fork.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/seccomp.h>
  36. #include <linux/swap.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/futex.h>
  40. #include <linux/compat.h>
  41. #include <linux/kthread.h>
  42. #include <linux/task_io_accounting_ops.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/ptrace.h>
  45. #include <linux/mount.h>
  46. #include <linux/audit.h>
  47. #include <linux/memcontrol.h>
  48. #include <linux/ftrace.h>
  49. #include <linux/proc_fs.h>
  50. #include <linux/profile.h>
  51. #include <linux/rmap.h>
  52. #include <linux/ksm.h>
  53. #include <linux/acct.h>
  54. #include <linux/tsacct_kern.h>
  55. #include <linux/cn_proc.h>
  56. #include <linux/freezer.h>
  57. #include <linux/delayacct.h>
  58. #include <linux/taskstats_kern.h>
  59. #include <linux/random.h>
  60. #include <linux/tty.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/fs_struct.h>
  63. #include <linux/magic.h>
  64. #include <linux/perf_event.h>
  65. #include <linux/posix-timers.h>
  66. #include <linux/user-return-notifier.h>
  67. #include <linux/oom.h>
  68. #include <linux/khugepaged.h>
  69. #include <linux/signalfd.h>
  70. #include <asm/pgtable.h>
  71. #include <asm/pgalloc.h>
  72. #include <asm/uaccess.h>
  73. #include <asm/mmu_context.h>
  74. #include <asm/cacheflush.h>
  75. #include <asm/tlbflush.h>
  76. #include <trace/events/sched.h>
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/task.h>
  79. /*
  80. * Protected counters by write_lock_irq(&tasklist_lock)
  81. */
  82. unsigned long total_forks; /* Handle normal Linux uptimes. */
  83. int nr_threads; /* The idle threads do not count.. */
  84. int max_threads; /* tunable limit on nr_threads */
  85. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  86. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  87. #ifdef CONFIG_PROVE_RCU
  88. int lockdep_tasklist_lock_is_held(void)
  89. {
  90. return lockdep_is_held(&tasklist_lock);
  91. }
  92. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  93. #endif /* #ifdef CONFIG_PROVE_RCU */
  94. int nr_processes(void)
  95. {
  96. int cpu;
  97. int total = 0;
  98. for_each_possible_cpu(cpu)
  99. total += per_cpu(process_counts, cpu);
  100. return total;
  101. }
  102. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  103. # define alloc_task_struct_node(node) \
  104. kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
  105. # define free_task_struct(tsk) \
  106. kmem_cache_free(task_struct_cachep, (tsk))
  107. static struct kmem_cache *task_struct_cachep;
  108. #endif
  109. #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
  110. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  111. int node)
  112. {
  113. #ifdef CONFIG_DEBUG_STACK_USAGE
  114. gfp_t mask = GFP_KERNEL | __GFP_ZERO;
  115. #else
  116. gfp_t mask = GFP_KERNEL;
  117. #endif
  118. struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
  119. return page ? page_address(page) : NULL;
  120. }
  121. static inline void free_thread_info(struct thread_info *ti)
  122. {
  123. free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  124. }
  125. #endif
  126. /* SLAB cache for signal_struct structures (tsk->signal) */
  127. static struct kmem_cache *signal_cachep;
  128. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  129. struct kmem_cache *sighand_cachep;
  130. /* SLAB cache for files_struct structures (tsk->files) */
  131. struct kmem_cache *files_cachep;
  132. /* SLAB cache for fs_struct structures (tsk->fs) */
  133. struct kmem_cache *fs_cachep;
  134. /* SLAB cache for vm_area_struct structures */
  135. struct kmem_cache *vm_area_cachep;
  136. /* SLAB cache for mm_struct structures (tsk->mm) */
  137. static struct kmem_cache *mm_cachep;
  138. /* Notifier list called when a task struct is freed */
  139. static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
  140. static void account_kernel_stack(struct thread_info *ti, int account)
  141. {
  142. struct zone *zone = page_zone(virt_to_page(ti));
  143. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  144. }
  145. void free_task(struct task_struct *tsk)
  146. {
  147. account_kernel_stack(tsk->stack, -1);
  148. free_thread_info(tsk->stack);
  149. rt_mutex_debug_task_free(tsk);
  150. ftrace_graph_exit_task(tsk);
  151. put_seccomp_filter(tsk);
  152. free_task_struct(tsk);
  153. }
  154. EXPORT_SYMBOL(free_task);
  155. static inline void free_signal_struct(struct signal_struct *sig)
  156. {
  157. taskstats_tgid_free(sig);
  158. sched_autogroup_exit(sig);
  159. kmem_cache_free(signal_cachep, sig);
  160. }
  161. static inline void put_signal_struct(struct signal_struct *sig)
  162. {
  163. if (atomic_dec_and_test(&sig->sigcnt))
  164. free_signal_struct(sig);
  165. }
  166. int task_free_register(struct notifier_block *n)
  167. {
  168. return atomic_notifier_chain_register(&task_free_notifier, n);
  169. }
  170. EXPORT_SYMBOL(task_free_register);
  171. int task_free_unregister(struct notifier_block *n)
  172. {
  173. return atomic_notifier_chain_unregister(&task_free_notifier, n);
  174. }
  175. EXPORT_SYMBOL(task_free_unregister);
  176. void __put_task_struct(struct task_struct *tsk)
  177. {
  178. WARN_ON(!tsk->exit_state);
  179. WARN_ON(atomic_read(&tsk->usage));
  180. WARN_ON(tsk == current);
  181. security_task_free(tsk);
  182. exit_creds(tsk);
  183. delayacct_tsk_free(tsk);
  184. put_signal_struct(tsk->signal);
  185. atomic_notifier_call_chain(&task_free_notifier, 0, tsk);
  186. if (!profile_handoff_task(tsk))
  187. free_task(tsk);
  188. }
  189. EXPORT_SYMBOL_GPL(__put_task_struct);
  190. /*
  191. * macro override instead of weak attribute alias, to workaround
  192. * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
  193. */
  194. #ifndef arch_task_cache_init
  195. #define arch_task_cache_init()
  196. #endif
  197. void __init fork_init(unsigned long mempages)
  198. {
  199. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  200. #ifndef ARCH_MIN_TASKALIGN
  201. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  202. #endif
  203. /* create a slab on which task_structs can be allocated */
  204. task_struct_cachep =
  205. kmem_cache_create("task_struct", sizeof(struct task_struct),
  206. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  207. #endif
  208. /* do the arch specific task caches init */
  209. arch_task_cache_init();
  210. /*
  211. * The default maximum number of threads is set to a safe
  212. * value: the thread structures can take up at most half
  213. * of memory.
