amd5536udc.c 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. */
  12. /*
  13. * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
  14. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
  15. * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
  16. *
  17. * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
  18. * be used as host port) and UOC bits PAD_EN and APU are set (should be done
  19. * by BIOS init).
  20. *
  21. * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
  22. * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
  23. * can be used with gadget ether.
  24. */
  25. /* debug control */
  26. /* #define UDC_VERBOSE */
  27. /* Driver strings */
  28. #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
  29. #define UDC_DRIVER_VERSION_STRING "01.00.0206"
  30. /* system */
  31. #include <linux/module.h>
  32. #include <linux/pci.h>
  33. #include <linux/kernel.h>
  34. #include <linux/delay.h>
  35. #include <linux/ioport.h>
  36. #include <linux/sched.h>
  37. #include <linux/slab.h>
  38. #include <linux/errno.h>
  39. #include <linux/init.h>
  40. #include <linux/timer.h>
  41. #include <linux/list.h>
  42. #include <linux/interrupt.h>
  43. #include <linux/ioctl.h>
  44. #include <linux/fs.h>
  45. #include <linux/dmapool.h>
  46. #include <linux/moduleparam.h>
  47. #include <linux/device.h>
  48. #include <linux/io.h>
  49. #include <linux/irq.h>
  50. #include <linux/prefetch.h>
  51. #include <asm/byteorder.h>
  52. #include <asm/unaligned.h>
  53. /* gadget stack */
  54. #include <linux/usb/ch9.h>
  55. #include <linux/usb/gadget.h>
  56. /* udc specific */
  57. #include "amd5536udc.h"
  58. static void udc_tasklet_disconnect(unsigned long);
  59. static void empty_req_queue(struct udc_ep *);
  60. static int udc_probe(struct udc *dev);
  61. static void udc_basic_init(struct udc *dev);
  62. static void udc_setup_endpoints(struct udc *dev);
  63. static void udc_soft_reset(struct udc *dev);
  64. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  65. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  66. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
  67. static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
  68. unsigned long buf_len, gfp_t gfp_flags);
  69. static int udc_remote_wakeup(struct udc *dev);
  70. static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  71. static void udc_pci_remove(struct pci_dev *pdev);
  72. /* description */
  73. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  74. static const char name[] = "amd5536udc";
  75. /* structure to hold endpoint function pointers */
  76. static const struct usb_ep_ops udc_ep_ops;
  77. /* received setup data */
  78. static union udc_setup_data setup_data;
  79. /* pointer to device object */
  80. static struct udc *udc;
  81. /* irq spin lock for soft reset */
  82. static DEFINE_SPINLOCK(udc_irq_spinlock);
  83. /* stall spin lock */
  84. static DEFINE_SPINLOCK(udc_stall_spinlock);
  85. /*
  86. * slave mode: pending bytes in rx fifo after nyet,
  87. * used if EPIN irq came but no req was available
  88. */
  89. static unsigned int udc_rxfifo_pending;
  90. /* count soft resets after suspend to avoid loop */
  91. static int soft_reset_occured;
  92. static int soft_reset_after_usbreset_occured;
  93. /* timer */
  94. static struct timer_list udc_timer;
  95. static int stop_timer;
  96. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  97. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  98. * all OUT endpoints. So we have to handle race conditions like
  99. * when OUT data reaches the fifo but no request was queued yet.
  100. * This cannot be solved by letting the RX DMA disabled until a
  101. * request gets queued because there may be other OUT packets
  102. * in the FIFO (important for not blocking control traffic).
  103. * The value of set_rde controls the correspondig timer.
  104. *
  105. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  106. * set_rde 0 == do not touch RDE, do no start the RDE timer
  107. * set_rde 1 == timer function will look whether FIFO has data
  108. * set_rde 2 == set by timer function to enable RX DMA on next call
  109. */
  110. static int set_rde = -1;
  111. static DECLARE_COMPLETION(on_exit);
  112. static struct timer_list udc_pollstall_timer;
  113. static int stop_pollstall_timer;
  114. static DECLARE_COMPLETION(on_pollstall_exit);
  115. /* tasklet for usb disconnect */
  116. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  117. (unsigned long) &udc);
  118. /* endpoint names used for print */
  119. static const char ep0_string[] = "ep0in";
  120. static const char *const ep_string[] = {
  121. ep0_string,
  122. "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
  123. "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
  124. "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
  125. "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
  126. "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
  127. "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
  128. "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
  129. };
  130. /* DMA usage flag */
  131. static bool use_dma = 1;
  132. /* packet per buffer dma */
  133. static bool use_dma_ppb = 1;
  134. /* with per descr. update */
  135. static bool use_dma_ppb_du;
  136. /* buffer fill mode */
  137. static int use_dma_bufferfill_mode;
  138. /* full speed only mode */
  139. static bool use_fullspeed;
  140. /* tx buffer size for high speed */
  141. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  142. /* module parameters */
  143. module_param(use_dma, bool, S_IRUGO);
  144. MODULE_PARM_DESC(use_dma, "true for DMA");
  145. module_param(use_dma_ppb, bool, S_IRUGO);
  146. MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
  147. module_param(use_dma_ppb_du, bool, S_IRUGO);
  148. MODULE_PARM_DESC(use_dma_ppb_du,
  149. "true for DMA in packet per buffer mode with descriptor update");
  150. module_param(use_fullspeed, bool, S_IRUGO);
  151. MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  152. /*---------------------------------------------------------------------------*/
  153. /* Prints UDC device registers and endpoint irq registers */
  154. static void print_regs(struct udc *dev)
  155. {
  156. DBG(dev, "------- Device registers -------\n");
  157. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  158. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  159. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  160. DBG(dev, "\n");
  161. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  162. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  163. DBG(dev, "\n");
  164. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  165. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  166. DBG(dev, "\n");
  167. DBG(dev, "USE DMA = %d\n", use_dma);
  168. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  169. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  170. "WITHOUT desc. update)\n");
  171. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  172. } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
  173. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  174. "WITH desc. update)\n");
  175. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  176. }
  177. if (use_dma && use_dma_bufferfill_mode) {
  178. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  179. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  180. }
  181. if (!use_dma)
  182. dev_info(&dev->pdev->dev, "FIFO mode\n");
  183. DBG(dev, "-------------------------------------------------------\n");
  184. }
  185. /* Masks unused interrupts */
  186. static int udc_mask_unused_interrupts(struct udc *dev)
  187. {
  188. u32 tmp;
  189. /* mask all dev interrupts */
  190. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  191. AMD_BIT(UDC_DEVINT_ENUM) |
  192. AMD_BIT(UDC_DEVINT_US) |
  193. AMD_BIT(UDC_DEVINT_UR) |
  194. AMD_BIT(UDC_DEVINT_ES) |
  195. AMD_BIT(UDC_DEVINT_SI) |
  196. AMD_BIT(UDC_DEVINT_SOF)|
  197. AMD_BIT(UDC_DEVINT_SC);
  198. writel(tmp, &dev->regs->irqmsk);
  199. /* mask all ep interrupts */
  200. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  201. return 0;
  202. }
  203. /* Enables endpoint 0 interrupts */
  204. static int udc_enable_ep0_interrupts(struct udc *dev)
  205. {
  206. u32 tmp;
  207. DBG(dev, "udc_enable_ep0_interrupts()\n");
  208. /* read irq mask */
  209. tmp = readl(&dev->regs->ep_irqmsk);
  210. /* enable ep0 irq's */
  211. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  212. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  213. writel(tmp, &dev->regs->ep_irqmsk);
  214. return 0;
  215. }
  216. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  217. static int udc_enable_dev_setup_interrupts(struct udc *dev)
  218. {
  219. u32 tmp;
  220. DBG(dev, "enable device interrupts for setup data\n");
  221. /* read irq mask */
  222. tmp = readl(&dev->regs->irqmsk);
  223. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  224. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  225. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  226. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  227. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  228. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  229. writel(tmp, &dev->regs->irqmsk);
  230. return 0;
  231. }
  232. /* Calculates fifo start of endpoint based on preceding endpoints */
  233. static int udc_set_txfifo_addr(struct udc_ep *ep)
  234. {
  235. struct udc *dev;
  236. u32 tmp;
  237. int i;
  238. if (!ep || !(ep->in))
  239. return -EINVAL;
  240. dev = ep->dev;
  241. ep->txfifo = dev->txfifo;
  242. /* traverse ep's */
  243. for (i = 0; i < ep->num; i++) {
  244. if (dev->ep[i].regs) {
  245. /* read fifo size */
  246. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  247. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  248. ep->txfifo += tmp;
  249. }
  250. }
  251. return 0;
  252. }
  253. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  254. static u32 cnak_pending;
  255. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  256. {
  257. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  258. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  259. cnak_pending |= 1 << (num);
  260. ep->naking = 1;
  261. } else
  262. cnak_pending = cnak_pending & (~(1 << (num)));
  263. }
  264. /* Enables endpoint, is called by gadget driver */
  265. static int
  266. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  267. {
  268. struct udc_ep *ep;
  269. struct udc *dev;
  270. u32 tmp;
  271. unsigned long iflags;
  272. u8 udc_csr_epix;
  273. unsigned maxpacket;
  274. if (!usbep
  275. || usbep->name == ep0_string
  276. || !desc
  277. || desc->bDescriptorType != USB_DT_ENDPOINT)
  278. return -EINVAL;
  279. ep = container_of(usbep, struct udc_ep, ep);
  280. dev = ep->dev;
  281. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  282. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  283. return -ESHUTDOWN;
  284. spin_lock_irqsave(&dev->lock, iflags);
  285. ep->desc = desc;
  286. ep->halted = 0;
  287. /* set traffic type */
  288. tmp = readl(&dev->ep[ep->num].regs->ctl);
  289. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  290. writel(tmp, &dev->ep[ep->num].regs->ctl);
  291. /* set max packet size */
  292. maxpacket = usb_endpoint_maxp(desc);
  293. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  294. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  295. ep->ep.maxpacket = maxpacket;
  296. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  297. /* IN ep */
  298. if (ep->in) {
  299. /* ep ix in UDC CSR register space */
  300. udc_csr_epix = ep->num;
  301. /* set buffer size (tx fifo entries) */
  302. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  303. /* double buffering: fifo size = 2 x max packet size */
  304. tmp = AMD_ADDBITS(
  305. tmp,
  306. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  307. / UDC_DWORD_BYTES,
  308. UDC_EPIN_BUFF_SIZE);
  309. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  310. /* calc. tx fifo base addr */
  311. udc_set_txfifo_addr(ep);
  312. /* flush fifo */
  313. tmp = readl(&ep->regs->ctl);
  314. tmp |= AMD_BIT(UDC_EPCTL_F);
  315. writel(tmp, &ep->regs->ctl);
  316. /* OUT ep */
  317. } else {
  318. /* ep ix in UDC CSR register space */
  319. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  320. /* set max packet size UDC CSR */
