123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654 |
- /*
- * Ram backed block device driver.
- *
- * Copyright (C) 2007 Nick Piggin
- * Copyright (C) 2007 Novell Inc.
- *
- * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
- * of their respective owners.
- */
- #include <linux/init.h>
- #include <linux/module.h>
- #include <linux/moduleparam.h>
- #include <linux/major.h>
- #include <linux/blkdev.h>
- #include <linux/bio.h>
- #include <linux/highmem.h>
- #include <linux/mutex.h>
- #include <linux/radix-tree.h>
- #include <linux/fs.h>
- #include <linux/slab.h>
- #include <asm/uaccess.h>
- #define SECTOR_SHIFT 9
- #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
- #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
- /*
- * Each block ramdisk device has a radix_tree brd_pages of pages that stores
- * the pages containing the block device's contents. A brd page's ->index is
- * its offset in PAGE_SIZE units. This is similar to, but in no way connected
- * with, the kernel's pagecache or buffer cache (which sit above our block
- * device).
- */
- struct brd_device {
- int brd_number;
- struct request_queue *brd_queue;
- struct gendisk *brd_disk;
- struct list_head brd_list;
- /*
- * Backing store of pages and lock to protect it. This is the contents
- * of the block device.
- */
- spinlock_t brd_lock;
- struct radix_tree_root brd_pages;
- };
- /*
- * Look up and return a brd's page for a given sector.
- */
- static DEFINE_MUTEX(brd_mutex);
- static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
- {
- pgoff_t idx;
- struct page *page;
- /*
- * The page lifetime is protected by the fact that we have opened the
- * device node -- brd pages will never be deleted under us, so we
- * don't need any further locking or refcounting.
- *
- * This is strictly true for the radix-tree nodes as well (ie. we
- * don't actually need the rcu_read_lock()), however that is not a
- * documented feature of the radix-tree API so it is better to be
- * safe here (we don't have total exclusion from radix tree updates
- * here, only deletes).
- */
- rcu_read_lock();
- idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
- page = radix_tree_lookup(&brd->brd_pages, idx);
- rcu_read_unlock();
- BUG_ON(page && page->index != idx);
- return page;
- }
- /*
- * Look up and return a brd's page for a given sector.
- * If one does not exist, allocate an empty page, and insert that. Then
- * return it.
- */
- static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
- {
- pgoff_t idx;
- struct page *page;
- gfp_t gfp_flags;
- page = brd_lookup_page(brd, sector);
- if (page)
- return page;
- /*
- * Must use NOIO because we don't want to recurse back into the
- * block or filesystem layers from page reclaim.
- *
- * Cannot support XIP and highmem, because our ->direct_access
- * routine for XIP must return memory that is always addressable.
- * If XIP was reworked to use pfns and kmap throughout, this
- * restriction might be able to be lifted.
- */
- gfp_flags = GFP_NOIO | __GFP_ZERO;
- #ifndef CONFIG_BLK_DEV_XIP
- gfp_flags |= __GFP_HIGHMEM;
- #endif
- page = alloc_page(gfp_flags);
- if (!page)
- return NULL;
- if (radix_tree_preload(GFP_NOIO)) {
- __free_page(page);
- return NULL;
- }
- spin_lock(&brd->brd_lock);
- idx = sector >> PAGE_SECTORS_SHIFT;
- page->index = idx;
- if (radix_tree_insert(&brd->brd_pages, idx, page)) {
- __free_page(page);
- page = radix_tree_lookup(&brd->brd_pages, idx);
- BUG_ON(!page);
- BUG_ON(page->index != idx);
- }
- spin_unlock(&brd->brd_lock);
- radix_tree_preload_end();
- return page;
- }
- static void brd_free_page(struct brd_device *brd, sector_t sector)
- {
- struct page *page;
- pgoff_t idx;
- spin_lock(&brd->brd_lock);
- idx = sector >> PAGE_SECTORS_SHIFT;
- page = radix_tree_delete(&brd->brd_pages, idx);
- spin_unlock(&brd->brd_lock);
- if (page)
- __free_page(page);
- }
- static void brd_zero_page(struct brd_device *brd, sector_t sector)
- {
- struct page *page;
- page = brd_lookup_page(brd, sector);
- if (page)
- clear_highpage(page);
- }
- /*
- * Free all backing store pages and radix tree. This must only be called when
- * there are no other users of the device.
