smsc9420.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760
  1. /***************************************************************************
  2. *
  3. * Copyright (C) 2007,2008 SMSC
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. *
  19. ***************************************************************************
  20. */
  21. #include <linux/interrupt.h>
  22. #include <linux/kernel.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/phy.h>
  25. #include <linux/pci.h>
  26. #include <linux/if_vlan.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/crc32.h>
  29. #include <linux/slab.h>
  30. #include <linux/module.h>
  31. #include <asm/unaligned.h>
  32. #include "smsc9420.h"
  33. #define DRV_NAME "smsc9420"
  34. #define PFX DRV_NAME ": "
  35. #define DRV_MDIONAME "smsc9420-mdio"
  36. #define DRV_DESCRIPTION "SMSC LAN9420 driver"
  37. #define DRV_VERSION "1.01"
  38. MODULE_LICENSE("GPL");
  39. MODULE_VERSION(DRV_VERSION);
  40. struct smsc9420_dma_desc {
  41. u32 status;
  42. u32 length;
  43. u32 buffer1;
  44. u32 buffer2;
  45. };
  46. struct smsc9420_ring_info {
  47. struct sk_buff *skb;
  48. dma_addr_t mapping;
  49. };
  50. struct smsc9420_pdata {
  51. void __iomem *base_addr;
  52. struct pci_dev *pdev;
  53. struct net_device *dev;
  54. struct smsc9420_dma_desc *rx_ring;
  55. struct smsc9420_dma_desc *tx_ring;
  56. struct smsc9420_ring_info *tx_buffers;
  57. struct smsc9420_ring_info *rx_buffers;
  58. dma_addr_t rx_dma_addr;
  59. dma_addr_t tx_dma_addr;
  60. int tx_ring_head, tx_ring_tail;
  61. int rx_ring_head, rx_ring_tail;
  62. spinlock_t int_lock;
  63. spinlock_t phy_lock;
  64. struct napi_struct napi;
  65. bool software_irq_signal;
  66. bool rx_csum;
  67. u32 msg_enable;
  68. struct phy_device *phy_dev;
  69. struct mii_bus *mii_bus;
  70. int phy_irq[PHY_MAX_ADDR];
  71. int last_duplex;
  72. int last_carrier;
  73. };
  74. static DEFINE_PCI_DEVICE_TABLE(smsc9420_id_table) = {
  75. { PCI_VENDOR_ID_9420, PCI_DEVICE_ID_9420, PCI_ANY_ID, PCI_ANY_ID, },
  76. { 0, }
  77. };
  78. MODULE_DEVICE_TABLE(pci, smsc9420_id_table);
  79. #define SMSC_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  80. static uint smsc_debug;
  81. static uint debug = -1;
  82. module_param(debug, uint, 0);
  83. MODULE_PARM_DESC(debug, "debug level");
  84. #define smsc_dbg(TYPE, f, a...) \
  85. do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
  86. printk(KERN_DEBUG PFX f "\n", ## a); \
  87. } while (0)
  88. #define smsc_info(TYPE, f, a...) \
  89. do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
  90. printk(KERN_INFO PFX f "\n", ## a); \
  91. } while (0)
  92. #define smsc_warn(TYPE, f, a...) \
  93. do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
  94. printk(KERN_WARNING PFX f "\n", ## a); \
  95. } while (0)
  96. static inline u32 smsc9420_reg_read(struct smsc9420_pdata *pd, u32 offset)
  97. {
  98. return ioread32(pd->base_addr + offset);
  99. }
  100. static inline void
  101. smsc9420_reg_write(struct smsc9420_pdata *pd, u32 offset, u32 value)
  102. {
  103. iowrite32(value, pd->base_addr + offset);
  104. }
  105. static inline void smsc9420_pci_flush_write(struct smsc9420_pdata *pd)
  106. {
  107. /* to ensure PCI write completion, we must perform a PCI read */
  108. smsc9420_reg_read(pd, ID_REV);
  109. }
  110. static int smsc9420_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
  111. {
  112. struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
  113. unsigned long flags;
  114. u32 addr;
  115. int i, reg = -EIO;
  116. spin_lock_irqsave(&pd->phy_lock, flags);
  117. /* confirm MII not busy */
  118. if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
  119. smsc_warn(DRV, "MII is busy???");
  120. goto out;
  121. }
  122. /* set the address, index & direction (read from PHY) */
  123. addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
  124. MII_ACCESS_MII_READ_;
  125. smsc9420_reg_write(pd, MII_ACCESS, addr);
  126. /* wait for read to complete with 50us timeout */
  127. for (i = 0; i < 5; i++) {
  128. if (!(smsc9420_reg_read(pd, MII_ACCESS) &
  129. MII_ACCESS_MII_BUSY_)) {
  130. reg = (u16)smsc9420_reg_read(pd, MII_DATA);
  131. goto out;
  132. }
  133. udelay(10);
  134. }
  135. smsc_warn(DRV, "MII busy timeout!");
  136. out:
  137. spin_unlock_irqrestore(&pd->phy_lock, flags);
  138. return reg;
  139. }
  140. static int smsc9420_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
  141. u16 val)
  142. {
  143. struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
  144. unsigned long flags;
  145. u32 addr;
  146. int i, reg = -EIO;
  147. spin_lock_irqsave(&pd->phy_lock, flags);
  148. /* confirm MII not busy */
  149. if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
  150. smsc_warn(DRV, "MII is busy???");
  151. goto out;
  152. }
  153. /* put the data to write in the MAC */
  154. smsc9420_reg_write(pd, MII_DATA, (u32)val);
  155. /* set the address, index & direction (write to PHY) */
  156. addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
  157. MII_ACCESS_MII_WRITE_;
  158. smsc9420_reg_write(pd, MII_ACCESS, addr);
  159. /* wait for write to complete with 50us timeout */
  160. for (i = 0; i < 5; i++) {
  161. if (!(smsc9420_reg_read(pd, MII_ACCESS) &
  162. MII_ACCESS_MII_BUSY_)) {
  163. reg = 0;
  164. goto out;
  165. }
  166. udelay(10);
  167. }
  168. smsc_warn(DRV, "MII busy timeout!");
  169. out:
  170. spin_unlock_irqrestore(&pd->phy_lock, flags);
  171. return reg;
  172. }
  173. /* Returns hash bit number for given MAC address
  174. * Example:
  175. * 01 00 5E 00 00 01 -> returns bit number 31 */
  176. static u32 smsc9420_hash(u8 addr[ETH_ALEN])
  177. {
  178. return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f;
  179. }
  180. static int smsc9420_eeprom_reload(struct smsc9420_pdata *pd)
  181. {
  182. int timeout = 100000;
  183. BUG_ON(!pd);
  184. if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
  185. smsc_dbg(DRV, "smsc9420_eeprom_reload: Eeprom busy");
  186. return -EIO;
  187. }
  188. smsc9420_reg_write(pd, E2P_CMD,
  189. (E2P_CMD_EPC_BUSY_ | E2P_CMD_EPC_CMD_RELOAD_));
  190. do {
  191. udelay(10);
  192. if (!(smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_))
  193. return 0;
  194. } while (timeout--);
  195. smsc_warn(DRV, "smsc9420_eeprom_reload: Eeprom timed out");
  196. return -EIO;
  197. }
  198. /* Standard ioctls for mii-tool */
  199. static int smsc9420_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  200. {