  321. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  322. tmp = AMD_ADDBITS(tmp, maxpacket,
  323. UDC_CSR_NE_MAX_PKT);
  324. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  325. if (use_dma && !ep->in) {
  326. /* alloc and init BNA dummy request */
  327. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  328. ep->bna_occurred = 0;
  329. }
  330. if (ep->num != UDC_EP0OUT_IX)
  331. dev->data_ep_enabled = 1;
  332. }
  333. /* set ep values */
  334. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  335. /* max packet */
  336. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  337. /* ep number */
  338. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  339. /* ep direction */
  340. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  341. /* ep type */
  342. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  343. /* ep config */
  344. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  345. /* ep interface */
  346. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  347. /* ep alt */
  348. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  349. /* write reg */
  350. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  351. /* enable ep irq */
  352. tmp = readl(&dev->regs->ep_irqmsk);
  353. tmp &= AMD_UNMASK_BIT(ep->num);
  354. writel(tmp, &dev->regs->ep_irqmsk);
  355. /*
  356. * clear NAK by writing CNAK
  357. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  358. */
  359. if (!use_dma || ep->in) {
  360. tmp = readl(&ep->regs->ctl);
  361. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  362. writel(tmp, &ep->regs->ctl);
  363. ep->naking = 0;
  364. UDC_QUEUE_CNAK(ep, ep->num);
  365. }
  366. tmp = desc->bEndpointAddress;
  367. DBG(dev, "%s enabled\n", usbep->name);
  368. spin_unlock_irqrestore(&dev->lock, iflags);
  369. return 0;
  370. }
  371. /* Resets endpoint */
  372. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  373. {
  374. u32 tmp;
  375. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  376. ep->desc = NULL;
  377. ep->ep.desc = NULL;
  378. ep->ep.ops = &udc_ep_ops;
  379. INIT_LIST_HEAD(&ep->queue);
  380. ep->ep.maxpacket = (u16) ~0;
  381. /* set NAK */
  382. tmp = readl(&ep->regs->ctl);
  383. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  384. writel(tmp, &ep->regs->ctl);
  385. ep->naking = 1;
  386. /* disable interrupt */
  387. tmp = readl(&regs->ep_irqmsk);
  388. tmp |= AMD_BIT(ep->num);
  389. writel(tmp, &regs->ep_irqmsk);
  390. if (ep->in) {
  391. /* unset P and IN bit of potential former DMA */
  392. tmp = readl(&ep->regs->ctl);
  393. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  394. writel(tmp, &ep->regs->ctl);
  395. tmp = readl(&ep->regs->sts);
  396. tmp |= AMD_BIT(UDC_EPSTS_IN);
  397. writel(tmp, &ep->regs->sts);
  398. /* flush the fifo */
  399. tmp = readl(&ep->regs->ctl);
  400. tmp |= AMD_BIT(UDC_EPCTL_F);
  401. writel(tmp, &ep->regs->ctl);
  402. }
  403. /* reset desc pointer */
  404. writel(0, &ep->regs->desptr);
  405. }
  406. /* Disables endpoint, is called by gadget driver */
  407. static int udc_ep_disable(struct usb_ep *usbep)
  408. {
  409. struct udc_ep *ep = NULL;
  410. unsigned long iflags;
  411. if (!usbep)
  412. return -EINVAL;
  413. ep = container_of(usbep, struct udc_ep, ep);
  414. if (usbep->name == ep0_string || !ep->desc)
  415. return -EINVAL;
  416. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  417. spin_lock_irqsave(&ep->dev->lock, iflags);
  418. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  419. empty_req_queue(ep);
  420. ep_init(ep->dev->regs, ep);
  421. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  422. return 0;
  423. }
  424. /* Allocates request packet, called by gadget driver */
  425. static struct usb_request *
  426. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  427. {
  428. struct udc_request *req;
  429. struct udc_data_dma *dma_desc;
  430. struct udc_ep *ep;
  431. if (!usbep)
  432. return NULL;
  433. ep = container_of(usbep, struct udc_ep, ep);
  434. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  435. req = kzalloc(sizeof(struct udc_request), gfp);
  436. if (!req)
  437. return NULL;
  438. req->req.dma = DMA_DONT_USE;
  439. INIT_LIST_HEAD(&req->queue);
  440. if (ep->dma) {
  441. /* ep0 in requests are allocated from data pool here */
  442. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  443. &req->td_phys);
  444. if (!dma_desc) {
  445. kfree(req);
  446. return NULL;
  447. }
  448. VDBG(ep->dev, "udc_alloc_req: req = %pK dma_desc = %pK, "
  449. "td_phys = %lx\n",
  450. req, dma_desc,
  451. (unsigned long)req->td_phys);
  452. /* prevent from using desc. - set HOST BUSY */
  453. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  454. UDC_DMA_STP_STS_BS_HOST_BUSY,
  455. UDC_DMA_STP_STS_BS);
  456. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  457. req->td_data = dma_desc;
  458. req->td_data_last = NULL;
  459. req->chain_len = 1;
  460. }
  461. return &req->req;
  462. }
  463. /* Frees request packet, called by gadget driver */
  464. static void
  465. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  466. {
  467. struct udc_ep *ep;
  468. struct udc_request *req;
  469. if (!usbep || !usbreq)
  470. return;
  471. ep = container_of(usbep, struct udc_ep, ep);
  472. req = container_of(usbreq, struct udc_request, req);
  473. VDBG(ep->dev, "free_req req=%pK\n", req);
  474. BUG_ON(!list_empty(&req->queue));
  475. if (req->td_data) {
  476. VDBG(ep->dev, "req->td_data=%pK\n", req->td_data);
  477. /* free dma chain if created */
  478. if (req->chain_len > 1)
  479. udc_free_dma_chain(ep->dev, req);
  480. pci_pool_free(ep->dev->data_requests, req->td_data,
  481. req->td_phys);
  482. }
  483. kfree(req);
  484. }
  485. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  486. static void udc_init_bna_dummy(struct udc_request *req)
  487. {
  488. if (req) {
  489. /* set last bit */
  490. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  491. /* set next pointer to itself */
  492. req->td_data->next = req->td_phys;
  493. /* set HOST BUSY */
  494. req->td_data->status
  495. = AMD_ADDBITS(req->td_data->status,
  496. UDC_DMA_STP_STS_BS_DMA_DONE,
  497. UDC_DMA_STP_STS_BS);
  498. #ifdef UDC_VERBOSE
  499. pr_debug("bna desc = %pK, sts = %08x\n",
  500. req->td_data, req->td_data->status);
  501. #endif
  502. }
  503. }
  504. /* Allocate BNA dummy descriptor */
  505. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  506. {
  507. struct udc_request *req = NULL;
  508. struct usb_request *_req = NULL;
  509. /* alloc the dummy request */
  510. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  511. if (_req) {
  512. req = container_of(_req, struct udc_request, req);
  513. ep->bna_dummy_req = req;
  514. udc_init_bna_dummy(req);
  515. }
  516. return req;
  517. }
  518. /* Write data to TX fifo for IN packets */
  519. static void
  520. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  521. {
  522. u8 *req_buf;
  523. u32 *buf;
  524. int i, j;
  525. unsigned bytes = 0;
  526. unsigned remaining = 0;
  527. if (!req || !ep)
  528. return;
  529. req_buf = req->buf + req->actual;
  530. prefetch(req_buf);
  531. remaining = req->length - req->actual;
  532. buf = (u32 *) req_buf;
  533. bytes = ep->ep.maxpacket;
  534. if (bytes > remaining)
  535. bytes = remaining;
  536. /* dwords first */
  537. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  538. writel(*(buf + i), ep->txfifo);
  539. /* remaining bytes must be written by byte access */
  540. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  541. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  542. ep->txfifo);
  543. }
  544. /* dummy write confirm */
  545. writel(0, &ep->regs->confirm);
  546. }
  547. /* Read dwords from RX fifo for OUT transfers */
  548. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  549. {
  550. int i;
  551. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  552. for (i = 0; i < dwords; i++)
  553. *(buf + i) = readl(dev->rxfifo);
  554. return 0;
  555. }
  556. /* Read bytes from RX fifo for OUT transfers */
  557. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  558. {
  559. int i, j;
  560. u32 tmp;
  561. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  562. /* dwords first */
  563. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  564. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  565. /* remaining bytes must be read by byte access */
  566. if (bytes % UDC_DWORD_BYTES) {
  567. tmp = readl(dev->rxfifo);
  568. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  569. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  570. tmp = tmp >> UDC_BITS_PER_BYTE;
  571. }
  572. }
  573. return 0;
  574. }
  575. /* Read data from RX fifo for OUT transfers */
  576. static int
  577. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  578. {
  579. u8 *buf;
  580. unsigned buf_space;
  581. unsigned bytes = 0;
  582. unsigned finished = 0;
  583. /* received number bytes */
  584. bytes = readl(&ep->regs->sts);
  585. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  586. buf_space = req->req.length - req->req.actual;
  587. buf = req->req.buf + req->req.actual;
  588. if (bytes > buf_space) {
  589. if ((buf_space % ep->ep.maxpacket) != 0) {
  590. DBG(ep->dev,
  591. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  592. ep->ep.name, bytes, buf_space);
  593. req->req.status = -EOVERFLOW;
  594. }
  595. bytes = buf_space;
  596. }
  597. req->req.actual += bytes;
  598. /* last packet ? */
  599. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  600. || ((req->req.actual == req->req.length) && !req->req.zero))
  601. finished = 1;
  602. /* read rx fifo bytes */
  603. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  604. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  605. return finished;
  606. }
  607. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  608. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  609. {
  610. int retval = 0;
  611. u32 tmp;
  612. VDBG(ep->dev, "prep_dma\n");
  613. VDBG(ep->dev, "prep_dma ep%d req->td_data=%pK\n",
  614. ep->num, req->td_data);
  615. /* set buffer pointer */
  616. req->td_data->bufptr = req->req.dma;
  617. /* set last bit */
  618. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  619. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  620. if (use_dma_ppb) {
  621. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  622. if (retval != 0) {
  623. if (retval == -ENOMEM)
  624. DBG(ep->dev, "Out of DMA memory\n");
  625. return retval;
  626. }
  627. if (ep->in) {
  628. if (req->req.length == ep->ep.maxpacket) {
  629. /* write tx bytes */
  630. req->td_data->status =
  631. AMD_ADDBITS(req->td_data->status,
  632. ep->ep.maxpacket,
  633. UDC_DMA_IN_STS_TXBYTES);
  634. }
  635. }
  636. }
  637. if (ep->in) {
  638. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  639. "maxpacket=%d ep%d\n",
  640. use_dma_ppb, req->req.length,
  641. ep->ep.maxpacket, ep->num);
  642. /*
  643. * if bytes < max packet then tx bytes must
  644. * be written in packet per buffer mode
  645. */
  646. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  647. || ep->num == UDC_EP0OUT_IX
  648. || ep->num == UDC_EP0IN_IX) {
  649. /* write tx bytes */
  650. req->td_data->status =
  651. AMD_ADDBITS(req->td_data->status,
  652. req->req.length,
  653. UDC_DMA_IN_STS_TXBYTES);
  654. /* reset frame num */
  655. req->td_data->status =
  656. AMD_ADDBITS(req->td_data->status,
  657. 0,
  658. UDC_DMA_IN_STS_FRAMENUM);
  659. }
  660. /* set HOST BUSY */
  661. req->td_data->status =
  662. AMD_ADDBITS(req->td_data->status,
  663. UDC_DMA_STP_STS_BS_HOST_BUSY,
  664. UDC_DMA_STP_STS_BS);
  665. } else {
  666. VDBG(ep->dev, "OUT set host ready\n");
  667. /* set HOST READY */
  668. req->td_data->status =
  669. AMD_ADDBITS(req->td_data->status,
  670. UDC_DMA_STP_STS_BS_HOST_READY,
  671. UDC_DMA_STP_STS_BS);
  672. /* clear NAK by writing CNAK */
  673. if (ep->naking) {
  674. tmp = readl(&ep->regs->ctl);
  675. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  676. writel(tmp, &ep->regs->ctl);
  677. ep->naking = 0;
  678. UDC_QUEUE_CNAK(ep, ep->num);
  679. }
  680. }
  681. return retval;
  682. }
  683. /* Completes request packet ... caller MUST hold lock */
  684. static void
  685. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  686. __releases(ep->dev->lock)
  687. __acquires(ep->dev->lock)
  688. {
  689. struct udc *dev;
  690. unsigned halted;
  691. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  692. dev = ep->dev;
