random.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_device_randomness(const void *buf, unsigned int size);
  128. * void add_input_randomness(unsigned int type, unsigned int code,
  129. * unsigned int value);
  130. * void add_interrupt_randomness(int irq, int irq_flags);
  131. * void add_disk_randomness(struct gendisk *disk);
  132. *
  133. * add_device_randomness() is for adding data to the random pool that
  134. * is likely to differ between two devices (or possibly even per boot).
  135. * This would be things like MAC addresses or serial numbers, or the
  136. * read-out of the RTC. This does *not* add any actual entropy to the
  137. * pool, but it initializes the pool to different values for devices
  138. * that might otherwise be identical and have very little entropy
  139. * available to them (particularly common in the embedded world).
  140. *
  141. * add_input_randomness() uses the input layer interrupt timing, as well as
  142. * the event type information from the hardware.
  143. *
  144. * add_interrupt_randomness() uses the interrupt timing as random
  145. * inputs to the entropy pool. Using the cycle counters and the irq source
  146. * as inputs, it feeds the randomness roughly once a second.
  147. *
  148. * add_disk_randomness() uses what amounts to the seek time of block
  149. * layer request events, on a per-disk_devt basis, as input to the
  150. * entropy pool. Note that high-speed solid state drives with very low
  151. * seek times do not make for good sources of entropy, as their seek
  152. * times are usually fairly consistent.
  153. *
  154. * All of these routines try to estimate how many bits of randomness a
  155. * particular randomness source. They do this by keeping track of the
  156. * first and second order deltas of the event timings.
  157. *
  158. * Ensuring unpredictability at system startup
  159. * ============================================
  160. *
  161. * When any operating system starts up, it will go through a sequence
  162. * of actions that are fairly predictable by an adversary, especially
  163. * if the start-up does not involve interaction with a human operator.
  164. * This reduces the actual number of bits of unpredictability in the
  165. * entropy pool below the value in entropy_count. In order to
  166. * counteract this effect, it helps to carry information in the
  167. * entropy pool across shut-downs and start-ups. To do this, put the
  168. * following lines an appropriate script which is run during the boot
  169. * sequence:
  170. *
  171. * echo "Initializing random number generator..."
  172. * random_seed=/var/run/random-seed
  173. * # Carry a random seed from start-up to start-up
  174. * # Load and then save the whole entropy pool
  175. * if [ -f $random_seed ]; then
  176. * cat $random_seed >/dev/urandom
  177. * else
  178. * touch $random_seed
  179. * fi
  180. * chmod 600 $random_seed
  181. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  182. *
  183. * and the following lines in an appropriate script which is run as
  184. * the system is shutdown:
  185. *
  186. * # Carry a random seed from shut-down to start-up
  187. * # Save the whole entropy pool
  188. * echo "Saving random seed..."
  189. * random_seed=/var/run/random-seed
  190. * touch $random_seed
  191. * chmod 600 $random_seed
  192. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  193. *
  194. * For example, on most modern systems using the System V init
  195. * scripts, such code fragments would be found in
  196. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  197. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  198. *
  199. * Effectively, these commands cause the contents of the entropy pool
  200. * to be saved at shut-down time and reloaded into the entropy pool at
  201. * start-up. (The 'dd' in the addition to the bootup script is to
  202. * make sure that /etc/random-seed is different for every start-up,
  203. * even if the system crashes without executing rc.0.) Even with
  204. * complete knowledge of the start-up activities, predicting the state
  205. * of the entropy pool requires knowledge of the previous history of
  206. * the system.
  207. *
  208. * Configuring the /dev/random driver under Linux
  209. * ==============================================
  210. *
  211. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  212. * the /dev/mem major number (#1). So if your system does not have
  213. * /dev/random and /dev/urandom created already, they can be created
  214. * by using the commands:
  215. *
  216. * mknod /dev/random c 1 8
  217. * mknod /dev/urandom c 1 9
  218. *
  219. * Acknowledgements:
  220. * =================
  221. *
  222. * Ideas for constructing this random number generator were derived
  223. * from Pretty Good Privacy's random number generator, and from private
  224. * discussions with Phil Karn. Colin Plumb provided a faster random
  225. * number generator, which speed up the mixing function of the entropy
  226. * pool, taken from PGPfone. Dale Worley has also contributed many
  227. * useful ideas and suggestions to improve this driver.
  228. *
  229. * Any flaws in the design are solely my responsibility, and should
  230. * not be attributed to the Phil, Colin, or any of authors of PGP.
  231. *
  232. * Further background information on this topic may be obtained from
  233. * RFC 1750, "Randomness Recommendations for Security", by Donald
  234. * Eastlake, Steve Crocker, and Jeff Schiller.
  235. */
  236. #include <linux/utsname.h>
  237. #include <linux/module.h>
  238. #include <linux/kernel.h>
  239. #include <linux/major.h>
  240. #include <linux/string.h>
  241. #include <linux/fcntl.h>
  242. #include <linux/slab.h>
  243. #include <linux/random.h>
  244. #include <linux/poll.h>
  245. #include <linux/init.h>
  246. #include <linux/fs.h>
  247. #include <linux/genhd.h>
  248. #include <linux/interrupt.h>
  249. #include <linux/mm.h>
  250. #include <linux/spinlock.h>
  251. #include <linux/percpu.h>
  252. #include <linux/cryptohash.h>
  253. #include <linux/fips.h>
  254. #include <linux/ptrace.h>
  255. #include <linux/kmemcheck.h>
  256. #include <linux/syscalls.h>
  257. #include <linux/completion.h>
  258. #ifdef CONFIG_GENERIC_HARDIRQS
  259. # include <linux/irq.h>
  260. #endif
  261. #include <asm/processor.h>
  262. #include <asm/uaccess.h>
  263. #include <asm/irq.h>
  264. #include <asm/irq_regs.h>
  265. #include <asm/io.h>
  266. #define CREATE_TRACE_POINTS
  267. #include <trace/events/random.h>
  268. /*
  269. * Configuration information
  270. */
  271. #define INPUT_POOL_WORDS 128
  272. #define OUTPUT_POOL_WORDS 32
  273. #define SEC_XFER_SIZE 512
  274. #define EXTRACT_SIZE 10
  275. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  276. /*
  277. * The minimum number of bits of entropy before we wake up a read on
  278. * /dev/random. Should be enough to do a significant reseed.
