process.c 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258
  1. /*
  2. * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
  3. * Copyright (C) 2008-2009 PetaLogix
  4. * Copyright (C) 2006 Atmark Techno, Inc.
  5. *
  6. * This file is subject to the terms and conditions of the GNU General Public
  7. * License. See the file "COPYING" in the main directory of this archive
  8. * for more details.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/sched.h>
  12. #include <linux/pm.h>
  13. #include <linux/tick.h>
  14. #include <linux/bitops.h>
  15. #include <asm/pgalloc.h>
  16. #include <asm/uaccess.h> /* for USER_DS macros */
  17. #include <asm/cacheflush.h>
  18. void show_regs(struct pt_regs *regs)
  19. {
  20. printk(KERN_INFO " Registers dump: mode=%X\r\n", regs->pt_mode);
  21. printk(KERN_INFO " r1=%08lX, r2=%08lX, r3=%08lX, r4=%08lX\n",
  22. regs->r1, regs->r2, regs->r3, regs->r4);
  23. printk(KERN_INFO " r5=%08lX, r6=%08lX, r7=%08lX, r8=%08lX\n",
  24. regs->r5, regs->r6, regs->r7, regs->r8);
  25. printk(KERN_INFO " r9=%08lX, r10=%08lX, r11=%08lX, r12=%08lX\n",
  26. regs->r9, regs->r10, regs->r11, regs->r12);
  27. printk(KERN_INFO " r13=%08lX, r14=%08lX, r15=%08lX, r16=%08lX\n",
  28. regs->r13, regs->r14, regs->r15, regs->r16);
  29. printk(KERN_INFO " r17=%08lX, r18=%08lX, r19=%08lX, r20=%08lX\n",
  30. regs->r17, regs->r18, regs->r19, regs->r20);
  31. printk(KERN_INFO " r21=%08lX, r22=%08lX, r23=%08lX, r24=%08lX\n",
  32. regs->r21, regs->r22, regs->r23, regs->r24);
  33. printk(KERN_INFO " r25=%08lX, r26=%08lX, r27=%08lX, r28=%08lX\n",
  34. regs->r25, regs->r26, regs->r27, regs->r28);
  35. printk(KERN_INFO " r29=%08lX, r30=%08lX, r31=%08lX, rPC=%08lX\n",
  36. regs->r29, regs->r30, regs->r31, regs->pc);
  37. printk(KERN_INFO " msr=%08lX, ear=%08lX, esr=%08lX, fsr=%08lX\n",
  38. regs->msr, regs->ear, regs->esr, regs->fsr);
  39. }
  40. void (*pm_idle)(void);
  41. void (*pm_power_off)(void) = NULL;
  42. EXPORT_SYMBOL(pm_power_off);
  43. static int hlt_counter = 1;
  44. void disable_hlt(void)
  45. {
  46. hlt_counter++;
  47. }
  48. EXPORT_SYMBOL(disable_hlt);
  49. void enable_hlt(void)
  50. {
  51. hlt_counter--;
  52. }
  53. EXPORT_SYMBOL(enable_hlt);
  54. static int __init nohlt_setup(char *__unused)
  55. {
  56. hlt_counter = 1;
  57. return 1;
  58. }
  59. __setup("nohlt", nohlt_setup);
  60. static int __init hlt_setup(char *__unused)
  61. {
  62. hlt_counter = 0;
  63. return 1;
  64. }
  65. __setup("hlt", hlt_setup);
  66. void default_idle(void)
  67. {
  68. if (likely(hlt_counter)) {
  69. local_irq_disable();
  70. stop_critical_timings();
  71. cpu_relax();
  72. start_critical_timings();
  73. local_irq_enable();
  74. } else {
  75. clear_thread_flag(TIF_POLLING_NRFLAG);
  76. smp_mb__after_clear_bit();
  77. local_irq_disable();
  78. while (!need_resched())
  79. cpu_sleep();
  80. local_irq_enable();
  81. set_thread_flag(TIF_POLLING_NRFLAG);
  82. }
  83. }
  84. void cpu_idle(void)
  85. {
  86. set_thread_flag(TIF_POLLING_NRFLAG);
  87. /* endless idle loop with no priority at all */
  88. while (1) {
  89. void (*idle)(void) = pm_idle;
  90. if (!idle)
  91. idle = default_idle;
  92. tick_nohz_idle_enter();
  93. rcu_idle_enter();
  94. while (!need_resched())
  95. idle();
  96. rcu_idle_exit();
  97. tick_nohz_idle_exit();
  98. schedule_preempt_disabled();
  99. check_pgt_cache();
  100. }
  101. }
  102. void flush_thread(void)
  103. {
  104. }
  105. int copy_thread(unsigned long clone_flags, unsigned long usp,
  106. unsigned long unused,
  107. struct task_struct *p, struct pt_regs *regs)
  108. {
  109. struct pt_regs *childregs = task_pt_regs(p);
  110. struct thread_info *ti = task_thread_info(p);
  111. *childregs = *regs;
  112. if (user_mode(regs))
  113. childregs->r1 = usp;
  114. else
  115. childregs->r1 = ((unsigned long) ti) + THREAD_SIZE;
  116. #ifndef CONFIG_MMU
  117. memset(&ti->cpu_context, 0, sizeof(struct cpu_context));
  118. ti->cpu_context.r1 = (unsigned long)childregs;
