smp.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793
  1. /*
  2. * SMP support for ppc.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
  5. * deal of code from the sparc and intel versions.
  6. *
  7. * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
  8. *
  9. * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
  10. * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. #undef DEBUG
  18. #include <linux/kernel.h>
  19. #include <linux/export.h>
  20. #include <linux/sched.h>
  21. #include <linux/smp.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/delay.h>
  24. #include <linux/init.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/cache.h>
  27. #include <linux/err.h>
  28. #include <linux/device.h>
  29. #include <linux/cpu.h>
  30. #include <linux/notifier.h>
  31. #include <linux/topology.h>
  32. #include <asm/ptrace.h>
  33. #include <linux/atomic.h>
  34. #include <asm/irq.h>
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/prom.h>
  38. #include <asm/smp.h>
  39. #include <asm/time.h>
  40. #include <asm/machdep.h>
  41. #include <asm/cputhreads.h>
  42. #include <asm/cputable.h>
  43. #include <asm/mpic.h>
  44. #include <asm/vdso_datapage.h>
  45. #ifdef CONFIG_PPC64
  46. #include <asm/paca.h>
  47. #endif
  48. #include <asm/debug.h>
  49. #ifdef DEBUG
  50. #include <asm/udbg.h>
  51. #define DBG(fmt...) udbg_printf(fmt)
  52. #else
  53. #define DBG(fmt...)
  54. #endif
  55. /* Store all idle threads, this can be reused instead of creating
  56. * a new thread. Also avoids complicated thread destroy functionality
  57. * for idle threads.
  58. */
  59. #ifdef CONFIG_HOTPLUG_CPU
  60. /*
  61. * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is
  62. * removed after init for !CONFIG_HOTPLUG_CPU.
  63. */
  64. static DEFINE_PER_CPU(struct task_struct *, idle_thread_array);
  65. #define get_idle_for_cpu(x) (per_cpu(idle_thread_array, x))
  66. #define set_idle_for_cpu(x, p) (per_cpu(idle_thread_array, x) = (p))
  67. /* State of each CPU during hotplug phases */
  68. static DEFINE_PER_CPU(int, cpu_state) = { 0 };
  69. #else
  70. static struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
  71. #define get_idle_for_cpu(x) (idle_thread_array[(x)])
  72. #define set_idle_for_cpu(x, p) (idle_thread_array[(x)] = (p))
  73. #endif
  74. struct thread_info *secondary_ti;
  75. DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
  76. DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
  77. EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  78. EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  79. /* SMP operations for this machine */
  80. struct smp_ops_t *smp_ops;
  81. /* Can't be static due to PowerMac hackery */
  82. volatile unsigned int cpu_callin_map[NR_CPUS];
  83. int smt_enabled_at_boot = 1;
  84. static void (*crash_ipi_function_ptr)(struct pt_regs *) = NULL;
  85. #ifdef CONFIG_PPC64
  86. int __devinit smp_generic_kick_cpu(int nr)
  87. {
  88. BUG_ON(nr < 0 || nr >= NR_CPUS);
  89. /*
  90. * The processor is currently spinning, waiting for the
  91. * cpu_start field to become non-zero After we set cpu_start,
  92. * the processor will continue on to secondary_start
  93. */