  279. */
  280. #ifdef CONFIG_CRYPTO_FIPS
  281. static int random_read_wakeup_thresh = 256;
  282. #else
  283. static int random_read_wakeup_thresh = 64;
  284. #endif
  285. /*
  286. * If the entropy count falls under this number of bits, then we
  287. * should wake up processes which are selecting or polling on write
  288. * access to /dev/random.
  289. */
  290. #ifdef CONFIG_CRYPTO_FIPS
  291. static int random_write_wakeup_thresh = 320;
  292. #else
  293. static int random_write_wakeup_thresh = 128;
  294. #endif
  295. /*
  296. * When the input pool goes over trickle_thresh, start dropping most
  297. * samples to avoid wasting CPU time and reduce lock contention.
  298. */
  299. static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
  300. static DEFINE_PER_CPU(int, trickle_count);
  301. /*
  302. * A pool of size .poolwords is stirred with a primitive polynomial
  303. * of degree .poolwords over GF(2). The taps for various sizes are
  304. * defined below. They are chosen to be evenly spaced (minimum RMS
  305. * distance from evenly spaced; the numbers in the comments are a
  306. * scaled squared error sum) except for the last tap, which is 1 to
  307. * get the twisting happening as fast as possible.
  308. */
  309. static struct poolinfo {
  310. int poolwords;
  311. int tap1, tap2, tap3, tap4, tap5;
  312. } poolinfo_table[] = {
  313. /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
  314. { 128, 103, 76, 51, 25, 1 },
  315. /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
  316. { 32, 26, 20, 14, 7, 1 },
  317. #if 0
  318. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  319. { 2048, 1638, 1231, 819, 411, 1 },
  320. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  321. { 1024, 817, 615, 412, 204, 1 },
  322. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  323. { 1024, 819, 616, 410, 207, 2 },
  324. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  325. { 512, 411, 308, 208, 104, 1 },
  326. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  327. { 512, 409, 307, 206, 102, 2 },
  328. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  329. { 512, 409, 309, 205, 103, 2 },
  330. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  331. { 256, 205, 155, 101, 52, 1 },
  332. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  333. { 128, 103, 78, 51, 27, 2 },
  334. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  335. { 64, 52, 39, 26, 14, 1 },
  336. #endif
  337. };
  338. #define POOLBITS poolwords*32
  339. #define POOLBYTES poolwords*4
  340. /*
  341. * For the purposes of better mixing, we use the CRC-32 polynomial as
  342. * well to make a twisted Generalized Feedback Shift Reigster
  343. *
  344. * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
  345. * Transactions on Modeling and Computer Simulation 2(3):179-194.
  346. * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
  347. * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
  348. *
  349. * Thanks to Colin Plumb for suggesting this.
  350. *
  351. * We have not analyzed the resultant polynomial to prove it primitive;
  352. * in fact it almost certainly isn't. Nonetheless, the irreducible factors
  353. * of a random large-degree polynomial over GF(2) are more than large enough
  354. * that periodicity is not a concern.
  355. *
  356. * The input hash is much less sensitive than the output hash. All
  357. * that we want of it is that it be a good non-cryptographic hash;
  358. * i.e. it not produce collisions when fed "random" data of the sort
  359. * we expect to see. As long as the pool state differs for different
  360. * inputs, we have preserved the input entropy and done a good job.
  361. * The fact that an intelligent attacker can construct inputs that
  362. * will produce controlled alterations to the pool's state is not
  363. * important because we don't consider such inputs to contribute any
  364. * randomness. The only property we need with respect to them is that
  365. * the attacker can't increase his/her knowledge of the pool's state.
  366. * Since all additions are reversible (knowing the final state and the
  367. * input, you can reconstruct the initial state), if an attacker has
  368. * any uncertainty about the initial state, he/she can only shuffle
  369. * that uncertainty about, but never cause any collisions (which would
  370. * decrease the uncertainty).
  371. *
  372. * The chosen system lets the state of the pool be (essentially) the input
  373. * modulo the generator polymnomial. Now, for random primitive polynomials,
  374. * this is a universal class of hash functions, meaning that the chance
  375. * of a collision is limited by the attacker's knowledge of the generator
  376. * polynomail, so if it is chosen at random, an attacker can never force
  377. * a collision. Here, we use a fixed polynomial, but we *can* assume that
  378. * ###--> it is unknown to the processes generating the input entropy. <-###
  379. * Because of this important property, this is a good, collision-resistant
  380. * hash; hash collisions will occur no more often than chance.
  381. */
  382. /*
  383. * Static global variables
  384. */
  385. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  386. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  387. static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
  388. static struct fasync_struct *fasync;
  389. #if 0
  390. static bool debug;
  391. module_param(debug, bool, 0644);
  392. #define DEBUG_ENT(fmt, arg...) do { \
  393. if (debug) \
  394. printk(KERN_DEBUG "random %04d %04d %04d: " \
  395. fmt,\
  396. input_pool.entropy_count,\
  397. blocking_pool.entropy_count,\
  398. nonblocking_pool.entropy_count,\
  399. ## arg); } while (0)
  400. #else
  401. #define DEBUG_ENT(fmt, arg...) do {} while (0)
  402. #endif
  403. /**********************************************************************
  404. *
  405. * OS independent entropy store. Here are the functions which handle
  406. * storing entropy in an entropy pool.