  201. struct smsc9420_pdata *pd = netdev_priv(dev);
  202. if (!netif_running(dev) || !pd->phy_dev)
  203. return -EINVAL;
  204. return phy_mii_ioctl(pd->phy_dev, ifr, cmd);
  205. }
  206. static int smsc9420_ethtool_get_settings(struct net_device *dev,
  207. struct ethtool_cmd *cmd)
  208. {
  209. struct smsc9420_pdata *pd = netdev_priv(dev);
  210. if (!pd->phy_dev)
  211. return -ENODEV;
  212. cmd->maxtxpkt = 1;
  213. cmd->maxrxpkt = 1;
  214. return phy_ethtool_gset(pd->phy_dev, cmd);
  215. }
  216. static int smsc9420_ethtool_set_settings(struct net_device *dev,
  217. struct ethtool_cmd *cmd)
  218. {
  219. struct smsc9420_pdata *pd = netdev_priv(dev);
  220. if (!pd->phy_dev)
  221. return -ENODEV;
  222. return phy_ethtool_sset(pd->phy_dev, cmd);
  223. }
  224. static void smsc9420_ethtool_get_drvinfo(struct net_device *netdev,
  225. struct ethtool_drvinfo *drvinfo)
  226. {
  227. struct smsc9420_pdata *pd = netdev_priv(netdev);
  228. strlcpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver));
  229. strlcpy(drvinfo->bus_info, pci_name(pd->pdev),
  230. sizeof(drvinfo->bus_info));
  231. strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
  232. }
  233. static u32 smsc9420_ethtool_get_msglevel(struct net_device *netdev)
  234. {
  235. struct smsc9420_pdata *pd = netdev_priv(netdev);
  236. return pd->msg_enable;
  237. }
  238. static void smsc9420_ethtool_set_msglevel(struct net_device *netdev, u32 data)
  239. {
  240. struct smsc9420_pdata *pd = netdev_priv(netdev);
  241. pd->msg_enable = data;
  242. }
  243. static int smsc9420_ethtool_nway_reset(struct net_device *netdev)
  244. {
  245. struct smsc9420_pdata *pd = netdev_priv(netdev);
  246. if (!pd->phy_dev)
  247. return -ENODEV;
  248. return phy_start_aneg(pd->phy_dev);
  249. }
  250. static int smsc9420_ethtool_getregslen(struct net_device *dev)
  251. {
  252. /* all smsc9420 registers plus all phy registers */
  253. return 0x100 + (32 * sizeof(u32));
  254. }
  255. static void
  256. smsc9420_ethtool_getregs(struct net_device *dev, struct ethtool_regs *regs,
  257. void *buf)
  258. {
  259. struct smsc9420_pdata *pd = netdev_priv(dev);
  260. struct phy_device *phy_dev = pd->phy_dev;
  261. unsigned int i, j = 0;
  262. u32 *data = buf;
  263. regs->version = smsc9420_reg_read(pd, ID_REV);
  264. for (i = 0; i < 0x100; i += (sizeof(u32)))
  265. data[j++] = smsc9420_reg_read(pd, i);
  266. // cannot read phy registers if the net device is down
  267. if (!phy_dev)
  268. return;
  269. for (i = 0; i <= 31; i++)
  270. data[j++] = smsc9420_mii_read(phy_dev->bus, phy_dev->addr, i);
  271. }
  272. static void smsc9420_eeprom_enable_access(struct smsc9420_pdata *pd)
  273. {
  274. unsigned int temp = smsc9420_reg_read(pd, GPIO_CFG);
  275. temp &= ~GPIO_CFG_EEPR_EN_;
  276. smsc9420_reg_write(pd, GPIO_CFG, temp);
  277. msleep(1);
  278. }
  279. static int smsc9420_eeprom_send_cmd(struct smsc9420_pdata *pd, u32 op)
  280. {
  281. int timeout = 100;
  282. u32 e2cmd;
  283. smsc_dbg(HW, "op 0x%08x", op);
  284. if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
  285. smsc_warn(HW, "Busy at start");
  286. return -EBUSY;
  287. }
  288. e2cmd = op | E2P_CMD_EPC_BUSY_;
  289. smsc9420_reg_write(pd, E2P_CMD, e2cmd);
  290. do {
  291. msleep(1);
  292. e2cmd = smsc9420_reg_read(pd, E2P_CMD);
  293. } while ((e2cmd & E2P_CMD_EPC_BUSY_) && (--timeout));
  294. if (!timeout) {
  295. smsc_info(HW, "TIMED OUT");
  296. return -EAGAIN;
  297. }
  298. if (e2cmd & E2P_CMD_EPC_TIMEOUT_) {
  299. smsc_info(HW, "Error occurred during eeprom operation");
  300. return -EINVAL;
  301. }
  302. return 0;
  303. }
  304. static int smsc9420_eeprom_read_location(struct smsc9420_pdata *pd,
  305. u8 address, u8 *data)
  306. {
  307. u32 op = E2P_CMD_EPC_CMD_READ_ | address;
  308. int ret;
  309. smsc_dbg(HW, "address 0x%x", address);
  310. ret = smsc9420_eeprom_send_cmd(pd, op);
  311. if (!ret)
  312. data[address] = smsc9420_reg_read(pd, E2P_DATA);
  313. return ret;
  314. }
  315. static int smsc9420_eeprom_write_location(struct smsc9420_pdata *pd,
  316. u8 address, u8 data)
  317. {
  318. u32 op = E2P_CMD_EPC_CMD_ERASE_ | address;
  319. int ret;
  320. smsc_dbg(HW, "address 0x%x, data 0x%x", address, data);
  321. ret = smsc9420_eeprom_send_cmd(pd, op);
  322. if (!ret) {
  323. op = E2P_CMD_EPC_CMD_WRITE_ | address;
  324. smsc9420_reg_write(pd, E2P_DATA, (u32)data);
  325. ret = smsc9420_eeprom_send_cmd(pd, op);
  326. }
  327. return ret;
  328. }
  329. static int smsc9420_ethtool_get_eeprom_len(struct net_device *dev)
  330. {
  331. return SMSC9420_EEPROM_SIZE;
  332. }
  333. static int smsc9420_ethtool_get_eeprom(struct net_device *dev,
  334. struct ethtool_eeprom *eeprom, u8 *data)
  335. {
  336. struct smsc9420_pdata *pd = netdev_priv(dev);
  337. u8 eeprom_data[SMSC9420_EEPROM_SIZE];
  338. int len, i;
  339. smsc9420_eeprom_enable_access(pd);
  340. len = min(eeprom->len, SMSC9420_EEPROM_SIZE);
  341. for (i = 0; i < len; i++) {
  342. int ret = smsc9420_eeprom_read_location(pd, i, eeprom_data);
  343. if (ret < 0) {
  344. eeprom->len = 0;
  345. return ret;
  346. }
  347. }
  348. memcpy(data, &eeprom_data[eeprom->offset], len);
  349. eeprom->magic = SMSC9420_EEPROM_MAGIC;
  350. eeprom->len = len;
  351. return 0;
  352. }
  353. static int smsc9420_ethtool_set_eeprom(struct net_device *dev,
  354. struct ethtool_eeprom *eeprom, u8 *data)
  355. {
  356. struct smsc9420_pdata *pd = netdev_priv(dev);
  357. int ret;
  358. if (eeprom->magic != SMSC9420_EEPROM_MAGIC)
  359. return -EINVAL;
  360. smsc9420_eeprom_enable_access(pd);
  361. smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWEN_);
  362. ret = smsc9420_eeprom_write_location(pd, eeprom->offset, *data);
  363. smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWDS_);
  364. /* Single byte write, according to man page */
  365. eeprom->len = 1;
  366. return ret;
  367. }
  368. static const struct ethtool_ops smsc9420_ethtool_ops = {
  369. .get_settings = smsc9420_ethtool_get_settings,
  370. .set_settings = smsc9420_ethtool_set_settings,
  371. .get_drvinfo = smsc9420_ethtool_get_drvinfo,
  372. .get_msglevel = smsc9420_ethtool_get_msglevel,
  373. .set_msglevel = smsc9420_ethtool_set_msglevel,
  374. .nway_reset = smsc9420_ethtool_nway_reset,
  375. .get_link = ethtool_op_get_link,
  376. .get_eeprom_len = smsc9420_ethtool_get_eeprom_len,
  377. .get_eeprom = smsc9420_ethtool_get_eeprom,
