memory.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708
  1. /*
  2. * Memory subsystem support
  3. *
  4. * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
  5. * Dave Hansen <haveblue@us.ibm.com>
  6. *
  7. * This file provides the necessary infrastructure to represent
  8. * a SPARSEMEM-memory-model system's physical memory in /sysfs.
  9. * All arch-independent code that assumes MEMORY_HOTPLUG requires
  10. * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/topology.h>
  15. #include <linux/capability.h>
  16. #include <linux/device.h>
  17. #include <linux/memory.h>
  18. #include <linux/kobject.h>
  19. #include <linux/memory_hotplug.h>
  20. #include <linux/mm.h>
  21. #include <linux/mutex.h>
  22. #include <linux/stat.h>
  23. #include <linux/slab.h>
  24. #include <linux/atomic.h>
  25. #include <asm/uaccess.h>
  26. static DEFINE_MUTEX(mem_sysfs_mutex);
  27. #define MEMORY_CLASS_NAME "memory"
  28. static int sections_per_block;
  29. static inline int base_memory_block_id(int section_nr)
  30. {
  31. return section_nr / sections_per_block;
  32. }
  33. static struct bus_type memory_subsys = {
  34. .name = MEMORY_CLASS_NAME,
  35. .dev_name = MEMORY_CLASS_NAME,
  36. };
  37. static BLOCKING_NOTIFIER_HEAD(memory_chain);
  38. int register_memory_notifier(struct notifier_block *nb)
  39. {
  40. return blocking_notifier_chain_register(&memory_chain, nb);
  41. }
  42. EXPORT_SYMBOL(register_memory_notifier);
  43. void unregister_memory_notifier(struct notifier_block *nb)
  44. {
  45. blocking_notifier_chain_unregister(&memory_chain, nb);
  46. }
  47. EXPORT_SYMBOL(unregister_memory_notifier);
  48. static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
  49. int register_memory_isolate_notifier(struct notifier_block *nb)
  50. {
  51. return atomic_notifier_chain_register(&memory_isolate_chain, nb);
  52. }
  53. EXPORT_SYMBOL(register_memory_isolate_notifier);
  54. void unregister_memory_isolate_notifier(struct notifier_block *nb)
  55. {
  56. atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
  57. }
  58. EXPORT_SYMBOL(unregister_memory_isolate_notifier);
  59. /*
  60. * register_memory - Setup a sysfs device for a memory block
  61. */
  62. static
  63. int register_memory(struct memory_block *memory)
  64. {
  65. int error;
  66. memory->dev.bus = &memory_subsys;
  67. memory->dev.id = memory->start_section_nr / sections_per_block;
  68. error = device_register(&memory->dev);
  69. return error;
  70. }
  71. static void
  72. unregister_memory(struct memory_block *memory)
  73. {
  74. BUG_ON(memory->dev.bus != &memory_subsys);
  75. /* drop the ref. we got in remove_memory_block() */
  76. kobject_put(&memory->dev.kobj);
  77. device_unregister(&memory->dev);
  78. }
  79. unsigned long __weak memory_block_size_bytes(void)
  80. {
  81. return MIN_MEMORY_BLOCK_SIZE;
  82. }
  83. static unsigned long get_memory_block_size(void)
  84. {
  85. unsigned long block_sz;
  86. block_sz = memory_block_size_bytes();
  87. /* Validate blk_sz is a power of 2 and not less than section size */
  88. if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
  89. WARN_ON(1);
  90. block_sz = MIN_MEMORY_BLOCK_SIZE;
  91. }
  92. return block_sz;
  93. }
  94. /*
  95. * use this as the physical section index that this memsection
  96. * uses.