  693. /* unmap DMA */
  694. if (ep->dma)
  695. usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
  696. halted = ep->halted;
  697. ep->halted = 1;
  698. /* set new status if pending */
  699. if (req->req.status == -EINPROGRESS)
  700. req->req.status = sts;
  701. /* remove from ep queue */
  702. list_del_init(&req->queue);
  703. VDBG(ep->dev, "req %pK => complete %d bytes at %s with sts %d\n",
  704. &req->req, req->req.length, ep->ep.name, sts);
  705. spin_unlock(&dev->lock);
  706. req->req.complete(&ep->ep, &req->req);
  707. spin_lock(&dev->lock);
  708. ep->halted = halted;
  709. }
  710. /* frees pci pool descriptors of a DMA chain */
  711. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  712. {
  713. int ret_val = 0;
  714. struct udc_data_dma *td;
  715. struct udc_data_dma *td_last = NULL;
  716. unsigned int i;
  717. DBG(dev, "free chain req = %pK\n", req);
  718. /* do not free first desc., will be done by free for request */
  719. td_last = req->td_data;
  720. td = phys_to_virt(td_last->next);
  721. for (i = 1; i < req->chain_len; i++) {
  722. pci_pool_free(dev->data_requests, td,
  723. (dma_addr_t) td_last->next);
  724. td_last = td;
  725. td = phys_to_virt(td_last->next);
  726. }
  727. return ret_val;
  728. }
  729. /* Iterates to the end of a DMA chain and returns last descriptor */
  730. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  731. {
  732. struct udc_data_dma *td;
  733. td = req->td_data;
  734. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
  735. td = phys_to_virt(td->next);
  736. return td;
  737. }
  738. /* Iterates to the end of a DMA chain and counts bytes received */
  739. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  740. {
  741. struct udc_data_dma *td;
  742. u32 count;
  743. td = req->td_data;
  744. /* received number bytes */
  745. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  746. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  747. td = phys_to_virt(td->next);
  748. /* received number bytes */
  749. if (td) {
  750. count += AMD_GETBITS(td->status,
  751. UDC_DMA_OUT_STS_RXBYTES);
  752. }
  753. }
  754. return count;
  755. }
  756. /* Creates or re-inits a DMA chain */
  757. static int udc_create_dma_chain(
  758. struct udc_ep *ep,
  759. struct udc_request *req,
  760. unsigned long buf_len, gfp_t gfp_flags
  761. )
  762. {
  763. unsigned long bytes = req->req.length;
  764. unsigned int i;
  765. dma_addr_t dma_addr;
  766. struct udc_data_dma *td = NULL;
  767. struct udc_data_dma *last = NULL;
  768. unsigned long txbytes;
  769. unsigned create_new_chain = 0;
  770. unsigned len;
  771. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  772. bytes, buf_len);
  773. dma_addr = DMA_DONT_USE;
  774. /* unset L bit in first desc for OUT */
  775. if (!ep->in)
  776. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  777. /* alloc only new desc's if not already available */
  778. len = req->req.length / ep->ep.maxpacket;
  779. if (req->req.length % ep->ep.maxpacket)
  780. len++;
  781. if (len > req->chain_len) {
  782. /* shorter chain already allocated before */
  783. if (req->chain_len > 1)
  784. udc_free_dma_chain(ep->dev, req);
  785. req->chain_len = len;
  786. create_new_chain = 1;
  787. }
  788. td = req->td_data;
  789. /* gen. required number of descriptors and buffers */
  790. for (i = buf_len; i < bytes; i += buf_len) {
  791. /* create or determine next desc. */
  792. if (create_new_chain) {
  793. td = pci_pool_alloc(ep->dev->data_requests,
  794. gfp_flags, &dma_addr);
  795. if (!td)
  796. return -ENOMEM;
  797. td->status = 0;
  798. } else if (i == buf_len) {
  799. /* first td */
  800. td = (struct udc_data_dma *) phys_to_virt(
  801. req->td_data->next);
  802. td->status = 0;
  803. } else {
  804. td = (struct udc_data_dma *) phys_to_virt(last->next);
  805. td->status = 0;
  806. }
  807. if (td)
  808. td->bufptr = req->req.dma + i; /* assign buffer */
  809. else
  810. break;
  811. /* short packet ? */
  812. if ((bytes - i) >= buf_len) {
  813. txbytes = buf_len;
  814. } else {
  815. /* short packet */
  816. txbytes = bytes - i;
  817. }
  818. /* link td and assign tx bytes */
  819. if (i == buf_len) {
  820. if (create_new_chain)
  821. req->td_data->next = dma_addr;
  822. /*
  823. else
  824. req->td_data->next = virt_to_phys(td);
  825. */
  826. /* write tx bytes */
  827. if (ep->in) {
  828. /* first desc */
  829. req->td_data->status =
  830. AMD_ADDBITS(req->td_data->status,
  831. ep->ep.maxpacket,
  832. UDC_DMA_IN_STS_TXBYTES);
  833. /* second desc */
  834. td->status = AMD_ADDBITS(td->status,
  835. txbytes,
  836. UDC_DMA_IN_STS_TXBYTES);
  837. }
  838. } else {
  839. if (create_new_chain)
  840. last->next = dma_addr;
  841. /*
  842. else
  843. last->next = virt_to_phys(td);
  844. */
  845. if (ep->in) {
  846. /* write tx bytes */
  847. td->status = AMD_ADDBITS(td->status,
  848. txbytes,
  849. UDC_DMA_IN_STS_TXBYTES);
  850. }
  851. }
  852. last = td;
  853. }
  854. /* set last bit */
  855. if (td) {
  856. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  857. /* last desc. points to itself */
  858. req->td_data_last = td;
  859. }
  860. return 0;
  861. }
  862. /* Enabling RX DMA */
  863. static void udc_set_rde(struct udc *dev)
  864. {
  865. u32 tmp;
  866. VDBG(dev, "udc_set_rde()\n");
  867. /* stop RDE timer */
  868. if (timer_pending(&udc_timer)) {
  869. set_rde = 0;
  870. mod_timer(&udc_timer, jiffies - 1);
  871. }
  872. /* set RDE */
  873. tmp = readl(&dev->regs->ctl);
  874. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  875. writel(tmp, &dev->regs->ctl);
  876. }
  877. /* Queues a request packet, called by gadget driver */
  878. static int
  879. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  880. {
  881. int retval = 0;
  882. u8 open_rxfifo = 0;
  883. unsigned long iflags;
  884. struct udc_ep *ep;
  885. struct udc_request *req;
  886. struct udc *dev;
  887. u32 tmp;
  888. /* check the inputs */
  889. req = container_of(usbreq, struct udc_request, req);
  890. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  891. || !list_empty(&req->queue))
  892. return -EINVAL;
  893. ep = container_of(usbep, struct udc_ep, ep);
  894. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  895. return -EINVAL;
  896. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  897. dev = ep->dev;
  898. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  899. return -ESHUTDOWN;
  900. /* map dma (usually done before) */
  901. if (ep->dma) {
  902. VDBG(dev, "DMA map req %pK\n", req);
  903. retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
  904. if (retval)
  905. return retval;
  906. }
  907. VDBG(dev, "%s queue req %pK, len %d req->td_data=%pK buf %pK\n",
  908. usbep->name, usbreq, usbreq->length,
  909. req->td_data, usbreq->buf);
  910. spin_lock_irqsave(&dev->lock, iflags);
  911. usbreq->actual = 0;
  912. usbreq->status = -EINPROGRESS;
  913. req->dma_done = 0;
  914. /* on empty queue just do first transfer */
  915. if (list_empty(&ep->queue)) {
  916. /* zlp */
  917. if (usbreq->length == 0) {
  918. /* IN zlp's are handled by hardware */
  919. complete_req(ep, req, 0);
  920. VDBG(dev, "%s: zlp\n", ep->ep.name);
  921. /*
  922. * if set_config or set_intf is waiting for ack by zlp
  923. * then set CSR_DONE
  924. */
  925. if (dev->set_cfg_not_acked) {
  926. tmp = readl(&dev->regs->ctl);
  927. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  928. writel(tmp, &dev->regs->ctl);
  929. dev->set_cfg_not_acked = 0;
  930. }
  931. /* setup command is ACK'ed now by zlp */
  932. if (dev->waiting_zlp_ack_ep0in) {
  933. /* clear NAK by writing CNAK in EP0_IN */
  934. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  935. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  936. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  937. dev->ep[UDC_EP0IN_IX].naking = 0;
  938. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  939. UDC_EP0IN_IX);
  940. dev->waiting_zlp_ack_ep0in = 0;
  941. }
  942. goto finished;
  943. }
  944. if (ep->dma) {
  945. retval = prep_dma(ep, req, gfp);
  946. if (retval != 0)
  947. goto finished;
  948. /* write desc pointer to enable DMA */
  949. if (ep->in) {
  950. /* set HOST READY */
  951. req->td_data->status =
  952. AMD_ADDBITS(req->td_data->status,
  953. UDC_DMA_IN_STS_BS_HOST_READY,
  954. UDC_DMA_IN_STS_BS);
  955. }
  956. /* disabled rx dma while descriptor update */
  957. if (!ep->in) {
  958. /* stop RDE timer */
  959. if (timer_pending(&udc_timer)) {
  960. set_rde = 0;
  961. mod_timer(&udc_timer, jiffies - 1);
  962. }
  963. /* clear RDE */
  964. tmp = readl(&dev->regs->ctl);
  965. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  966. writel(tmp, &dev->regs->ctl);
  967. open_rxfifo = 1;
  968. /*
  969. * if BNA occurred then let BNA dummy desc.
  970. * point to current desc.
  971. */
  972. if (ep->bna_occurred) {
  973. VDBG(dev, "copy to BNA dummy desc.\n");
  974. memcpy(ep->bna_dummy_req->td_data,
  975. req->td_data,
  976. sizeof(struct udc_data_dma));
  977. }
  978. }
  979. /* write desc pointer */
  980. writel(req->td_phys, &ep->regs->desptr);
  981. /* clear NAK by writing CNAK */
  982. if (ep->naking) {
  983. tmp = readl(&ep->regs->ctl);
  984. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  985. writel(tmp, &ep->regs->ctl);
  986. ep->naking = 0;
  987. UDC_QUEUE_CNAK(ep, ep->num);
  988. }
  989. if (ep->in) {
  990. /* enable ep irq */
  991. tmp = readl(&dev->regs->ep_irqmsk);
  992. tmp &= AMD_UNMASK_BIT(ep->num);
  993. writel(tmp, &dev->regs->ep_irqmsk);
  994. }
  995. } else if (ep->in) {
  996. /* enable ep irq */
  997. tmp = readl(&dev->regs->ep_irqmsk);
  998. tmp &= AMD_UNMASK_BIT(ep->num);
  999. writel(tmp, &dev->regs->ep_irqmsk);
  1000. }
  1001. } else if (ep->dma) {
  1002. /*
  1003. * prep_dma not used for OUT ep's, this is not possible
  1004. * for PPB modes, because of chain creation reasons
  1005. */
  1006. if (ep->in) {
  1007. retval = prep_dma(ep, req, gfp);
  1008. if (retval != 0)
  1009. goto finished;
  1010. }
  1011. }
  1012. VDBG(dev, "list_add\n");
  1013. /* add request to ep queue */
  1014. if (req) {
  1015. list_add_tail(&req->queue, &ep->queue);
  1016. /* open rxfifo if out data queued */
  1017. if (open_rxfifo) {
  1018. /* enable DMA */
  1019. req->dma_going = 1;
  1020. udc_set_rde(dev);
  1021. if (ep->num != UDC_EP0OUT_IX)
  1022. dev->data_ep_queued = 1;
  1023. }
  1024. /* stop OUT naking */
  1025. if (!ep->in) {
  1026. if (!use_dma && udc_rxfifo_pending) {
  1027. DBG(dev, "udc_queue(): pending bytes in "
  1028. "rxfifo after nyet\n");
  1029. /*
  1030. * read pending bytes afer nyet:
  1031. * referring to isr
  1032. */
  1033. if (udc_rxfifo_read(ep, req)) {
  1034. /* finish */
  1035. complete_req(ep, req, 0);
  1036. }
  1037. udc_rxfifo_pending = 0;
  1038. }
  1039. }
  1040. }
  1041. finished:
  1042. spin_unlock_irqrestore(&dev->lock, iflags);
  1043. return retval;
  1044. }
  1045. /* Empty request queue of an endpoint; caller holds spinlock */
  1046. static void empty_req_queue(struct udc_ep *ep)
  1047. {
  1048. struct udc_request *req;
  1049. ep->halted = 1;
  1050. while (!list_empty(&ep->queue)) {
  1051. req = list_entry(ep->queue.next,
  1052. struct udc_request,
  1053. queue);
  1054. complete_req(ep, req, -ESHUTDOWN);
  1055. }
  1056. }
  1057. /* Dequeues a request packet, called by gadget driver */
  1058. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1059. {
  1060. struct udc_ep *ep;
  1061. struct udc_request *req;
  1062. unsigned halted;
  1063. unsigned long iflags;
  1064. ep = container_of(usbep, struct udc_ep, ep);
  1065. if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
  1066. && ep->num != UDC_EP0OUT_IX)))
  1067. return -EINVAL;
  1068. req = container_of(usbreq, struct udc_request, req);
  1069. spin_lock_irqsave(&ep->dev->lock, iflags);
  1070. halted = ep->halted;
  1071. ep->halted = 1;
  1072. /* request in processing or next one */
  1073. if (ep->queue.next == &req->queue) {
  1074. if (ep->dma && req->dma_going) {
  1075. if (ep->in)
  1076. ep->cancel_transfer = 1;
  1077. else {
  1078. u32 tmp;
  1079. u32 dma_sts;
  1080. /* stop potential receive DMA */
  1081. tmp = readl(&udc->regs->ctl);
  1082. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1083. &udc->regs->ctl);
  1084. /*
  1085. * Cancel transfer later in ISR
  1086. * if descriptor was touched.