  214. */
  215. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  216. /*
  217. * we need to allow at least 20 threads to boot a system
  218. */
  219. if (max_threads < 20)
  220. max_threads = 20;
  221. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  222. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  223. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  224. init_task.signal->rlim[RLIMIT_NPROC];
  225. }
  226. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  227. struct task_struct *src)
  228. {
  229. *dst = *src;
  230. return 0;
  231. }
  232. static struct task_struct *dup_task_struct(struct task_struct *orig)
  233. {
  234. struct task_struct *tsk;
  235. struct thread_info *ti;
  236. unsigned long *stackend;
  237. int node = tsk_fork_get_node(orig);
  238. int err;
  239. prepare_to_copy(orig);
  240. tsk = alloc_task_struct_node(node);
  241. if (!tsk)
  242. return NULL;
  243. ti = alloc_thread_info_node(tsk, node);
  244. if (!ti) {
  245. free_task_struct(tsk);
  246. return NULL;
  247. }
  248. err = arch_dup_task_struct(tsk, orig);
  249. if (err)
  250. goto out;
  251. tsk->flags &= ~PF_SU;
  252. tsk->stack = ti;
  253. #ifdef CONFIG_SECCOMP
  254. /*
  255. * We must handle setting up seccomp filters once we're under
  256. * the sighand lock in case orig has changed between now and
  257. * then. Until then, filter must be NULL to avoid messing up
  258. * the usage counts on the error path calling free_task.
  259. */
  260. tsk->seccomp.filter = NULL;
  261. #endif
  262. setup_thread_stack(tsk, orig);
  263. clear_user_return_notifier(tsk);
  264. clear_tsk_need_resched(tsk);
  265. stackend = end_of_stack(tsk);
  266. *stackend = STACK_END_MAGIC; /* for overflow detection */
  267. #ifdef CONFIG_CC_STACKPROTECTOR
  268. tsk->stack_canary = get_random_int();
  269. #endif
  270. /*
  271. * One for us, one for whoever does the "release_task()" (usually
  272. * parent)
  273. */
  274. atomic_set(&tsk->usage, 2);
  275. #ifdef CONFIG_BLK_DEV_IO_TRACE
  276. tsk->btrace_seq = 0;
  277. #endif
  278. tsk->splice_pipe = NULL;
  279. account_kernel_stack(ti, 1);
  280. return tsk;
  281. out:
  282. free_thread_info(ti);
  283. free_task_struct(tsk);
  284. return NULL;
  285. }
  286. #ifdef CONFIG_MMU
  287. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  288. {
  289. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  290. struct rb_node **rb_link, *rb_parent;
  291. int retval;
  292. unsigned long charge;
  293. struct mempolicy *pol;
  294. down_write(&oldmm->mmap_sem);
  295. flush_cache_dup_mm(oldmm);
  296. /*
  297. * Not linked in yet - no deadlock potential:
  298. */
  299. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  300. mm->locked_vm = 0;
  301. mm->mmap = NULL;
  302. mm->mmap_cache = NULL;
  303. mm->free_area_cache = oldmm->mmap_base;
  304. mm->cached_hole_size = ~0UL;
  305. mm->map_count = 0;
  306. cpumask_clear(mm_cpumask(mm));
  307. mm->mm_rb = RB_ROOT;
  308. rb_link = &mm->mm_rb.rb_node;
  309. rb_parent = NULL;
  310. pprev = &mm->mmap;
  311. retval = ksm_fork(mm, oldmm);
  312. if (retval)
  313. goto out;
  314. retval = khugepaged_fork(mm, oldmm);
  315. if (retval)
  316. goto out;
  317. prev = NULL;
  318. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  319. struct file *file;
  320. if (mpnt->vm_flags & VM_DONTCOPY) {
  321. long pages = vma_pages(mpnt);
  322. mm->total_vm -= pages;
  323. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  324. -pages);
  325. continue;
  326. }
  327. charge = 0;
  328. if (mpnt->vm_flags & VM_ACCOUNT) {
  329. unsigned long len;
  330. len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  331. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  332. goto fail_nomem;
  333. charge = len;
  334. }
  335. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  336. if (!tmp)
  337. goto fail_nomem;
  338. *tmp = *mpnt;
  339. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  340. pol = mpol_dup(vma_policy(mpnt));
  341. retval = PTR_ERR(pol);
  342. if (IS_ERR(pol))
  343. goto fail_nomem_policy;
  344. vma_set_policy(tmp, pol);
  345. tmp->vm_mm = mm;
  346. if (anon_vma_fork(tmp, mpnt))
  347. goto fail_nomem_anon_vma_fork;
  348. tmp->vm_flags &= ~VM_LOCKED;
  349. tmp->vm_next = tmp->vm_prev = NULL;
  350. file = tmp->vm_file;
  351. if (file) {
  352. struct inode *inode = file->f_path.dentry->d_inode;
  353. struct address_space *mapping = file->f_mapping;
  354. get_file(file);
  355. if (tmp->vm_flags & VM_DENYWRITE)
  356. atomic_dec(&inode->i_writecount);
  357. mutex_lock(&mapping->i_mmap_mutex);
  358. if (tmp->vm_flags & VM_SHARED)
  359. mapping->i_mmap_writable++;
  360. flush_dcache_mmap_lock(mapping);
  361. /* insert tmp into the share list, just after mpnt */
  362. vma_prio_tree_add(tmp, mpnt);
  363. flush_dcache_mmap_unlock(mapping);
  364. mutex_unlock(&mapping->i_mmap_mutex);
  365. }
  366. /*
  367. * Clear hugetlb-related page reserves for children. This only
  368. * affects MAP_PRIVATE mappings. Faults generated by the child
  369. * are not guaranteed to succeed, even if read-only
  370. */
  371. if (is_vm_hugetlb_page(tmp))
  372. reset_vma_resv_huge_pages(tmp);
  373. /*
  374. * Link in the new vma and copy the page table entries.