  97. */
  98. static ssize_t show_mem_start_phys_index(struct device *dev,
  99. struct device_attribute *attr, char *buf)
  100. {
  101. struct memory_block *mem =
  102. container_of(dev, struct memory_block, dev);
  103. unsigned long phys_index;
  104. phys_index = mem->start_section_nr / sections_per_block;
  105. return sprintf(buf, "%08lx\n", phys_index);
  106. }
  107. static ssize_t show_mem_end_phys_index(struct device *dev,
  108. struct device_attribute *attr, char *buf)
  109. {
  110. struct memory_block *mem =
  111. container_of(dev, struct memory_block, dev);
  112. unsigned long phys_index;
  113. phys_index = mem->end_section_nr / sections_per_block;
  114. return sprintf(buf, "%08lx\n", phys_index);
  115. }
  116. /*
  117. * Show whether the section of memory is likely to be hot-removable
  118. */
  119. static ssize_t show_mem_removable(struct device *dev,
  120. struct device_attribute *attr, char *buf)
  121. {
  122. unsigned long i, pfn;
  123. int ret = 1;
  124. struct memory_block *mem =
  125. container_of(dev, struct memory_block, dev);
  126. for (i = 0; i < sections_per_block; i++) {
  127. if (!present_section_nr(mem->start_section_nr + i))
  128. continue;
  129. pfn = section_nr_to_pfn(mem->start_section_nr + i);
  130. ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
  131. }
  132. return sprintf(buf, "%d\n", ret);
  133. }
  134. /*
  135. * online, offline, going offline, etc.
  136. */
  137. static ssize_t show_mem_state(struct device *dev,
  138. struct device_attribute *attr, char *buf)
  139. {
  140. struct memory_block *mem =
  141. container_of(dev, struct memory_block, dev);
  142. ssize_t len = 0;
  143. /*
  144. * We can probably put these states in a nice little array
  145. * so that they're not open-coded
  146. */
  147. switch (mem->state) {
  148. case MEM_ONLINE:
  149. len = sprintf(buf, "online\n");
  150. break;
  151. case MEM_OFFLINE:
  152. len = sprintf(buf, "offline\n");
  153. break;
  154. case MEM_GOING_OFFLINE:
  155. len = sprintf(buf, "going-offline\n");
  156. break;
  157. default:
  158. len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
  159. mem->state);
  160. WARN_ON(1);
  161. break;
  162. }
  163. return len;
  164. }
  165. int memory_notify(unsigned long val, void *v)
  166. {
  167. return blocking_notifier_call_chain(&memory_chain, val, v);
  168. }
  169. int memory_isolate_notify(unsigned long val, void *v)
  170. {
  171. return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
  172. }
  173. /*
  174. * The probe routines leave the pages reserved, just as the bootmem code does.
  175. * Make sure they're still that way.
  176. */
  177. static bool pages_correctly_reserved(unsigned long start_pfn,
  178. unsigned long nr_pages)
  179. {
  180. int i, j;
  181. struct page *page;
  182. unsigned long pfn = start_pfn;
  183. /*
  184. * memmap between sections is not contiguous except with
  185. * SPARSEMEM_VMEMMAP. We lookup the page once per section
  186. * and assume memmap is contiguous within each section
  187. */
  188. for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
  189. if (WARN_ON_ONCE(!pfn_valid(pfn)))
  190. return false;
  191. page = pfn_to_page(pfn);
  192. for (j = 0; j < PAGES_PER_SECTION; j++) {
  193. if (PageReserved(page + j))
  194. continue;
  195. printk(KERN_WARNING "section number %ld page number %d "
  196. "not reserved, was it already online?\n",
  197. pfn_to_section_nr(pfn), j);
  198. return false;
  199. }
  200. }
  201. return true;
  202. }
  203. /*
  204. * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
  205. * OK to have direct references to sparsemem variables in here.