  1087. */
  1088. dma_sts = AMD_GETBITS(req->td_data->status,
  1089. UDC_DMA_OUT_STS_BS);
  1090. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1091. ep->cancel_transfer = 1;
  1092. else {
  1093. udc_init_bna_dummy(ep->req);
  1094. writel(ep->bna_dummy_req->td_phys,
  1095. &ep->regs->desptr);
  1096. }
  1097. writel(tmp, &udc->regs->ctl);
  1098. }
  1099. }
  1100. }
  1101. complete_req(ep, req, -ECONNRESET);
  1102. ep->halted = halted;
  1103. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1104. return 0;
  1105. }
  1106. /* Halt or clear halt of endpoint */
  1107. static int
  1108. udc_set_halt(struct usb_ep *usbep, int halt)
  1109. {
  1110. struct udc_ep *ep;
  1111. u32 tmp;
  1112. unsigned long iflags;
  1113. int retval = 0;
  1114. if (!usbep)
  1115. return -EINVAL;
  1116. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1117. ep = container_of(usbep, struct udc_ep, ep);
  1118. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1119. return -EINVAL;
  1120. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1121. return -ESHUTDOWN;
  1122. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1123. /* halt or clear halt */
  1124. if (halt) {
  1125. if (ep->num == 0)
  1126. ep->dev->stall_ep0in = 1;
  1127. else {
  1128. /*
  1129. * set STALL
  1130. * rxfifo empty not taken into acount
  1131. */
  1132. tmp = readl(&ep->regs->ctl);
  1133. tmp |= AMD_BIT(UDC_EPCTL_S);
  1134. writel(tmp, &ep->regs->ctl);
  1135. ep->halted = 1;
  1136. /* setup poll timer */
  1137. if (!timer_pending(&udc_pollstall_timer)) {
  1138. udc_pollstall_timer.expires = jiffies +
  1139. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1140. / (1000 * 1000);
  1141. if (!stop_pollstall_timer) {
  1142. DBG(ep->dev, "start polltimer\n");
  1143. add_timer(&udc_pollstall_timer);
  1144. }
  1145. }
  1146. }
  1147. } else {
  1148. /* ep is halted by set_halt() before */
  1149. if (ep->halted) {
  1150. tmp = readl(&ep->regs->ctl);
  1151. /* clear stall bit */
  1152. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1153. /* clear NAK by writing CNAK */
  1154. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1155. writel(tmp, &ep->regs->ctl);
  1156. ep->halted = 0;
  1157. UDC_QUEUE_CNAK(ep, ep->num);
  1158. }
  1159. }
  1160. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1161. return retval;
  1162. }
  1163. /* gadget interface */
  1164. static const struct usb_ep_ops udc_ep_ops = {
  1165. .enable = udc_ep_enable,
  1166. .disable = udc_ep_disable,
  1167. .alloc_request = udc_alloc_request,
  1168. .free_request = udc_free_request,
  1169. .queue = udc_queue,
  1170. .dequeue = udc_dequeue,
  1171. .set_halt = udc_set_halt,
  1172. /* fifo ops not implemented */
  1173. };
  1174. /*-------------------------------------------------------------------------*/
  1175. /* Get frame counter (not implemented) */
  1176. static int udc_get_frame(struct usb_gadget *gadget)
  1177. {
  1178. return -EOPNOTSUPP;
  1179. }
  1180. /* Remote wakeup gadget interface */
  1181. static int udc_wakeup(struct usb_gadget *gadget)
  1182. {
  1183. struct udc *dev;
  1184. if (!gadget)
  1185. return -EINVAL;
  1186. dev = container_of(gadget, struct udc, gadget);
  1187. udc_remote_wakeup(dev);
  1188. return 0;
  1189. }
  1190. static int amd5536_start(struct usb_gadget_driver *driver,
  1191. int (*bind)(struct usb_gadget *));
  1192. static int amd5536_stop(struct usb_gadget_driver *driver);
  1193. /* gadget operations */
  1194. static const struct usb_gadget_ops udc_ops = {
  1195. .wakeup = udc_wakeup,
  1196. .get_frame = udc_get_frame,
  1197. .start = amd5536_start,
  1198. .stop = amd5536_stop,
  1199. };
  1200. /* Setups endpoint parameters, adds endpoints to linked list */
  1201. static void make_ep_lists(struct udc *dev)
  1202. {
  1203. /* make gadget ep lists */
  1204. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1205. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1206. &dev->gadget.ep_list);
  1207. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1208. &dev->gadget.ep_list);
  1209. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1210. &dev->gadget.ep_list);
  1211. /* fifo config */
  1212. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1213. if (dev->gadget.speed == USB_SPEED_FULL)
  1214. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1215. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1216. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1217. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1218. }
  1219. /* init registers at driver load time */
  1220. static int startup_registers(struct udc *dev)
  1221. {
  1222. u32 tmp;
  1223. /* init controller by soft reset */
  1224. udc_soft_reset(dev);
  1225. /* mask not needed interrupts */
  1226. udc_mask_unused_interrupts(dev);
  1227. /* put into initial config */
  1228. udc_basic_init(dev);
  1229. /* link up all endpoints */
  1230. udc_setup_endpoints(dev);
  1231. /* program speed */
  1232. tmp = readl(&dev->regs->cfg);
  1233. if (use_fullspeed)
  1234. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1235. else
  1236. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1237. writel(tmp, &dev->regs->cfg);
  1238. return 0;
  1239. }
  1240. /* Inits UDC context */
  1241. static void udc_basic_init(struct udc *dev)
  1242. {
  1243. u32 tmp;
  1244. DBG(dev, "udc_basic_init()\n");
  1245. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1246. /* stop RDE timer */
  1247. if (timer_pending(&udc_timer)) {
  1248. set_rde = 0;
  1249. mod_timer(&udc_timer, jiffies - 1);
  1250. }
  1251. /* stop poll stall timer */
  1252. if (timer_pending(&udc_pollstall_timer))
  1253. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1254. /* disable DMA */
  1255. tmp = readl(&dev->regs->ctl);
  1256. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1257. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1258. writel(tmp, &dev->regs->ctl);
  1259. /* enable dynamic CSR programming */
  1260. tmp = readl(&dev->regs->cfg);
  1261. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1262. /* set self powered */
  1263. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1264. /* set remote wakeupable */
  1265. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1266. writel(tmp, &dev->regs->cfg);
  1267. make_ep_lists(dev);
  1268. dev->data_ep_enabled = 0;
  1269. dev->data_ep_queued = 0;
  1270. }
  1271. /* Sets initial endpoint parameters */
  1272. static void udc_setup_endpoints(struct udc *dev)
  1273. {
  1274. struct udc_ep *ep;
  1275. u32 tmp;
  1276. u32 reg;
  1277. DBG(dev, "udc_setup_endpoints()\n");
  1278. /* read enum speed */
  1279. tmp = readl(&dev->regs->sts);
  1280. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1281. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
  1282. dev->gadget.speed = USB_SPEED_HIGH;
  1283. else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
  1284. dev->gadget.speed = USB_SPEED_FULL;
  1285. /* set basic ep parameters */
  1286. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1287. ep = &dev->ep[tmp];
  1288. ep->dev = dev;
  1289. ep->ep.name = ep_string[tmp];
  1290. ep->num = tmp;
  1291. /* txfifo size is calculated at enable time */
  1292. ep->txfifo = dev->txfifo;
  1293. /* fifo size */
  1294. if (tmp < UDC_EPIN_NUM) {
  1295. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1296. ep->in = 1;
  1297. } else {
  1298. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1299. ep->in = 0;
  1300. }
  1301. ep->regs = &dev->ep_regs[tmp];
  1302. /*
  1303. * ep will be reset only if ep was not enabled before to avoid
  1304. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1305. * not enabled by gadget driver
  1306. */
  1307. if (!ep->desc)
  1308. ep_init(dev->regs, ep);
  1309. if (use_dma) {
  1310. /*
  1311. * ep->dma is not really used, just to indicate that
  1312. * DMA is active: remove this
  1313. * dma regs = dev control regs
  1314. */
  1315. ep->dma = &dev->regs->ctl;
  1316. /* nak OUT endpoints until enable - not for ep0 */
  1317. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1318. && tmp > UDC_EPIN_NUM) {
  1319. /* set NAK */
  1320. reg = readl(&dev->ep[tmp].regs->ctl);
  1321. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1322. writel(reg, &dev->ep[tmp].regs->ctl);
  1323. dev->ep[tmp].naking = 1;
  1324. }
  1325. }
  1326. }
  1327. /* EP0 max packet */
  1328. if (dev->gadget.speed == USB_SPEED_FULL) {
  1329. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
  1330. dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
  1331. UDC_FS_EP0OUT_MAX_PKT_SIZE;
  1332. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1333. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  1334. dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  1335. }
  1336. /*
  1337. * with suspend bug workaround, ep0 params for gadget driver
  1338. * are set at gadget driver bind() call
  1339. */
  1340. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1341. dev->ep[UDC_EP0IN_IX].halted = 0;
  1342. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1343. /* init cfg/alt/int */
  1344. dev->cur_config = 0;
  1345. dev->cur_intf = 0;
  1346. dev->cur_alt = 0;
  1347. }
  1348. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1349. static void usb_connect(struct udc *dev)
  1350. {
  1351. dev_info(&dev->pdev->dev, "USB Connect\n");
  1352. dev->connected = 1;
  1353. /* put into initial config */
  1354. udc_basic_init(dev);
  1355. /* enable device setup interrupts */
  1356. udc_enable_dev_setup_interrupts(dev);
  1357. }
  1358. /*
  1359. * Calls gadget with disconnect event and resets the UDC and makes
  1360. * initial bringup to be ready for ep0 events
  1361. */
  1362. static void usb_disconnect(struct udc *dev)
  1363. {
  1364. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1365. dev->connected = 0;
  1366. /* mask interrupts */
  1367. udc_mask_unused_interrupts(dev);
  1368. /* REVISIT there doesn't seem to be a point to having this
  1369. * talk to a tasklet ... do it directly, we already hold
  1370. * the spinlock needed to process the disconnect.
  1371. */
  1372. tasklet_schedule(&disconnect_tasklet);
  1373. }
  1374. /* Tasklet for disconnect to be outside of interrupt context */
  1375. static void udc_tasklet_disconnect(unsigned long par)
  1376. {
  1377. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1378. u32 tmp;
  1379. DBG(dev, "Tasklet disconnect\n");
  1380. spin_lock_irq(&dev->lock);
  1381. if (dev->driver) {
  1382. spin_unlock(&dev->lock);
  1383. dev->driver->disconnect(&dev->gadget);
  1384. spin_lock(&dev->lock);
  1385. /* empty queues */
  1386. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1387. empty_req_queue(&dev->ep[tmp]);
  1388. }
  1389. /* disable ep0 */
  1390. ep_init(dev->regs,
  1391. &dev->ep[UDC_EP0IN_IX]);
  1392. if (!soft_reset_occured) {
  1393. /* init controller by soft reset */
  1394. udc_soft_reset(dev);
  1395. soft_reset_occured++;
  1396. }
  1397. /* re-enable dev interrupts */
  1398. udc_enable_dev_setup_interrupts(dev);
  1399. /* back to full speed ? */
  1400. if (use_fullspeed) {
  1401. tmp = readl(&dev->regs->cfg);
  1402. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1403. writel(tmp, &dev->regs->cfg);
  1404. }
  1405. spin_unlock_irq(&dev->lock);
  1406. }
  1407. /* Reset the UDC core */
  1408. static void udc_soft_reset(struct udc *dev)
  1409. {
  1410. unsigned long flags;
  1411. DBG(dev, "Soft reset\n");
  1412. /*
  1413. * reset possible waiting interrupts, because int.
  1414. * status is lost after soft reset,
  1415. * ep int. status reset
  1416. */
  1417. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1418. /* device int. status reset */
  1419. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1420. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1421. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1422. readl(&dev->regs->cfg);
  1423. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1424. }
  1425. /* RDE timer callback to set RDE bit */
  1426. static void udc_timer_function(unsigned long v)
  1427. {
  1428. u32 tmp;
  1429. spin_lock_irq(&udc_irq_spinlock);
  1430. if (set_rde > 0) {
  1431. /*
  1432. * open the fifo if fifo was filled on last timer call
  1433. * conditionally
  1434. */
  1435. if (set_rde > 1) {
  1436. /* set RDE to receive setup data */
  1437. tmp = readl(&udc->regs->ctl);
  1438. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1439. writel(tmp, &udc->regs->ctl);
  1440. set_rde = -1;
  1441. } else if (readl(&udc->regs->sts)
  1442. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1443. /*
  1444. * if fifo empty setup polling, do not just
  1445. * open the fifo
  1446. */
  1447. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1448. if (!stop_timer)
  1449. add_timer(&udc_timer);
  1450. } else {
  1451. /*
  1452. * fifo contains data now, setup timer for opening
  1453. * the fifo when timer expires to be able to receive
  1454. * setup packets, when data packets gets queued by
  1455. * gadget layer then timer will forced to expire with
  1456. * set_rde=0 (RDE is set in udc_queue())
  1457. */
  1458. set_rde++;
  1459. /* debug: lhadmot_timer_start = 221070 */
  1460. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1461. if (!stop_timer)
  1462. add_timer(&udc_timer);
  1463. }
  1464. } else
  1465. set_rde = -1; /* RDE was set by udc_queue() */
  1466. spin_unlock_irq(&udc_irq_spinlock);
  1467. if (stop_timer)
  1468. complete(&on_exit);
  1469. }
  1470. /* Handle halt state, used in stall poll timer */
  1471. static void udc_handle_halt_state(struct udc_ep *ep)
  1472. {
  1473. u32 tmp;
  1474. /* set stall as long not halted */
  1475. if (ep->halted == 1) {
  1476. tmp = readl(&ep->regs->ctl);
  1477. /* STALL cleared ? */
  1478. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1479. /*
  1480. * FIXME: MSC spec requires that stall remains
  1481. * even on receivng of CLEAR_FEATURE HALT. So
  1482. * we would set STALL again here to be compliant.
  1483. * But with current mass storage drivers this does
  1484. * not work (would produce endless host retries).
  1485. * So we clear halt on CLEAR_FEATURE.