  375. */
  376. *pprev = tmp;
  377. pprev = &tmp->vm_next;
  378. tmp->vm_prev = prev;
  379. prev = tmp;
  380. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  381. rb_link = &tmp->vm_rb.rb_right;
  382. rb_parent = &tmp->vm_rb;
  383. mm->map_count++;
  384. retval = copy_page_range(mm, oldmm, mpnt);
  385. if (tmp->vm_ops && tmp->vm_ops->open)
  386. tmp->vm_ops->open(tmp);
  387. if (retval)
  388. goto out;
  389. }
  390. /* a new mm has just been created */
  391. arch_dup_mmap(oldmm, mm);
  392. retval = 0;
  393. out:
  394. up_write(&mm->mmap_sem);
  395. flush_tlb_mm(oldmm);
  396. up_write(&oldmm->mmap_sem);
  397. return retval;
  398. fail_nomem_anon_vma_fork:
  399. mpol_put(pol);
  400. fail_nomem_policy:
  401. kmem_cache_free(vm_area_cachep, tmp);
  402. fail_nomem:
  403. retval = -ENOMEM;
  404. vm_unacct_memory(charge);
  405. goto out;
  406. }
  407. static inline int mm_alloc_pgd(struct mm_struct *mm)
  408. {
  409. mm->pgd = pgd_alloc(mm);
  410. if (unlikely(!mm->pgd))
  411. return -ENOMEM;
  412. return 0;
  413. }
  414. static inline void mm_free_pgd(struct mm_struct *mm)
  415. {
  416. pgd_free(mm, mm->pgd);
  417. }
  418. #else
  419. #define dup_mmap(mm, oldmm) (0)
  420. #define mm_alloc_pgd(mm) (0)
  421. #define mm_free_pgd(mm)
  422. #endif /* CONFIG_MMU */
  423. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  424. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  425. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  426. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  427. static int __init coredump_filter_setup(char *s)
  428. {
  429. default_dump_filter =
  430. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  431. MMF_DUMP_FILTER_MASK;
  432. return 1;
  433. }
  434. __setup("coredump_filter=", coredump_filter_setup);
  435. #include <linux/init_task.h>
  436. static void mm_init_aio(struct mm_struct *mm)
  437. {
  438. #ifdef CONFIG_AIO
  439. spin_lock_init(&mm->ioctx_lock);
  440. INIT_HLIST_HEAD(&mm->ioctx_list);
  441. #endif
  442. }
  443. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  444. {
  445. atomic_set(&mm->mm_users, 1);
  446. atomic_set(&mm->mm_count, 1);
  447. init_rwsem(&mm->mmap_sem);
  448. INIT_LIST_HEAD(&mm->mmlist);
  449. mm->flags = (current->mm) ?
  450. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  451. mm->core_state = NULL;
  452. mm->nr_ptes = 0;
  453. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  454. spin_lock_init(&mm->page_table_lock);
  455. mm->free_area_cache = TASK_UNMAPPED_BASE;
  456. mm->cached_hole_size = ~0UL;
  457. mm_init_aio(mm);
  458. mm_init_owner(mm, p);
  459. if (likely(!mm_alloc_pgd(mm))) {
  460. mm->def_flags = 0;
  461. mmu_notifier_mm_init(mm);
  462. return mm;
  463. }
  464. free_mm(mm);
  465. return NULL;
  466. }
  467. static void check_mm(struct mm_struct *mm)
  468. {
  469. int i;
  470. for (i = 0; i < NR_MM_COUNTERS; i++) {
  471. long x = atomic_long_read(&mm->rss_stat.count[i]);
  472. if (unlikely(x))
  473. printk(KERN_ALERT "BUG: Bad rss-counter state "
  474. "mm:%p idx:%d val:%ld\n", mm, i, x);
  475. }
  476. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  477. VM_BUG_ON(mm->pmd_huge_pte);
  478. #endif
  479. }
  480. /*
  481. * Allocate and initialize an mm_struct.
  482. */
  483. struct mm_struct *mm_alloc(void)
  484. {
  485. struct mm_struct *mm;
  486. mm = allocate_mm();
  487. if (!mm)
  488. return NULL;
  489. memset(mm, 0, sizeof(*mm));
  490. mm_init_cpumask(mm);
  491. return mm_init(mm, current);
  492. }
  493. /*
  494. * Called when the last reference to the mm
  495. * is dropped: either by a lazy thread or by
  496. * mmput. Free the page directory and the mm.
