lineage-pem.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. /*
  2. * Driver for Lineage Compact Power Line series of power entry modules.
  3. *
  4. * Copyright (C) 2010, 2011 Ericsson AB.
  5. *
  6. * Documentation:
  7. * http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/init.h>
  26. #include <linux/err.h>
  27. #include <linux/slab.h>
  28. #include <linux/i2c.h>
  29. #include <linux/hwmon.h>
  30. #include <linux/hwmon-sysfs.h>
  31. /*
  32. * This driver supports various Lineage Compact Power Line DC/DC and AC/DC
  33. * converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
  34. *
  35. * The devices are nominally PMBus compliant. However, most standard PMBus
  36. * commands are not supported. Specifically, all hardware monitoring and
  37. * status reporting commands are non-standard. For this reason, a standard
  38. * PMBus driver can not be used.
  39. *
  40. * All Lineage CPL devices have a built-in I2C bus master selector (PCA9541).
  41. * To ensure device access, this driver should only be used as client driver
  42. * to the pca9541 I2C master selector driver.
  43. */
  44. /* Command codes */
  45. #define PEM_OPERATION 0x01
  46. #define PEM_CLEAR_INFO_FLAGS 0x03
  47. #define PEM_VOUT_COMMAND 0x21
  48. #define PEM_VOUT_OV_FAULT_LIMIT 0x40
  49. #define PEM_READ_DATA_STRING 0xd0
  50. #define PEM_READ_INPUT_STRING 0xdc
  51. #define PEM_READ_FIRMWARE_REV 0xdd
  52. #define PEM_READ_RUN_TIMER 0xde
  53. #define PEM_FAN_HI_SPEED 0xdf
  54. #define PEM_FAN_NORMAL_SPEED 0xe0
  55. #define PEM_READ_FAN_SPEED 0xe1
  56. /* offsets in data string */
  57. #define PEM_DATA_STATUS_2 0
  58. #define PEM_DATA_STATUS_1 1
  59. #define PEM_DATA_ALARM_2 2
  60. #define PEM_DATA_ALARM_1 3
  61. #define PEM_DATA_VOUT_LSB 4
  62. #define PEM_DATA_VOUT_MSB 5
  63. #define PEM_DATA_CURRENT 6
  64. #define PEM_DATA_TEMP 7
  65. /* Virtual entries, to report constants */
  66. #define PEM_DATA_TEMP_MAX 10
  67. #define PEM_DATA_TEMP_CRIT 11
  68. /* offsets in input string */
  69. #define PEM_INPUT_VOLTAGE 0
  70. #define PEM_INPUT_POWER_LSB 1
  71. #define PEM_INPUT_POWER_MSB 2
  72. /* offsets in fan data */
  73. #define PEM_FAN_ADJUSTMENT 0
  74. #define PEM_FAN_FAN1 1
  75. #define PEM_FAN_FAN2 2
  76. #define PEM_FAN_FAN3 3
  77. /* Status register bits */
  78. #define STS1_OUTPUT_ON (1 << 0)
  79. #define STS1_LEDS_FLASHING (1 << 1)
  80. #define STS1_EXT_FAULT (1 << 2)
  81. #define STS1_SERVICE_LED_ON (1 << 3)
  82. #define STS1_SHUTDOWN_OCCURRED (1 << 4)
  83. #define STS1_INT_FAULT (1 << 5)
  84. #define STS1_ISOLATION_TEST_OK (1 << 6)
  85. #define STS2_ENABLE_PIN_HI (1 << 0)
  86. #define STS2_DATA_OUT_RANGE (1 << 1)
  87. #define STS2_RESTARTED_OK (1 << 1)
  88. #define STS2_ISOLATION_TEST_FAIL (1 << 3)
  89. #define STS2_HIGH_POWER_CAP (1 << 4)
  90. #define STS2_INVALID_INSTR (1 << 5)
  91. #define STS2_WILL_RESTART (1 << 6)
  92. #define STS2_PEC_ERR (1 << 7)
  93. /* Alarm register bits */
  94. #define ALRM1_VIN_OUT_LIMIT (1 << 0)
  95. #define ALRM1_VOUT_OUT_LIMIT (1 << 1)
  96. #define ALRM1_OV_VOLT_SHUTDOWN (1 << 2)
  97. #define ALRM1_VIN_OVERCURRENT (1 << 3)
  98. #define ALRM1_TEMP_WARNING (1 << 4)
  99. #define ALRM1_TEMP_SHUTDOWN (1 << 5)
  100. #define ALRM1_PRIMARY_FAULT (1 << 6)
  101. #define ALRM1_POWER_LIMIT (1 << 7)
  102. #define ALRM2_5V_OUT_LIMIT (1 << 1)
  103. #define ALRM2_TEMP_FAULT (1 << 2)
  104. #define ALRM2_OV_LOW (1 << 3)
  105. #define ALRM2_DCDC_TEMP_HIGH (1 << 4)
  106. #define ALRM2_PRI_TEMP_HIGH (1 << 5)
