even if the
  5175. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  5176. * notifier chain is used by balloon drivers to return the
  5177. * number of pages in a range that are held by the balloon
  5178. * driver to shrink memory. If all the pages are accounted for
  5179. * by balloons, are free, or on the LRU, isolation can continue.
  5180. * Later, for example, when memory hotplug notifier runs, these
  5181. * pages reported as "can be isolated" should be isolated(freed)
  5182. * by the balloon driver through the memory notifier chain.
  5183. */
  5184. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  5185. notifier_ret = notifier_to_errno(notifier_ret);
  5186. if (notifier_ret)
  5187. goto out;
  5188. /*
  5189. * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
  5190. * We just check MOVABLE pages.
  5191. */
  5192. if (!__has_unmovable_pages(zone, page, arg.pages_found))
  5193. ret = 0;
  5194. /*
  5195. * Unmovable means "not-on-lru" pages. If Unmovable pages are
  5196. * larger than removable-by-driver pages reported by notifier,
  5197. * we'll fail.
  5198. */
  5199. out:
  5200. if (!ret) {
  5201. unsigned long nr_pages;
  5202. int migratetype = get_pageblock_migratetype(page);
  5203. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  5204. nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE);
  5205. __mod_zone_freepage_state(zone, -nr_pages, migratetype);
  5206. }
  5207. spin_unlock_irqrestore(&zone->lock, flags);
  5208. if (!ret)
  5209. drain_all_pages();
  5210. return ret;
  5211. }
  5212. void unset_migratetype_isolate(struct page *page, unsigned migratetype)
  5213. {
  5214. struct zone *zone;
  5215. unsigned long flags, nr_pages;
  5216. zone = page_zone(page);
  5217. spin_lock_irqsave(&zone->lock, flags);
  5218. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  5219. goto out;
  5220. nr_pages = move_freepages_block(zone, page, migratetype);
  5221. __mod_zone_freepage_state(zone, nr_pages, migratetype);
  5222. set_pageblock_migratetype(page, migratetype);
  5223. out:
  5224. spin_unlock_irqrestore(&zone->lock, flags);
  5225. }
  5226. #ifdef CONFIG_CMA
  5227. static unsigned long pfn_max_align_down(unsigned long pfn)
  5228. {
  5229. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5230. pageblock_nr_pages) - 1);
  5231. }
  5232. static unsigned long pfn_max_align_up(unsigned long pfn)
  5233. {
  5234. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5235. pageblock_nr_pages));
  5236. }
  5237. static struct page *
  5238. __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
  5239. int **resultp)
  5240. {
  5241. gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
  5242. if (PageHighMem(page))
  5243. gfp_mask |= __GFP_HIGHMEM;
  5244. return alloc_page(gfp_mask);
  5245. }
  5246. /* [start, end) must belong to a single zone. */
  5247. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5248. unsigned long start, unsigned long end)
  5249. {
  5250. /* This function is based on compact_zone() from compaction.c. */
  5251. unsigned long nr_reclaimed;
  5252. unsigned long pfn = start;
  5253. unsigned int tries = 0;
  5254. int ret = 0;
  5255. migrate_prep();
  5256. while (pfn < end || !list_empty(&cc->migratepages)) {
  5257. if (fatal_signal_pending(current)) {
  5258. ret = -EINTR;
  5259. break;
  5260. }
  5261. if (list_empty(&cc->migratepages)) {
  5262. cc->nr_migratepages = 0;
  5263. pfn = isolate_migratepages_range(cc->zone, cc,
  5264. pfn, end, true);
  5265. if (!pfn) {
  5266. ret = -EINTR;
  5267. break;
  5268. }
  5269. tries = 0;
  5270. } else if (++tries == 5) {
  5271. ret = ret < 0 ? ret : -EBUSY;
  5272. break;
  5273. }
  5274. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, &cc->migratepages);
  5275. cc->nr_migratepages -= nr_reclaimed;
  5276. ret = migrate_pages(&cc->migratepages,
  5277. __alloc_contig_migrate_alloc,
  5278. 0, false, MIGRATE_SYNC);
  5279. }
  5280. putback_lru_pages(&cc->migratepages);
  5281. return ret > 0 ? 0 : ret;
  5282. }
  5283. /**
  5284. * alloc_contig_range() -- tries to allocate given range of pages
  5285. * @start: start PFN to allocate
  5286. * @end: one-past-the-last PFN to allocate
  5287. * @migratetype: migratetype of the underlaying pageblocks (either
  5288. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5289. * in range must have the same migratetype and it must
  5290. * be either of the two.
  5291. *
  5292. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5293. * aligned, however it's the caller's responsibility to guarantee that
  5294. * we are the only thread that changes migrate type of pageblocks the
  5295. * pages fall in.
  5296. *
  5297. * The PFN range must belong to a single zone.