  378. .set_eeprom = smsc9420_ethtool_set_eeprom,
  379. .get_regs_len = smsc9420_ethtool_getregslen,
  380. .get_regs = smsc9420_ethtool_getregs,
  381. };
  382. /* Sets the device MAC address to dev_addr */
  383. static void smsc9420_set_mac_address(struct net_device *dev)
  384. {
  385. struct smsc9420_pdata *pd = netdev_priv(dev);
  386. u8 *dev_addr = dev->dev_addr;
  387. u32 mac_high16 = (dev_addr[5] << 8) | dev_addr[4];
  388. u32 mac_low32 = (dev_addr[3] << 24) | (dev_addr[2] << 16) |
  389. (dev_addr[1] << 8) | dev_addr[0];
  390. smsc9420_reg_write(pd, ADDRH, mac_high16);
  391. smsc9420_reg_write(pd, ADDRL, mac_low32);
  392. }
  393. static void smsc9420_check_mac_address(struct net_device *dev)
  394. {
  395. struct smsc9420_pdata *pd = netdev_priv(dev);
  396. /* Check if mac address has been specified when bringing interface up */
  397. if (is_valid_ether_addr(dev->dev_addr)) {
  398. smsc9420_set_mac_address(dev);
  399. smsc_dbg(PROBE, "MAC Address is specified by configuration");
  400. } else {
  401. /* Try reading mac address from device. if EEPROM is present
  402. * it will already have been set */
  403. u32 mac_high16 = smsc9420_reg_read(pd, ADDRH);
  404. u32 mac_low32 = smsc9420_reg_read(pd, ADDRL);
  405. dev->dev_addr[0] = (u8)(mac_low32);
  406. dev->dev_addr[1] = (u8)(mac_low32 >> 8);
  407. dev->dev_addr[2] = (u8)(mac_low32 >> 16);
  408. dev->dev_addr[3] = (u8)(mac_low32 >> 24);
  409. dev->dev_addr[4] = (u8)(mac_high16);
  410. dev->dev_addr[5] = (u8)(mac_high16 >> 8);
  411. if (is_valid_ether_addr(dev->dev_addr)) {
  412. /* eeprom values are valid so use them */
  413. smsc_dbg(PROBE, "Mac Address is read from EEPROM");
  414. } else {
  415. /* eeprom values are invalid, generate random MAC */
  416. eth_hw_addr_random(dev);
  417. smsc9420_set_mac_address(dev);
  418. smsc_dbg(PROBE, "MAC Address is set to random");
  419. }
  420. }
  421. }
  422. static void smsc9420_stop_tx(struct smsc9420_pdata *pd)
  423. {
  424. u32 dmac_control, mac_cr, dma_intr_ena;
  425. int timeout = 1000;
  426. /* disable TX DMAC */
  427. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  428. dmac_control &= (~DMAC_CONTROL_ST_);
  429. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  430. /* Wait max 10ms for transmit process to stop */
  431. while (--timeout) {
  432. if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_TS_)
  433. break;
  434. udelay(10);
  435. }
  436. if (!timeout)
  437. smsc_warn(IFDOWN, "TX DMAC failed to stop");
  438. /* ACK Tx DMAC stop bit */
  439. smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_TXPS_);
  440. /* mask TX DMAC interrupts */
  441. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  442. dma_intr_ena &= ~(DMAC_INTR_ENA_TX_);
  443. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  444. smsc9420_pci_flush_write(pd);
  445. /* stop MAC TX */
  446. mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_TXEN_);
  447. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  448. smsc9420_pci_flush_write(pd);
  449. }
  450. static void smsc9420_free_tx_ring(struct smsc9420_pdata *pd)
  451. {
  452. int i;
  453. BUG_ON(!pd->tx_ring);
  454. if (!pd->tx_buffers)
  455. return;
  456. for (i = 0; i < TX_RING_SIZE; i++) {
  457. struct sk_buff *skb = pd->tx_buffers[i].skb;
  458. if (skb) {
  459. BUG_ON(!pd->tx_buffers[i].mapping);
  460. pci_unmap_single(pd->pdev, pd->tx_buffers[i].mapping,
  461. skb->len, PCI_DMA_TODEVICE);
  462. dev_kfree_skb_any(skb);
  463. }
  464. pd->tx_ring[i].status = 0;
  465. pd->tx_ring[i].length = 0;
  466. pd->tx_ring[i].buffer1 = 0;
  467. pd->tx_ring[i].buffer2 = 0;
  468. }
  469. wmb();
  470. kfree(pd->tx_buffers);
  471. pd->tx_buffers = NULL;
  472. pd->tx_ring_head = 0;
  473. pd->tx_ring_tail = 0;
  474. }
  475. static void smsc9420_free_rx_ring(struct smsc9420_pdata *pd)
  476. {
  477. int i;
  478. BUG_ON(!pd->rx_ring);
  479. if (!pd->rx_buffers)
  480. return;
  481. for (i = 0; i < RX_RING_SIZE; i++) {
  482. if (pd->rx_buffers[i].skb)
  483. dev_kfree_skb_any(pd->rx_buffers[i].skb);
  484. if (pd->rx_buffers[i].mapping)
  485. pci_unmap_single(pd->pdev, pd->rx_buffers[i].mapping,
  486. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  487. pd->rx_ring[i].status = 0;
  488. pd->rx_ring[i].length = 0;
  489. pd->rx_ring[i].buffer1 = 0;
  490. pd->rx_ring[i].buffer2 = 0;
  491. }
  492. wmb();
  493. kfree(pd->rx_buffers);
  494. pd->rx_buffers = NULL;
  495. pd->rx_ring_head = 0;
  496. pd->rx_ring_tail = 0;
  497. }
  498. static void smsc9420_stop_rx(struct smsc9420_pdata *pd)
  499. {
  500. int timeout = 1000;
  501. u32 mac_cr, dmac_control, dma_intr_ena;
  502. /* mask RX DMAC interrupts */
  503. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  504. dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
  505. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  506. smsc9420_pci_flush_write(pd);
  507. /* stop RX MAC prior to stoping DMA */
  508. mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_RXEN_);
  509. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  510. smsc9420_pci_flush_write(pd);
  511. /* stop RX DMAC */
  512. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  513. dmac_control &= (~DMAC_CONTROL_SR_);
  514. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  515. smsc9420_pci_flush_write(pd);
  516. /* wait up to 10ms for receive to stop */
  517. while (--timeout) {
  518. if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_RS_)
  519. break;
  520. udelay(10);
  521. }
  522. if (!timeout)
  523. smsc_warn(IFDOWN, "RX DMAC did not stop! timeout.");
  524. /* ACK the Rx DMAC stop bit */
  525. smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_RXPS_);
  526. }
  527. static irqreturn_t smsc9420_isr(int irq, void *dev_id)
  528. {
  529. struct smsc9420_pdata *pd = dev_id;
  530. u32 int_cfg, int_sts, int_ctl;
  531. irqreturn_t ret = IRQ_NONE;
  532. ulong flags;
  533. BUG_ON(!pd);
  534. BUG_ON(!pd->base_addr);
  535. int_cfg = smsc9420_reg_read(pd, INT_CFG);
  536. /* check if it's our interrupt */
  537. if ((int_cfg & (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_)) !=
  538. (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_))
  539. return IRQ_NONE;
  540. int_sts = smsc9420_reg_read(pd, INT_STAT);
  541. if (likely(INT_STAT_DMAC_INT_ & int_sts)) {
  542. u32 status = smsc9420_reg_read(pd, DMAC_STATUS);
  543. u32 ints_to_clear = 0;
  544. if (status & DMAC_STS_TX_) {