  497. */
  498. void __mmdrop(struct mm_struct *mm)
  499. {
  500. BUG_ON(mm == &init_mm);
  501. mm_free_pgd(mm);
  502. destroy_context(mm);
  503. mmu_notifier_mm_destroy(mm);
  504. check_mm(mm);
  505. free_mm(mm);
  506. }
  507. EXPORT_SYMBOL_GPL(__mmdrop);
  508. /*
  509. * Decrement the use count and release all resources for an mm.
  510. */
  511. int mmput(struct mm_struct *mm)
  512. {
  513. int mm_freed = 0;
  514. might_sleep();
  515. if (atomic_dec_and_test(&mm->mm_users)) {
  516. exit_aio(mm);
  517. ksm_exit(mm);
  518. khugepaged_exit(mm); /* must run before exit_mmap */
  519. exit_mmap(mm);
  520. set_mm_exe_file(mm, NULL);
  521. if (!list_empty(&mm->mmlist)) {
  522. spin_lock(&mmlist_lock);
  523. list_del(&mm->mmlist);
  524. spin_unlock(&mmlist_lock);
  525. }
  526. if (mm->binfmt)
  527. module_put(mm->binfmt->module);
  528. mmdrop(mm);
  529. mm_freed = 1;
  530. }
  531. return mm_freed;
  532. }
  533. EXPORT_SYMBOL_GPL(mmput);
  534. /*
  535. * We added or removed a vma mapping the executable. The vmas are only mapped
  536. * during exec and are not mapped with the mmap system call.
  537. * Callers must hold down_write() on the mm's mmap_sem for these
  538. */
  539. void added_exe_file_vma(struct mm_struct *mm)
  540. {
  541. mm->num_exe_file_vmas++;
  542. }
  543. void removed_exe_file_vma(struct mm_struct *mm)
  544. {
  545. mm->num_exe_file_vmas--;
  546. if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
  547. fput(mm->exe_file);
  548. mm->exe_file = NULL;
  549. }
  550. }
  551. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  552. {
  553. if (new_exe_file)
  554. get_file(new_exe_file);
  555. if (mm->exe_file)
  556. fput(mm->exe_file);
  557. mm->exe_file = new_exe_file;
  558. mm->num_exe_file_vmas = 0;
  559. }
  560. struct file *get_mm_exe_file(struct mm_struct *mm)
  561. {
  562. struct file *exe_file;
  563. /* We need mmap_sem to protect against races with removal of
  564. * VM_EXECUTABLE vmas */
  565. down_read(&mm->mmap_sem);
  566. exe_file = mm->exe_file;
  567. if (exe_file)
  568. get_file(exe_file);
  569. up_read(&mm->mmap_sem);
  570. return exe_file;
  571. }
  572. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  573. {
  574. /* It's safe to write the exe_file pointer without exe_file_lock because
  575. * this is called during fork when the task is not yet in /proc */
  576. newmm->exe_file = get_mm_exe_file(oldmm);
  577. }
  578. /**
  579. * get_task_mm - acquire a reference to the task's mm
  580. *
  581. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  582. * this kernel workthread has transiently adopted a user mm with use_mm,
  583. * to do its AIO) is not set and if so returns a reference to it, after
  584. * bumping up the use count. User must release the mm via mmput()
  585. * after use. Typically used by /proc and ptrace.
  586. */
  587. struct mm_struct *get_task_mm(struct task_struct *task)
  588. {
  589. struct mm_struct *mm;
  590. task_lock(task);
  591. mm = task->mm;
  592. if (mm) {
  593. if (task->flags & PF_KTHREAD)
  594. mm = NULL;
  595. else
  596. atomic_inc(&mm->mm_users);
  597. }
  598. task_unlock(task);
  599. return mm;
  600. }
  601. EXPORT_SYMBOL_GPL(get_task_mm);
  602. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  603. {
  604. struct mm_struct *mm;
  605. int err;
  606. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  607. if (err)
  608. return ERR_PTR(err);
  609. mm = get_task_mm(task);
  610. if (mm && mm != current->mm &&
  611. !ptrace_may_access(task, mode)) {
  612. mmput(mm);
  613. mm = ERR_PTR(-EACCES);
  614. }
  615. mutex_unlock(&task->signal->cred_guard_mutex);
  616. return mm;
  617. }
  618. static void complete_vfork_done(struct task_struct *tsk)
  619. {
  620. struct completion *vfork;
  621. task_lock(tsk);
  622. vfork = tsk->vfork_done;
  623. if (likely(vfork)) {
  624. tsk->vfork_done = NULL;
  625. complete(vfork);
  626. }
  627. task_unlock(tsk);
  628. }
  629. static int wait_for_vfork_done(struct task_struct *child,
  630. struct completion *vfork)
  631. {
  632. int killed;
  633. freezer_do_not_count();
  634. killed = wait_for_completion_killable(vfork);
  635. freezer_count();
  636. if (killed) {
  637. task_lock(child);
  638. child->vfork_done = NULL;
  639. task_unlock(child);
  640. }
  641. put_task_struct(child);
  642. return killed;
  643. }
  644. /* Please note the differences between mmput and mm_release.
  645. * mmput is called whenever we stop holding onto a mm_struct,
  646. * error success whatever.
  647. *
  648. * mm_release is called after a mm_struct has been removed
  649. * from the current process.
  650. *
  651. * This difference is important for error handling, when we
  652. * only half set up a mm_struct for a new process and need to restore
  653. * the old one. Because we mmput the new mm_struct before
  654. * restoring the old one. . .
