arp.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447
  1. /* linux/net/ipv4/arp.c
  2. *
  3. * Copyright (C) 1994 by Florian La Roche
  4. *
  5. * This module implements the Address Resolution Protocol ARP (RFC 826),
  6. * which is used to convert IP addresses (or in the future maybe other
  7. * high-level addresses) into a low-level hardware address (like an Ethernet
  8. * address).
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Fixes:
  16. * Alan Cox : Removed the Ethernet assumptions in
  17. * Florian's code
  18. * Alan Cox : Fixed some small errors in the ARP
  19. * logic
  20. * Alan Cox : Allow >4K in /proc
  21. * Alan Cox : Make ARP add its own protocol entry
  22. * Ross Martin : Rewrote arp_rcv() and arp_get_info()
  23. * Stephen Henson : Add AX25 support to arp_get_info()
  24. * Alan Cox : Drop data when a device is downed.
  25. * Alan Cox : Use init_timer().
  26. * Alan Cox : Double lock fixes.
  27. * Martin Seine : Move the arphdr structure
  28. * to if_arp.h for compatibility.
  29. * with BSD based programs.
  30. * Andrew Tridgell : Added ARP netmask code and
  31. * re-arranged proxy handling.
  32. * Alan Cox : Changed to use notifiers.
  33. * Niibe Yutaka : Reply for this device or proxies only.
  34. * Alan Cox : Don't proxy across hardware types!
  35. * Jonathan Naylor : Added support for NET/ROM.
  36. * Mike Shaver : RFC1122 checks.
  37. * Jonathan Naylor : Only lookup the hardware address for
  38. * the correct hardware type.
  39. * Germano Caronni : Assorted subtle races.
  40. * Craig Schlenter : Don't modify permanent entry
  41. * during arp_rcv.
  42. * Russ Nelson : Tidied up a few bits.
  43. * Alexey Kuznetsov: Major changes to caching and behaviour,
  44. * eg intelligent arp probing and
  45. * generation
  46. * of host down events.
  47. * Alan Cox : Missing unlock in device events.
  48. * Eckes : ARP ioctl control errors.
  49. * Alexey Kuznetsov: Arp free fix.
  50. * Manuel Rodriguez: Gratuitous ARP.
  51. * Jonathan Layes : Added arpd support through kerneld
  52. * message queue (960314)
  53. * Mike Shaver : /proc/sys/net/ipv4/arp_* support
  54. * Mike McLagan : Routing by source
  55. * Stuart Cheshire : Metricom and grat arp fixes
  56. * *** FOR 2.1 clean this up ***
  57. * Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58. * Alan Cox : Took the AP1000 nasty FDDI hack and
  59. * folded into the mainstream FDDI code.
  60. * Ack spit, Linus how did you allow that
  61. * one in...
  62. * Jes Sorensen : Make FDDI work again in 2.1.x and
  63. * clean up the APFDDI & gen. FDDI bits.
  64. * Alexey Kuznetsov: new arp state machine;
  65. * now it is in net/core/neighbour.c.
  66. * Krzysztof Halasa: Added Frame Relay ARP support.
  67. * Arnaldo C. Melo : convert /proc/net/arp to seq_file
  68. * Shmulik Hen: Split arp_send to arp_create and
  69. * arp_xmit so intermediate drivers like
  70. * bonding can change the skb before
  71. * sending (e.g. insert 8021q tag).
  72. * Harald Welte : convert to make use of jenkins hash
  73. * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
  74. */
  75. #include <linux/module.h>
  76. #include <linux/types.h>
  77. #include <linux/string.h>
  78. #include <linux/kernel.h>
  79. #include <linux/capability.h>
  80. #include <linux/socket.h>
  81. #include <linux/sockios.h>
  82. #include <linux/errno.h>
  83. #include <linux/in.h>
  84. #include <linux/mm.h>
  85. #include <linux/inet.h>
  86. #include <linux/inetdevice.h>
  87. #include <linux/netdevice.h>
  88. #include <linux/etherdevice.h>
  89. #include <linux/fddidevice.h>
  90. #include <linux/if_arp.h>
  91. #include <linux/trdevice.h>
  92. #include <linux/skbuff.h>
  93. #include <linux/proc_fs.h>
  94. #include <linux/seq_file.h>
  95. #include <linux/stat.h>
  96. #include <linux/init.h>
  97. #include <linux/net.h>
  98. #include <linux/rcupdate.h>
  99. #include <linux/slab.h>
  100. #ifdef CONFIG_SYSCTL
  101. #include <linux/sysctl.h>
  102. #endif
  103. #include <net/net_namespace.h>
  104. #include <net/ip.h>
  105. #include <net/icmp.h>
  106. #include <net/route.h>
  107. #include <net/protocol.h>
  108. #include <net/tcp.h>
  109. #include <net/sock.h>
  110. #include <net/arp.h>
  111. #include <net/ax25.h>
  112. #include <net/netrom.h>
  113. #include <linux/uaccess.h>
  114. #include <linux/netfilter_arp.h>
  115. /*
  116. * Interface to generic neighbour cache.
