ste_dma40_ll.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. /*
  2. * Copyright (C) ST-Ericsson SA 2007-2010
  3. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  4. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  5. * License terms: GNU General Public License (GPL) version 2
  6. */
  7. #include <linux/kernel.h>
  8. #include <plat/ste_dma40.h>
  9. #include "ste_dma40_ll.h"
  10. /* Sets up proper LCSP1 and LCSP3 register for a logical channel */
  11. void d40_log_cfg(struct stedma40_chan_cfg *cfg,
  12. u32 *lcsp1, u32 *lcsp3)
  13. {
  14. u32 l3 = 0; /* dst */
  15. u32 l1 = 0; /* src */
  16. /* src is mem? -> increase address pos */
  17. if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
  18. cfg->dir == STEDMA40_MEM_TO_MEM)
  19. l1 |= 1 << D40_MEM_LCSP1_SCFG_INCR_POS;
  20. /* dst is mem? -> increase address pos */
  21. if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
  22. cfg->dir == STEDMA40_MEM_TO_MEM)
  23. l3 |= 1 << D40_MEM_LCSP3_DCFG_INCR_POS;
  24. /* src is hw? -> master port 1 */
  25. if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
  26. cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
  27. l1 |= 1 << D40_MEM_LCSP1_SCFG_MST_POS;
  28. /* dst is hw? -> master port 1 */
  29. if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
  30. cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
  31. l3 |= 1 << D40_MEM_LCSP3_DCFG_MST_POS;
  32. l3 |= 1 << D40_MEM_LCSP3_DCFG_EIM_POS;
  33. l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS;
  34. l3 |= cfg->dst_info.data_width << D40_MEM_LCSP3_DCFG_ESIZE_POS;
  35. l1 |= 1 << D40_MEM_LCSP1_SCFG_EIM_POS;
  36. l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
  37. l1 |= cfg->src_info.data_width << D40_MEM_LCSP1_SCFG_ESIZE_POS;
  38. *lcsp1 = l1;
  39. *lcsp3 = l3;
  40. }
  41. /* Sets up SRC and DST CFG register for both logical and physical channels */
  42. void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
  43. u32 *src_cfg, u32 *dst_cfg, bool is_log)
  44. {
  45. u32 src = 0;
  46. u32 dst = 0;
  47. if (!is_log) {
  48. /* Physical channel */
  49. if ((cfg->dir == STEDMA40_PERIPH_TO_MEM) ||
  50. (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
  51. /* Set master port to 1 */
  52. src |= 1 << D40_SREG_CFG_MST_POS;
  53. src |= D40_TYPE_TO_EVENT(cfg->src_dev_type);
  54. if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
  55. src |= 1 << D40_SREG_CFG_PHY_TM_POS;
  56. else
  57. src |= 3 << D40_SREG_CFG_PHY_TM_POS;
  58. }
  59. if ((cfg->dir == STEDMA40_MEM_TO_PERIPH) ||
  60. (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
  61. /* Set master port to 1 */
  62. dst |= 1 << D40_SREG_CFG_MST_POS;
  63. dst |= D40_TYPE_TO_EVENT(cfg->dst_dev_type);
  64. if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
  65. dst |= 1 << D40_SREG_CFG_PHY_TM_POS;
  66. else
  67. dst |= 3 << D40_SREG_CFG_PHY_TM_POS;
  68. }
  69. /* Interrupt on end of transfer for destination */
  70. dst |= 1 << D40_SREG_CFG_TIM_POS;
  71. /* Generate interrupt on error */
  72. src |= 1 << D40_SREG_CFG_EIM_POS;
  73. dst |= 1 << D40_SREG_CFG_EIM_POS;
  74. /* PSIZE */
  75. if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) {
  76. src |= 1 << D40_SREG_CFG_PHY_PEN_POS;
  77. src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS;
  78. }
  79. if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) {
  80. dst |= 1 << D40_SREG_CFG_PHY_PEN_POS;
  81. dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS;
  82. }
  83. /* Element size */