  545. ints_to_clear |= (DMAC_STS_TX_ | DMAC_STS_NIS_);
  546. netif_wake_queue(pd->dev);
  547. }
  548. if (status & DMAC_STS_RX_) {
  549. /* mask RX DMAC interrupts */
  550. u32 dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  551. dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
  552. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  553. smsc9420_pci_flush_write(pd);
  554. ints_to_clear |= (DMAC_STS_RX_ | DMAC_STS_NIS_);
  555. napi_schedule(&pd->napi);
  556. }
  557. if (ints_to_clear)
  558. smsc9420_reg_write(pd, DMAC_STATUS, ints_to_clear);
  559. ret = IRQ_HANDLED;
  560. }
  561. if (unlikely(INT_STAT_SW_INT_ & int_sts)) {
  562. /* mask software interrupt */
  563. spin_lock_irqsave(&pd->int_lock, flags);
  564. int_ctl = smsc9420_reg_read(pd, INT_CTL);
  565. int_ctl &= (~INT_CTL_SW_INT_EN_);
  566. smsc9420_reg_write(pd, INT_CTL, int_ctl);
  567. spin_unlock_irqrestore(&pd->int_lock, flags);
  568. smsc9420_reg_write(pd, INT_STAT, INT_STAT_SW_INT_);
  569. pd->software_irq_signal = true;
  570. smp_wmb();
  571. ret = IRQ_HANDLED;
  572. }
  573. /* to ensure PCI write completion, we must perform a PCI read */
  574. smsc9420_pci_flush_write(pd);
  575. return ret;
  576. }
  577. #ifdef CONFIG_NET_POLL_CONTROLLER
  578. static void smsc9420_poll_controller(struct net_device *dev)
  579. {
  580. disable_irq(dev->irq);
  581. smsc9420_isr(0, dev);
  582. enable_irq(dev->irq);
  583. }
  584. #endif /* CONFIG_NET_POLL_CONTROLLER */
  585. static void smsc9420_dmac_soft_reset(struct smsc9420_pdata *pd)
  586. {
  587. smsc9420_reg_write(pd, BUS_MODE, BUS_MODE_SWR_);
  588. smsc9420_reg_read(pd, BUS_MODE);
  589. udelay(2);
  590. if (smsc9420_reg_read(pd, BUS_MODE) & BUS_MODE_SWR_)
  591. smsc_warn(DRV, "Software reset not cleared");
  592. }
  593. static int smsc9420_stop(struct net_device *dev)
  594. {
  595. struct smsc9420_pdata *pd = netdev_priv(dev);
  596. u32 int_cfg;
  597. ulong flags;
  598. BUG_ON(!pd);
  599. BUG_ON(!pd->phy_dev);
  600. /* disable master interrupt */
  601. spin_lock_irqsave(&pd->int_lock, flags);
  602. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  603. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  604. spin_unlock_irqrestore(&pd->int_lock, flags);
  605. netif_tx_disable(dev);
  606. napi_disable(&pd->napi);
  607. smsc9420_stop_tx(pd);
  608. smsc9420_free_tx_ring(pd);
  609. smsc9420_stop_rx(pd);
  610. smsc9420_free_rx_ring(pd);
  611. free_irq(dev->irq, pd);
  612. smsc9420_dmac_soft_reset(pd);
  613. phy_stop(pd->phy_dev);
  614. phy_disconnect(pd->phy_dev);
  615. pd->phy_dev = NULL;
  616. mdiobus_unregister(pd->mii_bus);
  617. mdiobus_free(pd->mii_bus);
  618. return 0;
  619. }
  620. static void smsc9420_rx_count_stats(struct net_device *dev, u32 desc_status)
  621. {
  622. if (unlikely(desc_status & RDES0_ERROR_SUMMARY_)) {
  623. dev->stats.rx_errors++;
  624. if (desc_status & RDES0_DESCRIPTOR_ERROR_)
  625. dev->stats.rx_over_errors++;
  626. else if (desc_status & (RDES0_FRAME_TOO_LONG_ |
  627. RDES0_RUNT_FRAME_ | RDES0_COLLISION_SEEN_))
  628. dev->stats.rx_frame_errors++;
  629. else if (desc_status & RDES0_CRC_ERROR_)
  630. dev->stats.rx_crc_errors++;
  631. }
  632. if (unlikely(desc_status & RDES0_LENGTH_ERROR_))
  633. dev->stats.rx_length_errors++;
  634. if (unlikely(!((desc_status & RDES0_LAST_DESCRIPTOR_) &&
  635. (desc_status & RDES0_FIRST_DESCRIPTOR_))))
  636. dev->stats.rx_length_errors++;
  637. if (desc_status & RDES0_MULTICAST_FRAME_)
  638. dev->stats.multicast++;
  639. }
  640. static void smsc9420_rx_handoff(struct smsc9420_pdata *pd, const int index,
  641. const u32 status)
  642. {
  643. struct net_device *dev = pd->dev;
  644. struct sk_buff *skb;
  645. u16 packet_length = (status & RDES0_FRAME_LENGTH_MASK_)
  646. >> RDES0_FRAME_LENGTH_SHFT_;
  647. /* remove crc from packet lendth */
  648. packet_length -= 4;
  649. if (pd->rx_csum)
  650. packet_length -= 2;
  651. dev->stats.rx_packets++;
  652. dev->stats.rx_bytes += packet_length;
  653. pci_unmap_single(pd->pdev, pd->rx_buffers[index].mapping,
  654. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  655. pd->rx_buffers[index].mapping = 0;
  656. skb = pd->rx_buffers[index].skb;
  657. pd->rx_buffers[index].skb = NULL;
  658. if (pd->rx_csum) {
  659. u16 hw_csum = get_unaligned_le16(skb_tail_pointer(skb) +
  660. NET_IP_ALIGN + packet_length + 4);
  661. put_unaligned_le16(hw_csum, &skb->csum);
  662. skb->ip_summed = CHECKSUM_COMPLETE;
  663. }
  664. skb_reserve(skb, NET_IP_ALIGN);
  665. skb_put(skb, packet_length);
  666. skb->protocol = eth_type_trans(skb, dev);
  667. netif_receive_skb(skb);
  668. }
  669. static int smsc9420_alloc_rx_buffer(struct smsc9420_pdata *pd, int index)
  670. {
  671. struct sk_buff *skb = netdev_alloc_skb(pd->dev, PKT_BUF_SZ);
  672. dma_addr_t mapping;
  673. BUG_ON(pd->rx_buffers[index].skb);
  674. BUG_ON(pd->rx_buffers[index].mapping);
  675. if (unlikely(!skb)) {
  676. smsc_warn(RX_ERR, "Failed to allocate new skb!");
  677. return -ENOMEM;
  678. }
  679. mapping = pci_map_single(pd->pdev, skb_tail_pointer(skb),
  680. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  681. if (pci_dma_mapping_error(pd->pdev, mapping)) {
  682. dev_kfree_skb_any(skb);
  683. smsc_warn(RX_ERR, "pci_map_single failed!");
  684. return -ENOMEM;
  685. }
  686. pd->rx_buffers[index].skb = skb;
  687. pd->rx_buffers[index].mapping = mapping;
  688. pd->rx_ring[index].buffer1 = mapping + NET_IP_ALIGN;
  689. pd->rx_ring[index].status = RDES0_OWN_;
  690. wmb();
  691. return 0;
  692. }
  693. static void smsc9420_alloc_new_rx_buffers(struct smsc9420_pdata *pd)
  694. {
  695. while (pd->rx_ring_tail != pd->rx_ring_head) {
  696. if (smsc9420_alloc_rx_buffer(pd, pd->rx_ring_tail))
  697. break;
  698. pd->rx_ring_tail = (pd->rx_ring_tail + 1) % RX_RING_SIZE;
  699. }
  700. }
  701. static int smsc9420_rx_poll(struct napi_struct *napi, int budget)
  702. {
  703. struct smsc9420_pdata *pd =
  704. container_of(napi, struct smsc9420_pdata, napi);
  705. struct net_device *dev = pd->dev;
  706. u32 drop_frame_cnt, dma_intr_ena, status;
  707. int work_done;
  708. for (work_done = 0; work_done < budget; work_done++) {
  709. rmb();
  710. status = pd->rx_ring[pd->rx_ring_head].status;
  711. /* stop if DMAC owns this dma descriptor */
  712. if (status & RDES0_OWN_)
  713. break;
  714. smsc9420_rx_count_stats(dev, status);
  715. smsc9420_rx_handoff(pd, pd->rx_ring_head, status);
  716. pd->rx_ring_head = (pd->rx_ring_head + 1) % RX_RING_SIZE;