  117. */
  118. static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
  119. static int arp_constructor(struct neighbour *neigh);
  120. static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
  121. static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
  122. static void parp_redo(struct sk_buff *skb);
  123. static const struct neigh_ops arp_generic_ops = {
  124. .family = AF_INET,
  125. .solicit = arp_solicit,
  126. .error_report = arp_error_report,
  127. .output = neigh_resolve_output,
  128. .connected_output = neigh_connected_output,
  129. };
  130. static const struct neigh_ops arp_hh_ops = {
  131. .family = AF_INET,
  132. .solicit = arp_solicit,
  133. .error_report = arp_error_report,
  134. .output = neigh_resolve_output,
  135. .connected_output = neigh_resolve_output,
  136. };
  137. static const struct neigh_ops arp_direct_ops = {
  138. .family = AF_INET,
  139. .output = neigh_direct_output,
  140. .connected_output = neigh_direct_output,
  141. };
  142. static const struct neigh_ops arp_broken_ops = {
  143. .family = AF_INET,
  144. .solicit = arp_solicit,
  145. .error_report = arp_error_report,
  146. .output = neigh_compat_output,
  147. .connected_output = neigh_compat_output,
  148. };
  149. struct neigh_table arp_tbl = {
  150. .family = AF_INET,
  151. .key_len = 4,
  152. .hash = arp_hash,
  153. .constructor = arp_constructor,
  154. .proxy_redo = parp_redo,
  155. .id = "arp_cache",
  156. .parms = {
  157. .tbl = &arp_tbl,
  158. .base_reachable_time = 30 * HZ,
  159. .retrans_time = 1 * HZ,
  160. .gc_staletime = 60 * HZ,
  161. .reachable_time = 30 * HZ,
  162. .delay_probe_time = 5 * HZ,
  163. .queue_len_bytes = 64*1024,
  164. .ucast_probes = 3,
  165. .mcast_probes = 3,
  166. .anycast_delay = 1 * HZ,
  167. .proxy_delay = (8 * HZ) / 10,
  168. .proxy_qlen = 64,
  169. .locktime = 1 * HZ,
  170. },
  171. .gc_interval = 30 * HZ,
  172. .gc_thresh1 = 128,
  173. .gc_thresh2 = 512,
  174. .gc_thresh3 = 1024,
  175. };
  176. EXPORT_SYMBOL(arp_tbl);
  177. int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
  178. {
  179. switch (dev->type) {
  180. case ARPHRD_ETHER:
  181. case ARPHRD_FDDI:
  182. case ARPHRD_IEEE802:
  183. ip_eth_mc_map(addr, haddr);
  184. return 0;
  185. case ARPHRD_IEEE802_TR:
  186. ip_tr_mc_map(addr, haddr);
  187. return 0;
  188. case ARPHRD_INFINIBAND:
  189. ip_ib_mc_map(addr, dev->broadcast, haddr);
  190. return 0;
  191. case ARPHRD_IPGRE:
  192. ip_ipgre_mc_map(addr, dev->broadcast, haddr);
  193. return 0;
  194. default:
  195. if (dir) {
  196. memcpy(haddr, dev->broadcast, dev->addr_len);
  197. return 0;
  198. }
  199. }
  200. return -EINVAL;
  201. }
  202. static u32 arp_hash(const void *pkey,
  203. const struct net_device *dev,
  204. __u32 *hash_rnd)
  205. {
  206. return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
  207. }
  208. static int arp_constructor(struct neighbour *neigh)
  209. {
  210. __be32 addr = *(__be32 *)neigh->primary_key;
  211. struct net_device *dev = neigh->dev;
  212. struct in_device *in_dev;
  213. struct neigh_parms *parms;
  214. rcu_read_lock();
  215. in_dev = __in_dev_get_rcu(dev);
  216. if (in_dev == NULL) {
  217. rcu_read_unlock();
  218. return -EINVAL;
  219. }
  220. neigh->type = inet_addr_type(dev_net(dev), addr);
  221. parms = in_dev->arp_parms;
  222. __neigh_parms_put(neigh->parms);
  223. neigh->parms = neigh_parms_clone(parms);
  224. rcu_read_unlock();
  225. if (!dev->header_ops) {
  226. neigh->nud_state = NUD_NOARP;
  227. neigh->ops = &arp_direct_ops;
  228. neigh->output = neigh_direct_output;
  229. } else {
  230. /* Good devices (checked by reading texts, but only Ethernet is
  231. tested)
  232. ARPHRD_ETHER: (ethernet, apfddi)
  233. ARPHRD_FDDI: (fddi)
  234. ARPHRD_IEEE802: (tr)
  235. ARPHRD_METRICOM: (strip)
  236. ARPHRD_ARCNET:
  237. etc. etc. etc.
  238. ARPHRD_IPDDP will also work, if author repairs it.
  239. I did not it, because this driver does not work even
  240. in old paradigm.
  241. */
  242. #if 1
  243. /* So... these "amateur" devices are hopeless.
  244. The only thing, that I can say now:
  245. It is very sad that we need to keep ugly obsolete
  246. code to make them happy.
  247. They should be moved to more reasonable state, now
  248. they use rebuild_header INSTEAD OF hard_start_xmit!!!