  94. if (!paca[nr].cpu_start) {
  95. paca[nr].cpu_start = 1;
  96. smp_mb();
  97. return 0;
  98. }
  99. #ifdef CONFIG_HOTPLUG_CPU
  100. /*
  101. * Ok it's not there, so it might be soft-unplugged, let's
  102. * try to bring it back
  103. */
  104. per_cpu(cpu_state, nr) = CPU_UP_PREPARE;
  105. smp_wmb();
  106. smp_send_reschedule(nr);
  107. #endif /* CONFIG_HOTPLUG_CPU */
  108. return 0;
  109. }
  110. #endif /* CONFIG_PPC64 */
  111. static irqreturn_t call_function_action(int irq, void *data)
  112. {
  113. generic_smp_call_function_interrupt();
  114. return IRQ_HANDLED;
  115. }
  116. static irqreturn_t reschedule_action(int irq, void *data)
  117. {
  118. scheduler_ipi();
  119. return IRQ_HANDLED;
  120. }
  121. static irqreturn_t call_function_single_action(int irq, void *data)
  122. {
  123. generic_smp_call_function_single_interrupt();
  124. return IRQ_HANDLED;
  125. }
  126. static irqreturn_t debug_ipi_action(int irq, void *data)
  127. {
  128. if (crash_ipi_function_ptr) {
  129. crash_ipi_function_ptr(get_irq_regs());
  130. return IRQ_HANDLED;
  131. }
  132. #ifdef CONFIG_DEBUGGER
  133. debugger_ipi(get_irq_regs());
  134. #endif /* CONFIG_DEBUGGER */
  135. return IRQ_HANDLED;
  136. }
  137. static irq_handler_t smp_ipi_action[] = {
  138. [PPC_MSG_CALL_FUNCTION] = call_function_action,
  139. [PPC_MSG_RESCHEDULE] = reschedule_action,
  140. [PPC_MSG_CALL_FUNC_SINGLE] = call_function_single_action,
  141. [PPC_MSG_DEBUGGER_BREAK] = debug_ipi_action,
  142. };
  143. const char *smp_ipi_name[] = {
  144. [PPC_MSG_CALL_FUNCTION] = "ipi call function",
  145. [PPC_MSG_RESCHEDULE] = "ipi reschedule",
  146. [PPC_MSG_CALL_FUNC_SINGLE] = "ipi call function single",
  147. [PPC_MSG_DEBUGGER_BREAK] = "ipi debugger",
  148. };
  149. /* optional function to request ipi, for controllers with >= 4 ipis */
  150. int smp_request_message_ipi(int virq, int msg)
  151. {
  152. int err;
  153. if (msg < 0 || msg > PPC_MSG_DEBUGGER_BREAK) {
  154. return -EINVAL;
  155. }
  156. #if !defined(CONFIG_DEBUGGER) && !defined(CONFIG_KEXEC)
  157. if (msg == PPC_MSG_DEBUGGER_BREAK) {
  158. return 1;
  159. }
  160. #endif
  161. err = request_irq(virq, smp_ipi_action[msg],
  162. IRQF_PERCPU | IRQF_NO_THREAD,
  163. smp_ipi_name[msg], 0);
  164. WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
  165. virq, smp_ipi_name[msg], err);
  166. return err;
  167. }
  168. #ifdef CONFIG_PPC_SMP_MUXED_IPI
  169. struct cpu_messages {
  170. int messages; /* current messages */
  171. unsigned long data; /* data for cause ipi */
  172. };
  173. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
  174. void smp_muxed_ipi_set_data(int cpu, unsigned long data)
  175. {
  176. struct cpu_messages *info = &per_cpu(ipi_message, cpu);
  177. info->data = data;
  178. }
  179. void smp_muxed_ipi_message_pass(int cpu, int msg)
  180. {
  181. struct cpu_messages *info = &per_cpu(ipi_message, cpu);
  182. char *message = (char *)&info->messages;
  183. /*
  184. * Order previous accesses before accesses in the IPI handler.
  185. */
  186. smp_mb();
  187. message[msg] = 1;
  188. /*
  189. * cause_ipi functions are required to include a full barrier
  190. * before doing whatever causes the IPI.