  107. #define ALRM2_NO_PRIMARY (1 << 6)
  108. #define ALRM2_FAN_FAULT (1 << 7)
  109. #define FIRMWARE_REV_LEN 4
  110. #define DATA_STRING_LEN 9
  111. #define INPUT_STRING_LEN 5 /* 4 for most devices */
  112. #define FAN_SPEED_LEN 5
  113. struct pem_data {
  114. struct device *hwmon_dev;
  115. struct mutex update_lock;
  116. bool valid;
  117. bool fans_supported;
  118. int input_length;
  119. unsigned long last_updated; /* in jiffies */
  120. u8 firmware_rev[FIRMWARE_REV_LEN];
  121. u8 data_string[DATA_STRING_LEN];
  122. u8 input_string[INPUT_STRING_LEN];
  123. u8 fan_speed[FAN_SPEED_LEN];
  124. };
  125. static int pem_read_block(struct i2c_client *client, u8 command, u8 *data,
  126. int data_len)
  127. {
  128. u8 block_buffer[I2C_SMBUS_BLOCK_MAX];
  129. int result;
  130. result = i2c_smbus_read_block_data(client, command, block_buffer);
  131. if (unlikely(result < 0))
  132. goto abort;
  133. if (unlikely(result == 0xff || result != data_len)) {
  134. result = -EIO;
  135. goto abort;
  136. }
  137. memcpy(data, block_buffer, data_len);
  138. result = 0;
  139. abort:
  140. return result;
  141. }
  142. static struct pem_data *pem_update_device(struct device *dev)
  143. {
  144. struct i2c_client *client = to_i2c_client(dev);
  145. struct pem_data *data = i2c_get_clientdata(client);
  146. struct pem_data *ret = data;
  147. mutex_lock(&data->update_lock);
  148. if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
  149. int result;
  150. /* Read data string */
  151. result = pem_read_block(client, PEM_READ_DATA_STRING,
  152. data->data_string,
  153. sizeof(data->data_string));
  154. if (unlikely(result < 0)) {
  155. ret = ERR_PTR(result);
  156. goto abort;
  157. }
  158. /* Read input string */
  159. if (data->input_length) {
  160. result = pem_read_block(client, PEM_READ_INPUT_STRING,
  161. data->input_string,
  162. data->input_length);
  163. if (unlikely(result < 0)) {
  164. ret = ERR_PTR(result);
  165. goto abort;
  166. }
  167. }
  168. /* Read fan speeds */
  169. if (data->fans_supported) {
  170. result = pem_read_block(client, PEM_READ_FAN_SPEED,
  171. data->fan_speed,
  172. sizeof(data->fan_speed));
  173. if (unlikely(result < 0)) {
  174. ret = ERR_PTR(result);
  175. goto abort;
  176. }
  177. }
  178. i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
  179. data->last_updated = jiffies;
  180. data->valid = 1;
  181. }
  182. abort:
  183. mutex_unlock(&data->update_lock);
  184. return ret;
  185. }
  186. static long pem_get_data(u8 *data, int len, int index)
  187. {
  188. long val;
  189. switch (index) {
  190. case PEM_DATA_VOUT_LSB:
  191. val = (data[index] + (data[index+1] << 8)) * 5 / 2;
  192. break;
  193. case PEM_DATA_CURRENT:
  194. val = data[index] * 200;
  195. break;
  196. case PEM_DATA_TEMP:
  197. val = data[index] * 1000;
  198. break;
  199. case PEM_DATA_TEMP_MAX:
  200. val = 97 * 1000; /* 97 degrees C per datasheet */
  201. break;
  202. case PEM_DATA_TEMP_CRIT:
  203. val = 107 * 1000; /* 107 degrees C per datasheet */
  204. break;
  205. default:
  206. WARN_ON_ONCE(1);
  207. val = 0;
  208. }
  209. return val;
  210. }
  211. static long pem_get_input(u8 *data, int len, int index)
  212. {
  213. long val;
  214. switch (index) {
  215. case PEM_INPUT_VOLTAGE:
  216. if (len == INPUT_STRING_LEN)
  217. val = (data[index] + (data[index+1] << 8) - 75) * 1000;
  218. else
  219. val = (data[index] - 75) * 1000;
  220. break;
  221. case PEM_INPUT_POWER_LSB:
  222. if (len == INPUT_STRING_LEN)
  223. index++;
  224. val = (data[index] + (data[index+1] << 8)) * 1000000L;
  225. break;
  226. default:
  227. WARN_ON_ONCE(1);
  228. val = 0;
  229. }
  230. return val;
  231. }
  232. static long pem_get_fan(u8 *data, int len, int index)
  233. {
  234. long val;
  235. switch (index) {
  236. case PEM_FAN_FAN1:
  237. case PEM_FAN_FAN2:
  238. case PEM_FAN_FAN3:
  239. val = data[index] * 100;
  240. break;
  241. default:
  242. WARN_ON_ONCE(1);
  243. val = 0;
  244. }
  245. return val;
  246. }
  247. /*
  248. * Show boolean, either a fault or an alarm.
  249. * .nr points to the register, .index is the bit mask to check
  250. */
  251. static ssize_t pem_show_bool(struct device *dev,
  252. struct device_attribute *da, char *buf)
  253. {
  254. struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da);
  255. struct pem_data *data = pem_update_device(dev);
  256. u8 status;
  257. if (IS_ERR(data))
  258. return PTR_ERR(data);
  259. status = data->data_string[attr->nr] & attr->index;
  260. return snprintf(buf, PAGE_SIZE, "%d\n", !!status);
  261. }
  262. static ssize_t pem_show_data(struct device *dev, struct device_attribute *da,
  263. char *buf)
  264. {
  265. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  266. struct pem_data *data = pem_update_device(dev);
  267. long value;
  268. if (IS_ERR(data))
  269. return PTR_ERR(data);
  270. value = pem_get_data(data->data_string, sizeof(data->data_string),
  271. attr->index);
  272. return snprintf(buf, PAGE_SIZE, "%ld\n", value);
  273. }
  274. static ssize_t pem_show_input(struct device *dev, struct device_attribute *da,
  275. char *buf)
  276. {
  277. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  278. struct pem_data *data = pem_update_device(dev);
  279. long value;
  280. if (IS_ERR(data))
  281. return PTR_ERR(data);
  282. value = pem_get_input(data->input_string, sizeof(data->input_string),
  283. attr->index);
  284. return snprintf(buf, PAGE_SIZE, "%ld\n", value);
  285. }
  286. static ssize_t pem_show_fan(struct device *dev, struct device_attribute *da,
  287. char *buf)
  288. {
  289. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  290. struct pem_data *data = pem_update_device(dev);
  291. long value;
  292. if (IS_ERR(data))
  293. return PTR_ERR(data);
  294. value = pem_get_fan(data->fan_speed, sizeof(data->fan_speed),
  295. attr->index);
  296. return snprintf(buf, PAGE_SIZE, "%ld\n", value);
  297. }
  298. /* Voltages */
  299. static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, pem_show_data, NULL,
  300. PEM_DATA_VOUT_LSB);
  301. static SENSOR_DEVICE_ATTR_2(in1_alarm, S_IRUGO, pem_show_bool, NULL,
  302. PEM_DATA_ALARM_1, ALRM1_VOUT_OUT_LIMIT);
  303. static SENSOR_DEVICE_ATTR_2(in1_crit_alarm, S_IRUGO, pem_show_bool, NULL,
  304. PEM_DATA_ALARM_1, ALRM1_OV_VOLT_SHUTDOWN);
  305. static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, pem_show_input, NULL,
  306. PEM_INPUT_VOLTAGE);
  307. static SENSOR_DEVICE_ATTR_2(in2_alarm, S_IRUGO, pem_show_bool, NULL,
  308. PEM_DATA_ALARM_1,
  309. ALRM1_VIN_OUT_LIMIT | ALRM1_PRIMARY_FAULT);
  310. /* Currents */
  311. static SENSOR_DEVICE_ATTR(curr1_input, S_IRUGO, pem_show_data, NULL,
  312. PEM_DATA_CURRENT);
  313. static SENSOR_DEVICE_ATTR_2(curr1_alarm, S_IRUGO, pem_show_bool, NULL,
  314. PEM_DATA_ALARM_1, ALRM1_VIN_OVERCURRENT);
  315. /* Power */
  316. static SENSOR_DEVICE_ATTR(power1_input, S_IRUGO, pem_show_input, NULL,
  317. PEM_INPUT_POWER_LSB);