  717. smsc9420_alloc_new_rx_buffers(pd);
  718. }
  719. drop_frame_cnt = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
  720. dev->stats.rx_dropped +=
  721. (drop_frame_cnt & 0xFFFF) + ((drop_frame_cnt >> 17) & 0x3FF);
  722. /* Kick RXDMA */
  723. smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
  724. smsc9420_pci_flush_write(pd);
  725. if (work_done < budget) {
  726. napi_complete(&pd->napi);
  727. /* re-enable RX DMA interrupts */
  728. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  729. dma_intr_ena |= (DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
  730. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  731. smsc9420_pci_flush_write(pd);
  732. }
  733. return work_done;
  734. }
  735. static void
  736. smsc9420_tx_update_stats(struct net_device *dev, u32 status, u32 length)
  737. {
  738. if (unlikely(status & TDES0_ERROR_SUMMARY_)) {
  739. dev->stats.tx_errors++;
  740. if (status & (TDES0_EXCESSIVE_DEFERRAL_ |
  741. TDES0_EXCESSIVE_COLLISIONS_))
  742. dev->stats.tx_aborted_errors++;
  743. if (status & (TDES0_LOSS_OF_CARRIER_ | TDES0_NO_CARRIER_))
  744. dev->stats.tx_carrier_errors++;
  745. } else {
  746. dev->stats.tx_packets++;
  747. dev->stats.tx_bytes += (length & 0x7FF);
  748. }
  749. if (unlikely(status & TDES0_EXCESSIVE_COLLISIONS_)) {
  750. dev->stats.collisions += 16;
  751. } else {
  752. dev->stats.collisions +=
  753. (status & TDES0_COLLISION_COUNT_MASK_) >>
  754. TDES0_COLLISION_COUNT_SHFT_;
  755. }
  756. if (unlikely(status & TDES0_HEARTBEAT_FAIL_))
  757. dev->stats.tx_heartbeat_errors++;
  758. }
  759. /* Check for completed dma transfers, update stats and free skbs */
  760. static void smsc9420_complete_tx(struct net_device *dev)
  761. {
  762. struct smsc9420_pdata *pd = netdev_priv(dev);
  763. while (pd->tx_ring_tail != pd->tx_ring_head) {
  764. int index = pd->tx_ring_tail;
  765. u32 status, length;
  766. rmb();
  767. status = pd->tx_ring[index].status;
  768. length = pd->tx_ring[index].length;
  769. /* Check if DMA still owns this descriptor */
  770. if (unlikely(TDES0_OWN_ & status))
  771. break;
  772. smsc9420_tx_update_stats(dev, status, length);
  773. BUG_ON(!pd->tx_buffers[index].skb);
  774. BUG_ON(!pd->tx_buffers[index].mapping);
  775. pci_unmap_single(pd->pdev, pd->tx_buffers[index].mapping,
  776. pd->tx_buffers[index].skb->len, PCI_DMA_TODEVICE);
  777. pd->tx_buffers[index].mapping = 0;
  778. dev_kfree_skb_any(pd->tx_buffers[index].skb);
  779. pd->tx_buffers[index].skb = NULL;
  780. pd->tx_ring[index].buffer1 = 0;
  781. wmb();
  782. pd->tx_ring_tail = (pd->tx_ring_tail + 1) % TX_RING_SIZE;
  783. }
  784. }
  785. static netdev_tx_t smsc9420_hard_start_xmit(struct sk_buff *skb,
  786. struct net_device *dev)
  787. {
  788. struct smsc9420_pdata *pd = netdev_priv(dev);
  789. dma_addr_t mapping;
  790. int index = pd->tx_ring_head;
  791. u32 tmp_desc1;
  792. bool about_to_take_last_desc =
  793. (((pd->tx_ring_head + 2) % TX_RING_SIZE) == pd->tx_ring_tail);
  794. smsc9420_complete_tx(dev);
  795. rmb();
  796. BUG_ON(pd->tx_ring[index].status & TDES0_OWN_);
  797. BUG_ON(pd->tx_buffers[index].skb);
  798. BUG_ON(pd->tx_buffers[index].mapping);
  799. mapping = pci_map_single(pd->pdev, skb->data,
  800. skb->len, PCI_DMA_TODEVICE);
  801. if (pci_dma_mapping_error(pd->pdev, mapping)) {
  802. smsc_warn(TX_ERR, "pci_map_single failed, dropping packet");
  803. return NETDEV_TX_BUSY;
  804. }
  805. pd->tx_buffers[index].skb = skb;
  806. pd->tx_buffers[index].mapping = mapping;
  807. tmp_desc1 = (TDES1_LS_ | ((u32)skb->len & 0x7FF));
  808. if (unlikely(about_to_take_last_desc)) {
  809. tmp_desc1 |= TDES1_IC_;
  810. netif_stop_queue(pd->dev);
  811. }
  812. /* check if we are at the last descriptor and need to set EOR */
  813. if (unlikely(index == (TX_RING_SIZE - 1)))
  814. tmp_desc1 |= TDES1_TER_;
  815. pd->tx_ring[index].buffer1 = mapping;
  816. pd->tx_ring[index].length = tmp_desc1;
  817. wmb();
  818. /* increment head */
  819. pd->tx_ring_head = (pd->tx_ring_head + 1) % TX_RING_SIZE;
  820. /* assign ownership to DMAC */
  821. pd->tx_ring[index].status = TDES0_OWN_;
  822. wmb();
  823. skb_tx_timestamp(skb);
  824. /* kick the DMA */
  825. smsc9420_reg_write(pd, TX_POLL_DEMAND, 1);
  826. smsc9420_pci_flush_write(pd);
  827. return NETDEV_TX_OK;
  828. }
  829. static struct net_device_stats *smsc9420_get_stats(struct net_device *dev)
  830. {
  831. struct smsc9420_pdata *pd = netdev_priv(dev);
  832. u32 counter = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
  833. dev->stats.rx_dropped +=
  834. (counter & 0x0000FFFF) + ((counter >> 17) & 0x000003FF);
  835. return &dev->stats;
  836. }
  837. static void smsc9420_set_multicast_list(struct net_device *dev)
  838. {
  839. struct smsc9420_pdata *pd = netdev_priv(dev);
  840. u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
  841. if (dev->flags & IFF_PROMISC) {
  842. smsc_dbg(HW, "Promiscuous Mode Enabled");
  843. mac_cr |= MAC_CR_PRMS_;
  844. mac_cr &= (~MAC_CR_MCPAS_);
  845. mac_cr &= (~MAC_CR_HPFILT_);
  846. } else if (dev->flags & IFF_ALLMULTI) {
  847. smsc_dbg(HW, "Receive all Multicast Enabled");
  848. mac_cr &= (~MAC_CR_PRMS_);
  849. mac_cr |= MAC_CR_MCPAS_;
  850. mac_cr &= (~MAC_CR_HPFILT_);
  851. } else if (!netdev_mc_empty(dev)) {
  852. struct netdev_hw_addr *ha;
  853. u32 hash_lo = 0, hash_hi = 0;
  854. smsc_dbg(HW, "Multicast filter enabled");
  855. netdev_for_each_mc_addr(ha, dev) {
  856. u32 bit_num = smsc9420_hash(ha->addr);
  857. u32 mask = 1 << (bit_num & 0x1F);
  858. if (bit_num & 0x20)
  859. hash_hi |= mask;
  860. else
  861. hash_lo |= mask;
  862. }
  863. smsc9420_reg_write(pd, HASHH, hash_hi);
  864. smsc9420_reg_write(pd, HASHL, hash_lo);
  865. mac_cr &= (~MAC_CR_PRMS_);
  866. mac_cr &= (~MAC_CR_MCPAS_);
  867. mac_cr |= MAC_CR_HPFILT_;
  868. } else {
  869. smsc_dbg(HW, "Receive own packets only.");
  870. smsc9420_reg_write(pd, HASHH, 0);
  871. smsc9420_reg_write(pd, HASHL, 0);
  872. mac_cr &= (~MAC_CR_PRMS_);
  873. mac_cr &= (~MAC_CR_MCPAS_);
  874. mac_cr &= (~MAC_CR_HPFILT_);
  875. }
  876. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  877. smsc9420_pci_flush_write(pd);
  878. }
  879. static void smsc9420_phy_update_flowcontrol(struct smsc9420_pdata *pd)
  880. {
  881. struct phy_device *phy_dev = pd->phy_dev;
  882. u32 flow;
  883. if (phy_dev->duplex == DUPLEX_FULL) {
  884. u16 lcladv = phy_read(phy_dev, MII_ADVERTISE);