  1486. *
  1487. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1488. tmp |= AMD_BIT(UDC_EPCTL_S);
  1489. writel(tmp, &ep->regs->ctl);*/
  1490. /* clear NAK by writing CNAK */
  1491. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1492. writel(tmp, &ep->regs->ctl);
  1493. ep->halted = 0;
  1494. UDC_QUEUE_CNAK(ep, ep->num);
  1495. }
  1496. }
  1497. }
  1498. /* Stall timer callback to poll S bit and set it again after */
  1499. static void udc_pollstall_timer_function(unsigned long v)
  1500. {
  1501. struct udc_ep *ep;
  1502. int halted = 0;
  1503. spin_lock_irq(&udc_stall_spinlock);
  1504. /*
  1505. * only one IN and OUT endpoints are handled
  1506. * IN poll stall
  1507. */
  1508. ep = &udc->ep[UDC_EPIN_IX];
  1509. udc_handle_halt_state(ep);
  1510. if (ep->halted)
  1511. halted = 1;
  1512. /* OUT poll stall */
  1513. ep = &udc->ep[UDC_EPOUT_IX];
  1514. udc_handle_halt_state(ep);
  1515. if (ep->halted)
  1516. halted = 1;
  1517. /* setup timer again when still halted */
  1518. if (!stop_pollstall_timer && halted) {
  1519. udc_pollstall_timer.expires = jiffies +
  1520. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1521. / (1000 * 1000);
  1522. add_timer(&udc_pollstall_timer);
  1523. }
  1524. spin_unlock_irq(&udc_stall_spinlock);
  1525. if (stop_pollstall_timer)
  1526. complete(&on_pollstall_exit);
  1527. }
  1528. /* Inits endpoint 0 so that SETUP packets are processed */
  1529. static void activate_control_endpoints(struct udc *dev)
  1530. {
  1531. u32 tmp;
  1532. DBG(dev, "activate_control_endpoints\n");
  1533. /* flush fifo */
  1534. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1535. tmp |= AMD_BIT(UDC_EPCTL_F);
  1536. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1537. /* set ep0 directions */
  1538. dev->ep[UDC_EP0IN_IX].in = 1;
  1539. dev->ep[UDC_EP0OUT_IX].in = 0;
  1540. /* set buffer size (tx fifo entries) of EP0_IN */
  1541. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1542. if (dev->gadget.speed == USB_SPEED_FULL)
  1543. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1544. UDC_EPIN_BUFF_SIZE);
  1545. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1546. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1547. UDC_EPIN_BUFF_SIZE);
  1548. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1549. /* set max packet size of EP0_IN */
  1550. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1551. if (dev->gadget.speed == USB_SPEED_FULL)
  1552. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1553. UDC_EP_MAX_PKT_SIZE);
  1554. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1555. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1556. UDC_EP_MAX_PKT_SIZE);
  1557. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1558. /* set max packet size of EP0_OUT */
  1559. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1560. if (dev->gadget.speed == USB_SPEED_FULL)
  1561. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1562. UDC_EP_MAX_PKT_SIZE);
  1563. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1564. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1565. UDC_EP_MAX_PKT_SIZE);
  1566. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1567. /* set max packet size of EP0 in UDC CSR */
  1568. tmp = readl(&dev->csr->ne[0]);
  1569. if (dev->gadget.speed == USB_SPEED_FULL)
  1570. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1571. UDC_CSR_NE_MAX_PKT);
  1572. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1573. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1574. UDC_CSR_NE_MAX_PKT);
  1575. writel(tmp, &dev->csr->ne[0]);
  1576. if (use_dma) {
  1577. dev->ep[UDC_EP0OUT_IX].td->status |=
  1578. AMD_BIT(UDC_DMA_OUT_STS_L);
  1579. /* write dma desc address */
  1580. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1581. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1582. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1583. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1584. /* stop RDE timer */
  1585. if (timer_pending(&udc_timer)) {
  1586. set_rde = 0;
  1587. mod_timer(&udc_timer, jiffies - 1);
  1588. }
  1589. /* stop pollstall timer */
  1590. if (timer_pending(&udc_pollstall_timer))
  1591. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1592. /* enable DMA */
  1593. tmp = readl(&dev->regs->ctl);
  1594. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1595. | AMD_BIT(UDC_DEVCTL_RDE)
  1596. | AMD_BIT(UDC_DEVCTL_TDE);
  1597. if (use_dma_bufferfill_mode)
  1598. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1599. else if (use_dma_ppb_du)
  1600. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1601. writel(tmp, &dev->regs->ctl);
  1602. }
  1603. /* clear NAK by writing CNAK for EP0IN */
  1604. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1605. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1606. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1607. dev->ep[UDC_EP0IN_IX].naking = 0;
  1608. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1609. /* clear NAK by writing CNAK for EP0OUT */
  1610. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1611. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1612. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1613. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1614. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1615. }
  1616. /* Make endpoint 0 ready for control traffic */
  1617. static int setup_ep0(struct udc *dev)
  1618. {
  1619. activate_control_endpoints(dev);
  1620. /* enable ep0 interrupts */
  1621. udc_enable_ep0_interrupts(dev);
  1622. /* enable device setup interrupts */
  1623. udc_enable_dev_setup_interrupts(dev);
  1624. return 0;
  1625. }
  1626. /* Called by gadget driver to register itself */
  1627. static int amd5536_start(struct usb_gadget_driver *driver,
  1628. int (*bind)(struct usb_gadget *))
  1629. {
  1630. struct udc *dev = udc;
  1631. int retval;
  1632. u32 tmp;
  1633. if (!driver || !bind || !driver->setup
  1634. || driver->max_speed < USB_SPEED_HIGH)
  1635. return -EINVAL;
  1636. if (!dev)
  1637. return -ENODEV;
  1638. if (dev->driver)
  1639. return -EBUSY;
  1640. driver->driver.bus = NULL;
  1641. dev->driver = driver;
  1642. dev->gadget.dev.driver = &driver->driver;
  1643. retval = bind(&dev->gadget);
  1644. /* Some gadget drivers use both ep0 directions.
  1645. * NOTE: to gadget driver, ep0 is just one endpoint...
  1646. */
  1647. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1648. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1649. if (retval) {
  1650. DBG(dev, "binding to %s returning %d\n",
  1651. driver->driver.name, retval);
  1652. dev->driver = NULL;
  1653. dev->gadget.dev.driver = NULL;
  1654. return retval;
  1655. }
  1656. /* get ready for ep0 traffic */
  1657. setup_ep0(dev);
  1658. /* clear SD */
  1659. tmp = readl(&dev->regs->ctl);
  1660. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1661. writel(tmp, &dev->regs->ctl);
  1662. usb_connect(dev);
  1663. return 0;
  1664. }
  1665. /* shutdown requests and disconnect from gadget */
  1666. static void
  1667. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1668. __releases(dev->lock)
  1669. __acquires(dev->lock)
  1670. {
  1671. int tmp;
  1672. if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
  1673. spin_unlock(&dev->lock);
  1674. driver->disconnect(&dev->gadget);
  1675. spin_lock(&dev->lock);
  1676. }
  1677. /* empty queues and init hardware */
  1678. udc_basic_init(dev);
  1679. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1680. empty_req_queue(&dev->ep[tmp]);
  1681. udc_setup_endpoints(dev);
  1682. }
  1683. /* Called by gadget driver to unregister itself */
  1684. static int amd5536_stop(struct usb_gadget_driver *driver)
  1685. {
  1686. struct udc *dev = udc;
  1687. unsigned long flags;
  1688. u32 tmp;
  1689. if (!dev)
  1690. return -ENODEV;
  1691. if (!driver || driver != dev->driver || !driver->unbind)
  1692. return -EINVAL;
  1693. spin_lock_irqsave(&dev->lock, flags);
  1694. udc_mask_unused_interrupts(dev);
  1695. shutdown(dev, driver);
  1696. spin_unlock_irqrestore(&dev->lock, flags);
  1697. driver->unbind(&dev->gadget);
  1698. dev->gadget.dev.driver = NULL;
  1699. dev->driver = NULL;
  1700. /* set SD */
  1701. tmp = readl(&dev->regs->ctl);
  1702. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1703. writel(tmp, &dev->regs->ctl);
  1704. DBG(dev, "%s: unregistered\n", driver->driver.name);
  1705. return 0;
  1706. }
  1707. /* Clear pending NAK bits */
  1708. static void udc_process_cnak_queue(struct udc *dev)
  1709. {
  1710. u32 tmp;
  1711. u32 reg;
  1712. /* check epin's */
  1713. DBG(dev, "CNAK pending queue processing\n");
  1714. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1715. if (cnak_pending & (1 << tmp)) {
  1716. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1717. /* clear NAK by writing CNAK */
  1718. reg = readl(&dev->ep[tmp].regs->ctl);
  1719. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1720. writel(reg, &dev->ep[tmp].regs->ctl);
  1721. dev->ep[tmp].naking = 0;
  1722. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1723. }
  1724. }
  1725. /* ... and ep0out */
  1726. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1727. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1728. /* clear NAK by writing CNAK */
  1729. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1730. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1731. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1732. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1733. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1734. dev->ep[UDC_EP0OUT_IX].num);
  1735. }
  1736. }
  1737. /* Enabling RX DMA after setup packet */
  1738. static void udc_ep0_set_rde(struct udc *dev)
  1739. {
  1740. if (use_dma) {
  1741. /*
  1742. * only enable RXDMA when no data endpoint enabled
  1743. * or data is queued
  1744. */
  1745. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1746. udc_set_rde(dev);
  1747. } else {
  1748. /*
  1749. * setup timer for enabling RDE (to not enable
  1750. * RXFIFO DMA for data endpoints to early)
  1751. */
  1752. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1753. udc_timer.expires =
  1754. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1755. set_rde = 1;
  1756. if (!stop_timer)
  1757. add_timer(&udc_timer);
  1758. }
  1759. }
  1760. }
  1761. }
  1762. /* Interrupt handler for data OUT traffic */
  1763. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1764. {
  1765. irqreturn_t ret_val = IRQ_NONE;
  1766. u32 tmp;
  1767. struct udc_ep *ep;
  1768. struct udc_request *req;
  1769. unsigned int count;
  1770. struct udc_data_dma *td = NULL;
  1771. unsigned dma_done;
  1772. VDBG(dev, "ep%d irq\n", ep_ix);
  1773. ep = &dev->ep[ep_ix];
  1774. tmp = readl(&ep->regs->sts);
  1775. if (use_dma) {
  1776. /* BNA event ? */
  1777. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1778. DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
  1779. ep->num, readl(&ep->regs->desptr));
  1780. /* clear BNA */
  1781. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1782. if (!ep->cancel_transfer)
  1783. ep->bna_occurred = 1;
  1784. else
  1785. ep->cancel_transfer = 0;
  1786. ret_val = IRQ_HANDLED;
  1787. goto finished;
  1788. }
  1789. }
  1790. /* HE event ? */
  1791. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1792. dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
  1793. /* clear HE */
  1794. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1795. ret_val = IRQ_HANDLED;
  1796. goto finished;
  1797. }
  1798. if (!list_empty(&ep->queue)) {
  1799. /* next request */
  1800. req = list_entry(ep->queue.next,
  1801. struct udc_request, queue);
  1802. } else {
  1803. req = NULL;
  1804. udc_rxfifo_pending = 1;
  1805. }
  1806. VDBG(dev, "req = %pK\n", req);
  1807. /* fifo mode */
  1808. if (!use_dma) {
  1809. /* read fifo */
  1810. if (req && udc_rxfifo_read(ep, req)) {
  1811. ret_val = IRQ_HANDLED;
  1812. /* finish */
  1813. complete_req(ep, req, 0);
  1814. /* next request */
  1815. if (!list_empty(&ep->queue) && !ep->halted) {
  1816. req = list_entry(ep->queue.next,
  1817. struct udc_request, queue);
  1818. } else
  1819. req = NULL;
  1820. }
  1821. /* DMA */
  1822. } else if (!ep->cancel_transfer && req != NULL) {
  1823. ret_val = IRQ_HANDLED;
  1824. /* check for DMA done */
  1825. if (!use_dma_ppb) {
  1826. dma_done = AMD_GETBITS(req->td_data->status,
  1827. UDC_DMA_OUT_STS_BS);
  1828. /* packet per buffer mode - rx bytes */
  1829. } else {
  1830. /*
  1831. * if BNA occurred then recover desc. from
  1832. * BNA dummy desc.