- */
- #define FREE_BATCH 16
- static void brd_free_pages(struct brd_device *brd)
- {
- unsigned long pos = 0;
- struct page *pages[FREE_BATCH];
- int nr_pages;
- do {
- int i;
- nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
- (void **)pages, pos, FREE_BATCH);
- for (i = 0; i < nr_pages; i++) {
- void *ret;
- BUG_ON(pages[i]->index < pos);
- pos = pages[i]->index;
- ret = radix_tree_delete(&brd->brd_pages, pos);
- BUG_ON(!ret || ret != pages[i]);
- __free_page(pages[i]);
- }
- pos++;
- /*
- * This assumes radix_tree_gang_lookup always returns as
- * many pages as possible. If the radix-tree code changes,
- * so will this have to.
- */
- } while (nr_pages == FREE_BATCH);
- }
- /*
- * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
- */
- static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
- {
- unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
- size_t copy;
- copy = min_t(size_t, n, PAGE_SIZE - offset);
- if (!brd_insert_page(brd, sector))
- return -ENOMEM;
- if (copy < n) {
- sector += copy >> SECTOR_SHIFT;
- if (!brd_insert_page(brd, sector))
- return -ENOMEM;
- }
- return 0;
- }
- static void discard_from_brd(struct brd_device *brd,
- sector_t sector, size_t n)
- {
- while (n >= PAGE_SIZE) {
- /*
- * Don't want to actually discard pages here because
- * re-allocating the pages can result in writeback
- * deadlocks under heavy load.
- */
- if (0)
- brd_free_page(brd, sector);
- else
- brd_zero_page(brd, sector);
- sector += PAGE_SIZE >> SECTOR_SHIFT;
- n -= PAGE_SIZE;
- }
- }
- /*
- * Copy n bytes from src to the brd starting at sector. Does not sleep.
- */
- static void copy_to_brd(struct brd_device *brd, const void *src,
- sector_t sector, size_t n)
- {
- struct page *page;
- void *dst;
- unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
- size_t copy;
- copy = min_t(size_t, n, PAGE_SIZE - offset);
- page = brd_lookup_page(brd, sector);
- BUG_ON(!page);
- dst = kmap_atomic(page);
- memcpy(dst + offset, src, copy);
- kunmap_atomic(dst);
- if (copy < n) {
- src += copy;
- sector += copy >> SECTOR_SHIFT;
- copy = n - copy;
- page = brd_lookup_page(brd, sector);
- BUG_ON(!page);
- dst = kmap_atomic(page);
- memcpy(dst, src, copy);
- kunmap_atomic(dst);
- }
- }
- /*
- * Copy n bytes to dst from the brd starting at sector. Does not sleep.
- */
- static void copy_from_brd(void *dst, struct brd_device *brd,
- sector_t sector, size_t n)
- {
- struct page *page;
- void *src;
- unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
- size_t copy;
- copy = min_t(size_t, n, PAGE_SIZE - offset);
- page = brd_lookup_page(brd, sector);
- if (page) {
- src = kmap_atomic(page);
- memcpy(dst, src + offset, copy);
- kunmap_atomic(src);
- } else
- memset(dst, 0, copy);
- if (copy < n) {
- dst += copy;
- sector += copy >> SECTOR_SHIFT;
- copy = n - copy;
- page = brd_lookup_page(brd, sector);
- if (page) {
- src = kmap_atomic(page);
- memcpy(dst, src, copy);
- kunmap_atomic(src);
- } else
- memset(dst, 0, copy);
- }
- }
- /*
- * Process a single bvec of a bio.