  407. *
  408. **********************************************************************/
  409. struct entropy_store;
  410. struct entropy_store {
  411. /* read-only data: */
  412. struct poolinfo *poolinfo;
  413. __u32 *pool;
  414. const char *name;
  415. struct entropy_store *pull;
  416. int limit;
  417. /* read-write data: */
  418. spinlock_t lock;
  419. unsigned add_ptr;
  420. unsigned input_rotate;
  421. int entropy_count;
  422. int entropy_total;
  423. unsigned int initialized:1;
  424. __u8 last_data[EXTRACT_SIZE];
  425. };
  426. static __u32 input_pool_data[INPUT_POOL_WORDS];
  427. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  428. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  429. static struct entropy_store input_pool = {
  430. .poolinfo = &poolinfo_table[0],
  431. .name = "input",
  432. .limit = 1,
  433. .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
  434. .pool = input_pool_data
  435. };
  436. static struct entropy_store blocking_pool = {
  437. .poolinfo = &poolinfo_table[1],
  438. .name = "blocking",
  439. .limit = 1,
  440. .pull = &input_pool,
  441. .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
  442. .pool = blocking_pool_data
  443. };
  444. static struct entropy_store nonblocking_pool = {
  445. .poolinfo = &poolinfo_table[1],
  446. .name = "nonblocking",
  447. .pull = &input_pool,
  448. .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
  449. .pool = nonblocking_pool_data
  450. };
  451. static __u32 const twist_table[8] = {
  452. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  453. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  454. /*
  455. * This function adds bytes into the entropy "pool". It does not
  456. * update the entropy estimate. The caller should call
  457. * credit_entropy_bits if this is appropriate.
  458. *
  459. * The pool is stirred with a primitive polynomial of the appropriate
  460. * degree, and then twisted. We twist by three bits at a time because
  461. * it's cheap to do so and helps slightly in the expected case where
  462. * the entropy is concentrated in the low-order bits.
  463. */
  464. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  465. int nbytes, __u8 out[64])
  466. {
  467. unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
  468. int input_rotate;
  469. int wordmask = r->poolinfo->poolwords - 1;
  470. const char *bytes = in;
  471. __u32 w;
  472. tap1 = r->poolinfo->tap1;
  473. tap2 = r->poolinfo->tap2;
  474. tap3 = r->poolinfo->tap3;
  475. tap4 = r->poolinfo->tap4;
  476. tap5 = r->poolinfo->tap5;
  477. smp_rmb();
  478. input_rotate = ACCESS_ONCE(r->input_rotate);
  479. i = ACCESS_ONCE(r->add_ptr);
  480. /* mix one byte at a time to simplify size handling and churn faster */
  481. while (nbytes--) {
  482. w = rol32(*bytes++, input_rotate & 31);
  483. i = (i - 1) & wordmask;
  484. /* XOR in the various taps */
  485. w ^= r->pool[i];
  486. w ^= r->pool[(i + tap1) & wordmask];
  487. w ^= r->pool[(i + tap2) & wordmask];
  488. w ^= r->pool[(i + tap3) & wordmask];
  489. w ^= r->pool[(i + tap4) & wordmask];
  490. w ^= r->pool[(i + tap5) & wordmask];
  491. /* Mix the result back in with a twist */
  492. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  493. /*
  494. * Normally, we add 7 bits of rotation to the pool.
  495. * At the beginning of the pool, add an extra 7 bits
  496. * rotation, so that successive passes spread the
  497. * input bits across the pool evenly.
  498. */
  499. input_rotate += i ? 7 : 14;
  500. }
  501. ACCESS_ONCE(r->input_rotate) = input_rotate;
  502. ACCESS_ONCE(r->add_ptr) = i;
  503. smp_wmb();
  504. if (out)
  505. for (j = 0; j < 16; j++)
  506. ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
  507. }
  508. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  509. int nbytes, __u8 out[64])
  510. {
  511. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  512. _mix_pool_bytes(r, in, nbytes, out);
  513. }
  514. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  515. int nbytes, __u8 out[64])
  516. {
  517. unsigned long flags;
  518. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  519. spin_lock_irqsave(&r->lock, flags);
  520. _mix_pool_bytes(r, in, nbytes, out);
  521. spin_unlock_irqrestore(&r->lock, flags);
  522. }
  523. struct fast_pool {
  524. __u32 pool[4];
  525. unsigned long last;
  526. unsigned short count;
  527. unsigned char rotate;
  528. unsigned char last_timer_intr;
  529. };
  530. /*
  531. * This is a fast mixing routine used by the interrupt randomness
  532. * collector. It's hardcoded for an 128 bit pool and assumes that any
  533. * locks that might be needed are taken by the caller.
  534. */
  535. static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
  536. {
  537. const char *bytes = in;
  538. __u32 w;
  539. unsigned i = f->count;
  540. unsigned input_rotate = f->rotate;
  541. while (nbytes--) {
  542. w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
  543. f->pool[(i + 1) & 3];
  544. f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
  545. input_rotate += (i++ & 3) ? 7 : 14;
  546. }
  547. f->count = i;
  548. f->rotate = input_rotate;
  549. }
  550. /*
  551. * Credit (or debit) the entropy store with n bits of entropy
  552. */
  553. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  554. {
  555. int entropy_count, orig;
  556. if (!nbits)
  557. return;
  558. DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
  559. retry:
  560. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  561. entropy_count += nbits;
  562. if (entropy_count < 0) {
  563. DEBUG_ENT("negative entropy/overflow\n");
  564. entropy_count = 0;
  565. } else if (entropy_count > r->poolinfo->POOLBITS)
  566. entropy_count = r->poolinfo->POOLBITS;
  567. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  568. goto retry;
  569. r->entropy_total += nbits;
  570. if (!r->initialized && r->entropy_total > 128) {
  571. r->initialized = 1;
  572. r->entropy_total = 0;
  573. if (r == &nonblocking_pool) {
  574. prandom_reseed_late();
  575. wake_up_all(&urandom_init_wait);
  576. pr_notice("random: %s pool is initialized\n", r->name);
  577. }
  578. }
  579. trace_credit_entropy_bits(r->name, nbits, entropy_count,
  580. r->entropy_total, _RET_IP_);
  581. /* should we wake readers? */
  582. if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
  583. wake_up_interruptible(&random_read_wait);
  584. kill_fasync(&fasync, SIGIO, POLL_IN);
  585. }
  586. }
  587. /*********************************************************************
  588. *
  589. * Entropy input management
  590. *
  591. *********************************************************************/
  592. /* There is one of these per entropy source */
  593. struct timer_rand_state {
  594. cycles_t last_time;
  595. long last_delta, last_delta2;
  596. unsigned dont_count_entropy:1;
  597. };
  598. /*
  599. * Add device- or boot-specific data to the input and nonblocking
  600. * pools to help initialize them to unique values.