  318. static SENSOR_DEVICE_ATTR_2(power1_alarm, S_IRUGO, pem_show_bool, NULL,
  319. PEM_DATA_ALARM_1, ALRM1_POWER_LIMIT);
  320. /* Fans */
  321. static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, pem_show_fan, NULL,
  322. PEM_FAN_FAN1);
  323. static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, pem_show_fan, NULL,
  324. PEM_FAN_FAN2);
  325. static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, pem_show_fan, NULL,
  326. PEM_FAN_FAN3);
  327. static SENSOR_DEVICE_ATTR_2(fan1_alarm, S_IRUGO, pem_show_bool, NULL,
  328. PEM_DATA_ALARM_2, ALRM2_FAN_FAULT);
  329. /* Temperatures */
  330. static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, pem_show_data, NULL,
  331. PEM_DATA_TEMP);
  332. static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO, pem_show_data, NULL,
  333. PEM_DATA_TEMP_MAX);
  334. static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, pem_show_data, NULL,
  335. PEM_DATA_TEMP_CRIT);
  336. static SENSOR_DEVICE_ATTR_2(temp1_alarm, S_IRUGO, pem_show_bool, NULL,
  337. PEM_DATA_ALARM_1, ALRM1_TEMP_WARNING);
  338. static SENSOR_DEVICE_ATTR_2(temp1_crit_alarm, S_IRUGO, pem_show_bool, NULL,
  339. PEM_DATA_ALARM_1, ALRM1_TEMP_SHUTDOWN);
  340. static SENSOR_DEVICE_ATTR_2(temp1_fault, S_IRUGO, pem_show_bool, NULL,
  341. PEM_DATA_ALARM_2, ALRM2_TEMP_FAULT);
  342. static struct attribute *pem_attributes[] = {
  343. &sensor_dev_attr_in1_input.dev_attr.attr,
  344. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  345. &sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
  346. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  347. &sensor_dev_attr_curr1_alarm.dev_attr.attr,
  348. &sensor_dev_attr_power1_alarm.dev_attr.attr,
  349. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  350. &sensor_dev_attr_temp1_input.dev_attr.attr,
  351. &sensor_dev_attr_temp1_max.dev_attr.attr,
  352. &sensor_dev_attr_temp1_crit.dev_attr.attr,
  353. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  354. &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
  355. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  356. NULL,
  357. };
  358. static const struct attribute_group pem_group = {
  359. .attrs = pem_attributes,
  360. };
  361. static struct attribute *pem_input_attributes[] = {
  362. &sensor_dev_attr_in2_input.dev_attr.attr,
  363. &sensor_dev_attr_curr1_input.dev_attr.attr,
  364. &sensor_dev_attr_power1_input.dev_attr.attr,
  365. NULL
  366. };
  367. static const struct attribute_group pem_input_group = {
  368. .attrs = pem_input_attributes,
  369. };
  370. static struct attribute *pem_fan_attributes[] = {
  371. &sensor_dev_attr_fan1_input.dev_attr.attr,
  372. &sensor_dev_attr_fan2_input.dev_attr.attr,
  373. &sensor_dev_attr_fan3_input.dev_attr.attr,
  374. NULL
  375. };
  376. static const struct attribute_group pem_fan_group = {
  377. .attrs = pem_fan_attributes,
  378. };
  379. static int pem_probe(struct i2c_client *client,
  380. const struct i2c_device_id *id)
  381. {
  382. struct i2c_adapter *adapter = client->adapter;
  383. struct pem_data *data;
  384. int ret;
  385. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BLOCK_DATA
  386. | I2C_FUNC_SMBUS_WRITE_BYTE))
  387. return -ENODEV;
  388. data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
  389. if (!data)
  390. return -ENOMEM;
  391. i2c_set_clientdata(client, data);
  392. mutex_init(&data->update_lock);
  393. /*
  394. * We use the next two commands to determine if the device is really
  395. * there.