  655. * Eric Biederman 10 January 1998
  656. */
  657. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  658. {
  659. /* Get rid of any futexes when releasing the mm */
  660. #ifdef CONFIG_FUTEX
  661. if (unlikely(tsk->robust_list)) {
  662. exit_robust_list(tsk);
  663. tsk->robust_list = NULL;
  664. }
  665. #ifdef CONFIG_COMPAT
  666. if (unlikely(tsk->compat_robust_list)) {
  667. compat_exit_robust_list(tsk);
  668. tsk->compat_robust_list = NULL;
  669. }
  670. #endif
  671. if (unlikely(!list_empty(&tsk->pi_state_list)))
  672. exit_pi_state_list(tsk);
  673. #endif
  674. /* Get rid of any cached register state */
  675. deactivate_mm(tsk, mm);
  676. if (tsk->vfork_done)
  677. complete_vfork_done(tsk);
  678. /*
  679. * If we're exiting normally, clear a user-space tid field if
  680. * requested. We leave this alone when dying by signal, to leave
  681. * the value intact in a core dump, and to save the unnecessary
  682. * trouble, say, a killed vfork parent shouldn't touch this mm.
  683. * Userland only wants this done for a sys_exit.
  684. */
  685. if (tsk->clear_child_tid) {
  686. if (!(tsk->flags & PF_SIGNALED) &&
  687. atomic_read(&mm->mm_users) > 1) {
  688. /*
  689. * We don't check the error code - if userspace has
  690. * not set up a proper pointer then tough luck.
  691. */
  692. put_user(0, tsk->clear_child_tid);
  693. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  694. 1, NULL, NULL, 0);
  695. }
  696. tsk->clear_child_tid = NULL;
  697. }
  698. }
  699. /*
  700. * Allocate a new mm structure and copy contents from the
  701. * mm structure of the passed in task structure.
  702. */
  703. struct mm_struct *dup_mm(struct task_struct *tsk)
  704. {
  705. struct mm_struct *mm, *oldmm = current->mm;
  706. int err;
  707. if (!oldmm)
  708. return NULL;
  709. mm = allocate_mm();
  710. if (!mm)
  711. goto fail_nomem;
  712. memcpy(mm, oldmm, sizeof(*mm));
  713. mm_init_cpumask(mm);
  714. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  715. mm->pmd_huge_pte = NULL;
  716. #endif
  717. if (!mm_init(mm, tsk))
  718. goto fail_nomem;
  719. if (init_new_context(tsk, mm))
  720. goto fail_nocontext;
  721. dup_mm_exe_file(oldmm, mm);
  722. err = dup_mmap(mm, oldmm);
  723. if (err)
  724. goto free_pt;
  725. mm->hiwater_rss = get_mm_rss(mm);
  726. mm->hiwater_vm = mm->total_vm;
  727. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  728. goto free_pt;
  729. return mm;
  730. free_pt:
  731. /* don't put binfmt in mmput, we haven't got module yet */
  732. mm->binfmt = NULL;
  733. mmput(mm);
  734. fail_nomem:
  735. return NULL;
  736. fail_nocontext:
  737. /*
  738. * If init_new_context() failed, we cannot use mmput() to free the mm
  739. * because it calls destroy_context()
  740. */
  741. mm_free_pgd(mm);
  742. free_mm(mm);
  743. return NULL;
  744. }
  745. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  746. {
  747. struct mm_struct *mm, *oldmm;
  748. int retval;
  749. tsk->min_flt = tsk->maj_flt = 0;
  750. tsk->nvcsw = tsk->nivcsw = 0;
  751. #ifdef CONFIG_DETECT_HUNG_TASK
  752. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  753. #endif
  754. tsk->mm = NULL;
  755. tsk->active_mm = NULL;
  756. /*
  757. * Are we cloning a kernel thread?
  758. *
  759. * We need to steal a active VM for that..
  760. */
  761. oldmm = current->mm;
  762. if (!oldmm)
  763. return 0;
  764. if (clone_flags & CLONE_VM) {
  765. atomic_inc(&oldmm->mm_users);
  766. mm = oldmm;
  767. goto good_mm;
  768. }
  769. retval = -ENOMEM;
  770. mm = dup_mm(tsk);
  771. if (!mm)
  772. goto fail_nomem;
  773. good_mm:
  774. tsk->mm = mm;
  775. tsk->active_mm = mm;
  776. return 0;
  777. fail_nomem:
  778. return retval;
  779. }
  780. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  781. {
  782. struct fs_struct *fs = current->fs;
  783. if (clone_flags & CLONE_FS) {
  784. /* tsk->fs is already what we want */
  785. spin_lock(&fs->lock);
  786. if (fs->in_exec) {
  787. spin_unlock(&fs->lock);
  788. return -EAGAIN;
  789. }
  790. fs->users++;
  791. spin_unlock(&fs->lock);
  792. return 0;
  793. }
  794. tsk->fs = copy_fs_struct(fs);
  795. if (!tsk->fs)
  796. return -ENOMEM;
  797. return 0;
  798. }
  799. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  800. {
  801. struct files_struct *oldf, *newf;
  802. int error = 0;
  803. /*
  804. * A background process may not have any files ...