  601. *
  602. * None of this adds any entropy, it is meant to avoid the
  603. * problem of the nonblocking pool having similar initial state
  604. * across largely identical devices.
  605. */
  606. void add_device_randomness(const void *buf, unsigned int size)
  607. {
  608. unsigned long time = get_cycles() ^ jiffies;
  609. mix_pool_bytes(&input_pool, buf, size, NULL);
  610. mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
  611. mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
  612. mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
  613. }
  614. EXPORT_SYMBOL(add_device_randomness);
  615. static struct timer_rand_state input_timer_state;
  616. /*
  617. * This function adds entropy to the entropy "pool" by using timing
  618. * delays. It uses the timer_rand_state structure to make an estimate
  619. * of how many bits of entropy this call has added to the pool.
  620. *
  621. * The number "num" is also added to the pool - it should somehow describe
  622. * the type of event which just happened. This is currently 0-255 for
  623. * keyboard scan codes, and 256 upwards for interrupts.
  624. *
  625. */
  626. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  627. {
  628. struct {
  629. long jiffies;
  630. unsigned cycles;
  631. unsigned num;
  632. } sample;
  633. long delta, delta2, delta3;
  634. preempt_disable();
  635. /* if over the trickle threshold, use only 1 in 4096 samples */
  636. if (input_pool.entropy_count > trickle_thresh &&
  637. ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
  638. goto out;
  639. sample.jiffies = jiffies;
  640. sample.cycles = get_cycles();
  641. sample.num = num;
  642. mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
  643. /*
  644. * Calculate number of bits of randomness we probably added.
  645. * We take into account the first, second and third-order deltas
  646. * in order to make our estimate.
  647. */
  648. if (!state->dont_count_entropy) {
  649. delta = sample.jiffies - state->last_time;
  650. state->last_time = sample.jiffies;
  651. delta2 = delta - state->last_delta;
  652. state->last_delta = delta;
  653. delta3 = delta2 - state->last_delta2;
  654. state->last_delta2 = delta2;
  655. if (delta < 0)
  656. delta = -delta;
  657. if (delta2 < 0)
  658. delta2 = -delta2;
  659. if (delta3 < 0)
  660. delta3 = -delta3;
  661. if (delta > delta2)
  662. delta = delta2;
  663. if (delta > delta3)
  664. delta = delta3;
  665. /*
  666. * delta is now minimum absolute delta.
  667. * Round down by 1 bit on general principles,
  668. * and limit entropy entimate to 12 bits.
  669. */
  670. credit_entropy_bits(&input_pool,
  671. min_t(int, fls(delta>>1), 11));
  672. }
  673. out:
  674. preempt_enable();
  675. }
  676. void add_input_randomness(unsigned int type, unsigned int code,
  677. unsigned int value)
  678. {
  679. static unsigned char last_value;
  680. /* ignore autorepeat and the like */
  681. if (value == last_value)
  682. return;
  683. DEBUG_ENT("input event\n");
  684. last_value = value;
  685. add_timer_randomness(&input_timer_state,
  686. (type << 4) ^ code ^ (code >> 4) ^ value);
  687. }
  688. EXPORT_SYMBOL_GPL(add_input_randomness);
  689. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  690. void add_interrupt_randomness(int irq, int irq_flags)
  691. {
  692. struct entropy_store *r;
  693. struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
  694. struct pt_regs *regs = get_irq_regs();
  695. unsigned long now = jiffies;
  696. __u32 input[4], cycles = get_cycles();
  697. input[0] = cycles ^ jiffies;
  698. input[1] = irq;
  699. if (regs) {
  700. __u64 ip = instruction_pointer(regs);
  701. input[2] = ip;
  702. input[3] = ip >> 32;
  703. }
  704. fast_mix(fast_pool, input, sizeof(input));
  705. if ((fast_pool->count & 1023) &&
  706. !time_after(now, fast_pool->last + HZ))
  707. return;
  708. fast_pool->last = now;
  709. r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
  710. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
  711. /*
  712. * If we don't have a valid cycle counter, and we see
  713. * back-to-back timer interrupts, then skip giving credit for
  714. * any entropy.
  715. */
  716. if (cycles == 0) {
  717. if (irq_flags & __IRQF_TIMER) {
  718. if (fast_pool->last_timer_intr)
  719. return;
  720. fast_pool->last_timer_intr = 1;
  721. } else
  722. fast_pool->last_timer_intr = 0;
  723. }
  724. credit_entropy_bits(r, 1);
  725. }
  726. #ifdef CONFIG_BLOCK
  727. void add_disk_randomness(struct gendisk *disk)
  728. {
  729. if (!disk || !disk->random)
  730. return;
  731. /* first major is 1, so we get >= 0x200 here */
  732. DEBUG_ENT("disk event %d:%d\n",
  733. MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
  734. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  735. }
  736. #endif
  737. /*********************************************************************
  738. *
  739. * Entropy extraction routines
  740. *
  741. *********************************************************************/
  742. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  743. size_t nbytes, int min, int rsvd);
  744. /*
  745. * This utility inline function is responsible for transferring entropy
  746. * from the primary pool to the secondary extraction pool. We make
  747. * sure we pull enough for a 'catastrophic reseed'.