  1833. */
  1834. if (ep->bna_occurred) {
  1835. VDBG(dev, "Recover desc. from BNA dummy\n");
  1836. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1837. sizeof(struct udc_data_dma));
  1838. ep->bna_occurred = 0;
  1839. udc_init_bna_dummy(ep->req);
  1840. }
  1841. td = udc_get_last_dma_desc(req);
  1842. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1843. }
  1844. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1845. /* buffer fill mode - rx bytes */
  1846. if (!use_dma_ppb) {
  1847. /* received number bytes */
  1848. count = AMD_GETBITS(req->td_data->status,
  1849. UDC_DMA_OUT_STS_RXBYTES);
  1850. VDBG(dev, "rx bytes=%u\n", count);
  1851. /* packet per buffer mode - rx bytes */
  1852. } else {
  1853. VDBG(dev, "req->td_data=%pK\n", req->td_data);
  1854. VDBG(dev, "last desc = %pK\n", td);
  1855. /* received number bytes */
  1856. if (use_dma_ppb_du) {
  1857. /* every desc. counts bytes */
  1858. count = udc_get_ppbdu_rxbytes(req);
  1859. } else {
  1860. /* last desc. counts bytes */
  1861. count = AMD_GETBITS(td->status,
  1862. UDC_DMA_OUT_STS_RXBYTES);
  1863. if (!count && req->req.length
  1864. == UDC_DMA_MAXPACKET) {
  1865. /*
  1866. * on 64k packets the RXBYTES
  1867. * field is zero
  1868. */
  1869. count = UDC_DMA_MAXPACKET;
  1870. }
  1871. }
  1872. VDBG(dev, "last desc rx bytes=%u\n", count);
  1873. }
  1874. tmp = req->req.length - req->req.actual;
  1875. if (count > tmp) {
  1876. if ((tmp % ep->ep.maxpacket) != 0) {
  1877. DBG(dev, "%s: rx %db, space=%db\n",
  1878. ep->ep.name, count, tmp);
  1879. req->req.status = -EOVERFLOW;
  1880. }
  1881. count = tmp;
  1882. }
  1883. req->req.actual += count;
  1884. req->dma_going = 0;
  1885. /* complete request */
  1886. complete_req(ep, req, 0);
  1887. /* next request */
  1888. if (!list_empty(&ep->queue) && !ep->halted) {
  1889. req = list_entry(ep->queue.next,
  1890. struct udc_request,
  1891. queue);
  1892. /*
  1893. * DMA may be already started by udc_queue()
  1894. * called by gadget drivers completion
  1895. * routine. This happens when queue
  1896. * holds one request only.
  1897. */
  1898. if (req->dma_going == 0) {
  1899. /* next dma */
  1900. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1901. goto finished;
  1902. /* write desc pointer */
  1903. writel(req->td_phys,
  1904. &ep->regs->desptr);
  1905. req->dma_going = 1;
  1906. /* enable DMA */
  1907. udc_set_rde(dev);
  1908. }
  1909. } else {
  1910. /*
  1911. * implant BNA dummy descriptor to allow
  1912. * RXFIFO opening by RDE
  1913. */
  1914. if (ep->bna_dummy_req) {
  1915. /* write desc pointer */
  1916. writel(ep->bna_dummy_req->td_phys,
  1917. &ep->regs->desptr);
  1918. ep->bna_occurred = 0;
  1919. }
  1920. /*
  1921. * schedule timer for setting RDE if queue
  1922. * remains empty to allow ep0 packets pass
  1923. * through
  1924. */
  1925. if (set_rde != 0
  1926. && !timer_pending(&udc_timer)) {
  1927. udc_timer.expires =
  1928. jiffies
  1929. + HZ*UDC_RDE_TIMER_SECONDS;
  1930. set_rde = 1;
  1931. if (!stop_timer)
  1932. add_timer(&udc_timer);
  1933. }
  1934. if (ep->num != UDC_EP0OUT_IX)
  1935. dev->data_ep_queued = 0;
  1936. }
  1937. } else {
  1938. /*
  1939. * RX DMA must be reenabled for each desc in PPBDU mode
  1940. * and must be enabled for PPBNDU mode in case of BNA
  1941. */
  1942. udc_set_rde(dev);
  1943. }
  1944. } else if (ep->cancel_transfer) {
  1945. ret_val = IRQ_HANDLED;
  1946. ep->cancel_transfer = 0;
  1947. }
  1948. /* check pending CNAKS */
  1949. if (cnak_pending) {
  1950. /* CNAk processing when rxfifo empty only */
  1951. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  1952. udc_process_cnak_queue(dev);
  1953. }
  1954. /* clear OUT bits in ep status */
  1955. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  1956. finished:
  1957. return ret_val;
  1958. }
  1959. /* Interrupt handler for data IN traffic */
  1960. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  1961. {
  1962. irqreturn_t ret_val = IRQ_NONE;
  1963. u32 tmp;
  1964. u32 epsts;
  1965. struct udc_ep *ep;
  1966. struct udc_request *req;
  1967. struct udc_data_dma *td;
  1968. unsigned dma_done;
  1969. unsigned len;
  1970. ep = &dev->ep[ep_ix];
  1971. epsts = readl(&ep->regs->sts);
  1972. if (use_dma) {
  1973. /* BNA ? */
  1974. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  1975. dev_err(&dev->pdev->dev,
  1976. "BNA ep%din occurred - DESPTR = %08lx\n",
  1977. ep->num,
  1978. (unsigned long) readl(&ep->regs->desptr));
  1979. /* clear BNA */
  1980. writel(epsts, &ep->regs->sts);
  1981. ret_val = IRQ_HANDLED;
  1982. goto finished;
  1983. }
  1984. }
  1985. /* HE event ? */
  1986. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  1987. dev_err(&dev->pdev->dev,
  1988. "HE ep%dn occurred - DESPTR = %08lx\n",
  1989. ep->num, (unsigned long) readl(&ep->regs->desptr));
  1990. /* clear HE */
  1991. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1992. ret_val = IRQ_HANDLED;
  1993. goto finished;
  1994. }
  1995. /* DMA completion */
  1996. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  1997. VDBG(dev, "TDC set- completion\n");
  1998. ret_val = IRQ_HANDLED;
  1999. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  2000. req = list_entry(ep->queue.next,
  2001. struct udc_request, queue);
  2002. /*
  2003. * length bytes transferred
  2004. * check dma done of last desc. in PPBDU mode
  2005. */
  2006. if (use_dma_ppb_du) {
  2007. td = udc_get_last_dma_desc(req);
  2008. if (td) {
  2009. dma_done =
  2010. AMD_GETBITS(td->status,
  2011. UDC_DMA_IN_STS_BS);
  2012. /* don't care DMA done */
  2013. req->req.actual = req->req.length;
  2014. }
  2015. } else {
  2016. /* assume all bytes transferred */
  2017. req->req.actual = req->req.length;
  2018. }
  2019. if (req->req.actual == req->req.length) {
  2020. /* complete req */
  2021. complete_req(ep, req, 0);
  2022. req->dma_going = 0;
  2023. /* further request available ? */
  2024. if (list_empty(&ep->queue)) {
  2025. /* disable interrupt */
  2026. tmp = readl(&dev->regs->ep_irqmsk);
  2027. tmp |= AMD_BIT(ep->num);
  2028. writel(tmp, &dev->regs->ep_irqmsk);
  2029. }
  2030. }
  2031. }
  2032. ep->cancel_transfer = 0;
  2033. }
  2034. /*
  2035. * status reg has IN bit set and TDC not set (if TDC was handled,
  2036. * IN must not be handled (UDC defect) ?
  2037. */
  2038. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2039. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2040. ret_val = IRQ_HANDLED;
  2041. if (!list_empty(&ep->queue)) {
  2042. /* next request */
  2043. req = list_entry(ep->queue.next,
  2044. struct udc_request, queue);
  2045. /* FIFO mode */
  2046. if (!use_dma) {
  2047. /* write fifo */
  2048. udc_txfifo_write(ep, &req->req);
  2049. len = req->req.length - req->req.actual;
  2050. if (len > ep->ep.maxpacket)
  2051. len = ep->ep.maxpacket;
  2052. req->req.actual += len;
  2053. if (req->req.actual == req->req.length
  2054. || (len != ep->ep.maxpacket)) {
  2055. /* complete req */
  2056. complete_req(ep, req, 0);
  2057. }
  2058. /* DMA */
  2059. } else if (req && !req->dma_going) {
  2060. VDBG(dev, "IN DMA : req=%pK req->td_data=%pK\n",
  2061. req, req->td_data);
  2062. if (req->td_data) {
  2063. req->dma_going = 1;
  2064. /*
  2065. * unset L bit of first desc.
  2066. * for chain
  2067. */
  2068. if (use_dma_ppb && req->req.length >
  2069. ep->ep.maxpacket) {
  2070. req->td_data->status &=
  2071. AMD_CLEAR_BIT(
  2072. UDC_DMA_IN_STS_L);
  2073. }
  2074. /* write desc pointer */
  2075. writel(req->td_phys, &ep->regs->desptr);
  2076. /* set HOST READY */
  2077. req->td_data->status =
  2078. AMD_ADDBITS(
  2079. req->td_data->status,
  2080. UDC_DMA_IN_STS_BS_HOST_READY,
  2081. UDC_DMA_IN_STS_BS);
  2082. /* set poll demand bit */
  2083. tmp = readl(&ep->regs->ctl);
  2084. tmp |= AMD_BIT(UDC_EPCTL_P);
  2085. writel(tmp, &ep->regs->ctl);
  2086. }
  2087. }
  2088. } else if (!use_dma && ep->in) {
  2089. /* disable interrupt */
  2090. tmp = readl(
  2091. &dev->regs->ep_irqmsk);
  2092. tmp |= AMD_BIT(ep->num);
  2093. writel(tmp,
  2094. &dev->regs->ep_irqmsk);
  2095. }
  2096. }
  2097. /* clear status bits */
  2098. writel(epsts, &ep->regs->sts);
  2099. finished:
  2100. return ret_val;
  2101. }
  2102. /* Interrupt handler for Control OUT traffic */
  2103. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2104. __releases(dev->lock)
  2105. __acquires(dev->lock)
  2106. {
  2107. irqreturn_t ret_val = IRQ_NONE;
  2108. u32 tmp;
  2109. int setup_supported;
  2110. u32 count;
  2111. int set = 0;
  2112. struct udc_ep *ep;
  2113. struct udc_ep *ep_tmp;
  2114. ep = &dev->ep[UDC_EP0OUT_IX];
  2115. /* clear irq */
  2116. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2117. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2118. /* check BNA and clear if set */
  2119. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2120. VDBG(dev, "ep0: BNA set\n");
  2121. writel(AMD_BIT(UDC_EPSTS_BNA),
  2122. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2123. ep->bna_occurred = 1;
  2124. ret_val = IRQ_HANDLED;
  2125. goto finished;
  2126. }
  2127. /* type of data: SETUP or DATA 0 bytes */
  2128. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2129. VDBG(dev, "data_typ = %x\n", tmp);
  2130. /* setup data */
  2131. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2132. ret_val = IRQ_HANDLED;
  2133. ep->dev->stall_ep0in = 0;
  2134. dev->waiting_zlp_ack_ep0in = 0;
  2135. /* set NAK for EP0_IN */
  2136. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2137. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2138. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2139. dev->ep[UDC_EP0IN_IX].naking = 1;
  2140. /* get setup data */
  2141. if (use_dma) {
  2142. /* clear OUT bits in ep status */
  2143. writel(UDC_EPSTS_OUT_CLEAR,
  2144. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2145. setup_data.data[0] =
  2146. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2147. setup_data.data[1] =
  2148. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2149. /* set HOST READY */
  2150. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2151. UDC_DMA_STP_STS_BS_HOST_READY;
  2152. } else {
  2153. /* read fifo */
  2154. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2155. }
  2156. /* determine direction of control data */
  2157. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2158. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2159. /* enable RDE */
  2160. udc_ep0_set_rde(dev);
  2161. set = 0;
  2162. } else {
  2163. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2164. /*
  2165. * implant BNA dummy descriptor to allow RXFIFO opening
  2166. * by RDE
  2167. */
  2168. if (ep->bna_dummy_req) {
  2169. /* write desc pointer */
  2170. writel(ep->bna_dummy_req->td_phys,
  2171. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2172. ep->bna_occurred = 0;
  2173. }
  2174. set = 1;
  2175. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2176. /*
  2177. * setup timer for enabling RDE (to not enable
  2178. * RXFIFO DMA for data to early)
  2179. */
  2180. set_rde = 1;
  2181. if (!timer_pending(&udc_timer)) {
  2182. udc_timer.expires = jiffies +
  2183. HZ/UDC_RDE_TIMER_DIV;
  2184. if (!stop_timer)
  2185. add_timer(&udc_timer);
  2186. }
  2187. }
  2188. /*
  2189. * mass storage reset must be processed here because
  2190. * next packet may be a CLEAR_FEATURE HALT which would not
  2191. * clear the stall bit when no STALL handshake was received
  2192. * before (autostall can cause this)
  2193. */
  2194. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2195. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2196. DBG(dev, "MSC Reset\n");
  2197. /*
  2198. * clear stall bits
  2199. * only one IN and OUT endpoints are handled
  2200. */
  2201. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2202. udc_set_halt(&ep_tmp->ep, 0);
  2203. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2204. udc_set_halt(&ep_tmp->ep, 0);
  2205. }
  2206. /* call gadget with setup data received */
  2207. spin_unlock(&dev->lock);
  2208. setup_supported = dev->driver->setup(&dev->gadget,
  2209. &setup_data.request);
  2210. spin_lock(&dev->lock);
  2211. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2212. /* ep0 in returns data (not zlp) on IN phase */