  885. u16 rmtadv = phy_read(phy_dev, MII_LPA);
  886. u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
  887. if (cap & FLOW_CTRL_RX)
  888. flow = 0xFFFF0002;
  889. else
  890. flow = 0;
  891. smsc_info(LINK, "rx pause %s, tx pause %s",
  892. (cap & FLOW_CTRL_RX ? "enabled" : "disabled"),
  893. (cap & FLOW_CTRL_TX ? "enabled" : "disabled"));
  894. } else {
  895. smsc_info(LINK, "half duplex");
  896. flow = 0;
  897. }
  898. smsc9420_reg_write(pd, FLOW, flow);
  899. }
  900. /* Update link mode if anything has changed. Called periodically when the
  901. * PHY is in polling mode, even if nothing has changed. */
  902. static void smsc9420_phy_adjust_link(struct net_device *dev)
  903. {
  904. struct smsc9420_pdata *pd = netdev_priv(dev);
  905. struct phy_device *phy_dev = pd->phy_dev;
  906. int carrier;
  907. if (phy_dev->duplex != pd->last_duplex) {
  908. u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
  909. if (phy_dev->duplex) {
  910. smsc_dbg(LINK, "full duplex mode");
  911. mac_cr |= MAC_CR_FDPX_;
  912. } else {
  913. smsc_dbg(LINK, "half duplex mode");
  914. mac_cr &= ~MAC_CR_FDPX_;
  915. }
  916. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  917. smsc9420_phy_update_flowcontrol(pd);
  918. pd->last_duplex = phy_dev->duplex;
  919. }
  920. carrier = netif_carrier_ok(dev);
  921. if (carrier != pd->last_carrier) {
  922. if (carrier)
  923. smsc_dbg(LINK, "carrier OK");
  924. else
  925. smsc_dbg(LINK, "no carrier");
  926. pd->last_carrier = carrier;
  927. }
  928. }
  929. static int smsc9420_mii_probe(struct net_device *dev)
  930. {
  931. struct smsc9420_pdata *pd = netdev_priv(dev);
  932. struct phy_device *phydev = NULL;
  933. BUG_ON(pd->phy_dev);
  934. /* Device only supports internal PHY at address 1 */
  935. if (!pd->mii_bus->phy_map[1]) {
  936. pr_err("%s: no PHY found at address 1\n", dev->name);
  937. return -ENODEV;
  938. }
  939. phydev = pd->mii_bus->phy_map[1];
  940. smsc_info(PROBE, "PHY addr %d, phy_id 0x%08X", phydev->addr,
  941. phydev->phy_id);
  942. phydev = phy_connect(dev, dev_name(&phydev->dev),
  943. smsc9420_phy_adjust_link, 0, PHY_INTERFACE_MODE_MII);
  944. if (IS_ERR(phydev)) {
  945. pr_err("%s: Could not attach to PHY\n", dev->name);
  946. return PTR_ERR(phydev);
  947. }
  948. pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
  949. dev->name, phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
  950. /* mask with MAC supported features */
  951. phydev->supported &= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
  952. SUPPORTED_Asym_Pause);
  953. phydev->advertising = phydev->supported;
  954. pd->phy_dev = phydev;
  955. pd->last_duplex = -1;
  956. pd->last_carrier = -1;
  957. return 0;
  958. }
  959. static int smsc9420_mii_init(struct net_device *dev)
  960. {
  961. struct smsc9420_pdata *pd = netdev_priv(dev);
  962. int err = -ENXIO, i;
  963. pd->mii_bus = mdiobus_alloc();
  964. if (!pd->mii_bus) {
  965. err = -ENOMEM;
  966. goto err_out_1;
  967. }
  968. pd->mii_bus->name = DRV_MDIONAME;
  969. snprintf(pd->mii_bus->id, MII_BUS_ID_SIZE, "%x",
  970. (pd->pdev->bus->number << 8) | pd->pdev->devfn);
  971. pd->mii_bus->priv = pd;
  972. pd->mii_bus->read = smsc9420_mii_read;
  973. pd->mii_bus->write = smsc9420_mii_write;
  974. pd->mii_bus->irq = pd->phy_irq;
  975. for (i = 0; i < PHY_MAX_ADDR; ++i)
  976. pd->mii_bus->irq[i] = PHY_POLL;
  977. /* Mask all PHYs except ID 1 (internal) */
  978. pd->mii_bus->phy_mask = ~(1 << 1);
  979. if (mdiobus_register(pd->mii_bus)) {
  980. smsc_warn(PROBE, "Error registering mii bus");
  981. goto err_out_free_bus_2;
  982. }
  983. if (smsc9420_mii_probe(dev) < 0) {
  984. smsc_warn(PROBE, "Error probing mii bus");
  985. goto err_out_unregister_bus_3;
  986. }
  987. return 0;
  988. err_out_unregister_bus_3:
  989. mdiobus_unregister(pd->mii_bus);
  990. err_out_free_bus_2:
  991. mdiobus_free(pd->mii_bus);
  992. err_out_1:
  993. return err;
  994. }
  995. static int smsc9420_alloc_tx_ring(struct smsc9420_pdata *pd)
  996. {
  997. int i;
  998. BUG_ON(!pd->tx_ring);
  999. pd->tx_buffers = kmalloc((sizeof(struct smsc9420_ring_info) *
  1000. TX_RING_SIZE), GFP_KERNEL);
  1001. if (!pd->tx_buffers) {
  1002. smsc_warn(IFUP, "Failed to allocated tx_buffers");
  1003. return -ENOMEM;
  1004. }
  1005. /* Initialize the TX Ring */
  1006. for (i = 0; i < TX_RING_SIZE; i++) {
  1007. pd->tx_buffers[i].skb = NULL;
  1008. pd->tx_buffers[i].mapping = 0;
  1009. pd->tx_ring[i].status = 0;
  1010. pd->tx_ring[i].length = 0;
  1011. pd->tx_ring[i].buffer1 = 0;
  1012. pd->tx_ring[i].buffer2 = 0;
  1013. }
  1014. pd->tx_ring[TX_RING_SIZE - 1].length = TDES1_TER_;
  1015. wmb();
  1016. pd->tx_ring_head = 0;
  1017. pd->tx_ring_tail = 0;
  1018. smsc9420_reg_write(pd, TX_BASE_ADDR, pd->tx_dma_addr);
  1019. smsc9420_pci_flush_write(pd);
  1020. return 0;
  1021. }
  1022. static int smsc9420_alloc_rx_ring(struct smsc9420_pdata *pd)
  1023. {
  1024. int i;
  1025. BUG_ON(!pd->rx_ring);
  1026. pd->rx_buffers = kmalloc((sizeof(struct smsc9420_ring_info) *
  1027. RX_RING_SIZE), GFP_KERNEL);
  1028. if (pd->rx_buffers == NULL) {
  1029. smsc_warn(IFUP, "Failed to allocated rx_buffers");
  1030. goto out;
  1031. }
  1032. /* initialize the rx ring */
  1033. for (i = 0; i < RX_RING_SIZE; i++) {
  1034. pd->rx_ring[i].status = 0;
  1035. pd->rx_ring[i].length = PKT_BUF_SZ;
  1036. pd->rx_ring[i].buffer2 = 0;
  1037. pd->rx_buffers[i].skb = NULL;
  1038. pd->rx_buffers[i].mapping = 0;
  1039. }
  1040. pd->rx_ring[RX_RING_SIZE - 1].length = (PKT_BUF_SZ | RDES1_RER_);
  1041. /* now allocate the entire ring of skbs */
  1042. for (i = 0; i < RX_RING_SIZE; i++) {
  1043. if (smsc9420_alloc_rx_buffer(pd, i)) {
  1044. smsc_warn(IFUP, "failed to allocate rx skb %d", i);
  1045. goto out_free_rx_skbs;
  1046. }
  1047. }
  1048. pd->rx_ring_head = 0;
  1049. pd->rx_ring_tail = 0;
  1050. smsc9420_reg_write(pd, VLAN1, ETH_P_8021Q);
  1051. smsc_dbg(IFUP, "VLAN1 = 0x%08x", smsc9420_reg_read(pd, VLAN1));
  1052. if (pd->rx_csum) {
  1053. /* Enable RX COE */
  1054. u32 coe = smsc9420_reg_read(pd, COE_CR) | RX_COE_EN;
  1055. smsc9420_reg_write(pd, COE_CR, coe);
  1056. smsc_dbg(IFUP, "COE_CR = 0x%08x", coe);
  1057. }
  1058. smsc9420_reg_write(pd, RX_BASE_ADDR, pd->rx_dma_addr);
  1059. smsc9420_pci_flush_write(pd);
  1060. return 0;
  1061. out_free_rx_skbs:
  1062. smsc9420_free_rx_ring(pd);
  1063. out:
  1064. return -ENOMEM;
  1065. }