  748. */
  749. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  750. {
  751. __u32 tmp[OUTPUT_POOL_WORDS];
  752. if (r->pull && r->entropy_count < nbytes * 8 &&
  753. r->entropy_count < r->poolinfo->POOLBITS) {
  754. /* If we're limited, always leave two wakeup worth's BITS */
  755. int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
  756. int bytes = nbytes;
  757. /* pull at least as many as BYTES as wakeup BITS */
  758. bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
  759. /* but never more than the buffer size */
  760. bytes = min_t(int, bytes, sizeof(tmp));
  761. DEBUG_ENT("going to reseed %s with %d bits "
  762. "(%d of %d requested)\n",
  763. r->name, bytes * 8, nbytes * 8, r->entropy_count);
  764. bytes = extract_entropy(r->pull, tmp, bytes,
  765. random_read_wakeup_thresh / 8, rsvd);
  766. mix_pool_bytes(r, tmp, bytes, NULL);
  767. credit_entropy_bits(r, bytes*8);
  768. }
  769. }
  770. /*
  771. * These functions extracts randomness from the "entropy pool", and
  772. * returns it in a buffer.
  773. *
  774. * The min parameter specifies the minimum amount we can pull before
  775. * failing to avoid races that defeat catastrophic reseeding while the
  776. * reserved parameter indicates how much entropy we must leave in the
  777. * pool after each pull to avoid starving other readers.
  778. *
  779. * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
  780. */
  781. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  782. int reserved)
  783. {
  784. unsigned long flags;
  785. /* Hold lock while accounting */
  786. spin_lock_irqsave(&r->lock, flags);
  787. BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
  788. DEBUG_ENT("trying to extract %d bits from %s\n",
  789. nbytes * 8, r->name);
  790. /* Can we pull enough? */
  791. if (r->entropy_count / 8 < min + reserved) {
  792. nbytes = 0;
  793. } else {
  794. int entropy_count, orig;
  795. retry:
  796. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  797. /* If limited, never pull more than available */
  798. if (r->limit && nbytes + reserved >= entropy_count / 8)
  799. nbytes = entropy_count/8 - reserved;
  800. if (entropy_count / 8 >= nbytes + reserved) {
  801. entropy_count -= nbytes*8;
  802. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  803. goto retry;
  804. } else {
  805. entropy_count = reserved;
  806. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  807. goto retry;
  808. }
  809. if (entropy_count < random_write_wakeup_thresh) {
  810. wake_up_interruptible(&random_write_wait);
  811. kill_fasync(&fasync, SIGIO, POLL_OUT);
  812. }
  813. }
  814. DEBUG_ENT("debiting %d entropy credits from %s%s\n",
  815. nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
  816. spin_unlock_irqrestore(&r->lock, flags);
  817. return nbytes;
  818. }
  819. static void extract_buf(struct entropy_store *r, __u8 *out)
  820. {
  821. int i;
  822. union {
  823. __u32 w[5];
  824. unsigned long l[LONGS(EXTRACT_SIZE)];
  825. } hash;
  826. __u32 workspace[SHA_WORKSPACE_WORDS];
  827. __u8 extract[64];
  828. unsigned long flags;
  829. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  830. sha_init(hash.w);
  831. spin_lock_irqsave(&r->lock, flags);
  832. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  833. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  834. /*
  835. * We mix the hash back into the pool to prevent backtracking
  836. * attacks (where the attacker knows the state of the pool
  837. * plus the current outputs, and attempts to find previous
  838. * ouputs), unless the hash function can be inverted. By
  839. * mixing at least a SHA1 worth of hash data back, we make
  840. * brute-forcing the feedback as hard as brute-forcing the
  841. * hash.
  842. */
  843. __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
  844. spin_unlock_irqrestore(&r->lock, flags);
  845. /*
  846. * To avoid duplicates, we atomically extract a portion of the
  847. * pool while mixing, and hash one final time.
  848. */
  849. sha_transform(hash.w, extract, workspace);
  850. memzero_explicit(extract, sizeof(extract));
  851. memzero_explicit(workspace, sizeof(workspace));
  852. /*
  853. * In case the hash function has some recognizable output
  854. * pattern, we fold it in half. Thus, we always feed back
  855. * twice as much data as we output.
  856. */
  857. hash.w[0] ^= hash.w[3];
  858. hash.w[1] ^= hash.w[4];
  859. hash.w[2] ^= rol32(hash.w[2], 16);
  860. /*
  861. * If we have a architectural hardware random number
  862. * generator, mix that in, too.