  805. */
  806. oldf = current->files;
  807. if (!oldf)
  808. goto out;
  809. if (clone_flags & CLONE_FILES) {
  810. atomic_inc(&oldf->count);
  811. goto out;
  812. }
  813. newf = dup_fd(oldf, &error);
  814. if (!newf)
  815. goto out;
  816. tsk->files = newf;
  817. error = 0;
  818. out:
  819. return error;
  820. }
  821. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  822. {
  823. #ifdef CONFIG_BLOCK
  824. struct io_context *ioc = current->io_context;
  825. struct io_context *new_ioc;
  826. if (!ioc)
  827. return 0;
  828. /*
  829. * Share io context with parent, if CLONE_IO is set
  830. */
  831. if (clone_flags & CLONE_IO) {
  832. tsk->io_context = ioc_task_link(ioc);
  833. if (unlikely(!tsk->io_context))
  834. return -ENOMEM;
  835. } else if (ioprio_valid(ioc->ioprio)) {
  836. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  837. if (unlikely(!new_ioc))
  838. return -ENOMEM;
  839. new_ioc->ioprio = ioc->ioprio;
  840. put_io_context(new_ioc);
  841. }
  842. #endif
  843. return 0;
  844. }
  845. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  846. {
  847. struct sighand_struct *sig;
  848. if (clone_flags & CLONE_SIGHAND) {
  849. atomic_inc(&current->sighand->count);
  850. return 0;
  851. }
  852. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  853. rcu_assign_pointer(tsk->sighand, sig);
  854. if (!sig)
  855. return -ENOMEM;
  856. atomic_set(&sig->count, 1);
  857. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  858. return 0;
  859. }
  860. void __cleanup_sighand(struct sighand_struct *sighand)
  861. {
  862. if (atomic_dec_and_test(&sighand->count)) {
  863. signalfd_cleanup(sighand);
  864. kmem_cache_free(sighand_cachep, sighand);
  865. }
  866. }
  867. /*
  868. * Initialize POSIX timer handling for a thread group.
  869. */
  870. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  871. {
  872. unsigned long cpu_limit;
  873. /* Thread group counters. */
  874. thread_group_cputime_init(sig);
  875. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  876. if (cpu_limit != RLIM_INFINITY) {
  877. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  878. sig->cputimer.running = 1;
  879. }
  880. /* The timer lists. */
  881. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  882. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  883. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  884. }
  885. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  886. {
  887. struct signal_struct *sig;
  888. if (clone_flags & CLONE_THREAD)
  889. return 0;
  890. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  891. tsk->signal = sig;
  892. if (!sig)
  893. return -ENOMEM;
  894. sig->nr_threads = 1;
  895. atomic_set(&sig->live, 1);
  896. atomic_set(&sig->sigcnt, 1);
  897. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  898. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  899. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  900. init_waitqueue_head(&sig->wait_chldexit);
  901. if (clone_flags & CLONE_NEWPID)
  902. sig->flags |= SIGNAL_UNKILLABLE;
  903. sig->curr_target = tsk;
  904. init_sigpending(&sig->shared_pending);
  905. INIT_LIST_HEAD(&sig->posix_timers);
  906. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  907. sig->real_timer.function = it_real_fn;
  908. task_lock(current->group_leader);
  909. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  910. task_unlock(current->group_leader);
  911. posix_cpu_timers_init_group(sig);
  912. tty_audit_fork(sig);
  913. sched_autogroup_fork(sig);
  914. #ifdef CONFIG_CGROUPS
  915. init_rwsem(&sig->group_rwsem);
  916. #endif
  917. sig->oom_adj = current->signal->oom_adj;
  918. sig->oom_score_adj = current->signal->oom_score_adj;
  919. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  920. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  921. current->signal->is_child_subreaper;
  922. mutex_init(&sig->cred_guard_mutex);
  923. return 0;
  924. }
  925. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  926. {
  927. unsigned long new_flags = p->flags;
  928. new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  929. new_flags |= PF_FORKNOEXEC;
  930. p->flags = new_flags;
  931. }
  932. static void copy_seccomp(struct task_struct *p)
  933. {
  934. #ifdef CONFIG_SECCOMP
  935. /*
  936. * Must be called with sighand->lock held, which is common to
  937. * all threads in the group. Holding cred_guard_mutex is not
  938. * needed because this new task is not yet running and cannot
  939. * be racing exec.
  940. */
  941. assert_spin_locked(&current->sighand->siglock);
  942. /* Ref-count the new filter user, and assign it. */
  943. get_seccomp_filter(current);
  944. p->seccomp = current->seccomp;
  945. /*
  946. * Explicitly enable no_new_privs here in case it got set
  947. * between the task_struct being duplicated and holding the
  948. * sighand lock. The seccomp state and nnp must be in sync.
  949. */
  950. if (task_no_new_privs(current))
  951. task_set_no_new_privs(p);
  952. /*
  953. * If the parent gained a seccomp mode after copying thread
  954. * flags and between before we held the sighand lock, we have
  955. * to manually enable the seccomp thread flag here.
  956. */
  957. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  958. set_tsk_thread_flag(p, TIF_SECCOMP);
  959. #endif
  960. }
  961. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  962. {
  963. current->clear_child_tid = tidptr;
  964. return task_pid_vnr(current);
  965. }
  966. static void rt_mutex_init_task(struct task_struct *p)
  967. {
  968. raw_spin_lock_init(&p->pi_lock);
  969. #ifdef CONFIG_RT_MUTEXES
  970. plist_head_init(&p->pi_waiters);
  971. p->pi_blocked_on = NULL;
  972. #endif
  973. }
  974. #ifdef CONFIG_MM_OWNER
  975. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  976. {
  977. mm->owner = p;
  978. }
  979. #endif /* CONFIG_MM_OWNER */
  980. /*
  981. * Initialize POSIX timer handling for a single task.
  982. */
  983. static void posix_cpu_timers_init(struct task_struct *tsk)
  984. {
  985. tsk->cputime_expires.prof_exp = 0;
  986. tsk->cputime_expires.virt_exp = 0;
  987. tsk->cputime_expires.sched_exp = 0;
  988. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  989. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  990. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  991. }
  992. /*
  993. * This creates a new process as a copy of the old one,
  994. * but does not actually start it yet.
  995. *
  996. * It copies the registers, and all the appropriate
  997. * parts of the process environment (as per the clone
  998. * flags). The actual kick-off is left to the caller.