  249. Besides that, they are sort of out of date
  250. (a lot of redundant clones/copies, useless in 2.1),
  251. I wonder why people believe that they work.
  252. */
  253. switch (dev->type) {
  254. default:
  255. break;
  256. case ARPHRD_ROSE:
  257. #if IS_ENABLED(CONFIG_AX25)
  258. case ARPHRD_AX25:
  259. #if IS_ENABLED(CONFIG_NETROM)
  260. case ARPHRD_NETROM:
  261. #endif
  262. neigh->ops = &arp_broken_ops;
  263. neigh->output = neigh->ops->output;
  264. return 0;
  265. #else
  266. break;
  267. #endif
  268. }
  269. #endif
  270. if (neigh->type == RTN_MULTICAST) {
  271. neigh->nud_state = NUD_NOARP;
  272. arp_mc_map(addr, neigh->ha, dev, 1);
  273. } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
  274. neigh->nud_state = NUD_NOARP;
  275. memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
  276. } else if (neigh->type == RTN_BROADCAST ||
  277. (dev->flags & IFF_POINTOPOINT)) {
  278. neigh->nud_state = NUD_NOARP;
  279. memcpy(neigh->ha, dev->broadcast, dev->addr_len);
  280. }
  281. if (dev->header_ops->cache)
  282. neigh->ops = &arp_hh_ops;
  283. else
  284. neigh->ops = &arp_generic_ops;
  285. if (neigh->nud_state & NUD_VALID)
  286. neigh->output = neigh->ops->connected_output;
  287. else
  288. neigh->output = neigh->ops->output;
  289. }
  290. return 0;
  291. }
  292. static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
  293. {
  294. dst_link_failure(skb);
  295. kfree_skb(skb);
  296. }
  297. static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
  298. {
  299. __be32 saddr = 0;
  300. u8 *dst_ha = NULL;
  301. struct net_device *dev = neigh->dev;
  302. __be32 target = *(__be32 *)neigh->primary_key;
  303. int probes = atomic_read(&neigh->probes);
  304. struct in_device *in_dev;
  305. rcu_read_lock();
  306. in_dev = __in_dev_get_rcu(dev);
  307. if (!in_dev) {
  308. rcu_read_unlock();
  309. return;
  310. }
  311. switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
  312. default:
  313. case 0: /* By default announce any local IP */
  314. if (skb && inet_addr_type(dev_net(dev),
  315. ip_hdr(skb)->saddr) == RTN_LOCAL)
  316. saddr = ip_hdr(skb)->saddr;
  317. break;
  318. case 1: /* Restrict announcements of saddr in same subnet */
  319. if (!skb)
  320. break;
  321. saddr = ip_hdr(skb)->saddr;
  322. if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
  323. /* saddr should be known to target */
  324. if (inet_addr_onlink(in_dev, target, saddr))
  325. break;
  326. }
  327. saddr = 0;
  328. break;
  329. case 2: /* Avoid secondary IPs, get a primary/preferred one */
  330. break;
  331. }
  332. rcu_read_unlock();
  333. if (!saddr)
  334. saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
  335. probes -= neigh->parms->ucast_probes;
  336. if (probes < 0) {
  337. if (!(neigh->nud_state & NUD_VALID))
  338. printk(KERN_DEBUG
  339. "trying to ucast probe in NUD_INVALID\n");
  340. dst_ha = neigh->ha;
  341. read_lock_bh(&neigh->lock);
  342. } else {
  343. probes -= neigh->parms->app_probes;
  344. if (probes < 0) {
  345. #ifdef CONFIG_ARPD
  346. neigh_app_ns(neigh);
  347. #endif
  348. return;
  349. }
  350. }
  351. arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
  352. dst_ha, dev->dev_addr, NULL);
  353. if (dst_ha)
  354. read_unlock_bh(&neigh->lock);
  355. }
  356. static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
  357. {
  358. int scope;
  359. switch (IN_DEV_ARP_IGNORE(in_dev)) {
  360. case 0: /* Reply, the tip is already validated */
  361. return 0;
  362. case 1: /* Reply only if tip is configured on the incoming interface */
  363. sip = 0;
  364. scope = RT_SCOPE_HOST;
  365. break;
  366. case 2: /*
  367. * Reply only if tip is configured on the incoming interface
  368. * and is in same subnet as sip
  369. */
  370. scope = RT_SCOPE_HOST;
  371. break;
  372. case 3: /* Do not reply for scope host addresses */
  373. sip = 0;
  374. scope = RT_SCOPE_LINK;
  375. break;
  376. case 4: /* Reserved */
  377. case 5:
  378. case 6:
  379. case 7:
  380. return 0;
  381. case 8: /* Do not reply */
  382. return 1;
  383. default:
  384. return 0;
  385. }
  386. return !inet_confirm_addr(in_dev, sip, tip, scope);
  387. }
  388. static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
  389. {
  390. struct rtable *rt;
  391. int flag = 0;
  392. /*unsigned long now; */
  393. struct net *net = dev_net(dev);
  394. rt = ip_route_output(net, sip, tip, 0, 0);
  395. if (IS_ERR(rt))
  396. return 1;
  397. if (rt->dst.dev != dev) {
  398. NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
  399. flag = 1;
  400. }
  401. ip_rt_put(rt);
  402. return flag;
  403. }
  404. /* OBSOLETE FUNCTIONS */
  405. /*
  406. * Find an arp mapping in the cache. If not found, post a request.
  407. *
  408. * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
  409. * even if it exists. It is supposed that skb->dev was mangled
  410. * by a virtual device (eql, shaper). Nobody but broken devices
  411. * is allowed to use this function, it is scheduled to be removed. --ANK
  412. */
  413. static int arp_set_predefined(int addr_hint, unsigned char *haddr,
  414. __be32 paddr, struct net_device *dev)
  415. {
  416. switch (addr_hint) {
  417. case RTN_LOCAL:
  418. printk(KERN_DEBUG "ARP: arp called for own IP address\n");
  419. memcpy(haddr, dev->dev_addr, dev->addr_len);
  420. return 1;
  421. case RTN_MULTICAST:
  422. arp_mc_map(paddr, haddr, dev, 1);
  423. return 1;
  424. case RTN_BROADCAST:
  425. memcpy(haddr, dev->broadcast, dev->addr_len);
  426. return 1;
  427. }
  428. return 0;
  429. }
  430. int arp_find(unsigned char *haddr, struct sk_buff *skb)
  431. {
  432. struct net_device *dev = skb->dev;
  433. __be32 paddr;
  434. struct neighbour *n;
  435. if (!skb_dst(skb)) {
  436. printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
  437. kfree_skb(skb);
  438. return 1;
  439. }
  440. paddr = skb_rtable(skb)->rt_gateway;
  441. if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
  442. paddr, dev))
  443. return 0;
  444. n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
  445. if (n) {
  446. n->used = jiffies;
  447. if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
  448. neigh_ha_snapshot(haddr, n, dev);
  449. neigh_release(n);
  450. return 0;
  451. }
  452. neigh_release(n);
  453. } else
  454. kfree_skb(skb);
  455. return 1;
  456. }
  457. EXPORT_SYMBOL(arp_find);
  458. /* END OF OBSOLETE FUNCTIONS */
  459. /*
  460. * Check if we can use proxy ARP for this path
  461. */
  462. static inline int arp_fwd_proxy(struct in_device *in_dev,
  463. struct net_device *dev, struct rtable *rt)
  464. {
  465. struct in_device *out_dev;
  466. int imi, omi = -1;
  467. if (rt->dst.dev == dev)
  468. return 0;
  469. if (!IN_DEV_PROXY_ARP(in_dev))
  470. return 0;
  471. imi = IN_DEV_MEDIUM_ID(in_dev);
  472. if (imi == 0)
  473. return 1;
  474. if (imi == -1)
  475. return 0;
  476. /* place to check for proxy_arp for routes */
  477. out_dev = __in_dev_get_rcu(rt->dst.dev);
  478. if (out_dev)
  479. omi = IN_DEV_MEDIUM_ID(out_dev);
  480. return omi != imi && omi != -1;
  481. }
  482. /*
  483. * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
  484. *
  485. * RFC3069 supports proxy arp replies back to the same interface. This
  486. * is done to support (ethernet) switch features, like RFC 3069, where
  487. * the individual ports are not allowed to communicate with each
  488. * other, BUT they are allowed to talk to the upstream router. As
  489. * described in RFC 3069, it is possible to allow these hosts to
  490. * communicate through the upstream router, by proxy_arp'ing.