  2213. if (setup_supported >= 0 && setup_supported <
  2214. UDC_EP0IN_MAXPACKET) {
  2215. /* clear NAK by writing CNAK in EP0_IN */
  2216. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2217. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2218. dev->ep[UDC_EP0IN_IX].naking = 0;
  2219. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2220. /* if unsupported request then stall */
  2221. } else if (setup_supported < 0) {
  2222. tmp |= AMD_BIT(UDC_EPCTL_S);
  2223. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2224. } else
  2225. dev->waiting_zlp_ack_ep0in = 1;
  2226. /* clear NAK by writing CNAK in EP0_OUT */
  2227. if (!set) {
  2228. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2229. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2230. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2231. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2232. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2233. }
  2234. if (!use_dma) {
  2235. /* clear OUT bits in ep status */
  2236. writel(UDC_EPSTS_OUT_CLEAR,
  2237. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2238. }
  2239. /* data packet 0 bytes */
  2240. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2241. /* clear OUT bits in ep status */
  2242. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2243. /* get setup data: only 0 packet */
  2244. if (use_dma) {
  2245. /* no req if 0 packet, just reactivate */
  2246. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2247. VDBG(dev, "ZLP\n");
  2248. /* set HOST READY */
  2249. dev->ep[UDC_EP0OUT_IX].td->status =
  2250. AMD_ADDBITS(
  2251. dev->ep[UDC_EP0OUT_IX].td->status,
  2252. UDC_DMA_OUT_STS_BS_HOST_READY,
  2253. UDC_DMA_OUT_STS_BS);
  2254. /* enable RDE */
  2255. udc_ep0_set_rde(dev);
  2256. ret_val = IRQ_HANDLED;
  2257. } else {
  2258. /* control write */
  2259. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2260. /* re-program desc. pointer for possible ZLPs */
  2261. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2262. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2263. /* enable RDE */
  2264. udc_ep0_set_rde(dev);
  2265. }
  2266. } else {
  2267. /* received number bytes */
  2268. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2269. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2270. /* out data for fifo mode not working */
  2271. count = 0;
  2272. /* 0 packet or real data ? */
  2273. if (count != 0) {
  2274. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2275. } else {
  2276. /* dummy read confirm */
  2277. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2278. ret_val = IRQ_HANDLED;
  2279. }
  2280. }
  2281. }
  2282. /* check pending CNAKS */
  2283. if (cnak_pending) {
  2284. /* CNAk processing when rxfifo empty only */
  2285. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2286. udc_process_cnak_queue(dev);
  2287. }
  2288. finished:
  2289. return ret_val;
  2290. }
  2291. /* Interrupt handler for Control IN traffic */
  2292. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2293. {
  2294. irqreturn_t ret_val = IRQ_NONE;
  2295. u32 tmp;
  2296. struct udc_ep *ep;
  2297. struct udc_request *req;
  2298. unsigned len;
  2299. ep = &dev->ep[UDC_EP0IN_IX];
  2300. /* clear irq */
  2301. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2302. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2303. /* DMA completion */
  2304. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2305. VDBG(dev, "isr: TDC clear\n");
  2306. ret_val = IRQ_HANDLED;
  2307. /* clear TDC bit */
  2308. writel(AMD_BIT(UDC_EPSTS_TDC),
  2309. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2310. /* status reg has IN bit set ? */
  2311. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2312. ret_val = IRQ_HANDLED;
  2313. if (ep->dma) {
  2314. /* clear IN bit */
  2315. writel(AMD_BIT(UDC_EPSTS_IN),
  2316. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2317. }
  2318. if (dev->stall_ep0in) {
  2319. DBG(dev, "stall ep0in\n");
  2320. /* halt ep0in */
  2321. tmp = readl(&ep->regs->ctl);
  2322. tmp |= AMD_BIT(UDC_EPCTL_S);
  2323. writel(tmp, &ep->regs->ctl);
  2324. } else {
  2325. if (!list_empty(&ep->queue)) {
  2326. /* next request */
  2327. req = list_entry(ep->queue.next,
  2328. struct udc_request, queue);
  2329. if (ep->dma) {
  2330. /* write desc pointer */
  2331. writel(req->td_phys, &ep->regs->desptr);
  2332. /* set HOST READY */
  2333. req->td_data->status =
  2334. AMD_ADDBITS(
  2335. req->td_data->status,
  2336. UDC_DMA_STP_STS_BS_HOST_READY,
  2337. UDC_DMA_STP_STS_BS);
  2338. /* set poll demand bit */
  2339. tmp =
  2340. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2341. tmp |= AMD_BIT(UDC_EPCTL_P);
  2342. writel(tmp,
  2343. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2344. /* all bytes will be transferred */
  2345. req->req.actual = req->req.length;
  2346. /* complete req */
  2347. complete_req(ep, req, 0);
  2348. } else {
  2349. /* write fifo */
  2350. udc_txfifo_write(ep, &req->req);
  2351. /* lengh bytes transferred */
  2352. len = req->req.length - req->req.actual;
  2353. if (len > ep->ep.maxpacket)
  2354. len = ep->ep.maxpacket;
  2355. req->req.actual += len;
  2356. if (req->req.actual == req->req.length
  2357. || (len != ep->ep.maxpacket)) {
  2358. /* complete req */
  2359. complete_req(ep, req, 0);
  2360. }
  2361. }
  2362. }
  2363. }
  2364. ep->halted = 0;
  2365. dev->stall_ep0in = 0;
  2366. if (!ep->dma) {
  2367. /* clear IN bit */
  2368. writel(AMD_BIT(UDC_EPSTS_IN),
  2369. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2370. }
  2371. }
  2372. return ret_val;
  2373. }
  2374. /* Interrupt handler for global device events */
  2375. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2376. __releases(dev->lock)
  2377. __acquires(dev->lock)
  2378. {
  2379. irqreturn_t ret_val = IRQ_NONE;
  2380. u32 tmp;
  2381. u32 cfg;
  2382. struct udc_ep *ep;
  2383. u16 i;
  2384. u8 udc_csr_epix;
  2385. /* SET_CONFIG irq ? */
  2386. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2387. ret_val = IRQ_HANDLED;
  2388. /* read config value */
  2389. tmp = readl(&dev->regs->sts);
  2390. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2391. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2392. dev->cur_config = cfg;
  2393. dev->set_cfg_not_acked = 1;
  2394. /* make usb request for gadget driver */
  2395. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2396. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2397. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2398. /* programm the NE registers */
  2399. for (i = 0; i < UDC_EP_NUM; i++) {
  2400. ep = &dev->ep[i];
  2401. if (ep->in) {
  2402. /* ep ix in UDC CSR register space */
  2403. udc_csr_epix = ep->num;
  2404. /* OUT ep */
  2405. } else {
  2406. /* ep ix in UDC CSR register space */
  2407. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2408. }
  2409. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2410. /* ep cfg */
  2411. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2412. UDC_CSR_NE_CFG);
  2413. /* write reg */
  2414. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2415. /* clear stall bits */
  2416. ep->halted = 0;
  2417. tmp = readl(&ep->regs->ctl);
  2418. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2419. writel(tmp, &ep->regs->ctl);
  2420. }
  2421. /* call gadget zero with setup data received */
  2422. spin_unlock(&dev->lock);
  2423. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2424. spin_lock(&dev->lock);
  2425. } /* SET_INTERFACE ? */
  2426. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2427. ret_val = IRQ_HANDLED;
  2428. dev->set_cfg_not_acked = 1;
  2429. /* read interface and alt setting values */
  2430. tmp = readl(&dev->regs->sts);
  2431. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2432. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2433. /* make usb request for gadget driver */
  2434. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2435. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2436. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2437. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2438. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2439. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2440. dev->cur_alt, dev->cur_intf);
  2441. /* programm the NE registers */
  2442. for (i = 0; i < UDC_EP_NUM; i++) {
  2443. ep = &dev->ep[i];
  2444. if (ep->in) {
  2445. /* ep ix in UDC CSR register space */
  2446. udc_csr_epix = ep->num;
  2447. /* OUT ep */
  2448. } else {
  2449. /* ep ix in UDC CSR register space */
  2450. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2451. }
  2452. /* UDC CSR reg */
  2453. /* set ep values */
  2454. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2455. /* ep interface */
  2456. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2457. UDC_CSR_NE_INTF);
  2458. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2459. /* ep alt */
  2460. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2461. UDC_CSR_NE_ALT);
  2462. /* write reg */
  2463. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2464. /* clear stall bits */
  2465. ep->halted = 0;
  2466. tmp = readl(&ep->regs->ctl);
  2467. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2468. writel(tmp, &ep->regs->ctl);
  2469. }
  2470. /* call gadget zero with setup data received */
  2471. spin_unlock(&dev->lock);
  2472. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2473. spin_lock(&dev->lock);
  2474. } /* USB reset */
  2475. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2476. DBG(dev, "USB Reset interrupt\n");
  2477. ret_val = IRQ_HANDLED;
  2478. /* allow soft reset when suspend occurs */
  2479. soft_reset_occured = 0;
  2480. dev->waiting_zlp_ack_ep0in = 0;
  2481. dev->set_cfg_not_acked = 0;
  2482. /* mask not needed interrupts */
  2483. udc_mask_unused_interrupts(dev);
  2484. /* call gadget to resume and reset configs etc. */
  2485. spin_unlock(&dev->lock);
  2486. if (dev->sys_suspended && dev->driver->resume) {
  2487. dev->driver->resume(&dev->gadget);
  2488. dev->sys_suspended = 0;
  2489. }
  2490. dev->driver->disconnect(&dev->gadget);
  2491. spin_lock(&dev->lock);
  2492. /* disable ep0 to empty req queue */
  2493. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2494. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2495. /* soft reset when rxfifo not empty */
  2496. tmp = readl(&dev->regs->sts);
  2497. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2498. && !soft_reset_after_usbreset_occured) {
  2499. udc_soft_reset(dev);
  2500. soft_reset_after_usbreset_occured++;
  2501. }
  2502. /*
  2503. * DMA reset to kill potential old DMA hw hang,
  2504. * POLL bit is already reset by ep_init() through
  2505. * disconnect()
  2506. */
  2507. DBG(dev, "DMA machine reset\n");
  2508. tmp = readl(&dev->regs->cfg);
  2509. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2510. writel(tmp, &dev->regs->cfg);
  2511. /* put into initial config */
  2512. udc_basic_init(dev);
  2513. /* enable device setup interrupts */
  2514. udc_enable_dev_setup_interrupts(dev);
  2515. /* enable suspend interrupt */
  2516. tmp = readl(&dev->regs->irqmsk);
  2517. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2518. writel(tmp, &dev->regs->irqmsk);
  2519. } /* USB suspend */
  2520. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2521. DBG(dev, "USB Suspend interrupt\n");
  2522. ret_val = IRQ_HANDLED;
  2523. if (dev->driver->suspend) {
  2524. spin_unlock(&dev->lock);
  2525. dev->sys_suspended = 1;
  2526. dev->driver->suspend(&dev->gadget);
  2527. spin_lock(&dev->lock);
  2528. }
  2529. } /* new speed ? */
  2530. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2531. DBG(dev, "ENUM interrupt\n");
  2532. ret_val = IRQ_HANDLED;
  2533. soft_reset_after_usbreset_occured = 0;
  2534. /* disable ep0 to empty req queue */
  2535. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2536. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2537. /* link up all endpoints */
  2538. udc_setup_endpoints(dev);
  2539. dev_info(&dev->pdev->dev, "Connect: %s\n",
  2540. usb_speed_string(dev->gadget.speed));
  2541. /* init ep 0 */
  2542. activate_control_endpoints(dev);
  2543. /* enable ep0 interrupts */
  2544. udc_enable_ep0_interrupts(dev);