  206. */
  207. static int
  208. memory_block_action(unsigned long phys_index, unsigned long action)
  209. {
  210. unsigned long start_pfn, start_paddr;
  211. unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
  212. struct page *first_page;
  213. int ret;
  214. first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
  215. switch (action) {
  216. case MEM_ONLINE:
  217. start_pfn = page_to_pfn(first_page);
  218. if (!pages_correctly_reserved(start_pfn, nr_pages))
  219. return -EBUSY;
  220. ret = online_pages(start_pfn, nr_pages);
  221. break;
  222. case MEM_OFFLINE:
  223. start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
  224. ret = remove_memory(start_paddr,
  225. nr_pages << PAGE_SHIFT);
  226. break;
  227. default:
  228. WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
  229. "%ld\n", __func__, phys_index, action, action);
  230. ret = -EINVAL;
  231. }
  232. return ret;
  233. }
  234. static int memory_block_change_state(struct memory_block *mem,
  235. unsigned long to_state, unsigned long from_state_req)
  236. {
  237. int ret = 0;
  238. mutex_lock(&mem->state_mutex);
  239. if (mem->state != from_state_req) {
  240. ret = -EINVAL;
  241. goto out;
  242. }
  243. if (to_state == MEM_OFFLINE)
  244. mem->state = MEM_GOING_OFFLINE;
  245. ret = memory_block_action(mem->start_section_nr, to_state);
  246. if (ret) {
  247. mem->state = from_state_req;
  248. goto out;
  249. }
  250. mem->state = to_state;
  251. switch (mem->state) {
  252. case MEM_OFFLINE:
  253. kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
  254. break;
  255. case MEM_ONLINE:
  256. kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
  257. break;
  258. default:
  259. break;
  260. }
  261. out:
  262. mutex_unlock(&mem->state_mutex);
  263. return ret;
  264. }
  265. static ssize_t
  266. store_mem_state(struct device *dev,
  267. struct device_attribute *attr, const char *buf, size_t count)
  268. {
  269. struct memory_block *mem;
  270. int ret = -EINVAL;
  271. mem = container_of(dev, struct memory_block, dev);
  272. if (!strncmp(buf, "online", min((int)count, 6)))
  273. ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
  274. else if(!strncmp(buf, "offline", min((int)count, 7)))
  275. ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
  276. if (ret)
  277. return ret;
  278. return count;
  279. }
  280. /*
  281. * phys_device is a bad name for this. What I really want
  282. * is a way to differentiate between memory ranges that
  283. * are part of physical devices that constitute
  284. * a complete removable unit or fru.
  285. * i.e. do these ranges belong to the same physical device,
  286. * s.t. if I offline all of these sections I can then
  287. * remove the physical device?
  288. */
  289. static ssize_t show_phys_device(struct device *dev,
  290. struct device_attribute *attr, char *buf)
  291. {
  292. struct memory_block *mem =
  293. container_of(dev, struct memory_block, dev);
  294. return sprintf(buf, "%d\n", mem->phys_device);
  295. }
  296. static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
  297. static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
  298. static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
  299. static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
  300. static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
  301. #define mem_create_simple_file(mem, attr_name) \
  302. device_create_file(&mem->dev, &dev_attr_##attr_name)
  303. #define mem_remove_simple_file(mem, attr_name) \
  304. device_remove_file(&mem->dev, &dev_attr_##attr_name)
  305. /*
  306. * Block size attribute stuff
  307. */
  308. static ssize_t
  309. print_block_size(struct device *dev, struct device_attribute *attr,
  310. char *buf)
  311. {
  312. return sprintf(buf, "%lx\n", get_memory_block_size());
  313. }
  314. static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
  315. static int block_size_init(void)
  316. {
  317. return device_create_file(memory_subsys.dev_root,
  318. &dev_attr_block_size_bytes);
  319. }
  320. /*
  321. * Some architectures will have custom drivers to do this, and
  322. * will not need to do it from userspace. The fake hot-add code
  323. * as well as ppc64 will do all of their discovery in userspace
  324. * and will require this interface.