  5298. *
  5299. * Returns zero on success or negative error code. On success all
  5300. * pages which PFN is in [start, end) are allocated for the caller and
  5301. * need to be freed with free_contig_range().
  5302. */
  5303. int alloc_contig_range(unsigned long start, unsigned long end,
  5304. unsigned migratetype)
  5305. {
  5306. struct zone *zone = page_zone(pfn_to_page(start));
  5307. unsigned long outer_start, outer_end;
  5308. int ret = 0, order;
  5309. struct compact_control cc = {
  5310. .nr_migratepages = 0,
  5311. .order = -1,
  5312. .zone = page_zone(pfn_to_page(start)),
  5313. .sync = true,
  5314. .ignore_skip_hint = true,
  5315. };
  5316. INIT_LIST_HEAD(&cc.migratepages);
  5317. /*
  5318. * What we do here is we mark all pageblocks in range as
  5319. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5320. * have different sizes, and due to the way page allocator
  5321. * work, we align the range to biggest of the two pages so
  5322. * that page allocator won't try to merge buddies from
  5323. * different pageblocks and change MIGRATE_ISOLATE to some
  5324. * other migration type.
  5325. *
  5326. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5327. * migrate the pages from an unaligned range (ie. pages that
  5328. * we are interested in). This will put all the pages in
  5329. * range back to page allocator as MIGRATE_ISOLATE.
  5330. *
  5331. * When this is done, we take the pages in range from page
  5332. * allocator removing them from the buddy system. This way
  5333. * page allocator will never consider using them.
  5334. *
  5335. * This lets us mark the pageblocks back as
  5336. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5337. * aligned range but not in the unaligned, original range are
  5338. * put back to page allocator so that buddy can use them.
  5339. */
  5340. ret = start_isolate_page_range(pfn_max_align_down(start),
  5341. pfn_max_align_up(end), migratetype);
  5342. if (ret)
  5343. goto done;
  5344. zone->cma_alloc = 1;
  5345. ret = __alloc_contig_migrate_range(&cc, start, end);
  5346. if (ret)
  5347. goto done;
  5348. /*
  5349. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5350. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5351. * more, all pages in [start, end) are free in page allocator.
  5352. * What we are going to do is to allocate all pages from
  5353. * [start, end) (that is remove them from page allocator).
  5354. *
  5355. * The only problem is that pages at the beginning and at the
  5356. * end of interesting range may be not aligned with pages that
  5357. * page allocator holds, ie. they can be part of higher order
  5358. * pages. Because of this, we reserve the bigger range and
  5359. * once this is done free the pages we are not interested in.
  5360. *
  5361. * We don't have to hold zone->lock here because the pages are
  5362. * isolated thus they won't get removed from buddy.
  5363. */
  5364. lru_add_drain_all();
  5365. drain_all_pages();
  5366. order = 0;
  5367. outer_start = start;
  5368. while (!PageBuddy(pfn_to_page(outer_start))) {
  5369. if (++order >= MAX_ORDER) {
  5370. ret = -EBUSY;
  5371. goto done;
  5372. }
  5373. outer_start &= ~0UL << order;
  5374. }
  5375. /* Make sure the range is really isolated. */
  5376. if (test_pages_isolated(outer_start, end)) {
  5377. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5378. outer_start, end);
  5379. ret = -EBUSY;
  5380. goto done;
  5381. }
  5382. /* Grab isolated pages from freelists. */
  5383. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5384. if (!outer_end) {
  5385. ret = -EBUSY;
  5386. goto done;
  5387. }
  5388. /* Free head and tail (if any) */
  5389. if (start != outer_start)
  5390. free_contig_range(outer_start, start - outer_start);
  5391. if (end != outer_end)
  5392. free_contig_range(end, outer_end - end);
  5393. done:
  5394. undo_isolate_page_range(pfn_max_align_down(start),
  5395. pfn_max_align_up(end), migratetype);
  5396. zone->cma_alloc = 0;
  5397. return ret;
  5398. }
  5399. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5400. {
  5401. unsigned int count = 0;
  5402. for (; nr_pages--; pfn++) {
  5403. struct page *page = pfn_to_page(pfn);
  5404. count += page_count(page) != 1;
  5405. __free_page(page);
  5406. }
  5407. WARN(count != 0, "%d pages are still in use!\n", count);
  5408. }
  5409. #endif
  5410. #ifdef CONFIG_MEMORY_HOTREMOVE
  5411. /*
  5412. * All pages in the range must be isolated before calling this.