  119. ti->cpu_context.msr = (unsigned long)childregs->msr;
  120. #else
  121. /* if creating a kernel thread then update the current reg (we don't
  122. * want to use the parent's value when restoring by POP_STATE) */
  123. if (kernel_mode(regs))
  124. /* save new current on stack to use POP_STATE */
  125. childregs->CURRENT_TASK = (unsigned long)p;
  126. /* if returning to user then use the parent's value of this register */
  127. /* if we're creating a new kernel thread then just zeroing all
  128. * the registers. That's OK for a brand new thread.*/
  129. /* Pls. note that some of them will be restored in POP_STATE */
  130. if (kernel_mode(regs))
  131. memset(&ti->cpu_context, 0, sizeof(struct cpu_context));
  132. /* if this thread is created for fork/vfork/clone, then we want to
  133. * restore all the parent's context */
  134. /* in addition to the registers which will be restored by POP_STATE */
  135. else {
  136. ti->cpu_context = *(struct cpu_context *)regs;
  137. childregs->msr |= MSR_UMS;
  138. }
  139. /* FIXME STATE_SAVE_PT_OFFSET; */
  140. ti->cpu_context.r1 = (unsigned long)childregs;
  141. /* we should consider the fact that childregs is a copy of the parent
  142. * regs which were saved immediately after entering the kernel state
  143. * before enabling VM. This MSR will be restored in switch_to and
  144. * RETURN() and we want to have the right machine state there
  145. * specifically this state must have INTs disabled before and enabled
  146. * after performing rtbd
  147. * compose the right MSR for RETURN(). It will work for switch_to also
  148. * excepting for VM and UMS
  149. * don't touch UMS , CARRY and cache bits
  150. * right now MSR is a copy of parent one */
  151. childregs->msr |= MSR_BIP;
  152. childregs->msr &= ~MSR_EIP;
  153. childregs->msr |= MSR_IE;
  154. childregs->msr &= ~MSR_VM;
  155. childregs->msr |= MSR_VMS;
  156. childregs->msr |= MSR_EE; /* exceptions will be enabled*/
  157. ti->cpu_context.msr = (childregs->msr|MSR_VM);
  158. ti->cpu_context.msr &= ~MSR_UMS; /* switch_to to kernel mode */
  159. ti->cpu_context.msr &= ~MSR_IE;
  160. #endif
  161. ti->cpu_context.r15 = (unsigned long)ret_from_fork - 8;
  162. if (clone_flags & CLONE_SETTLS)
  163. ;
  164. return 0;
  165. }
  166. #ifndef CONFIG_MMU
  167. /*
  168. * Return saved PC of a blocked thread.
  169. */
  170. unsigned long thread_saved_pc(struct task_struct *tsk)
  171. {
  172. struct cpu_context *ctx =
  173. &(((struct thread_info *)(tsk->stack))->cpu_context);
  174. /* Check whether the thread is blocked in resume() */
  175. if (in_sched_functions(ctx->r15))
  176. return (unsigned long)ctx->r15;
  177. else
  178. return ctx->r14;
  179. }
  180. #endif
  181. static void kernel_thread_helper(int (*fn)(void *), void *arg)
  182. {
  183. fn(arg);
  184. do_exit(-1);
  185. }
  186. int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  187. {
  188. struct pt_regs regs;
  189. memset(&regs, 0, sizeof(regs));
  190. /* store them in non-volatile registers */
  191. regs.r5 = (unsigned long)fn;
  192. regs.r6 = (unsigned long)arg;
  193. local_save_flags(regs.msr);
  194. regs.pc = (unsigned long)kernel_thread_helper;
  195. regs.pt_mode = 1;
  196. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
  197. &regs, 0, NULL, NULL);
  198. }
  199. EXPORT_SYMBOL_GPL(kernel_thread);
  200. unsigned long get_wchan(struct task_struct *p)
  201. {
  202. /* TBD (used by procfs) */
  203. return 0;
  204. }
  205. /* Set up a thread for executing a new program */
  206. void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long usp)
  207. {
  208. regs->pc = pc;
  209. regs->r1 = usp;
  210. regs->pt_mode = 0;
  211. #ifdef CONFIG_MMU
  212. regs->msr |= MSR_UMS;
  213. #endif
  214. }
  215. #ifdef CONFIG_MMU
  216. #include <linux/elfcore.h>
  217. /*
  218. * Set up a thread for executing a new program
  219. */
  220. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs)
  221. {
  222. return 0; /* MicroBlaze has no separate FPU registers */
  223. }
  224. #endif /* CONFIG_MMU */