  84. src |= cfg->src_info.data_width << D40_SREG_CFG_ESIZE_POS;
  85. dst |= cfg->dst_info.data_width << D40_SREG_CFG_ESIZE_POS;
  86. } else {
  87. /* Logical channel */
  88. dst |= 1 << D40_SREG_CFG_LOG_GIM_POS;
  89. src |= 1 << D40_SREG_CFG_LOG_GIM_POS;
  90. }
  91. if (cfg->high_priority) {
  92. src |= 1 << D40_SREG_CFG_PRI_POS;
  93. dst |= 1 << D40_SREG_CFG_PRI_POS;
  94. }
  95. if (cfg->src_info.big_endian)
  96. src |= 1 << D40_SREG_CFG_LBE_POS;
  97. if (cfg->dst_info.big_endian)
  98. dst |= 1 << D40_SREG_CFG_LBE_POS;
  99. *src_cfg = src;
  100. *dst_cfg = dst;
  101. }
  102. static int d40_phy_fill_lli(struct d40_phy_lli *lli,
  103. dma_addr_t data,
  104. u32 data_size,
  105. dma_addr_t next_lli,
  106. u32 reg_cfg,
  107. struct stedma40_half_channel_info *info,
  108. unsigned int flags)
  109. {
  110. bool addr_inc = flags & LLI_ADDR_INC;
  111. bool term_int = flags & LLI_TERM_INT;
  112. unsigned int data_width = info->data_width;
  113. int psize = info->psize;
  114. int num_elems;
  115. if (psize == STEDMA40_PSIZE_PHY_1)
  116. num_elems = 1;
  117. else
  118. num_elems = 2 << psize;
  119. /* Must be aligned */
  120. if (!IS_ALIGNED(data, 0x1 << data_width))
  121. return -EINVAL;
  122. /* Transfer size can't be smaller than (num_elms * elem_size) */
  123. if (data_size < num_elems * (0x1 << data_width))
  124. return -EINVAL;
  125. /* The number of elements. IE now many chunks */
  126. lli->reg_elt = (data_size >> data_width) << D40_SREG_ELEM_PHY_ECNT_POS;
  127. /*
  128. * Distance to next element sized entry.
  129. * Usually the size of the element unless you want gaps.
  130. */
  131. if (addr_inc)
  132. lli->reg_elt |= (0x1 << data_width) <<
  133. D40_SREG_ELEM_PHY_EIDX_POS;
  134. /* Where the data is */
  135. lli->reg_ptr = data;
  136. lli->reg_cfg = reg_cfg;
  137. /* If this scatter list entry is the last one, no next link */
  138. if (next_lli == 0)
  139. lli->reg_lnk = 0x1 << D40_SREG_LNK_PHY_TCP_POS;
  140. else
  141. lli->reg_lnk = next_lli;
  142. /* Set/clear interrupt generation on this link item.*/
  143. if (term_int)
  144. lli->reg_cfg |= 0x1 << D40_SREG_CFG_TIM_POS;
  145. else
  146. lli->reg_cfg &= ~(0x1 << D40_SREG_CFG_TIM_POS);
  147. /* Post link */
  148. lli->reg_lnk |= 0 << D40_SREG_LNK_PHY_PRE_POS;
  149. return 0;
  150. }
  151. static int d40_seg_size(int size, int data_width1, int data_width2)
  152. {
  153. u32 max_w = max(data_width1, data_width2);
  154. u32 min_w = min(data_width1, data_width2);
  155. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  156. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  157. seg_max -= (1 << max_w);
  158. if (size <= seg_max)
  159. return size;
  160. if (size <= 2 * seg_max)
  161. return ALIGN(size / 2, 1 << max_w);
  162. return seg_max;
  163. }
  164. static struct d40_phy_lli *
  165. d40_phy_buf_to_lli(struct d40_phy_lli *lli, dma_addr_t addr, u32 size,
  166. dma_addr_t lli_phys, dma_addr_t first_phys, u32 reg_cfg,
  167. struct stedma40_half_channel_info *info,
  168. struct stedma40_half_channel_info *otherinfo,
  169. unsigned long flags)
  170. {
  171. bool lastlink = flags & LLI_LAST_LINK;
  172. bool addr_inc = flags & LLI_ADDR_INC;
  173. bool term_int = flags & LLI_TERM_INT;
  174. bool cyclic = flags & LLI_CYCLIC;
  175. int err;
  176. dma_addr_t next = lli_phys;
  177. int size_rest = size;
  178. int size_seg = 0;
  179. /*
  180. * This piece may be split up based on d40_seg_size(); we only want the
  181. * term int on the last part.