- */
- static int brd_do_bvec(struct brd_device *brd, struct page *page,
- unsigned int len, unsigned int off, int rw,
- sector_t sector)
- {
- void *mem;
- int err = 0;
- if (rw != READ) {
- err = copy_to_brd_setup(brd, sector, len);
- if (err)
- goto out;
- }
- mem = kmap_atomic(page);
- if (rw == READ) {
- copy_from_brd(mem + off, brd, sector, len);
- flush_dcache_page(page);
- } else {
- flush_dcache_page(page);
- copy_to_brd(brd, mem + off, sector, len);
- }
- kunmap_atomic(mem);
- out:
- return err;
- }
- static void brd_make_request(struct request_queue *q, struct bio *bio)
- {
- struct block_device *bdev = bio->bi_bdev;
- struct brd_device *brd = bdev->bd_disk->private_data;
- int rw;
- struct bio_vec *bvec;
- sector_t sector;
- int i;
- int err = -EIO;
- sector = bio->bi_sector;
- if (sector + (bio->bi_size >> SECTOR_SHIFT) >
- get_capacity(bdev->bd_disk))
- goto out;
- if (unlikely(bio->bi_rw & REQ_DISCARD)) {
- err = 0;
- discard_from_brd(brd, sector, bio->bi_size);
- goto out;
- }
- rw = bio_rw(bio);
- if (rw == READA)
- rw = READ;
- bio_for_each_segment(bvec, bio, i) {
- unsigned int len = bvec->bv_len;
- err = brd_do_bvec(brd, bvec->bv_page, len,
- bvec->bv_offset, rw, sector);
- if (err)
- break;
- sector += len >> SECTOR_SHIFT;
- }
- out:
- bio_endio(bio, err);
- }
- #ifdef CONFIG_BLK_DEV_XIP
- static int brd_direct_access(struct block_device *bdev, sector_t sector,
- void **kaddr, unsigned long *pfn)
- {
- struct brd_device *brd = bdev->bd_disk->private_data;
- struct page *page;
- if (!brd)
- return -ENODEV;
- if (sector & (PAGE_SECTORS-1))
- return -EINVAL;
- if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
- return -ERANGE;
- page = brd_insert_page(brd, sector);
- if (!page)
- return -ENOMEM;
- *kaddr = page_address(page);
- *pfn = page_to_pfn(page);
- return 0;
- }
- #endif
- static int brd_ioctl(struct block_device *bdev, fmode_t mode,
- unsigned int cmd, unsigned long arg)
- {
- int error;
- struct brd_device *brd = bdev->bd_disk->private_data;
- if (cmd != BLKFLSBUF)
- return -ENOTTY;
- /*
- * ram device BLKFLSBUF has special semantics, we want to actually
- * release and destroy the ramdisk data.
- */
- mutex_lock(&brd_mutex);
- mutex_lock(&bdev->bd_mutex);
- error = -EBUSY;
- if (bdev->bd_openers <= 1) {
- /*
- * Kill the cache first, so it isn't written back to the
- * device.
- *
- * Another thread might instantiate more buffercache here,
- * but there is not much we can do to close that race.
- */
- kill_bdev(bdev);
- brd_free_pages(brd);
- error = 0;
- }
- mutex_unlock(&bdev->bd_mutex);
- mutex_unlock(&brd_mutex);
- return error;
- }
- static const struct block_device_operations brd_fops = {
- .owner = THIS_MODULE,
- .ioctl = brd_ioctl,
- #ifdef CONFIG_BLK_DEV_XIP
- .direct_access = brd_direct_access,
- #endif
- };
- /*
- * And now the modules code and kernel interface.
- */
- static int rd_nr;
- int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
- static int max_part;
- static int part_shift;
- module_param(rd_nr, int, S_IRUGO);
- MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
- module_param(rd_size, int, S_IRUGO);
- MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
- module_param(max_part, int, S_IRUGO);
- MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
- MODULE_LICENSE("GPL");
- MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
- MODULE_ALIAS("rd");
- #ifndef MODULE
- /* Legacy boot options - nonmodular */
- static int __init ramdisk_size(char *str)
- {
- rd_size = simple_strtol(str, NULL, 0);
- return 1;
- }
- __setup("ramdisk_size=", ramdisk_size);
- #endif
- /*
- * The device scheme is derived from loop.c. Keep them in synch where possible
- * (should share code eventually).