  863. */
  864. for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
  865. unsigned long v;
  866. if (!arch_get_random_long(&v))
  867. break;
  868. hash.l[i] ^= v;
  869. }
  870. memcpy(out, &hash, EXTRACT_SIZE);
  871. memzero_explicit(&hash, sizeof(hash));
  872. }
  873. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  874. size_t nbytes, int min, int reserved)
  875. {
  876. ssize_t ret = 0, i;
  877. __u8 tmp[EXTRACT_SIZE];
  878. trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
  879. xfer_secondary_pool(r, nbytes);
  880. nbytes = account(r, nbytes, min, reserved);
  881. while (nbytes) {
  882. extract_buf(r, tmp);
  883. if (fips_enabled) {
  884. unsigned long flags;
  885. spin_lock_irqsave(&r->lock, flags);
  886. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  887. panic("Hardware RNG duplicated output!\n");
  888. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  889. spin_unlock_irqrestore(&r->lock, flags);
  890. }
  891. i = min_t(int, nbytes, EXTRACT_SIZE);
  892. memcpy(buf, tmp, i);
  893. nbytes -= i;
  894. buf += i;
  895. ret += i;
  896. }
  897. /* Wipe data just returned from memory */
  898. memzero_explicit(tmp, sizeof(tmp));
  899. return ret;
  900. }
  901. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  902. size_t nbytes)
  903. {
  904. ssize_t ret = 0, i;
  905. __u8 tmp[EXTRACT_SIZE];
  906. int large_request = (nbytes > 256);
  907. trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
  908. xfer_secondary_pool(r, nbytes);
  909. nbytes = account(r, nbytes, 0, 0);
  910. while (nbytes) {
  911. if (large_request && need_resched()) {
  912. if (signal_pending(current)) {
  913. if (ret == 0)
  914. ret = -ERESTARTSYS;
  915. break;
  916. }
  917. schedule();
  918. }
  919. extract_buf(r, tmp);
  920. i = min_t(int, nbytes, EXTRACT_SIZE);
  921. if (copy_to_user(buf, tmp, i)) {
  922. ret = -EFAULT;
  923. break;
  924. }
  925. nbytes -= i;
  926. buf += i;
  927. ret += i;
  928. }
  929. /* Wipe data just returned from memory */
  930. memzero_explicit(tmp, sizeof(tmp));
  931. return ret;
  932. }
  933. /*
  934. * This function is the exported kernel interface. It returns some
  935. * number of good random numbers, suitable for key generation, seeding
  936. * TCP sequence numbers, etc. It does not use the hw random number
  937. * generator, if available; use get_random_bytes_arch() for that.
  938. */
  939. void get_random_bytes(void *buf, int nbytes)
  940. {
  941. extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
  942. }
  943. EXPORT_SYMBOL(get_random_bytes);
  944. /*
  945. * This function will use the architecture-specific hardware random
  946. * number generator if it is available. The arch-specific hw RNG will
  947. * almost certainly be faster than what we can do in software, but it
  948. * is impossible to verify that it is implemented securely (as
  949. * opposed, to, say, the AES encryption of a sequence number using a
  950. * key known by the NSA). So it's useful if we need the speed, but
  951. * only if we're willing to trust the hardware manufacturer not to
  952. * have put in a back door.
  953. */
  954. void get_random_bytes_arch(void *buf, int nbytes)
  955. {
  956. char *p = buf;
  957. trace_get_random_bytes(nbytes, _RET_IP_);
  958. while (nbytes) {
  959. unsigned long v;
  960. int chunk = min(nbytes, (int)sizeof(unsigned long));
  961. if (!arch_get_random_long(&v))
  962. break;
  963. memcpy(p, &v, chunk);
  964. p += chunk;
  965. nbytes -= chunk;
  966. }
  967. if (nbytes)
  968. extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
  969. }
  970. EXPORT_SYMBOL(get_random_bytes_arch);
  971. /*
  972. * init_std_data - initialize pool with system data
  973. *
  974. * @r: pool to initialize
  975. *
  976. * This function clears the pool's entropy count and mixes some system
  977. * data into the pool to prepare it for use. The pool is not cleared
  978. * as that can only decrease the entropy in the pool.
  979. */
  980. static void init_std_data(struct entropy_store *r)
  981. {
  982. int i;
  983. ktime_t now = ktime_get_real();
  984. unsigned long rv;
  985. r->entropy_count = 0;
  986. r->entropy_total = 0;
  987. mix_pool_bytes(r, &now, sizeof(now), NULL);
  988. for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
  989. if (!arch_get_random_long(&rv))
  990. break;
  991. mix_pool_bytes(r, &rv, sizeof(rv), NULL);
  992. }
  993. mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
  994. }
  995. /*
  996. * Note that setup_arch() may call add_device_randomness()
  997. * long before we get here. This allows seeding of the pools
  998. * with some platform dependent data very early in the boot
  999. * process. But it limits our options here. We must use
  1000. * statically allocated structures that already have all
  1001. * initializations complete at compile time. We should also
  1002. * take care not to overwrite the precious per platform data
  1003. * we were given.
  1004. */
  1005. static int rand_initialize(void)
  1006. {
  1007. init_std_data(&input_pool);
  1008. init_std_data(&blocking_pool);
  1009. init_std_data(&nonblocking_pool);
  1010. return 0;
  1011. }
  1012. module_init(rand_initialize);
  1013. #ifdef CONFIG_BLOCK
  1014. void rand_initialize_disk(struct gendisk *disk)
  1015. {
  1016. struct timer_rand_state *state;
  1017. /*
  1018. * If kzalloc returns null, we just won't use that entropy
  1019. * source.