  325. */
  326. #ifdef CONFIG_ARCH_MEMORY_PROBE
  327. static ssize_t
  328. memory_probe_store(struct device *dev, struct device_attribute *attr,
  329. const char *buf, size_t count)
  330. {
  331. u64 phys_addr;
  332. int nid;
  333. int i, ret;
  334. unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
  335. phys_addr = simple_strtoull(buf, NULL, 0);
  336. if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
  337. return -EINVAL;
  338. for (i = 0; i < sections_per_block; i++) {
  339. nid = memory_add_physaddr_to_nid(phys_addr);
  340. ret = add_memory(nid, phys_addr,
  341. PAGES_PER_SECTION << PAGE_SHIFT);
  342. if (ret)
  343. goto out;
  344. phys_addr += MIN_MEMORY_BLOCK_SIZE;
  345. }
  346. ret = count;
  347. out:
  348. return ret;
  349. }
  350. static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
  351. static int memory_probe_init(void)
  352. {
  353. return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
  354. }
  355. #else
  356. static inline int memory_probe_init(void)
  357. {
  358. return 0;
  359. }
  360. #endif
  361. #ifdef CONFIG_MEMORY_FAILURE
  362. /*
  363. * Support for offlining pages of memory
  364. */
  365. /* Soft offline a page */
  366. static ssize_t
  367. store_soft_offline_page(struct device *dev,
  368. struct device_attribute *attr,
  369. const char *buf, size_t count)
  370. {
  371. int ret;
  372. u64 pfn;
  373. if (!capable(CAP_SYS_ADMIN))
  374. return -EPERM;
  375. if (kstrtoull(buf, 0, &pfn) < 0)
  376. return -EINVAL;
  377. pfn >>= PAGE_SHIFT;
  378. if (!pfn_valid(pfn))
  379. return -ENXIO;
  380. ret = soft_offline_page(pfn_to_page(pfn), 0);
  381. return ret == 0 ? count : ret;
  382. }
  383. /* Forcibly offline a page, including killing processes. */
  384. static ssize_t
  385. store_hard_offline_page(struct device *dev,
  386. struct device_attribute *attr,
  387. const char *buf, size_t count)
  388. {
  389. int ret;
  390. u64 pfn;
  391. if (!capable(CAP_SYS_ADMIN))
  392. return -EPERM;
  393. if (kstrtoull(buf, 0, &pfn) < 0)
  394. return -EINVAL;
  395. pfn >>= PAGE_SHIFT;
  396. ret = memory_failure(pfn, 0, 0);
  397. return ret ? ret : count;
  398. }
  399. static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
  400. static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
  401. static __init int memory_fail_init(void)
  402. {
  403. int err;
  404. err = device_create_file(memory_subsys.dev_root,
  405. &dev_attr_soft_offline_page);
  406. if (!err)
  407. err = device_create_file(memory_subsys.dev_root,
  408. &dev_attr_hard_offline_page);
  409. return err;
  410. }
  411. #else
  412. static inline int memory_fail_init(void)
  413. {
  414. return 0;
  415. }
  416. #endif
  417. /*
  418. * Note that phys_device is optional. It is here to allow for
  419. * differentiation between which *physical* devices each
  420. * section belongs to...
  421. */
  422. int __weak arch_get_memory_phys_device(unsigned long start_pfn)
  423. {
  424. return 0;
  425. }
  426. /*
  427. * A reference for the returned object is held and the reference for the
  428. * hinted object is released.
  429. */
  430. struct memory_block *find_memory_block_hinted(struct mem_section *section,
  431. struct memory_block *hint)
  432. {
  433. int block_id = base_memory_block_id(__section_nr(section));
  434. struct device *hintdev = hint ? &hint->dev : NULL;
  435. struct device *dev;
  436. dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
  437. if (hint)
  438. put_device(&hint->dev);
  439. if (!dev)
  440. return NULL;
  441. return container_of(dev, struct memory_block, dev);
  442. }
  443. /*
  444. * For now, we have a linear search to go find the appropriate
  445. * memory_block corresponding to a particular phys_index. If
  446. * this gets to be a real problem, we can always use a radix
  447. * tree or something here.
  448. *
  449. * This could be made generic for all device subsystems.