  396. */
  397. ret = pem_read_block(client, PEM_READ_FIRMWARE_REV,
  398. data->firmware_rev, sizeof(data->firmware_rev));
  399. if (ret < 0)
  400. return ret;
  401. ret = i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
  402. if (ret < 0)
  403. return ret;
  404. dev_info(&client->dev, "Firmware revision %d.%d.%d\n",
  405. data->firmware_rev[0], data->firmware_rev[1],
  406. data->firmware_rev[2]);
  407. /* Register sysfs hooks */
  408. ret = sysfs_create_group(&client->dev.kobj, &pem_group);
  409. if (ret)
  410. return ret;
  411. /*
  412. * Check if input readings are supported.
  413. * This is the case if we can read input data,
  414. * and if the returned data is not all zeros.
  415. * Note that input alarms are always supported.
  416. */
  417. ret = pem_read_block(client, PEM_READ_INPUT_STRING,
  418. data->input_string,
  419. sizeof(data->input_string) - 1);
  420. if (!ret && (data->input_string[0] || data->input_string[1] ||
  421. data->input_string[2]))
  422. data->input_length = sizeof(data->input_string) - 1;
  423. else if (ret < 0) {
  424. /* Input string is one byte longer for some devices */
  425. ret = pem_read_block(client, PEM_READ_INPUT_STRING,
  426. data->input_string,
  427. sizeof(data->input_string));
  428. if (!ret && (data->input_string[0] || data->input_string[1] ||
  429. data->input_string[2] || data->input_string[3]))
  430. data->input_length = sizeof(data->input_string);
  431. }
  432. ret = 0;
  433. if (data->input_length) {
  434. ret = sysfs_create_group(&client->dev.kobj, &pem_input_group);
  435. if (ret)
  436. goto out_remove_groups;
  437. }
  438. /*
  439. * Check if fan speed readings are supported.
  440. * This is the case if we can read fan speed data,
  441. * and if the returned data is not all zeros.
  442. * Note that the fan alarm is always supported.
  443. */
  444. ret = pem_read_block(client, PEM_READ_FAN_SPEED,
  445. data->fan_speed,
  446. sizeof(data->fan_speed));
  447. if (!ret && (data->fan_speed[0] || data->fan_speed[1] ||
  448. data->fan_speed[2] || data->fan_speed[3])) {
  449. data->fans_supported = true;
  450. ret = sysfs_create_group(&client->dev.kobj, &pem_fan_group);
  451. if (ret)
  452. goto out_remove_groups;
  453. }
  454. data->hwmon_dev = hwmon_device_register(&client->dev);
  455. if (IS_ERR(data->hwmon_dev)) {
  456. ret = PTR_ERR(data->hwmon_dev);
  457. goto out_remove_groups;
  458. }
  459. return 0;
  460. out_remove_groups:
  461. sysfs_remove_group(&client->dev.kobj, &pem_input_group);
  462. sysfs_remove_group(&client->dev.kobj, &pem_fan_group);
  463. sysfs_remove_group(&client->dev.kobj, &pem_group);
  464. return ret;
  465. }
  466. static int pem_remove(struct i2c_client *client)
  467. {
  468. struct pem_data *data = i2c_get_clientdata(client);
  469. hwmon_device_unregister(data->hwmon_dev);
  470. sysfs_remove_group(&client->dev.kobj, &pem_input_group);
  471. sysfs_remove_group(&client->dev.kobj, &pem_fan_group);
  472. sysfs_remove_group(&client->dev.kobj, &pem_group);
  473. return 0;
  474. }
  475. static const struct i2c_device_id pem_id[] = {
  476. {"lineage_pem", 0},
  477. {}
  478. };
  479. MODULE_DEVICE_TABLE(i2c, pem_id);
  480. static struct i2c_driver pem_driver = {
  481. .driver = {
  482. .name = "lineage_pem",
  483. },
  484. .probe = pem_probe,
  485. .remove = pem_remove,
  486. .id_table = pem_id,
  487. };
  488. module_i2c_driver(pem_driver);
  489. MODULE_AUTHOR("Guenter Roeck <guenter.roeck@ericsson.com>");
  490. MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver");
  491. MODULE_LICENSE("GPL");