  999. */
  1000. static struct task_struct *copy_process(unsigned long clone_flags,
  1001. unsigned long stack_start,
  1002. struct pt_regs *regs,
  1003. unsigned long stack_size,
  1004. int __user *child_tidptr,
  1005. struct pid *pid,
  1006. int trace)
  1007. {
  1008. int retval;
  1009. struct task_struct *p;
  1010. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  1011. return ERR_PTR(-EINVAL);
  1012. /*
  1013. * Thread groups must share signals as well, and detached threads
  1014. * can only be started up within the thread group.
  1015. */
  1016. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  1017. return ERR_PTR(-EINVAL);
  1018. /*
  1019. * Shared signal handlers imply shared VM. By way of the above,
  1020. * thread groups also imply shared VM. Blocking this case allows
  1021. * for various simplifications in other code.
  1022. */
  1023. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  1024. return ERR_PTR(-EINVAL);
  1025. /*
  1026. * Siblings of global init remain as zombies on exit since they are
  1027. * not reaped by their parent (swapper). To solve this and to avoid
  1028. * multi-rooted process trees, prevent global and container-inits
  1029. * from creating siblings.
  1030. */
  1031. if ((clone_flags & CLONE_PARENT) &&
  1032. current->signal->flags & SIGNAL_UNKILLABLE)
  1033. return ERR_PTR(-EINVAL);
  1034. retval = security_task_create(clone_flags);
  1035. if (retval)
  1036. goto fork_out;
  1037. retval = -ENOMEM;
  1038. p = dup_task_struct(current);
  1039. if (!p)
  1040. goto fork_out;
  1041. ftrace_graph_init_task(p);
  1042. rt_mutex_init_task(p);
  1043. #ifdef CONFIG_PROVE_LOCKING
  1044. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1045. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1046. #endif
  1047. retval = -EAGAIN;
  1048. if (atomic_read(&p->real_cred->user->processes) >=
  1049. task_rlimit(p, RLIMIT_NPROC)) {
  1050. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  1051. p->real_cred->user != INIT_USER)
  1052. goto bad_fork_free;
  1053. }
  1054. current->flags &= ~PF_NPROC_EXCEEDED;
  1055. retval = copy_creds(p, clone_flags);
  1056. if (retval < 0)
  1057. goto bad_fork_free;
  1058. /*
  1059. * If multiple threads are within copy_process(), then this check
  1060. * triggers too late. This doesn't hurt, the check is only there
  1061. * to stop root fork bombs.
  1062. */
  1063. retval = -EAGAIN;
  1064. if (nr_threads >= max_threads)
  1065. goto bad_fork_cleanup_count;
  1066. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  1067. goto bad_fork_cleanup_count;
  1068. p->did_exec = 0;
  1069. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1070. copy_flags(clone_flags, p);
  1071. INIT_LIST_HEAD(&p->children);
  1072. INIT_LIST_HEAD(&p->sibling);
  1073. rcu_copy_process(p);
  1074. p->vfork_done = NULL;
  1075. spin_lock_init(&p->alloc_lock);
  1076. init_sigpending(&p->pending);
  1077. p->utime = p->stime = p->gtime = 0;
  1078. p->utimescaled = p->stimescaled = 0;
  1079. p->cpu_power = 0;
  1080. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  1081. p->prev_utime = p->prev_stime = 0;
  1082. #endif
  1083. #if defined(SPLIT_RSS_COUNTING)
  1084. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1085. #endif
  1086. p->default_timer_slack_ns = current->timer_slack_ns;
  1087. task_io_accounting_init(&p->ioac);
  1088. acct_clear_integrals(p);
  1089. posix_cpu_timers_init(p);
  1090. do_posix_clock_monotonic_gettime(&p->start_time);
  1091. p->real_start_time = p->start_time;
  1092. monotonic_to_bootbased(&p->real_start_time);
  1093. p->io_context = NULL;
  1094. p->audit_context = NULL;
  1095. if (clone_flags & CLONE_THREAD)
  1096. threadgroup_change_begin(current);
  1097. cgroup_fork(p);
  1098. #ifdef CONFIG_NUMA
  1099. p->mempolicy = mpol_dup(p->mempolicy);
  1100. if (IS_ERR(p->mempolicy)) {
  1101. retval = PTR_ERR(p->mempolicy);
  1102. p->mempolicy = NULL;
  1103. goto bad_fork_cleanup_cgroup;
  1104. }
  1105. mpol_fix_fork_child_flag(p);
  1106. #endif
  1107. #ifdef CONFIG_CPUSETS
  1108. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1109. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1110. seqcount_init(&p->mems_allowed_seq);
  1111. #endif
  1112. #ifdef CONFIG_TRACE_IRQFLAGS
  1113. p->irq_events = 0;
  1114. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1115. p->hardirqs_enabled = 1;
  1116. #else
  1117. p->hardirqs_enabled = 0;
  1118. #endif
  1119. p->hardirq_enable_ip = 0;
  1120. p->hardirq_enable_event = 0;
  1121. p->hardirq_disable_ip = _THIS_IP_;
  1122. p->hardirq_disable_event = 0;
  1123. p->softirqs_enabled = 1;
  1124. p->softirq_enable_ip = _THIS_IP_;
  1125. p->softirq_enable_event = 0;
  1126. p->softirq_disable_ip = 0;
  1127. p->softirq_disable_event = 0;
  1128. p->hardirq_context = 0;
  1129. p->softirq_context = 0;
  1130. #endif
  1131. #ifdef CONFIG_LOCKDEP
  1132. p->lockdep_depth = 0; /* no locks held yet */
  1133. p->curr_chain_key = 0;
  1134. p->lockdep_recursion = 0;
  1135. #endif
  1136. #ifdef CONFIG_DEBUG_MUTEXES
  1137. p->blocked_on = NULL; /* not blocked yet */
  1138. #endif