  491. *
  492. * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
  493. *
  494. * This technology is known by different names:
  495. * In RFC 3069 it is called VLAN Aggregation.
  496. * Cisco and Allied Telesyn call it Private VLAN.
  497. * Hewlett-Packard call it Source-Port filtering or port-isolation.
  498. * Ericsson call it MAC-Forced Forwarding (RFC Draft).
  499. *
  500. */
  501. static inline int arp_fwd_pvlan(struct in_device *in_dev,
  502. struct net_device *dev, struct rtable *rt,
  503. __be32 sip, __be32 tip)
  504. {
  505. /* Private VLAN is only concerned about the same ethernet segment */
  506. if (rt->dst.dev != dev)
  507. return 0;
  508. /* Don't reply on self probes (often done by windowz boxes)*/
  509. if (sip == tip)
  510. return 0;
  511. if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
  512. return 1;
  513. else
  514. return 0;
  515. }
  516. /*
  517. * Interface to link layer: send routine and receive handler.
  518. */
  519. /*
  520. * Create an arp packet. If (dest_hw == NULL), we create a broadcast
  521. * message.
  522. */
  523. struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
  524. struct net_device *dev, __be32 src_ip,
  525. const unsigned char *dest_hw,
  526. const unsigned char *src_hw,
  527. const unsigned char *target_hw)
  528. {
  529. struct sk_buff *skb;
  530. struct arphdr *arp;
  531. unsigned char *arp_ptr;
  532. int hlen = LL_RESERVED_SPACE(dev);
  533. int tlen = dev->needed_tailroom;
  534. /*
  535. * Allocate a buffer
  536. */
  537. skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
  538. if (skb == NULL)
  539. return NULL;
  540. skb_reserve(skb, hlen);
  541. skb_reset_network_header(skb);
  542. arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
  543. skb->dev = dev;
  544. skb->protocol = htons(ETH_P_ARP);
  545. if (src_hw == NULL)
  546. src_hw = dev->dev_addr;
  547. if (dest_hw == NULL)
  548. dest_hw = dev->broadcast;
  549. /*
  550. * Fill the device header for the ARP frame
  551. */
  552. if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
  553. goto out;
  554. /*
  555. * Fill out the arp protocol part.
  556. *
  557. * The arp hardware type should match the device type, except for FDDI,
  558. * which (according to RFC 1390) should always equal 1 (Ethernet).
  559. */
  560. /*
  561. * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
  562. * DIX code for the protocol. Make these device structure fields.
  563. */
  564. switch (dev->type) {
  565. default:
  566. arp->ar_hrd = htons(dev->type);
  567. arp->ar_pro = htons(ETH_P_IP);
  568. break;
  569. #if IS_ENABLED(CONFIG_AX25)
  570. case ARPHRD_AX25:
  571. arp->ar_hrd = htons(ARPHRD_AX25);
  572. arp->ar_pro = htons(AX25_P_IP);
  573. break;
  574. #if IS_ENABLED(CONFIG_NETROM)
  575. case ARPHRD_NETROM:
  576. arp->ar_hrd = htons(ARPHRD_NETROM);
  577. arp->ar_pro = htons(AX25_P_IP);
  578. break;
  579. #endif
  580. #endif
  581. #if IS_ENABLED(CONFIG_FDDI)
  582. case ARPHRD_FDDI:
  583. arp->ar_hrd = htons(ARPHRD_ETHER);
  584. arp->ar_pro = htons(ETH_P_IP);
  585. break;
  586. #endif
  587. #if IS_ENABLED(CONFIG_TR)
  588. case ARPHRD_IEEE802_TR:
  589. arp->ar_hrd = htons(ARPHRD_IEEE802);
  590. arp->ar_pro = htons(ETH_P_IP);
  591. break;
  592. #endif
  593. }
  594. arp->ar_hln = dev->addr_len;
  595. arp->ar_pln = 4;
  596. arp->ar_op = htons(type);
  597. arp_ptr = (unsigned char *)(arp + 1);
  598. memcpy(arp_ptr, src_hw, dev->addr_len);
  599. arp_ptr += dev->addr_len;
  600. memcpy(arp_ptr, &src_ip, 4);
  601. arp_ptr += 4;
  602. if (target_hw != NULL)
  603. memcpy(arp_ptr, target_hw, dev->addr_len);
  604. else
  605. memset(arp_ptr, 0, dev->addr_len);
  606. arp_ptr += dev->addr_len;
  607. memcpy(arp_ptr, &dest_ip, 4);
  608. return skb;
  609. out:
  610. kfree_skb(skb);
  611. return NULL;
  612. }
  613. EXPORT_SYMBOL(arp_create);
  614. /*
  615. * Send an arp packet.