  1020. */
  1021. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1022. if (state)
  1023. disk->random = state;
  1024. }
  1025. #endif
  1026. static ssize_t
  1027. _random_read(int nonblock, char __user *buf, size_t nbytes)
  1028. {
  1029. ssize_t n, retval = 0, count = 0;
  1030. if (nbytes == 0)
  1031. return 0;
  1032. while (nbytes > 0) {
  1033. n = nbytes;
  1034. if (n > SEC_XFER_SIZE)
  1035. n = SEC_XFER_SIZE;
  1036. DEBUG_ENT("reading %d bits\n", n*8);
  1037. n = extract_entropy_user(&blocking_pool, buf, n);
  1038. DEBUG_ENT("read got %d bits (%d still needed)\n",
  1039. n*8, (nbytes-n)*8);
  1040. if (n == 0) {
  1041. if (nonblock) {
  1042. retval = -EAGAIN;
  1043. break;
  1044. }
  1045. DEBUG_ENT("sleeping?\n");
  1046. wait_event_interruptible(random_read_wait,
  1047. input_pool.entropy_count >=
  1048. random_read_wakeup_thresh);
  1049. DEBUG_ENT("awake\n");
  1050. if (signal_pending(current)) {
  1051. retval = -ERESTARTSYS;
  1052. break;
  1053. }
  1054. continue;
  1055. }
  1056. if (n < 0) {
  1057. retval = n;
  1058. break;
  1059. }
  1060. count += n;
  1061. buf += n;
  1062. nbytes -= n;
  1063. break; /* This break makes the device work */
  1064. /* like a named pipe */
  1065. }
  1066. return (count ? count : retval);
  1067. }
  1068. static ssize_t
  1069. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1070. {
  1071. return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
  1072. }
  1073. static ssize_t
  1074. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1075. {
  1076. return extract_entropy_user(&nonblocking_pool, buf, nbytes);
  1077. }
  1078. static unsigned int
  1079. random_poll(struct file *file, poll_table * wait)
  1080. {
  1081. unsigned int mask;
  1082. poll_wait(file, &random_read_wait, wait);
  1083. poll_wait(file, &random_write_wait, wait);
  1084. mask = 0;
  1085. if (input_pool.entropy_count >= random_read_wakeup_thresh)
  1086. mask |= POLLIN | POLLRDNORM;
  1087. if (input_pool.entropy_count < random_write_wakeup_thresh)
  1088. mask |= POLLOUT | POLLWRNORM;
  1089. return mask;
  1090. }
  1091. static int
  1092. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1093. {
  1094. size_t bytes;
  1095. __u32 t, buf[16];
  1096. const char __user *p = buffer;
  1097. while (count > 0) {
  1098. int b, i = 0;
  1099. bytes = min(count, sizeof(buf));
  1100. if (copy_from_user(&buf, p, bytes))
  1101. return -EFAULT;
  1102. for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
  1103. if (!arch_get_random_int(&t))
  1104. break;
  1105. buf[i] ^= t;
  1106. }
  1107. count -= bytes;
  1108. p += bytes;
  1109. mix_pool_bytes(r, buf, bytes, NULL);
  1110. cond_resched();
  1111. }
  1112. return 0;
  1113. }
  1114. static ssize_t random_write(struct file *file, const char __user *buffer,
  1115. size_t count, loff_t *ppos)
  1116. {
  1117. size_t ret;
  1118. ret = write_pool(&blocking_pool, buffer, count);
  1119. if (ret)
  1120. return ret;
  1121. ret = write_pool(&nonblocking_pool, buffer, count);
  1122. if (ret)
  1123. return ret;
  1124. return (ssize_t)count;
  1125. }
  1126. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1127. {
  1128. int size, ent_count;
  1129. int __user *p = (int __user *)arg;
  1130. int retval;
  1131. switch (cmd) {
  1132. case RNDGETENTCNT:
  1133. /* inherently racy, no point locking */
  1134. if (put_user(input_pool.entropy_count, p))
  1135. return -EFAULT;
  1136. return 0;
  1137. case RNDADDTOENTCNT:
  1138. if (!capable(CAP_SYS_ADMIN))
  1139. return -EPERM;
  1140. if (get_user(ent_count, p))
  1141. return -EFAULT;
  1142. credit_entropy_bits(&input_pool, ent_count);
  1143. return 0;
  1144. case RNDADDENTROPY:
  1145. if (!capable(CAP_SYS_ADMIN))
  1146. return -EPERM;
  1147. if (get_user(ent_count, p++))
  1148. return -EFAULT;
  1149. if (ent_count < 0)
  1150. return -EINVAL;
  1151. if (get_user(size, p++))
  1152. return -EFAULT;
  1153. retval = write_pool(&input_pool, (const char __user *)p,
  1154. size);
  1155. if (retval < 0)
  1156. return retval;
  1157. credit_entropy_bits(&input_pool, ent_count);
  1158. return 0;
  1159. case RNDZAPENTCNT:
  1160. case RNDCLEARPOOL:
  1161. /* Clear the entropy pool counters. */
  1162. if (!capable(CAP_SYS_ADMIN))
  1163. return -EPERM;
  1164. rand_initialize();
  1165. return 0;
  1166. default:
  1167. return -EINVAL;
  1168. }
  1169. }
  1170. static int random_fasync(int fd, struct file *filp, int on)
  1171. {
  1172. return fasync_helper(fd, filp, on, &fasync);
  1173. }
  1174. const struct file_operations random_fops = {
  1175. .read = random_read,
  1176. .write = random_write,
  1177. .poll = random_poll,
  1178. .unlocked_ioctl = random_ioctl,
  1179. .fasync = random_fasync,
  1180. .llseek = noop_llseek,
  1181. };
  1182. const struct file_operations urandom_fops = {
  1183. .read = urandom_read,
  1184. .write = random_write,
  1185. .unlocked_ioctl = random_ioctl,
  1186. .fasync = random_fasync,
  1187. .llseek = noop_llseek,
  1188. };
  1189. SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
  1190. unsigned int, flags)
  1191. {
  1192. if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
  1193. return -EINVAL;
  1194. if (count > INT_MAX)
  1195. count = INT_MAX;
  1196. if (flags & GRND_RANDOM)
  1197. return _random_read(flags & GRND_NONBLOCK, buf, count);
  1198. if (unlikely(nonblocking_pool.initialized == 0)) {
  1199. if (flags & GRND_NONBLOCK)
  1200. return -EAGAIN;
  1201. wait_event_interruptible(urandom_init_wait,
  1202. nonblocking_pool.initialized);
  1203. if (signal_pending(current))
  1204. return -ERESTARTSYS;
  1205. }
  1206. return urandom_read(NULL, buf, count, NULL);
  1207. }
  1208. /***************************************************************
  1209. * Random UUID interface
  1210. *
  1211. * Used here for a Boot ID, but can be useful for other kernel
  1212. * drivers.