  450. */
  451. struct memory_block *find_memory_block(struct mem_section *section)
  452. {
  453. return find_memory_block_hinted(section, NULL);
  454. }
  455. static int init_memory_block(struct memory_block **memory,
  456. struct mem_section *section, unsigned long state)
  457. {
  458. struct memory_block *mem;
  459. unsigned long start_pfn;
  460. int scn_nr;
  461. int ret = 0;
  462. mem = kzalloc(sizeof(*mem), GFP_KERNEL);
  463. if (!mem)
  464. return -ENOMEM;
  465. scn_nr = __section_nr(section);
  466. mem->start_section_nr =
  467. base_memory_block_id(scn_nr) * sections_per_block;
  468. mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
  469. mem->state = state;
  470. mem->section_count++;
  471. mutex_init(&mem->state_mutex);
  472. start_pfn = section_nr_to_pfn(mem->start_section_nr);
  473. mem->phys_device = arch_get_memory_phys_device(start_pfn);
  474. ret = register_memory(mem);
  475. if (!ret)
  476. ret = mem_create_simple_file(mem, phys_index);
  477. if (!ret)
  478. ret = mem_create_simple_file(mem, end_phys_index);
  479. if (!ret)
  480. ret = mem_create_simple_file(mem, state);
  481. if (!ret)
  482. ret = mem_create_simple_file(mem, phys_device);
  483. if (!ret)
  484. ret = mem_create_simple_file(mem, removable);
  485. *memory = mem;
  486. return ret;
  487. }
  488. static int add_memory_section(int nid, struct mem_section *section,
  489. struct memory_block **mem_p,
  490. unsigned long state, enum mem_add_context context)
  491. {
  492. struct memory_block *mem = NULL;
  493. int scn_nr = __section_nr(section);
  494. int ret = 0;
  495. mutex_lock(&mem_sysfs_mutex);
  496. if (context == BOOT) {
  497. /* same memory block ? */
  498. if (mem_p && *mem_p)
  499. if (scn_nr >= (*mem_p)->start_section_nr &&
  500. scn_nr <= (*mem_p)->end_section_nr) {
  501. mem = *mem_p;
  502. kobject_get(&mem->dev.kobj);
  503. }
  504. } else
  505. mem = find_memory_block(section);
  506. if (mem) {
  507. mem->section_count++;
  508. kobject_put(&mem->dev.kobj);
  509. } else {
  510. ret = init_memory_block(&mem, section, state);
  511. /* store memory_block pointer for next loop */
  512. if (!ret && context == BOOT)
  513. if (mem_p)
  514. *mem_p = mem;
  515. }
  516. if (!ret) {
  517. if (context == HOTPLUG &&
  518. mem->section_count == sections_per_block)
  519. ret = register_mem_sect_under_node(mem, nid);
  520. }
  521. mutex_unlock(&mem_sysfs_mutex);
  522. return ret;
  523. }
  524. int remove_memory_block(unsigned long node_id, struct mem_section *section,
  525. int phys_device)
  526. {
  527. struct memory_block *mem;
  528. mutex_lock(&mem_sysfs_mutex);
  529. mem = find_memory_block(section);
  530. unregister_mem_sect_under_nodes(mem, __section_nr(section));
  531. mem->section_count--;
  532. if (mem->section_count == 0) {
  533. mem_remove_simple_file(mem, phys_index);
  534. mem_remove_simple_file(mem, end_phys_index);
  535. mem_remove_simple_file(mem, state);
  536. mem_remove_simple_file(mem, phys_device);
  537. mem_remove_simple_file(mem, removable);
  538. unregister_memory(mem);
  539. kfree(mem);
  540. } else
  541. kobject_put(&mem->dev.kobj);
  542. mutex_unlock(&mem_sysfs_mutex);
  543. return 0;
  544. }
  545. /*
  546. * need an interface for the VM to add new memory regions,
  547. * but without onlining it.
  548. */
  549. int register_new_memory(int nid, struct mem_section *section)
  550. {
  551. return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
  552. }
  553. int unregister_memory_section(struct mem_section *section)
  554. {
  555. if (!present_section(section))
  556. return -EINVAL;
  557. return remove_memory_block(0, section, 0);
  558. }
  559. /*
  560. * Initialize the sysfs support for memory devices...
  561. */
  562. int __init memory_dev_init(void)
  563. {
  564. unsigned int i;
  565. int ret;
  566. int err;
  567. unsigned long block_sz;
  568. struct memory_block *mem = NULL;
  569. ret = subsys_system_register(&memory_subsys, NULL);
  570. if (ret)
  571. goto out;
  572. block_sz = get_memory_block_size();
  573. sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
  574. /*
  575. * Create entries for memory sections that were found
  576. * during boot and have been initialized
  577. */
  578. for (i = 0; i < NR_MEM_SECTIONS; i++) {
  579. if (!present_section_nr(i))
  580. continue;
  581. /* don't need to reuse memory_block if only one per block */
  582. err = add_memory_section(0, __nr_to_section(i),
  583. (sections_per_block == 1) ? NULL : &mem,
  584. MEM_ONLINE,
  585. BOOT);
  586. if (!ret)
  587. ret = err;
  588. }
  589. err = memory_probe_init();
  590. if (!ret)
  591. ret = err;
  592. err = memory_fail_init();
  593. if (!ret)
  594. ret = err;
  595. err = block_size_init();
  596. if (!ret)
  597. ret = err;
  598. out:
  599. if (ret)
  600. printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
  601. return ret;
  602. }