  191. */
  192. smp_ops->cause_ipi(cpu, info->data);
  193. }
  194. irqreturn_t smp_ipi_demux(void)
  195. {
  196. struct cpu_messages *info = &__get_cpu_var(ipi_message);
  197. unsigned int all;
  198. mb(); /* order any irq clear */
  199. do {
  200. all = xchg(&info->messages, 0);
  201. #ifdef __BIG_ENDIAN
  202. if (all & (1 << (24 - 8 * PPC_MSG_CALL_FUNCTION)))
  203. generic_smp_call_function_interrupt();
  204. if (all & (1 << (24 - 8 * PPC_MSG_RESCHEDULE)))
  205. scheduler_ipi();
  206. if (all & (1 << (24 - 8 * PPC_MSG_CALL_FUNC_SINGLE)))
  207. generic_smp_call_function_single_interrupt();
  208. if (all & (1 << (24 - 8 * PPC_MSG_DEBUGGER_BREAK)))
  209. debug_ipi_action(0, NULL);
  210. #else
  211. #error Unsupported ENDIAN
  212. #endif
  213. } while (info->messages);
  214. return IRQ_HANDLED;
  215. }
  216. #endif /* CONFIG_PPC_SMP_MUXED_IPI */
  217. static inline void do_message_pass(int cpu, int msg)
  218. {
  219. if (smp_ops->message_pass)
  220. smp_ops->message_pass(cpu, msg);
  221. #ifdef CONFIG_PPC_SMP_MUXED_IPI
  222. else
  223. smp_muxed_ipi_message_pass(cpu, msg);
  224. #endif
  225. }
  226. void smp_send_reschedule(int cpu)
  227. {
  228. if (likely(smp_ops))
  229. do_message_pass(cpu, PPC_MSG_RESCHEDULE);
  230. }
  231. EXPORT_SYMBOL_GPL(smp_send_reschedule);
  232. void arch_send_call_function_single_ipi(int cpu)
  233. {
  234. do_message_pass(cpu, PPC_MSG_CALL_FUNC_SINGLE);
  235. }
  236. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  237. {
  238. unsigned int cpu;
  239. for_each_cpu(cpu, mask)
  240. do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
  241. }
  242. #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
  243. void smp_send_debugger_break(void)
  244. {
  245. int cpu;
  246. int me = raw_smp_processor_id();
  247. if (unlikely(!smp_ops))
  248. return;
  249. for_each_online_cpu(cpu)
  250. if (cpu != me)
  251. do_message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);
  252. }
  253. #endif
  254. #ifdef CONFIG_KEXEC
  255. void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
  256. {
  257. crash_ipi_function_ptr = crash_ipi_callback;
  258. if (crash_ipi_callback) {
  259. mb();
  260. smp_send_debugger_break();
  261. }
  262. }
  263. #endif
  264. static void stop_this_cpu(void *dummy)
  265. {
  266. /* Remove this CPU */
  267. set_cpu_online(smp_processor_id(), false);
  268. local_irq_disable();
  269. while (1)
  270. ;
  271. }
  272. void smp_send_stop(void)
  273. {
  274. smp_call_function(stop_this_cpu, NULL, 0);
  275. }
  276. struct thread_info *current_set[NR_CPUS];
  277. static void __devinit smp_store_cpu_info(int id)
  278. {
  279. per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
  280. #ifdef CONFIG_PPC_FSL_BOOK3E
  281. per_cpu(next_tlbcam_idx, id)
  282. = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
  283. #endif
  284. }
  285. void __init smp_prepare_cpus(unsigned int max_cpus)
  286. {
  287. unsigned int cpu;
  288. DBG("smp_prepare_cpus\n");
  289. /*
  290. * setup_cpu may need to be called on the boot cpu. We havent
  291. * spun any cpus up but lets be paranoid.