  616. */
  617. void arp_xmit(struct sk_buff *skb)
  618. {
  619. /* Send it off, maybe filter it using firewalling first. */
  620. NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
  621. }
  622. EXPORT_SYMBOL(arp_xmit);
  623. /*
  624. * Create and send an arp packet.
  625. */
  626. void arp_send(int type, int ptype, __be32 dest_ip,
  627. struct net_device *dev, __be32 src_ip,
  628. const unsigned char *dest_hw, const unsigned char *src_hw,
  629. const unsigned char *target_hw)
  630. {
  631. struct sk_buff *skb;
  632. /*
  633. * No arp on this interface.
  634. */
  635. if (dev->flags&IFF_NOARP)
  636. return;
  637. skb = arp_create(type, ptype, dest_ip, dev, src_ip,
  638. dest_hw, src_hw, target_hw);
  639. if (skb == NULL)
  640. return;
  641. arp_xmit(skb);
  642. }
  643. EXPORT_SYMBOL(arp_send);
  644. /*
  645. * Process an arp request.
  646. */
  647. static int arp_process(struct sk_buff *skb)
  648. {
  649. struct net_device *dev = skb->dev;
  650. struct in_device *in_dev = __in_dev_get_rcu(dev);
  651. struct arphdr *arp;
  652. unsigned char *arp_ptr;
  653. struct rtable *rt;
  654. unsigned char *sha;
  655. __be32 sip, tip;
  656. u16 dev_type = dev->type;
  657. int addr_type;
  658. struct neighbour *n;
  659. struct net *net = dev_net(dev);
  660. /* arp_rcv below verifies the ARP header and verifies the device
  661. * is ARP'able.
  662. */
  663. if (in_dev == NULL)
  664. goto out;
  665. arp = arp_hdr(skb);
  666. switch (dev_type) {
  667. default:
  668. if (arp->ar_pro != htons(ETH_P_IP) ||
  669. htons(dev_type) != arp->ar_hrd)
  670. goto out;
  671. break;
  672. case ARPHRD_ETHER:
  673. case ARPHRD_IEEE802_TR:
  674. case ARPHRD_FDDI:
  675. case ARPHRD_IEEE802:
  676. /*
  677. * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
  678. * devices, according to RFC 2625) devices will accept ARP
  679. * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
  680. * This is the case also of FDDI, where the RFC 1390 says that
  681. * FDDI devices should accept ARP hardware of (1) Ethernet,
  682. * however, to be more robust, we'll accept both 1 (Ethernet)
  683. * or 6 (IEEE 802.2)
  684. */
  685. if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
  686. arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
  687. arp->ar_pro != htons(ETH_P_IP))
  688. goto out;
  689. break;
  690. case ARPHRD_AX25:
  691. if (arp->ar_pro != htons(AX25_P_IP) ||
  692. arp->ar_hrd != htons(ARPHRD_AX25))
  693. goto out;
  694. break;
  695. case ARPHRD_NETROM:
  696. if (arp->ar_pro != htons(AX25_P_IP) ||
  697. arp->ar_hrd != htons(ARPHRD_NETROM))
  698. goto out;
  699. break;
  700. }
  701. /* Understand only these message types */
  702. if (arp->ar_op != htons(ARPOP_REPLY) &&
  703. arp->ar_op != htons(ARPOP_REQUEST))
  704. goto out;
  705. /*
  706. * Extract fields
  707. */
  708. arp_ptr = (unsigned char *)(arp + 1);
  709. sha = arp_ptr;
  710. arp_ptr += dev->addr_len;
  711. memcpy(&sip, arp_ptr, 4);
  712. arp_ptr += 4;
  713. arp_ptr += dev->addr_len;
  714. memcpy(&tip, arp_ptr, 4);
  715. /*
  716. * Check for bad requests for 127.x.x.x and requests for multicast
  717. * addresses. If this is one such, delete it.
  718. */
  719. if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
  720. goto out;
  721. /*
  722. * Special case: We must set Frame Relay source Q.922 address
  723. */
  724. if (dev_type == ARPHRD_DLCI)
  725. sha = dev->broadcast;
  726. /*
  727. * Process entry. The idea here is we want to send a reply if it is a
  728. * request for us or if it is a request for someone else that we hold
  729. * a proxy for. We want to add an entry to our cache if it is a reply
  730. * to us or if it is a request for our address.
  731. * (The assumption for this last is that if someone is requesting our
  732. * address, they are probably intending to talk to us, so it saves time
  733. * if we cache their address. Their address is also probably not in
  734. * our cache, since ours is not in their cache.)
  735. *
  736. * Putting this another way, we only care about replies if they are to
  737. * us, in which case we add them to the cache. For requests, we care
  738. * about those for us and those for our proxies. We reply to both,
  739. * and in the case of requests for us we add the requester to the arp
  740. * cache.
  741. */
  742. /* Special case: IPv4 duplicate address detection packet (RFC2131) */
  743. if (sip == 0) {
  744. if (arp->ar_op == htons(ARPOP_REQUEST) &&
  745. inet_addr_type(net, tip) == RTN_LOCAL &&
  746. !arp_ignore(in_dev, sip, tip))
  747. arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
  748. dev->dev_addr, sha);
  749. goto out;
  750. }
  751. if (arp->ar_op == htons(ARPOP_REQUEST) &&
  752. ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
  753. rt = skb_rtable(skb);
  754. addr_type = rt->rt_type;
  755. if (addr_type == RTN_LOCAL) {
  756. int dont_send;
  757. dont_send = arp_ignore(in_dev, sip, tip);
  758. if (!dont_send && IN_DEV_ARPFILTER(in_dev))
  759. dont_send = arp_filter(sip, tip, dev);
  760. if (!dont_send) {
  761. n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
  762. if (n) {
  763. arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
  764. dev, tip, sha, dev->dev_addr,
  765. sha);
  766. neigh_release(n);
  767. }
  768. }
  769. goto out;
  770. } else if (IN_DEV_FORWARD(in_dev)) {
  771. if (addr_type == RTN_UNICAST &&
  772. (arp_fwd_proxy(in_dev, dev, rt) ||
  773. arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
  774. (rt->dst.dev != dev &&
  775. pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
  776. n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
  777. if (n)
  778. neigh_release(n);
  779. if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
  780. skb->pkt_type == PACKET_HOST ||
  781. in_dev->arp_parms->proxy_delay == 0) {
  782. arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
  783. dev, tip, sha, dev->dev_addr,
  784. sha);
  785. } else {
  786. pneigh_enqueue(&arp_tbl,
  787. in_dev->arp_parms, skb);
  788. return 0;
  789. }
  790. goto out;
  791. }
  792. }
  793. }
  794. /* Update our ARP tables */
  795. n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
  796. if (IN_DEV_ARP_ACCEPT(in_dev)) {
  797. /* Unsolicited ARP is not accepted by default.