  1213. ***************************************************************/
  1214. /*
  1215. * Generate random UUID
  1216. */
  1217. void generate_random_uuid(unsigned char uuid_out[16])
  1218. {
  1219. get_random_bytes(uuid_out, 16);
  1220. /* Set UUID version to 4 --- truly random generation */
  1221. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  1222. /* Set the UUID variant to DCE */
  1223. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  1224. }
  1225. EXPORT_SYMBOL(generate_random_uuid);
  1226. /********************************************************************
  1227. *
  1228. * Sysctl interface
  1229. *
  1230. ********************************************************************/
  1231. #ifdef CONFIG_SYSCTL
  1232. #include <linux/sysctl.h>
  1233. static int min_read_thresh = 8, min_write_thresh;
  1234. static int max_read_thresh = INPUT_POOL_WORDS * 32;
  1235. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1236. static char sysctl_bootid[16];
  1237. /*
  1238. * These functions is used to return both the bootid UUID, and random
  1239. * UUID. The difference is in whether table->data is NULL; if it is,
  1240. * then a new UUID is generated and returned to the user.
  1241. *
  1242. * If the user accesses this via the proc interface, it will be returned
  1243. * as an ASCII string in the standard UUID format. If accesses via the
  1244. * sysctl system call, it is returned as 16 bytes of binary data.
  1245. */
  1246. static int proc_do_uuid(ctl_table *table, int write,
  1247. void __user *buffer, size_t *lenp, loff_t *ppos)
  1248. {
  1249. ctl_table fake_table;
  1250. unsigned char buf[64], tmp_uuid[16], *uuid;
  1251. uuid = table->data;
  1252. if (!uuid) {
  1253. uuid = tmp_uuid;
  1254. generate_random_uuid(uuid);
  1255. } else {
  1256. static DEFINE_SPINLOCK(bootid_spinlock);
  1257. spin_lock(&bootid_spinlock);
  1258. if (!uuid[8])
  1259. generate_random_uuid(uuid);
  1260. spin_unlock(&bootid_spinlock);
  1261. }
  1262. sprintf(buf, "%pU", uuid);
  1263. fake_table.data = buf;
  1264. fake_table.maxlen = sizeof(buf);
  1265. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1266. }
  1267. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1268. ctl_table random_table[] = {
  1269. {
  1270. .procname = "poolsize",
  1271. .data = &sysctl_poolsize,
  1272. .maxlen = sizeof(int),
  1273. .mode = 0444,
  1274. .proc_handler = proc_dointvec,
  1275. },
  1276. {
  1277. .procname = "entropy_avail",
  1278. .maxlen = sizeof(int),
  1279. .mode = 0444,
  1280. .proc_handler = proc_dointvec,
  1281. .data = &input_pool.entropy_count,
  1282. },
  1283. {
  1284. .procname = "read_wakeup_threshold",
  1285. .data = &random_read_wakeup_thresh,
  1286. .maxlen = sizeof(int),
  1287. .mode = 0644,
  1288. .proc_handler = proc_dointvec_minmax,
  1289. .extra1 = &min_read_thresh,
  1290. .extra2 = &max_read_thresh,
  1291. },
  1292. {
  1293. .procname = "write_wakeup_threshold",
  1294. .data = &random_write_wakeup_thresh,
  1295. .maxlen = sizeof(int),
  1296. .mode = 0644,
  1297. .proc_handler = proc_dointvec_minmax,
  1298. .extra1 = &min_write_thresh,
  1299. .extra2 = &max_write_thresh,
  1300. },
  1301. {
  1302. .procname = "boot_id",
  1303. .data = &sysctl_bootid,
  1304. .maxlen = 16,
  1305. .mode = 0444,
  1306. .proc_handler = proc_do_uuid,
  1307. },
  1308. {
  1309. .procname = "uuid",
  1310. .maxlen = 16,
  1311. .mode = 0444,
  1312. .proc_handler = proc_do_uuid,
  1313. },
  1314. { }
  1315. };
  1316. #endif /* CONFIG_SYSCTL */
  1317. static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
  1318. int random_int_secret_init(void)
  1319. {
  1320. get_random_bytes(random_int_secret, sizeof(random_int_secret));
  1321. return 0;
  1322. }
  1323. static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
  1324. __aligned(sizeof(unsigned long));
  1325. /*
  1326. * Get a random word for internal kernel use only. Similar to urandom but
  1327. * with the goal of minimal entropy pool depletion. As a result, the random
  1328. * value is not cryptographically secure but for several uses the cost of
  1329. * depleting entropy is too high
  1330. */
  1331. unsigned int get_random_int(void)
  1332. {
  1333. __u32 *hash;
  1334. unsigned int ret;
  1335. hash = get_cpu_var(get_random_int_hash);
  1336. hash[0] += current->pid + jiffies + get_cycles();
  1337. md5_transform(hash, random_int_secret);
  1338. ret = hash[0];
  1339. put_cpu_var(get_random_int_hash);
  1340. return ret;
  1341. }
  1342. /*
  1343. * Same as get_random_int(), but returns unsigned long.
  1344. */
  1345. unsigned long get_random_long(void)
  1346. {
  1347. __u32 *hash;
  1348. unsigned long ret;
  1349. hash = get_cpu_var(get_random_int_hash);
  1350. hash[0] += current->pid + jiffies + get_cycles();
  1351. md5_transform(hash, random_int_secret);
  1352. ret = *(unsigned long *)hash;
  1353. put_cpu_var(get_random_int_hash);
  1354. return ret;
  1355. }
  1356. EXPORT_SYMBOL(get_random_long);
  1357. /*
  1358. * randomize_range() returns a start address such that
  1359. *
  1360. * [...... <range> .....]
  1361. * start end
  1362. *
  1363. * a <range> with size "len" starting at the return value is inside in the
  1364. * area defined by [start, end], but is otherwise randomized.
  1365. */
  1366. unsigned long
  1367. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1368. {
  1369. unsigned long range = end - len - start;
  1370. if (end <= start + len)
  1371. return 0;
  1372. return PAGE_ALIGN(get_random_int() % range + start);
  1373. }