  1066. static int smsc9420_open(struct net_device *dev)
  1067. {
  1068. struct smsc9420_pdata *pd;
  1069. u32 bus_mode, mac_cr, dmac_control, int_cfg, dma_intr_ena, int_ctl;
  1070. unsigned long flags;
  1071. int result = 0, timeout;
  1072. BUG_ON(!dev);
  1073. pd = netdev_priv(dev);
  1074. BUG_ON(!pd);
  1075. if (!is_valid_ether_addr(dev->dev_addr)) {
  1076. smsc_warn(IFUP, "dev_addr is not a valid MAC address");
  1077. result = -EADDRNOTAVAIL;
  1078. goto out_0;
  1079. }
  1080. netif_carrier_off(dev);
  1081. /* disable, mask and acknowledge all interrupts */
  1082. spin_lock_irqsave(&pd->int_lock, flags);
  1083. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1084. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1085. smsc9420_reg_write(pd, INT_CTL, 0);
  1086. spin_unlock_irqrestore(&pd->int_lock, flags);
  1087. smsc9420_reg_write(pd, DMAC_INTR_ENA, 0);
  1088. smsc9420_reg_write(pd, INT_STAT, 0xFFFFFFFF);
  1089. smsc9420_pci_flush_write(pd);
  1090. if (request_irq(dev->irq, smsc9420_isr, IRQF_SHARED | IRQF_DISABLED,
  1091. DRV_NAME, pd)) {
  1092. smsc_warn(IFUP, "Unable to use IRQ = %d", dev->irq);
  1093. result = -ENODEV;
  1094. goto out_0;
  1095. }
  1096. smsc9420_dmac_soft_reset(pd);
  1097. /* make sure MAC_CR is sane */
  1098. smsc9420_reg_write(pd, MAC_CR, 0);
  1099. smsc9420_set_mac_address(dev);
  1100. /* Configure GPIO pins to drive LEDs */
  1101. smsc9420_reg_write(pd, GPIO_CFG,
  1102. (GPIO_CFG_LED_3_ | GPIO_CFG_LED_2_ | GPIO_CFG_LED_1_));
  1103. bus_mode = BUS_MODE_DMA_BURST_LENGTH_16;
  1104. #ifdef __BIG_ENDIAN
  1105. bus_mode |= BUS_MODE_DBO_;
  1106. #endif
  1107. smsc9420_reg_write(pd, BUS_MODE, bus_mode);
  1108. smsc9420_pci_flush_write(pd);
  1109. /* set bus master bridge arbitration priority for Rx and TX DMA */
  1110. smsc9420_reg_write(pd, BUS_CFG, BUS_CFG_RXTXWEIGHT_4_1);
  1111. smsc9420_reg_write(pd, DMAC_CONTROL,
  1112. (DMAC_CONTROL_SF_ | DMAC_CONTROL_OSF_));
  1113. smsc9420_pci_flush_write(pd);
  1114. /* test the IRQ connection to the ISR */
  1115. smsc_dbg(IFUP, "Testing ISR using IRQ %d", dev->irq);
  1116. pd->software_irq_signal = false;
  1117. spin_lock_irqsave(&pd->int_lock, flags);
  1118. /* configure interrupt deassertion timer and enable interrupts */
  1119. int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
  1120. int_cfg &= ~(INT_CFG_INT_DEAS_MASK);
  1121. int_cfg |= (INT_DEAS_TIME & INT_CFG_INT_DEAS_MASK);
  1122. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1123. /* unmask software interrupt */
  1124. int_ctl = smsc9420_reg_read(pd, INT_CTL) | INT_CTL_SW_INT_EN_;
  1125. smsc9420_reg_write(pd, INT_CTL, int_ctl);
  1126. spin_unlock_irqrestore(&pd->int_lock, flags);
  1127. smsc9420_pci_flush_write(pd);
  1128. timeout = 1000;
  1129. while (timeout--) {
  1130. if (pd->software_irq_signal)
  1131. break;
  1132. msleep(1);
  1133. }
  1134. /* disable interrupts */
  1135. spin_lock_irqsave(&pd->int_lock, flags);
  1136. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1137. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1138. spin_unlock_irqrestore(&pd->int_lock, flags);
  1139. if (!pd->software_irq_signal) {
  1140. smsc_warn(IFUP, "ISR failed signaling test");
  1141. result = -ENODEV;
  1142. goto out_free_irq_1;
  1143. }
  1144. smsc_dbg(IFUP, "ISR passed test using IRQ %d", dev->irq);
  1145. result = smsc9420_alloc_tx_ring(pd);
  1146. if (result) {
  1147. smsc_warn(IFUP, "Failed to Initialize tx dma ring");
  1148. result = -ENOMEM;
  1149. goto out_free_irq_1;
  1150. }
  1151. result = smsc9420_alloc_rx_ring(pd);
  1152. if (result) {
  1153. smsc_warn(IFUP, "Failed to Initialize rx dma ring");
  1154. result = -ENOMEM;
  1155. goto out_free_tx_ring_2;
  1156. }
  1157. result = smsc9420_mii_init(dev);
  1158. if (result) {
  1159. smsc_warn(IFUP, "Failed to initialize Phy");
  1160. result = -ENODEV;
  1161. goto out_free_rx_ring_3;
  1162. }
  1163. /* Bring the PHY up */
  1164. phy_start(pd->phy_dev);
  1165. napi_enable(&pd->napi);
  1166. /* start tx and rx */
  1167. mac_cr = smsc9420_reg_read(pd, MAC_CR) | MAC_CR_TXEN_ | MAC_CR_RXEN_;
  1168. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  1169. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  1170. dmac_control |= DMAC_CONTROL_ST_ | DMAC_CONTROL_SR_;
  1171. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  1172. smsc9420_pci_flush_write(pd);
  1173. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  1174. dma_intr_ena |=
  1175. (DMAC_INTR_ENA_TX_ | DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
  1176. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  1177. smsc9420_pci_flush_write(pd);
  1178. netif_wake_queue(dev);
  1179. smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
  1180. /* enable interrupts */
  1181. spin_lock_irqsave(&pd->int_lock, flags);
  1182. int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
  1183. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1184. spin_unlock_irqrestore(&pd->int_lock, flags);
  1185. return 0;
  1186. out_free_rx_ring_3:
  1187. smsc9420_free_rx_ring(pd);
  1188. out_free_tx_ring_2:
  1189. smsc9420_free_tx_ring(pd);
  1190. out_free_irq_1:
  1191. free_irq(dev->irq, pd);
  1192. out_0:
  1193. return result;
  1194. }
  1195. #ifdef CONFIG_PM
  1196. static int smsc9420_suspend(struct pci_dev *pdev, pm_message_t state)
  1197. {
  1198. struct net_device *dev = pci_get_drvdata(pdev);
  1199. struct smsc9420_pdata *pd = netdev_priv(dev);
  1200. u32 int_cfg;
  1201. ulong flags;
  1202. /* disable interrupts */
  1203. spin_lock_irqsave(&pd->int_lock, flags);
  1204. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1205. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1206. spin_unlock_irqrestore(&pd->int_lock, flags);
  1207. if (netif_running(dev)) {
  1208. netif_tx_disable(dev);
  1209. smsc9420_stop_tx(pd);
  1210. smsc9420_free_tx_ring(pd);
  1211. napi_disable(&pd->napi);
  1212. smsc9420_stop_rx(pd);
  1213. smsc9420_free_rx_ring(pd);
  1214. free_irq(dev->irq, pd);
  1215. netif_device_detach(dev);
  1216. }
  1217. pci_save_state(pdev);
  1218. pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
  1219. pci_disable_device(pdev);
  1220. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  1221. return 0;
  1222. }
  1223. static int smsc9420_resume(struct pci_dev *pdev)
  1224. {
  1225. struct net_device *dev = pci_get_drvdata(pdev);
  1226. struct smsc9420_pdata *pd = netdev_priv(dev);
  1227. int err;