  798. It is possible, that this option should be enabled for some
  799. devices (strip is candidate)
  800. */
  801. if (n == NULL &&
  802. (arp->ar_op == htons(ARPOP_REPLY) ||
  803. (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
  804. inet_addr_type(net, sip) == RTN_UNICAST)
  805. n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
  806. }
  807. if (n) {
  808. int state = NUD_REACHABLE;
  809. int override;
  810. /* If several different ARP replies follows back-to-back,
  811. use the FIRST one. It is possible, if several proxy
  812. agents are active. Taking the first reply prevents
  813. arp trashing and chooses the fastest router.
  814. */
  815. override = time_after(jiffies, n->updated + n->parms->locktime);
  816. /* Broadcast replies and request packets
  817. do not assert neighbour reachability.
  818. */
  819. if (arp->ar_op != htons(ARPOP_REPLY) ||
  820. skb->pkt_type != PACKET_HOST)
  821. state = NUD_STALE;
  822. neigh_update(n, sha, state,
  823. override ? NEIGH_UPDATE_F_OVERRIDE : 0);
  824. neigh_release(n);
  825. }
  826. out:
  827. consume_skb(skb);
  828. return 0;
  829. }
  830. static void parp_redo(struct sk_buff *skb)
  831. {
  832. arp_process(skb);
  833. }
  834. /*
  835. * Receive an arp request from the device layer.
  836. */
  837. static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
  838. struct packet_type *pt, struct net_device *orig_dev)
  839. {
  840. struct arphdr *arp;
  841. /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
  842. if (!pskb_may_pull(skb, arp_hdr_len(dev)))
  843. goto freeskb;
  844. arp = arp_hdr(skb);
  845. if (arp->ar_hln != dev->addr_len ||
  846. dev->flags & IFF_NOARP ||
  847. skb->pkt_type == PACKET_OTHERHOST ||
  848. skb->pkt_type == PACKET_LOOPBACK ||
  849. arp->ar_pln != 4)
  850. goto freeskb;
  851. skb = skb_share_check(skb, GFP_ATOMIC);
  852. if (skb == NULL)
  853. goto out_of_mem;
  854. memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
  855. return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
  856. freeskb:
  857. kfree_skb(skb);
  858. out_of_mem:
  859. return 0;
  860. }
  861. /*
  862. * User level interface (ioctl)
  863. */
  864. /*
  865. * Set (create) an ARP cache entry.
  866. */
  867. static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
  868. {
  869. if (dev == NULL) {
  870. IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
  871. return 0;
  872. }
  873. if (__in_dev_get_rtnl(dev)) {
  874. IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
  875. return 0;
  876. }
  877. return -ENXIO;
  878. }
  879. static int arp_req_set_public(struct net *net, struct arpreq *r,
  880. struct net_device *dev)
  881. {
  882. __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
  883. __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
  884. if (mask && mask != htonl(0xFFFFFFFF))
  885. return -EINVAL;
  886. if (!dev && (r->arp_flags & ATF_COM)) {
  887. dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
  888. r->arp_ha.sa_data);
  889. if (!dev)
  890. return -ENODEV;
  891. }
  892. if (mask) {
  893. if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
  894. return -ENOBUFS;
  895. return 0;
  896. }
  897. return arp_req_set_proxy(net, dev, 1);
  898. }
  899. static int arp_req_set(struct net *net, struct arpreq *r,
  900. struct net_device *dev)
  901. {
  902. __be32 ip;
  903. struct neighbour *neigh;
  904. int err;
  905. if (r->arp_flags & ATF_PUBL)
  906. return arp_req_set_public(net, r, dev);
  907. ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
  908. if (r->arp_flags & ATF_PERM)
  909. r->arp_flags |= ATF_COM;
  910. if (dev == NULL) {
  911. struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
  912. if (IS_ERR(rt))
  913. return PTR_ERR(rt);
  914. dev = rt->dst.dev;
  915. ip_rt_put(rt);
  916. if (!dev)
  917. return -EINVAL;
  918. }
  919. switch (dev->type) {
  920. #if IS_ENABLED(CONFIG_FDDI)
  921. case ARPHRD_FDDI:
  922. /*
  923. * According to RFC 1390, FDDI devices should accept ARP
  924. * hardware types of 1 (Ethernet). However, to be more
  925. * robust, we'll accept hardware types of either 1 (Ethernet)
  926. * or 6 (IEEE 802.2).