  292. */
  293. BUG_ON(boot_cpuid != smp_processor_id());
  294. /* Fixup boot cpu */
  295. smp_store_cpu_info(boot_cpuid);
  296. cpu_callin_map[boot_cpuid] = 1;
  297. for_each_possible_cpu(cpu) {
  298. zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
  299. GFP_KERNEL, cpu_to_node(cpu));
  300. zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
  301. GFP_KERNEL, cpu_to_node(cpu));
  302. }
  303. cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
  304. cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
  305. if (smp_ops)
  306. if (smp_ops->probe)
  307. max_cpus = smp_ops->probe();
  308. else
  309. max_cpus = NR_CPUS;
  310. else
  311. max_cpus = 1;
  312. }
  313. void __devinit smp_prepare_boot_cpu(void)
  314. {
  315. BUG_ON(smp_processor_id() != boot_cpuid);
  316. #ifdef CONFIG_PPC64
  317. paca[boot_cpuid].__current = current;
  318. #endif
  319. current_set[boot_cpuid] = task_thread_info(current);
  320. }
  321. #ifdef CONFIG_HOTPLUG_CPU
  322. int generic_cpu_disable(void)
  323. {
  324. unsigned int cpu = smp_processor_id();
  325. if (cpu == boot_cpuid)
  326. return -EBUSY;
  327. set_cpu_online(cpu, false);
  328. #ifdef CONFIG_PPC64
  329. vdso_data->processorCount--;
  330. #endif
  331. migrate_irqs();
  332. return 0;
  333. }
  334. void generic_cpu_die(unsigned int cpu)
  335. {
  336. int i;
  337. for (i = 0; i < 100; i++) {
  338. smp_rmb();
  339. if (per_cpu(cpu_state, cpu) == CPU_DEAD)
  340. return;
  341. msleep(100);
  342. }
  343. printk(KERN_ERR "CPU%d didn't die...\n", cpu);
  344. }
  345. void generic_mach_cpu_die(void)
  346. {
  347. unsigned int cpu;
  348. local_irq_disable();
  349. idle_task_exit();
  350. cpu = smp_processor_id();
  351. printk(KERN_DEBUG "CPU%d offline\n", cpu);
  352. __get_cpu_var(cpu_state) = CPU_DEAD;
  353. smp_wmb();
  354. while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE)
  355. cpu_relax();
  356. }
  357. void generic_set_cpu_dead(unsigned int cpu)
  358. {
  359. per_cpu(cpu_state, cpu) = CPU_DEAD;
  360. }
  361. int generic_check_cpu_restart(unsigned int cpu)
  362. {
  363. return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
  364. }
  365. #endif
  366. struct create_idle {
  367. struct work_struct work;
  368. struct task_struct *idle;
  369. struct completion done;
  370. int cpu;
  371. };
  372. static void __cpuinit do_fork_idle(struct work_struct *work)
  373. {
  374. struct create_idle *c_idle =
  375. container_of(work, struct create_idle, work);
  376. c_idle->idle = fork_idle(c_idle->cpu);
  377. complete(&c_idle->done);
  378. }
  379. static int __cpuinit create_idle(unsigned int cpu)
  380. {
  381. struct thread_info *ti;
  382. struct create_idle c_idle = {
  383. .cpu = cpu,
  384. .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
  385. };
  386. INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle);
  387. c_idle.idle = get_idle_for_cpu(cpu);
  388. /* We can't use kernel_thread since we must avoid to
  389. * reschedule the child. We use a workqueue because
  390. * we want to fork from a kernel thread, not whatever
  391. * userspace process happens to be trying to online us.
  392. */
  393. if (!c_idle.idle) {
  394. schedule_work(&c_idle.work);
  395. wait_for_completion(&c_idle.done);
  396. } else
  397. init_idle(c_idle.idle, cpu);
  398. if (IS_ERR(c_idle.idle)) {
  399. pr_err("Failed fork for CPU %u: %li", cpu, PTR_ERR(c_idle.idle));
  400. return PTR_ERR(c_idle.idle);
  401. }
  402. ti = task_thread_info(c_idle.idle);
  403. #ifdef CONFIG_PPC64
  404. paca[cpu].__current = c_idle.idle;
  405. paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
  406. #endif
  407. ti->cpu = cpu;
  408. current_set[cpu] = ti;
  409. return 0;
  410. }
  411. int __cpuinit __cpu_up(unsigned int cpu)
  412. {
  413. int rc, c;
  414. if (smp_ops == NULL ||
  415. (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
  416. return -EINVAL;
  417. /* Make sure we have an idle thread */
  418. rc = create_idle(cpu);
  419. if (rc)
  420. return rc;
  421. secondary_ti = current_set[cpu];
  422. /* Make sure callin-map entry is 0 (can be leftover a CPU
  423. * hotplug
  424. */
  425. cpu_callin_map[cpu] = 0;
  426. /* The information for processor bringup must
  427. * be written out to main store before we release
  428. * the processor.