  182. */
  183. if (term_int)
  184. flags &= ~LLI_TERM_INT;
  185. do {
  186. size_seg = d40_seg_size(size_rest, info->data_width,
  187. otherinfo->data_width);
  188. size_rest -= size_seg;
  189. if (size_rest == 0 && term_int)
  190. flags |= LLI_TERM_INT;
  191. if (size_rest == 0 && lastlink)
  192. next = cyclic ? first_phys : 0;
  193. else
  194. next = ALIGN(next + sizeof(struct d40_phy_lli),
  195. D40_LLI_ALIGN);
  196. err = d40_phy_fill_lli(lli, addr, size_seg, next,
  197. reg_cfg, info, flags);
  198. if (err)
  199. goto err;
  200. lli++;
  201. if (addr_inc)
  202. addr += size_seg;
  203. } while (size_rest);
  204. return lli;
  205. err:
  206. return NULL;
  207. }
  208. int d40_phy_sg_to_lli(struct scatterlist *sg,
  209. int sg_len,
  210. dma_addr_t target,
  211. struct d40_phy_lli *lli_sg,
  212. dma_addr_t lli_phys,
  213. u32 reg_cfg,
  214. struct stedma40_half_channel_info *info,
  215. struct stedma40_half_channel_info *otherinfo,
  216. unsigned long flags)
  217. {
  218. int total_size = 0;
  219. int i;
  220. struct scatterlist *current_sg = sg;
  221. struct d40_phy_lli *lli = lli_sg;
  222. dma_addr_t l_phys = lli_phys;
  223. if (!target)
  224. flags |= LLI_ADDR_INC;
  225. for_each_sg(sg, current_sg, sg_len, i) {
  226. dma_addr_t sg_addr = sg_dma_address(current_sg);
  227. unsigned int len = sg_dma_len(current_sg);
  228. dma_addr_t dst = target ?: sg_addr;
  229. total_size += sg_dma_len(current_sg);
  230. if (i == sg_len - 1)
  231. flags |= LLI_TERM_INT | LLI_LAST_LINK;
  232. l_phys = ALIGN(lli_phys + (lli - lli_sg) *
  233. sizeof(struct d40_phy_lli), D40_LLI_ALIGN);
  234. lli = d40_phy_buf_to_lli(lli, dst, len, l_phys, lli_phys,
  235. reg_cfg, info, otherinfo, flags);
  236. if (lli == NULL)
  237. return -EINVAL;
  238. }
  239. return total_size;
  240. }
  241. /* DMA logical lli operations */
  242. static void d40_log_lli_link(struct d40_log_lli *lli_dst,
  243. struct d40_log_lli *lli_src,
  244. int next, unsigned int flags)
  245. {
  246. bool interrupt = flags & LLI_TERM_INT;
  247. u32 slos = 0;
  248. u32 dlos = 0;
  249. if (next != -EINVAL) {
  250. slos = next * 2;
  251. dlos = next * 2 + 1;
  252. }
  253. if (interrupt) {
  254. lli_dst->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK;
  255. lli_dst->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK;
  256. }
  257. lli_src->lcsp13 = (lli_src->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) |
  258. (slos << D40_MEM_LCSP1_SLOS_POS);
  259. lli_dst->lcsp13 = (lli_dst->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) |
  260. (dlos << D40_MEM_LCSP1_SLOS_POS);
  261. }
  262. void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa,
  263. struct d40_log_lli *lli_dst,
  264. struct d40_log_lli *lli_src,
  265. int next, unsigned int flags)
  266. {
  267. d40_log_lli_link(lli_dst, lli_src, next, flags);
  268. writel(lli_src->lcsp02, &lcpa[0].lcsp0);