  927. */
  928. if (r->arp_ha.sa_family != ARPHRD_FDDI &&
  929. r->arp_ha.sa_family != ARPHRD_ETHER &&
  930. r->arp_ha.sa_family != ARPHRD_IEEE802)
  931. return -EINVAL;
  932. break;
  933. #endif
  934. default:
  935. if (r->arp_ha.sa_family != dev->type)
  936. return -EINVAL;
  937. break;
  938. }
  939. neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
  940. err = PTR_ERR(neigh);
  941. if (!IS_ERR(neigh)) {
  942. unsigned state = NUD_STALE;
  943. if (r->arp_flags & ATF_PERM)
  944. state = NUD_PERMANENT;
  945. err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
  946. r->arp_ha.sa_data : NULL, state,
  947. NEIGH_UPDATE_F_OVERRIDE |
  948. NEIGH_UPDATE_F_ADMIN);
  949. neigh_release(neigh);
  950. }
  951. return err;
  952. }
  953. static unsigned arp_state_to_flags(struct neighbour *neigh)
  954. {
  955. if (neigh->nud_state&NUD_PERMANENT)
  956. return ATF_PERM | ATF_COM;
  957. else if (neigh->nud_state&NUD_VALID)
  958. return ATF_COM;
  959. else
  960. return 0;
  961. }
  962. /*
  963. * Get an ARP cache entry.
  964. */
  965. static int arp_req_get(struct arpreq *r, struct net_device *dev)
  966. {
  967. __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
  968. struct neighbour *neigh;
  969. int err = -ENXIO;
  970. neigh = neigh_lookup(&arp_tbl, &ip, dev);
  971. if (neigh) {
  972. read_lock_bh(&neigh->lock);
  973. memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
  974. r->arp_flags = arp_state_to_flags(neigh);
  975. read_unlock_bh(&neigh->lock);
  976. r->arp_ha.sa_family = dev->type;
  977. strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
  978. neigh_release(neigh);
  979. err = 0;
  980. }
  981. return err;
  982. }
  983. int arp_invalidate(struct net_device *dev, __be32 ip)
  984. {
  985. struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
  986. int err = -ENXIO;
  987. if (neigh) {
  988. if (neigh->nud_state & ~NUD_NOARP)
  989. err = neigh_update(neigh, NULL, NUD_FAILED,
  990. NEIGH_UPDATE_F_OVERRIDE|
  991. NEIGH_UPDATE_F_ADMIN);
  992. neigh_release(neigh);
  993. }
  994. return err;
  995. }
  996. EXPORT_SYMBOL(arp_invalidate);
  997. static int arp_req_delete_public(struct net *net, struct arpreq *r,
  998. struct net_device *dev)
  999. {
  1000. __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
  1001. __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
  1002. if (mask == htonl(0xFFFFFFFF))
  1003. return pneigh_delete(&arp_tbl, net, &ip, dev);
  1004. if (mask)
  1005. return -EINVAL;
  1006. return arp_req_set_proxy(net, dev, 0);
  1007. }
  1008. static int arp_req_delete(struct net *net, struct arpreq *r,
  1009. struct net_device *dev)
  1010. {
  1011. __be32 ip;
  1012. if (r->arp_flags & ATF_PUBL)
  1013. return arp_req_delete_public(net, r, dev);
  1014. ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
  1015. if (dev == NULL) {
  1016. struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
  1017. if (IS_ERR(rt))
  1018. return PTR_ERR(rt);
  1019. dev = rt->dst.dev;
  1020. ip_rt_put(rt);
  1021. if (!dev)
  1022. return -EINVAL;
  1023. }
  1024. return arp_invalidate(dev, ip);
  1025. }
  1026. /*
  1027. * Handle an ARP layer I/O control request.
  1028. */
  1029. int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
  1030. {
  1031. int err;
  1032. struct arpreq r;
  1033. struct net_device *dev = NULL;
  1034. switch (cmd) {
  1035. case SIOCDARP:
  1036. case SIOCSARP:
  1037. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  1038. return -EPERM;
  1039. case SIOCGARP:
  1040. err = copy_from_user(&r, arg, sizeof(struct arpreq));
  1041. if (err)
  1042. return -EFAULT;
  1043. break;
  1044. default:
  1045. return -EINVAL;
  1046. }
  1047. if (r.arp_pa.sa_family != AF_INET)
  1048. return -EPFNOSUPPORT;
  1049. if (!(r.arp_flags & ATF_PUBL) &&
  1050. (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
  1051. return -EINVAL;
  1052. if (!(r.arp_flags & ATF_NETMASK))
  1053. ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
  1054. htonl(0xFFFFFFFFUL);
  1055. rtnl_lock();
  1056. if (r.arp_dev[0]) {
  1057. err = -ENODEV;
  1058. dev = __dev_get_by_name(net, r.arp_dev);
  1059. if (dev == NULL)
  1060. goto out;
  1061. /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
  1062. if (!r.arp_ha.sa_family)
  1063. r.arp_ha.sa_family = dev->type;
  1064. err = -EINVAL;
  1065. if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
  1066. goto out;
  1067. } else if (cmd == SIOCGARP) {
  1068. err = -ENODEV;
  1069. goto out;
  1070. }
  1071. switch (cmd) {
  1072. case SIOCDARP:
  1073. err = arp_req_delete(net, &r, dev);
  1074. break;
  1075. case SIOCSARP:
  1076. err = arp_req_set(net, &r, dev);
  1077. break;
  1078. case SIOCGARP:
  1079. err = arp_req_get(&r, dev);
  1080. break;
  1081. }
  1082. out:
  1083. rtnl_unlock();
  1084. if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
  1085. err = -EFAULT;
  1086. return err;
  1087. }
  1088. static int arp_netdev_event(struct notifier_block *this, unsigned long event,
  1089. void *ptr)
  1090. {
  1091. struct net_device *dev = ptr;
  1092. switch (event) {
  1093. case NETDEV_CHANGEADDR:
  1094. neigh_changeaddr(&arp_tbl, dev);
  1095. rt_cache_flush(dev_net(dev), 0);
  1096. break;
  1097. default:
  1098. break;
  1099. }
  1100. return NOTIFY_DONE;
  1101. }
  1102. static struct notifier_block arp_netdev_notifier = {
  1103. .notifier_call = arp_netdev_event,
  1104. };
  1105. /* Note, that it is not on notifier chain.
  1106. It is necessary, that this routine was called after route cache will be
  1107. flushed.