  429. */
  430. smp_mb();
  431. /* wake up cpus */
  432. DBG("smp: kicking cpu %d\n", cpu);
  433. rc = smp_ops->kick_cpu(cpu);
  434. if (rc) {
  435. pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
  436. return rc;
  437. }
  438. /*
  439. * wait to see if the cpu made a callin (is actually up).
  440. * use this value that I found through experimentation.
  441. * -- Cort
  442. */
  443. if (system_state < SYSTEM_RUNNING)
  444. for (c = 50000; c && !cpu_callin_map[cpu]; c--)
  445. udelay(100);
  446. #ifdef CONFIG_HOTPLUG_CPU
  447. else
  448. /*
  449. * CPUs can take much longer to come up in the
  450. * hotplug case. Wait five seconds.
  451. */
  452. for (c = 5000; c && !cpu_callin_map[cpu]; c--)
  453. msleep(1);
  454. #endif
  455. if (!cpu_callin_map[cpu]) {
  456. printk(KERN_ERR "Processor %u is stuck.\n", cpu);
  457. return -ENOENT;
  458. }
  459. DBG("Processor %u found.\n", cpu);
  460. if (smp_ops->give_timebase)
  461. smp_ops->give_timebase();
  462. /* Wait until cpu puts itself in the online map */
  463. while (!cpu_online(cpu))
  464. cpu_relax();
  465. return 0;
  466. }
  467. /* Return the value of the reg property corresponding to the given
  468. * logical cpu.
  469. */
  470. int cpu_to_core_id(int cpu)
  471. {
  472. struct device_node *np;
  473. const int *reg;
  474. int id = -1;
  475. np = of_get_cpu_node(cpu, NULL);
  476. if (!np)
  477. goto out;
  478. reg = of_get_property(np, "reg", NULL);
  479. if (!reg)
  480. goto out;
  481. id = *reg;
  482. out:
  483. of_node_put(np);
  484. return id;
  485. }
  486. /* Helper routines for cpu to core mapping */
  487. int cpu_core_index_of_thread(int cpu)
  488. {
  489. return cpu >> threads_shift;
  490. }
  491. EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
  492. int cpu_first_thread_of_core(int core)
  493. {
  494. return core << threads_shift;
  495. }
  496. EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
  497. /* Must be called when no change can occur to cpu_present_mask,
  498. * i.e. during cpu online or offline.
  499. */
  500. static struct device_node *cpu_to_l2cache(int cpu)
  501. {
  502. struct device_node *np;
  503. struct device_node *cache;
  504. if (!cpu_present(cpu))
  505. return NULL;
  506. np = of_get_cpu_node(cpu, NULL);
  507. if (np == NULL)
  508. return NULL;
  509. cache = of_find_next_cache_node(np);
  510. of_node_put(np);
  511. return cache;
  512. }
  513. /* Activate a secondary processor. */
  514. void __devinit start_secondary(void *unused)
  515. {
  516. unsigned int cpu = smp_processor_id();
  517. struct device_node *l2_cache;
  518. int i, base;
  519. atomic_inc(&init_mm.mm_count);
  520. current->active_mm = &init_mm;
  521. smp_store_cpu_info(cpu);
  522. set_dec(tb_ticks_per_jiffy);
  523. preempt_disable();
  524. cpu_callin_map[cpu] = 1;
  525. if (smp_ops->setup_cpu)
  526. smp_ops->setup_cpu(cpu);
  527. if (smp_ops->take_timebase)
  528. smp_ops->take_timebase();
  529. secondary_cpu_time_init();
  530. #ifdef CONFIG_PPC64
  531. if (system_state == SYSTEM_RUNNING)
  532. vdso_data->processorCount++;
  533. #endif
  534. ipi_call_lock();
  535. notify_cpu_starting(cpu);
  536. set_cpu_online(cpu, true);
  537. /* Update sibling maps */
  538. base = cpu_first_thread_sibling(cpu);
  539. for (i = 0; i < threads_per_core; i++) {
  540. if (cpu_is_offline(base + i))
  541. continue;
  542. cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
  543. cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));
  544. /* cpu_core_map should be a superset of
  545. * cpu_sibling_map even if we don't have cache
  546. * information, so update the former here, too.