- */
- static LIST_HEAD(brd_devices);
- static DEFINE_MUTEX(brd_devices_mutex);
- static struct brd_device *brd_alloc(int i)
- {
- struct brd_device *brd;
- struct gendisk *disk;
- brd = kzalloc(sizeof(*brd), GFP_KERNEL);
- if (!brd)
- goto out;
- brd->brd_number = i;
- spin_lock_init(&brd->brd_lock);
- INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
- brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
- if (!brd->brd_queue)
- goto out_free_dev;
- blk_queue_make_request(brd->brd_queue, brd_make_request);
- blk_queue_max_hw_sectors(brd->brd_queue, 1024);
- blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
- brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
- brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
- brd->brd_queue->limits.discard_zeroes_data = 1;
- queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
- disk = brd->brd_disk = alloc_disk(1 << part_shift);
- if (!disk)
- goto out_free_queue;
- disk->major = RAMDISK_MAJOR;
- disk->first_minor = i << part_shift;
- disk->fops = &brd_fops;
- disk->private_data = brd;
- disk->queue = brd->brd_queue;
- disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
- sprintf(disk->disk_name, "ram%d", i);
- set_capacity(disk, rd_size * 2);
- return brd;
- out_free_queue:
- blk_cleanup_queue(brd->brd_queue);
- out_free_dev:
- kfree(brd);
- out:
- return NULL;
- }
- static void brd_free(struct brd_device *brd)
- {
- put_disk(brd->brd_disk);
- blk_cleanup_queue(brd->brd_queue);
- brd_free_pages(brd);
- kfree(brd);
- }
- static struct brd_device *brd_init_one(int i)
- {
- struct brd_device *brd;
- list_for_each_entry(brd, &brd_devices, brd_list) {
- if (brd->brd_number == i)
- goto out;
- }
- brd = brd_alloc(i);
- if (brd) {
- add_disk(brd->brd_disk);
- list_add_tail(&brd->brd_list, &brd_devices);
- }
- out:
- return brd;
- }
- static void brd_del_one(struct brd_device *brd)
- {
- list_del(&brd->brd_list);
- del_gendisk(brd->brd_disk);
- brd_free(brd);
- }
- static struct kobject *brd_probe(dev_t dev, int *part, void *data)
- {
- struct brd_device *brd;
- struct kobject *kobj;
- mutex_lock(&brd_devices_mutex);
- brd = brd_init_one(MINOR(dev) >> part_shift);
- kobj = brd ? get_disk(brd->brd_disk) : NULL;
- mutex_unlock(&brd_devices_mutex);
- *part = 0;
- return kobj;
- }
- static int __init brd_init(void)
- {
- int i, nr;
- unsigned long range;
- struct brd_device *brd, *next;
- /*
- * brd module now has a feature to instantiate underlying device
- * structure on-demand, provided that there is an access dev node.
- * However, this will not work well with user space tool that doesn't
- * know about such "feature". In order to not break any existing
- * tool, we do the following:
- *
- * (1) if rd_nr is specified, create that many upfront, and this
- * also becomes a hard limit.
- * (2) if rd_nr is not specified, create CONFIG_BLK_DEV_RAM_COUNT
- * (default 16) rd device on module load, user can further
- * extend brd device by create dev node themselves and have
- * kernel automatically instantiate actual device on-demand.
- */
- part_shift = 0;
- if (max_part > 0) {
- part_shift = fls(max_part);
- /*
- * Adjust max_part according to part_shift as it is exported
- * to user space so that user can decide correct minor number
- * if [s]he want to create more devices.
- *
- * Note that -1 is required because partition 0 is reserved
- * for the whole disk.
- */
- max_part = (1UL << part_shift) - 1;
- }
- if ((1UL << part_shift) > DISK_MAX_PARTS)
- return -EINVAL;
- if (rd_nr > 1UL << (MINORBITS - part_shift))
- return -EINVAL;
- if (rd_nr) {
- nr = rd_nr;
- range = rd_nr << part_shift;
- } else {
- nr = CONFIG_BLK_DEV_RAM_COUNT;
- range = 1UL << MINORBITS;
- }
- if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
- return -EIO;
- for (i = 0; i < nr; i++) {
- brd = brd_alloc(i);
- if (!brd)
- goto out_free;
- list_add_tail(&brd->brd_list, &brd_devices);
- }
- /* point of no return */
- list_for_each_entry(brd, &brd_devices, brd_list)
- add_disk(brd->brd_disk);
- blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
- THIS_MODULE, brd_probe, NULL, NULL);
- printk(KERN_INFO "brd: module loaded\n");
- return 0;
- out_free:
- list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
- list_del(&brd->brd_list);
- brd_free(brd);
- }
- unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
- return -ENOMEM;
- }
- static void __exit brd_exit(void)
- {
- unsigned long range;
- struct brd_device *brd, *next;
- range = rd_nr ? rd_nr << part_shift : 1UL << MINORBITS;
- list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
- brd_del_one(brd);
- blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
- unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
- }
- module_init(brd_init);
- module_exit(brd_exit);
|