  1228. pci_set_power_state(pdev, PCI_D0);
  1229. pci_restore_state(pdev);
  1230. err = pci_enable_device(pdev);
  1231. if (err)
  1232. return err;
  1233. pci_set_master(pdev);
  1234. err = pci_enable_wake(pdev, 0, 0);
  1235. if (err)
  1236. smsc_warn(IFUP, "pci_enable_wake failed: %d", err);
  1237. if (netif_running(dev)) {
  1238. err = smsc9420_open(dev);
  1239. netif_device_attach(dev);
  1240. }
  1241. return err;
  1242. }
  1243. #endif /* CONFIG_PM */
  1244. static const struct net_device_ops smsc9420_netdev_ops = {
  1245. .ndo_open = smsc9420_open,
  1246. .ndo_stop = smsc9420_stop,
  1247. .ndo_start_xmit = smsc9420_hard_start_xmit,
  1248. .ndo_get_stats = smsc9420_get_stats,
  1249. .ndo_set_rx_mode = smsc9420_set_multicast_list,
  1250. .ndo_do_ioctl = smsc9420_do_ioctl,
  1251. .ndo_validate_addr = eth_validate_addr,
  1252. .ndo_set_mac_address = eth_mac_addr,
  1253. #ifdef CONFIG_NET_POLL_CONTROLLER
  1254. .ndo_poll_controller = smsc9420_poll_controller,
  1255. #endif /* CONFIG_NET_POLL_CONTROLLER */
  1256. };
  1257. static int __devinit
  1258. smsc9420_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1259. {
  1260. struct net_device *dev;
  1261. struct smsc9420_pdata *pd;
  1262. void __iomem *virt_addr;
  1263. int result = 0;
  1264. u32 id_rev;
  1265. printk(KERN_INFO DRV_DESCRIPTION " version " DRV_VERSION "\n");
  1266. /* First do the PCI initialisation */
  1267. result = pci_enable_device(pdev);
  1268. if (unlikely(result)) {
  1269. printk(KERN_ERR "Cannot enable smsc9420\n");
  1270. goto out_0;
  1271. }
  1272. pci_set_master(pdev);
  1273. dev = alloc_etherdev(sizeof(*pd));
  1274. if (!dev)
  1275. goto out_disable_pci_device_1;
  1276. SET_NETDEV_DEV(dev, &pdev->dev);
  1277. if (!(pci_resource_flags(pdev, SMSC_BAR) & IORESOURCE_MEM)) {
  1278. printk(KERN_ERR "Cannot find PCI device base address\n");
  1279. goto out_free_netdev_2;
  1280. }
  1281. if ((pci_request_regions(pdev, DRV_NAME))) {
  1282. printk(KERN_ERR "Cannot obtain PCI resources, aborting.\n");
  1283. goto out_free_netdev_2;
  1284. }
  1285. if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
  1286. printk(KERN_ERR "No usable DMA configuration, aborting.\n");
  1287. goto out_free_regions_3;
  1288. }
  1289. virt_addr = ioremap(pci_resource_start(pdev, SMSC_BAR),
  1290. pci_resource_len(pdev, SMSC_BAR));
  1291. if (!virt_addr) {
  1292. printk(KERN_ERR "Cannot map device registers, aborting.\n");
  1293. goto out_free_regions_3;
  1294. }
  1295. /* registers are double mapped with 0 offset for LE and 0x200 for BE */
  1296. virt_addr += LAN9420_CPSR_ENDIAN_OFFSET;
  1297. dev->base_addr = (ulong)virt_addr;
  1298. pd = netdev_priv(dev);
  1299. /* pci descriptors are created in the PCI consistent area */
  1300. pd->rx_ring = pci_alloc_consistent(pdev,
  1301. sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE +
  1302. sizeof(struct smsc9420_dma_desc) * TX_RING_SIZE,
  1303. &pd->rx_dma_addr);
  1304. if (!pd->rx_ring)
  1305. goto out_free_io_4;
  1306. /* descriptors are aligned due to the nature of pci_alloc_consistent */
  1307. pd->tx_ring = (pd->rx_ring + RX_RING_SIZE);
  1308. pd->tx_dma_addr = pd->rx_dma_addr +
  1309. sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE;
  1310. pd->pdev = pdev;
  1311. pd->dev = dev;
  1312. pd->base_addr = virt_addr;
  1313. pd->msg_enable = smsc_debug;
  1314. pd->rx_csum = true;
  1315. smsc_dbg(PROBE, "lan_base=0x%08lx", (ulong)virt_addr);
  1316. id_rev = smsc9420_reg_read(pd, ID_REV);
  1317. switch (id_rev & 0xFFFF0000) {
  1318. case 0x94200000:
  1319. smsc_info(PROBE, "LAN9420 identified, ID_REV=0x%08X", id_rev);
  1320. break;
  1321. default:
  1322. smsc_warn(PROBE, "LAN9420 NOT identified");
  1323. smsc_warn(PROBE, "ID_REV=0x%08X", id_rev);
  1324. goto out_free_dmadesc_5;
  1325. }
  1326. smsc9420_dmac_soft_reset(pd);
  1327. smsc9420_eeprom_reload(pd);
  1328. smsc9420_check_mac_address(dev);
  1329. dev->netdev_ops = &smsc9420_netdev_ops;
  1330. dev->ethtool_ops = &smsc9420_ethtool_ops;
  1331. dev->irq = pdev->irq;
  1332. netif_napi_add(dev, &pd->napi, smsc9420_rx_poll, NAPI_WEIGHT);
  1333. result = register_netdev(dev);
  1334. if (result) {
  1335. smsc_warn(PROBE, "error %i registering device", result);
  1336. goto out_free_dmadesc_5;
  1337. }
  1338. pci_set_drvdata(pdev, dev);
  1339. spin_lock_init(&pd->int_lock);
  1340. spin_lock_init(&pd->phy_lock);
  1341. dev_info(&dev->dev, "MAC Address: %pM\n", dev->dev_addr);
  1342. return 0;
  1343. out_free_dmadesc_5:
  1344. pci_free_consistent(pdev, sizeof(struct smsc9420_dma_desc) *
  1345. (RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr);
  1346. out_free_io_4:
  1347. iounmap(virt_addr - LAN9420_CPSR_ENDIAN_OFFSET);
  1348. out_free_regions_3:
  1349. pci_release_regions(pdev);
  1350. out_free_netdev_2:
  1351. free_netdev(dev);
  1352. out_disable_pci_device_1:
  1353. pci_disable_device(pdev);
  1354. out_0:
  1355. return -ENODEV;
  1356. }
  1357. static void __devexit smsc9420_remove(struct pci_dev *pdev)
  1358. {
  1359. struct net_device *dev;
  1360. struct smsc9420_pdata *pd;
  1361. dev = pci_get_drvdata(pdev);
  1362. if (!dev)
  1363. return;
  1364. pci_set_drvdata(pdev, NULL);
  1365. pd = netdev_priv(dev);
  1366. unregister_netdev(dev);
  1367. /* tx_buffers and rx_buffers are freed in stop */
  1368. BUG_ON(pd->tx_buffers);
  1369. BUG_ON(pd->rx_buffers);
  1370. BUG_ON(!pd->tx_ring);
  1371. BUG_ON(!pd->rx_ring);
  1372. pci_free_consistent(pdev, sizeof(struct smsc9420_dma_desc) *
  1373. (RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr);
  1374. iounmap(pd->base_addr - LAN9420_CPSR_ENDIAN_OFFSET);
  1375. pci_release_regions(pdev);
  1376. free_netdev(dev);
  1377. pci_disable_device(pdev);
  1378. }
  1379. static struct pci_driver smsc9420_driver = {
  1380. .name = DRV_NAME,
  1381. .id_table = smsc9420_id_table,
  1382. .probe = smsc9420_probe,
  1383. .remove = __devexit_p(smsc9420_remove),
  1384. #ifdef CONFIG_PM
  1385. .suspend = smsc9420_suspend,
  1386. .resume = smsc9420_resume,
  1387. #endif /* CONFIG_PM */
  1388. };
  1389. static int __init smsc9420_init_module(void)
  1390. {
  1391. smsc_debug = netif_msg_init(debug, SMSC_MSG_DEFAULT);
  1392. return pci_register_driver(&smsc9420_driver);
  1393. }
  1394. static void __exit smsc9420_exit_module(void)
  1395. {
  1396. pci_unregister_driver(&smsc9420_driver);
  1397. }
  1398. module_init(smsc9420_init_module);
  1399. module_exit(smsc9420_exit_module);