  547. */
  548. cpumask_set_cpu(cpu, cpu_core_mask(base + i));
  549. cpumask_set_cpu(base + i, cpu_core_mask(cpu));
  550. }
  551. l2_cache = cpu_to_l2cache(cpu);
  552. for_each_online_cpu(i) {
  553. struct device_node *np = cpu_to_l2cache(i);
  554. if (!np)
  555. continue;
  556. if (np == l2_cache) {
  557. cpumask_set_cpu(cpu, cpu_core_mask(i));
  558. cpumask_set_cpu(i, cpu_core_mask(cpu));
  559. }
  560. of_node_put(np);
  561. }
  562. of_node_put(l2_cache);
  563. ipi_call_unlock();
  564. local_irq_enable();
  565. cpu_idle();
  566. BUG();
  567. }
  568. int setup_profiling_timer(unsigned int multiplier)
  569. {
  570. return 0;
  571. }
  572. void __init smp_cpus_done(unsigned int max_cpus)
  573. {
  574. cpumask_var_t old_mask;
  575. /* We want the setup_cpu() here to be called from CPU 0, but our
  576. * init thread may have been "borrowed" by another CPU in the meantime
  577. * se we pin us down to CPU 0 for a short while
  578. */
  579. alloc_cpumask_var(&old_mask, GFP_NOWAIT);
  580. cpumask_copy(old_mask, tsk_cpus_allowed(current));
  581. set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid));
  582. if (smp_ops && smp_ops->setup_cpu)
  583. smp_ops->setup_cpu(boot_cpuid);
  584. set_cpus_allowed_ptr(current, old_mask);
  585. free_cpumask_var(old_mask);
  586. if (smp_ops && smp_ops->bringup_done)
  587. smp_ops->bringup_done();
  588. dump_numa_cpu_topology();
  589. }
  590. int arch_sd_sibling_asym_packing(void)
  591. {
  592. if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
  593. printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
  594. return SD_ASYM_PACKING;
  595. }
  596. return 0;
  597. }
  598. #ifdef CONFIG_HOTPLUG_CPU
  599. int __cpu_disable(void)
  600. {
  601. struct device_node *l2_cache;
  602. int cpu = smp_processor_id();
  603. int base, i;
  604. int err;
  605. if (!smp_ops->cpu_disable)
  606. return -ENOSYS;
  607. err = smp_ops->cpu_disable();
  608. if (err)
  609. return err;
  610. /* Update sibling maps */
  611. base = cpu_first_thread_sibling(cpu);
  612. for (i = 0; i < threads_per_core; i++) {
  613. cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
  614. cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
  615. cpumask_clear_cpu(cpu, cpu_core_mask(base + i));
  616. cpumask_clear_cpu(base + i, cpu_core_mask(cpu));
  617. }
  618. l2_cache = cpu_to_l2cache(cpu);
  619. for_each_present_cpu(i) {
  620. struct device_node *np = cpu_to_l2cache(i);
  621. if (!np)
  622. continue;
  623. if (np == l2_cache) {
  624. cpumask_clear_cpu(cpu, cpu_core_mask(i));
  625. cpumask_clear_cpu(i, cpu_core_mask(cpu));
  626. }
  627. of_node_put(np);
  628. }
  629. of_node_put(l2_cache);
  630. return 0;
  631. }
  632. void __cpu_die(unsigned int cpu)
  633. {
  634. if (smp_ops->cpu_die)
  635. smp_ops->cpu_die(cpu);
  636. }
  637. static DEFINE_MUTEX(powerpc_cpu_hotplug_driver_mutex);
  638. void cpu_hotplug_driver_lock()
  639. {
  640. mutex_lock(&powerpc_cpu_hotplug_driver_mutex);
  641. }
  642. void cpu_hotplug_driver_unlock()
  643. {
  644. mutex_unlock(&powerpc_cpu_hotplug_driver_mutex);
  645. }
  646. void cpu_die(void)
  647. {
  648. if (ppc_md.cpu_die)
  649. ppc_md.cpu_die();
  650. /* If we return, we re-enter start_secondary */
  651. start_secondary_resume();
  652. }
  653. #endif