  2545. }
  2546. /* session valid change interrupt */
  2547. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2548. DBG(dev, "USB SVC interrupt\n");
  2549. ret_val = IRQ_HANDLED;
  2550. /* check that session is not valid to detect disconnect */
  2551. tmp = readl(&dev->regs->sts);
  2552. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2553. /* disable suspend interrupt */
  2554. tmp = readl(&dev->regs->irqmsk);
  2555. tmp |= AMD_BIT(UDC_DEVINT_US);
  2556. writel(tmp, &dev->regs->irqmsk);
  2557. DBG(dev, "USB Disconnect (session valid low)\n");
  2558. /* cleanup on disconnect */
  2559. usb_disconnect(udc);
  2560. }
  2561. }
  2562. return ret_val;
  2563. }
  2564. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2565. static irqreturn_t udc_irq(int irq, void *pdev)
  2566. {
  2567. struct udc *dev = pdev;
  2568. u32 reg;
  2569. u16 i;
  2570. u32 ep_irq;
  2571. irqreturn_t ret_val = IRQ_NONE;
  2572. spin_lock(&dev->lock);
  2573. /* check for ep irq */
  2574. reg = readl(&dev->regs->ep_irqsts);
  2575. if (reg) {
  2576. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2577. ret_val |= udc_control_out_isr(dev);
  2578. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2579. ret_val |= udc_control_in_isr(dev);
  2580. /*
  2581. * data endpoint
  2582. * iterate ep's
  2583. */
  2584. for (i = 1; i < UDC_EP_NUM; i++) {
  2585. ep_irq = 1 << i;
  2586. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2587. continue;
  2588. /* clear irq status */
  2589. writel(ep_irq, &dev->regs->ep_irqsts);
  2590. /* irq for out ep ? */
  2591. if (i > UDC_EPIN_NUM)
  2592. ret_val |= udc_data_out_isr(dev, i);
  2593. else
  2594. ret_val |= udc_data_in_isr(dev, i);
  2595. }
  2596. }
  2597. /* check for dev irq */
  2598. reg = readl(&dev->regs->irqsts);
  2599. if (reg) {
  2600. /* clear irq */
  2601. writel(reg, &dev->regs->irqsts);
  2602. ret_val |= udc_dev_isr(dev, reg);
  2603. }
  2604. spin_unlock(&dev->lock);
  2605. return ret_val;
  2606. }
  2607. /* Tears down device */
  2608. static void gadget_release(struct device *pdev)
  2609. {
  2610. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2611. kfree(dev);
  2612. }
  2613. /* Cleanup on device remove */
  2614. static void udc_remove(struct udc *dev)
  2615. {
  2616. /* remove timer */
  2617. stop_timer++;
  2618. if (timer_pending(&udc_timer))
  2619. wait_for_completion(&on_exit);
  2620. if (udc_timer.data)
  2621. del_timer_sync(&udc_timer);
  2622. /* remove pollstall timer */
  2623. stop_pollstall_timer++;
  2624. if (timer_pending(&udc_pollstall_timer))
  2625. wait_for_completion(&on_pollstall_exit);
  2626. if (udc_pollstall_timer.data)
  2627. del_timer_sync(&udc_pollstall_timer);
  2628. udc = NULL;
  2629. }
  2630. /* Reset all pci context */
  2631. static void udc_pci_remove(struct pci_dev *pdev)
  2632. {
  2633. struct udc *dev;
  2634. dev = pci_get_drvdata(pdev);
  2635. usb_del_gadget_udc(&udc->gadget);
  2636. /* gadget driver must not be registered */
  2637. BUG_ON(dev->driver != NULL);
  2638. /* dma pool cleanup */
  2639. if (dev->data_requests)
  2640. pci_pool_destroy(dev->data_requests);
  2641. if (dev->stp_requests) {
  2642. /* cleanup DMA desc's for ep0in */
  2643. pci_pool_free(dev->stp_requests,
  2644. dev->ep[UDC_EP0OUT_IX].td_stp,
  2645. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2646. pci_pool_free(dev->stp_requests,
  2647. dev->ep[UDC_EP0OUT_IX].td,
  2648. dev->ep[UDC_EP0OUT_IX].td_phys);
  2649. pci_pool_destroy(dev->stp_requests);
  2650. }
  2651. /* reset controller */
  2652. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  2653. if (dev->irq_registered)
  2654. free_irq(pdev->irq, dev);
  2655. if (dev->regs)
  2656. iounmap(dev->regs);
  2657. if (dev->mem_region)
  2658. release_mem_region(pci_resource_start(pdev, 0),
  2659. pci_resource_len(pdev, 0));
  2660. if (dev->active)
  2661. pci_disable_device(pdev);
  2662. device_unregister(&dev->gadget.dev);
  2663. pci_set_drvdata(pdev, NULL);
  2664. udc_remove(dev);
  2665. }
  2666. /* create dma pools on init */
  2667. static int init_dma_pools(struct udc *dev)
  2668. {
  2669. struct udc_stp_dma *td_stp;
  2670. struct udc_data_dma *td_data;
  2671. int retval;
  2672. /* consistent DMA mode setting ? */
  2673. if (use_dma_ppb) {
  2674. use_dma_bufferfill_mode = 0;
  2675. } else {
  2676. use_dma_ppb_du = 0;
  2677. use_dma_bufferfill_mode = 1;
  2678. }
  2679. /* DMA setup */
  2680. dev->data_requests = dma_pool_create("data_requests", NULL,
  2681. sizeof(struct udc_data_dma), 0, 0);
  2682. if (!dev->data_requests) {
  2683. DBG(dev, "can't get request data pool\n");
  2684. retval = -ENOMEM;
  2685. goto finished;
  2686. }
  2687. /* EP0 in dma regs = dev control regs */
  2688. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2689. /* dma desc for setup data */
  2690. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2691. sizeof(struct udc_stp_dma), 0, 0);
  2692. if (!dev->stp_requests) {
  2693. DBG(dev, "can't get stp request pool\n");
  2694. retval = -ENOMEM;
  2695. goto finished;
  2696. }
  2697. /* setup */
  2698. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2699. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2700. if (td_stp == NULL) {
  2701. retval = -ENOMEM;
  2702. goto finished;
  2703. }
  2704. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2705. /* data: 0 packets !? */
  2706. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2707. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2708. if (td_data == NULL) {
  2709. retval = -ENOMEM;
  2710. goto finished;
  2711. }
  2712. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2713. return 0;
  2714. finished:
  2715. return retval;
  2716. }
  2717. /* Called by pci bus driver to init pci context */
  2718. static int udc_pci_probe(
  2719. struct pci_dev *pdev,
  2720. const struct pci_device_id *id
  2721. )
  2722. {
  2723. struct udc *dev;
  2724. unsigned long resource;
  2725. unsigned long len;
  2726. int retval = 0;
  2727. /* one udc only */
  2728. if (udc) {
  2729. dev_dbg(&pdev->dev, "already probed\n");
  2730. return -EBUSY;
  2731. }
  2732. /* init */
  2733. dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
  2734. if (!dev) {
  2735. retval = -ENOMEM;
  2736. goto finished;
  2737. }
  2738. /* pci setup */
  2739. if (pci_enable_device(pdev) < 0) {
  2740. kfree(dev);
  2741. dev = NULL;
  2742. retval = -ENODEV;
  2743. goto finished;
  2744. }
  2745. dev->active = 1;
  2746. /* PCI resource allocation */
  2747. resource = pci_resource_start(pdev, 0);
  2748. len = pci_resource_len(pdev, 0);
  2749. if (!request_mem_region(resource, len, name)) {
  2750. dev_dbg(&pdev->dev, "pci device used already\n");
  2751. kfree(dev);
  2752. dev = NULL;
  2753. retval = -EBUSY;
  2754. goto finished;
  2755. }
  2756. dev->mem_region = 1;
  2757. dev->virt_addr = ioremap_nocache(resource, len);
  2758. if (dev->virt_addr == NULL) {
  2759. dev_dbg(&pdev->dev, "start address cannot be mapped\n");
  2760. kfree(dev);
  2761. dev = NULL;
  2762. retval = -EFAULT;
  2763. goto finished;
  2764. }
  2765. if (!pdev->irq) {
  2766. dev_err(&dev->pdev->dev, "irq not set\n");
  2767. kfree(dev);
  2768. dev = NULL;
  2769. retval = -ENODEV;
  2770. goto finished;
  2771. }
  2772. spin_lock_init(&dev->lock);
  2773. /* udc csr registers base */
  2774. dev->csr = dev->virt_addr + UDC_CSR_ADDR;
  2775. /* dev registers base */
  2776. dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
  2777. /* ep registers base */
  2778. dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
  2779. /* fifo's base */
  2780. dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
  2781. dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
  2782. if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
  2783. dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
  2784. kfree(dev);
  2785. dev = NULL;
  2786. retval = -EBUSY;
  2787. goto finished;
  2788. }
  2789. dev->irq_registered = 1;
  2790. pci_set_drvdata(pdev, dev);
  2791. /* chip revision for Hs AMD5536 */
  2792. dev->chiprev = pdev->revision;
  2793. pci_set_master(pdev);
  2794. pci_try_set_mwi(pdev);
  2795. /* init dma pools */
  2796. if (use_dma) {
  2797. retval = init_dma_pools(dev);
  2798. if (retval != 0)
  2799. goto finished;
  2800. }
  2801. dev->phys_addr = resource;
  2802. dev->irq = pdev->irq;
  2803. dev->pdev = pdev;
  2804. dev->gadget.dev.parent = &pdev->dev;
  2805. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2806. /* general probing */
  2807. if (udc_probe(dev) == 0)
  2808. return 0;
  2809. finished:
  2810. if (dev)
  2811. udc_pci_remove(pdev);
  2812. return retval;
  2813. }
  2814. /* general probe */
  2815. static int udc_probe(struct udc *dev)
  2816. {
  2817. char tmp[128];
  2818. u32 reg;
  2819. int retval;
  2820. /* mark timer as not initialized */
  2821. udc_timer.data = 0;
  2822. udc_pollstall_timer.data = 0;
  2823. /* device struct setup */
  2824. dev->gadget.ops = &udc_ops;
  2825. dev_set_name(&dev->gadget.dev, "gadget");
  2826. dev->gadget.dev.release = gadget_release;
  2827. dev->gadget.name = name;
  2828. dev->gadget.max_speed = USB_SPEED_HIGH;
  2829. /* init registers, interrupts, ... */
  2830. startup_registers(dev);
  2831. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2832. snprintf(tmp, sizeof tmp, "%d", dev->irq);
  2833. dev_info(&dev->pdev->dev,
  2834. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2835. tmp, dev->phys_addr, dev->chiprev,
  2836. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2837. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2838. if (dev->chiprev == UDC_HSA0_REV) {
  2839. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2840. retval = -ENODEV;
  2841. goto finished;
  2842. }
  2843. dev_info(&dev->pdev->dev,
  2844. "driver version: %s(for Geode5536 B1)\n", tmp);
  2845. udc = dev;
  2846. retval = usb_add_gadget_udc(&udc->pdev->dev, &dev->gadget);
  2847. if (retval)
  2848. goto finished;
  2849. retval = device_register(&dev->gadget.dev);
  2850. if (retval) {
  2851. usb_del_gadget_udc(&dev->gadget);
  2852. put_device(&dev->gadget.dev);
  2853. goto finished;
  2854. }
  2855. /* timer init */
  2856. init_timer(&udc_timer);
  2857. udc_timer.function = udc_timer_function;
  2858. udc_timer.data = 1;
  2859. /* timer pollstall init */
  2860. init_timer(&udc_pollstall_timer);
  2861. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2862. udc_pollstall_timer.data = 1;
  2863. /* set SD */
  2864. reg = readl(&dev->regs->ctl);
  2865. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2866. writel(reg, &dev->regs->ctl);
  2867. /* print dev register info */
  2868. print_regs(dev);
  2869. return 0;
  2870. finished:
  2871. return retval;
  2872. }
  2873. /* Initiates a remote wakeup */
  2874. static int udc_remote_wakeup(struct udc *dev)
  2875. {
  2876. unsigned long flags;
  2877. u32 tmp;
  2878. DBG(dev, "UDC initiates remote wakeup\n");
  2879. spin_lock_irqsave(&dev->lock, flags);
  2880. tmp = readl(&dev->regs->ctl);
  2881. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  2882. writel(tmp, &dev->regs->ctl);
  2883. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  2884. writel(tmp, &dev->regs->ctl);
  2885. spin_unlock_irqrestore(&dev->lock, flags);
  2886. return 0;
  2887. }
  2888. /* PCI device parameters */
  2889. static DEFINE_PCI_DEVICE_TABLE(pci_id) = {
  2890. {
  2891. PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
  2892. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2893. .class_mask = 0xffffffff,
  2894. },
  2895. {},
  2896. };
  2897. MODULE_DEVICE_TABLE(pci, pci_id);
  2898. /* PCI functions */
  2899. static struct pci_driver udc_pci_driver = {
  2900. .name = (char *) name,
  2901. .id_table = pci_id,
  2902. .probe = udc_pci_probe,
  2903. .remove = udc_pci_remove,
  2904. };
  2905. /* Inits driver */
  2906. static int __init init(void)
  2907. {
  2908. return pci_register_driver(&udc_pci_driver);
  2909. }
  2910. module_init(init);
  2911. /* Cleans driver */
  2912. static void __exit cleanup(void)
  2913. {
  2914. pci_unregister_driver(&udc_pci_driver);
  2915. }
  2916. module_exit(cleanup);
  2917. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2918. MODULE_AUTHOR("Thomas Dahlmann");
  2919. MODULE_LICENSE("GPL");