  1108. */
  1109. void arp_ifdown(struct net_device *dev)
  1110. {
  1111. neigh_ifdown(&arp_tbl, dev);
  1112. }
  1113. /*
  1114. * Called once on startup.
  1115. */
  1116. static struct packet_type arp_packet_type __read_mostly = {
  1117. .type = cpu_to_be16(ETH_P_ARP),
  1118. .func = arp_rcv,
  1119. };
  1120. static int arp_proc_init(void);
  1121. void __init arp_init(void)
  1122. {
  1123. neigh_table_init(&arp_tbl);
  1124. dev_add_pack(&arp_packet_type);
  1125. arp_proc_init();
  1126. #ifdef CONFIG_SYSCTL
  1127. neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
  1128. #endif
  1129. register_netdevice_notifier(&arp_netdev_notifier);
  1130. }
  1131. #ifdef CONFIG_PROC_FS
  1132. #if IS_ENABLED(CONFIG_AX25)
  1133. /* ------------------------------------------------------------------------ */
  1134. /*
  1135. * ax25 -> ASCII conversion
  1136. */
  1137. static char *ax2asc2(ax25_address *a, char *buf)
  1138. {
  1139. char c, *s;
  1140. int n;
  1141. for (n = 0, s = buf; n < 6; n++) {
  1142. c = (a->ax25_call[n] >> 1) & 0x7F;
  1143. if (c != ' ')
  1144. *s++ = c;
  1145. }
  1146. *s++ = '-';
  1147. n = (a->ax25_call[6] >> 1) & 0x0F;
  1148. if (n > 9) {
  1149. *s++ = '1';
  1150. n -= 10;
  1151. }
  1152. *s++ = n + '0';
  1153. *s++ = '\0';
  1154. if (*buf == '\0' || *buf == '-')
  1155. return "*";
  1156. return buf;
  1157. }
  1158. #endif /* CONFIG_AX25 */
  1159. #define HBUFFERLEN 30
  1160. static void arp_format_neigh_entry(struct seq_file *seq,
  1161. struct neighbour *n)
  1162. {
  1163. char hbuffer[HBUFFERLEN];
  1164. int k, j;
  1165. char tbuf[16];
  1166. struct net_device *dev = n->dev;
  1167. int hatype = dev->type;
  1168. read_lock(&n->lock);
  1169. /* Convert hardware address to XX:XX:XX:XX ... form. */
  1170. #if IS_ENABLED(CONFIG_AX25)
  1171. if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
  1172. ax2asc2((ax25_address *)n->ha, hbuffer);
  1173. else {
  1174. #endif
  1175. for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
  1176. hbuffer[k++] = hex_asc_hi(n->ha[j]);
  1177. hbuffer[k++] = hex_asc_lo(n->ha[j]);
  1178. hbuffer[k++] = ':';
  1179. }
  1180. if (k != 0)
  1181. --k;
  1182. hbuffer[k] = 0;
  1183. #if IS_ENABLED(CONFIG_AX25)
  1184. }
  1185. #endif
  1186. sprintf(tbuf, "%pI4", n->primary_key);
  1187. seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
  1188. tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
  1189. read_unlock(&n->lock);
  1190. }
  1191. static void arp_format_pneigh_entry(struct seq_file *seq,
  1192. struct pneigh_entry *n)
  1193. {
  1194. struct net_device *dev = n->dev;
  1195. int hatype = dev ? dev->type : 0;
  1196. char tbuf[16];
  1197. sprintf(tbuf, "%pI4", n->key);
  1198. seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
  1199. tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
  1200. dev ? dev->name : "*");
  1201. }
  1202. static int arp_seq_show(struct seq_file *seq, void *v)
  1203. {
  1204. if (v == SEQ_START_TOKEN) {
  1205. seq_puts(seq, "IP address HW type Flags "
  1206. "HW address Mask Device\n");
  1207. } else {
  1208. struct neigh_seq_state *state = seq->private;
  1209. if (state->flags & NEIGH_SEQ_IS_PNEIGH)
  1210. arp_format_pneigh_entry(seq, v);
  1211. else
  1212. arp_format_neigh_entry(seq, v);
  1213. }
  1214. return 0;
  1215. }
  1216. static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
  1217. {
  1218. /* Don't want to confuse "arp -a" w/ magic entries,
  1219. * so we tell the generic iterator to skip NUD_NOARP.
  1220. */
  1221. return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
  1222. }
  1223. /* ------------------------------------------------------------------------ */
  1224. static const struct seq_operations arp_seq_ops = {
  1225. .start = arp_seq_start,
  1226. .next = neigh_seq_next,
  1227. .stop = neigh_seq_stop,
  1228. .show = arp_seq_show,
  1229. };
  1230. static int arp_seq_open(struct inode *inode, struct file *file)
  1231. {
  1232. return seq_open_net(inode, file, &arp_seq_ops,
  1233. sizeof(struct neigh_seq_state));
  1234. }
  1235. static const struct file_operations arp_seq_fops = {
  1236. .owner = THIS_MODULE,
  1237. .open = arp_seq_open,
  1238. .read = seq_read,
  1239. .llseek = seq_lseek,
  1240. .release = seq_release_net,
  1241. };
  1242. static int __net_init arp_net_init(struct net *net)
  1243. {
  1244. if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
  1245. return -ENOMEM;
  1246. return 0;
  1247. }
  1248. static void __net_exit arp_net_exit(struct net *net)
  1249. {
  1250. proc_net_remove(net, "arp");
  1251. }
  1252. static struct pernet_operations arp_net_ops = {
  1253. .init = arp_net_init,
  1254. .exit = arp_net_exit,
  1255. };
  1256. static int __init arp_proc_init(void)
  1257. {
  1258. return register_pernet_subsys(&arp_net_ops);
  1259. }
  1260. #else /* CONFIG_PROC_FS */
  1261. static int __init arp_proc_init(void)
  1262. {
  1263. return 0;
  1264. }
  1265. #endif /* CONFIG_PROC_FS */