  5413. */
  5414. void
  5415. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5416. {
  5417. struct page *page;
  5418. struct zone *zone;
  5419. int order, i;
  5420. unsigned long pfn;
  5421. unsigned long flags;
  5422. /* find the first valid pfn */
  5423. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5424. if (pfn_valid(pfn))
  5425. break;
  5426. if (pfn == end_pfn)
  5427. return;
  5428. zone = page_zone(pfn_to_page(pfn));
  5429. spin_lock_irqsave(&zone->lock, flags);
  5430. pfn = start_pfn;
  5431. while (pfn < end_pfn) {
  5432. if (!pfn_valid(pfn)) {
  5433. pfn++;
  5434. continue;
  5435. }
  5436. page = pfn_to_page(pfn);
  5437. BUG_ON(page_count(page));
  5438. BUG_ON(!PageBuddy(page));
  5439. order = page_order(page);
  5440. #ifdef CONFIG_DEBUG_VM
  5441. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5442. pfn, 1 << order, end_pfn);
  5443. #endif
  5444. list_del(&page->lru);
  5445. rmv_page_order(page);
  5446. zone->free_area[order].nr_free--;
  5447. #ifdef CONFIG_HIGHMEM
  5448. if (PageHighMem(page))
  5449. totalhigh_pages -= 1 << order;
  5450. #endif
  5451. for (i = 0; i < (1 << order); i++)
  5452. SetPageReserved((page+i));
  5453. pfn += (1 << order);
  5454. }
  5455. spin_unlock_irqrestore(&zone->lock, flags);
  5456. }
  5457. #endif
  5458. #ifdef CONFIG_MEMORY_FAILURE
  5459. bool is_free_buddy_page(struct page *page)
  5460. {
  5461. struct zone *zone = page_zone(page);
  5462. unsigned long pfn = page_to_pfn(page);
  5463. unsigned long flags;
  5464. int order;
  5465. spin_lock_irqsave(&zone->lock, flags);
  5466. for (order = 0; order < MAX_ORDER; order++) {
  5467. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5468. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5469. break;
  5470. }
  5471. spin_unlock_irqrestore(&zone->lock, flags);
  5472. return order < MAX_ORDER;
  5473. }
  5474. #endif
  5475. static struct trace_print_flags pageflag_names[] = {
  5476. {1UL << PG_locked, "locked" },
  5477. {1UL << PG_error, "error" },
  5478. {1UL << PG_referenced, "referenced" },
  5479. {1UL << PG_uptodate, "uptodate" },
  5480. {1UL << PG_dirty, "dirty" },
  5481. {1UL << PG_lru, "lru" },
  5482. {1UL << PG_active, "active" },
  5483. {1UL << PG_slab, "slab" },
  5484. {1UL << PG_owner_priv_1, "owner_priv_1" },
  5485. {1UL << PG_arch_1, "arch_1" },
  5486. {1UL << PG_reserved, "reserved" },
  5487. {1UL << PG_private, "private" },
  5488. {1UL << PG_private_2, "private_2" },
  5489. {1UL << PG_writeback, "writeback" },
  5490. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  5491. {1UL << PG_head, "head" },
  5492. {1UL << PG_tail, "tail" },
  5493. #else
  5494. {1UL << PG_compound, "compound" },
  5495. #endif
  5496. {1UL << PG_swapcache, "swapcache" },
  5497. {1UL << PG_mappedtodisk, "mappedtodisk" },
  5498. {1UL << PG_reclaim, "reclaim" },
  5499. {1UL << PG_swapbacked, "swapbacked" },
  5500. {1UL << PG_unevictable, "unevictable" },
  5501. #ifdef CONFIG_MMU
  5502. {1UL << PG_mlocked, "mlocked" },
  5503. #endif
  5504. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5505. {1UL << PG_uncached, "uncached" },
  5506. #endif
  5507. #ifdef CONFIG_MEMORY_FAILURE
  5508. {1UL << PG_hwpoison, "hwpoison" },
  5509. #endif
  5510. {1UL << PG_readahead, "PG_readahead" },
  5511. #ifdef CONFIG_SCFS_LOWER_PAGECACHE_INVALIDATION
  5512. {1UL << PG_scfslower, "scfslower"},
  5513. {1UL << PG_nocache,"nocache"},
  5514. #endif
  5515. };
  5516. static void dump_page_flags(unsigned long flags)
  5517. {
  5518. const char *delim = "";
  5519. unsigned long mask;
  5520. int i;
  5521. printk(KERN_ALERT "page flags: %#lx(", flags);
  5522. /* remove zone id */
  5523. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5524. for (i = 0; pageflag_names[i].name && flags; i++) {
  5525. mask = pageflag_names[i].mask;
  5526. if ((flags & mask) != mask)
  5527. continue;
  5528. flags &= ~mask;
  5529. printk("%s%s", delim, pageflag_names[i].name);
  5530. delim = "|";
  5531. }
  5532. /* check for left over flags */
  5533. if (flags)
  5534. printk("%s%#lx", delim, flags);
  5535. printk(")\n");
  5536. }
  5537. void dump_page(struct page *page)
  5538. {
  5539. printk(KERN_ALERT
  5540. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5541. page, atomic_read(&page->_count), page_mapcount(page),
  5542. page->mapping, page->index);
  5543. dump_page_flags(page->flags);
  5544. mem_cgroup_print_bad_page(page);
  5545. }