  269. writel(lli_src->lcsp13, &lcpa[0].lcsp1);
  270. writel(lli_dst->lcsp02, &lcpa[0].lcsp2);
  271. writel(lli_dst->lcsp13, &lcpa[0].lcsp3);
  272. }
  273. void d40_log_lli_lcla_write(struct d40_log_lli *lcla,
  274. struct d40_log_lli *lli_dst,
  275. struct d40_log_lli *lli_src,
  276. int next, unsigned int flags)
  277. {
  278. d40_log_lli_link(lli_dst, lli_src, next, flags);
  279. writel(lli_src->lcsp02, &lcla[0].lcsp02);
  280. writel(lli_src->lcsp13, &lcla[0].lcsp13);
  281. writel(lli_dst->lcsp02, &lcla[1].lcsp02);
  282. writel(lli_dst->lcsp13, &lcla[1].lcsp13);
  283. }
  284. static void d40_log_fill_lli(struct d40_log_lli *lli,
  285. dma_addr_t data, u32 data_size,
  286. u32 reg_cfg,
  287. u32 data_width,
  288. unsigned int flags)
  289. {
  290. bool addr_inc = flags & LLI_ADDR_INC;
  291. lli->lcsp13 = reg_cfg;
  292. /* The number of elements to transfer */
  293. lli->lcsp02 = ((data_size >> data_width) <<
  294. D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK;
  295. BUG_ON((data_size >> data_width) > STEDMA40_MAX_SEG_SIZE);
  296. /* 16 LSBs address of the current element */
  297. lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK;
  298. /* 16 MSBs address of the current element */
  299. lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK;
  300. if (addr_inc)
  301. lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK;
  302. }
  303. static struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg,
  304. dma_addr_t addr,
  305. int size,
  306. u32 lcsp13, /* src or dst*/
  307. u32 data_width1,
  308. u32 data_width2,
  309. unsigned int flags)
  310. {
  311. bool addr_inc = flags & LLI_ADDR_INC;
  312. struct d40_log_lli *lli = lli_sg;
  313. int size_rest = size;
  314. int size_seg = 0;
  315. do {
  316. size_seg = d40_seg_size(size_rest, data_width1, data_width2);
  317. size_rest -= size_seg;
  318. d40_log_fill_lli(lli,
  319. addr,
  320. size_seg,
  321. lcsp13, data_width1,
  322. flags);
  323. if (addr_inc)
  324. addr += size_seg;
  325. lli++;
  326. } while (size_rest);
  327. return lli;
  328. }
  329. int d40_log_sg_to_lli(struct scatterlist *sg,
  330. int sg_len,
  331. dma_addr_t dev_addr,
  332. struct d40_log_lli *lli_sg,
  333. u32 lcsp13, /* src or dst*/
  334. u32 data_width1, u32 data_width2)
  335. {
  336. int total_size = 0;
  337. struct scatterlist *current_sg = sg;
  338. int i;
  339. struct d40_log_lli *lli = lli_sg;
  340. unsigned long flags = 0;
  341. if (!dev_addr)
  342. flags |= LLI_ADDR_INC;
  343. for_each_sg(sg, current_sg, sg_len, i) {
  344. dma_addr_t sg_addr = sg_dma_address(current_sg);
  345. unsigned int len = sg_dma_len(current_sg);
  346. dma_addr_t addr = dev_addr ?: sg_addr;
  347. total_size += sg_dma_len(current_sg);
  348. lli = d40_log_buf_to_lli(lli, addr, len,
  349. lcsp13,
  350. data_width1,
  351. data_width2,
  352. flags);
  353. }
  354. return total_size;
  355. }