  1139. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  1140. p->memcg_batch.do_batch = 0;
  1141. p->memcg_batch.memcg = NULL;
  1142. #endif
  1143. /* Perform scheduler related setup. Assign this task to a CPU. */
  1144. sched_fork(p);
  1145. retval = perf_event_init_task(p);
  1146. if (retval)
  1147. goto bad_fork_cleanup_policy;
  1148. retval = audit_alloc(p);
  1149. if (retval)
  1150. goto bad_fork_cleanup_perf;
  1151. /* copy all the process information */
  1152. retval = copy_semundo(clone_flags, p);
  1153. if (retval)
  1154. goto bad_fork_cleanup_audit;
  1155. retval = copy_files(clone_flags, p);
  1156. if (retval)
  1157. goto bad_fork_cleanup_semundo;
  1158. retval = copy_fs(clone_flags, p);
  1159. if (retval)
  1160. goto bad_fork_cleanup_files;
  1161. retval = copy_sighand(clone_flags, p);
  1162. if (retval)
  1163. goto bad_fork_cleanup_fs;
  1164. retval = copy_signal(clone_flags, p);
  1165. if (retval)
  1166. goto bad_fork_cleanup_sighand;
  1167. retval = copy_mm(clone_flags, p);
  1168. if (retval)
  1169. goto bad_fork_cleanup_signal;
  1170. retval = copy_namespaces(clone_flags, p);
  1171. if (retval)
  1172. goto bad_fork_cleanup_mm;
  1173. retval = copy_io(clone_flags, p);
  1174. if (retval)
  1175. goto bad_fork_cleanup_namespaces;
  1176. retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
  1177. if (retval)
  1178. goto bad_fork_cleanup_io;
  1179. if (pid != &init_struct_pid) {
  1180. retval = -ENOMEM;
  1181. pid = alloc_pid(p->nsproxy->pid_ns);
  1182. if (!pid)
  1183. goto bad_fork_cleanup_io;
  1184. }
  1185. p->pid = pid_nr(pid);
  1186. p->tgid = p->pid;
  1187. if (clone_flags & CLONE_THREAD)
  1188. p->tgid = current->tgid;
  1189. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1190. /*
  1191. * Clear TID on mm_release()?
  1192. */
  1193. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1194. #ifdef CONFIG_BLOCK
  1195. p->plug = NULL;
  1196. #endif
  1197. #ifdef CONFIG_FUTEX
  1198. p->robust_list = NULL;
  1199. #ifdef CONFIG_COMPAT
  1200. p->compat_robust_list = NULL;
  1201. #endif
  1202. INIT_LIST_HEAD(&p->pi_state_list);
  1203. p->pi_state_cache = NULL;
  1204. #endif
  1205. /*
  1206. * sigaltstack should be cleared when sharing the same VM
  1207. */
  1208. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1209. p->sas_ss_sp = p->sas_ss_size = 0;
  1210. /*
  1211. * Syscall tracing and stepping should be turned off in the
  1212. * child regardless of CLONE_PTRACE.
  1213. */
  1214. user_disable_single_step(p);
  1215. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1216. #ifdef TIF_SYSCALL_EMU
  1217. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1218. #endif
  1219. clear_all_latency_tracing(p);
  1220. /* ok, now we should be set up.. */
  1221. if (clone_flags & CLONE_THREAD)
  1222. p->exit_signal = -1;
  1223. else if (clone_flags & CLONE_PARENT)
  1224. p->exit_signal = current->group_leader->exit_signal;
  1225. else
  1226. p->exit_signal = (clone_flags & CSIGNAL);
  1227. p->pdeath_signal = 0;
  1228. p->exit_state = 0;
  1229. p->nr_dirtied = 0;
  1230. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1231. p->dirty_paused_when = 0;
  1232. /*
  1233. * Ok, make it visible to the rest of the system.
  1234. * We dont wake it up yet.
  1235. */
  1236. p->group_leader = p;
  1237. INIT_LIST_HEAD(&p->thread_group);
  1238. /* Need tasklist lock for parent etc handling! */
  1239. write_lock_irq(&tasklist_lock);
  1240. /* CLONE_PARENT re-uses the old parent */
  1241. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1242. p->real_parent = current->real_parent;
  1243. p->parent_exec_id = current->parent_exec_id;
  1244. } else {
  1245. p->real_parent = current;
  1246. p->parent_exec_id = current->self_exec_id;
  1247. }
  1248. spin_lock(&current->sighand->siglock);
  1249. /*
  1250. * Copy seccomp details explicitly here, in case they were changed
  1251. * before holding sighand lock.
  1252. */
  1253. copy_seccomp(p);
  1254. /*
  1255. * Process group and session signals need to be delivered to just the
  1256. * parent before the fork or both the parent and the child after the
  1257. * fork. Restart if a signal comes in before we add the new process to
  1258. * it's process group.
  1259. * A fatal signal pending means that current will exit, so the new
  1260. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1261. */
  1262. recalc_sigpending();
  1263. if (signal_pending(current)) {
  1264. spin_unlock(&current->sighand->siglock);
  1265. write_unlock_irq(&tasklist_lock);
  1266. retval = -ERESTARTNOINTR;
  1267. goto bad_fork_free_pid;
  1268. }
  1269. if (likely(p->pid)) {
  1270. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1271. if (thread_group_leader(p)) {
  1272. if (is_child_reaper(pid))
  1273. p->nsproxy->pid_ns->child_reaper = p;
  1274. p->signal->leader_pid = pid;
  1275. p->signal->tty = tty_kref_get(current->signal->tty);
  1276. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1277. attach_pid(p, PIDTYPE_SID, task_session(current));
  1278. list_add_tail(&p->sibling, &p->real_parent->children);
  1279. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1280. __this_cpu_inc(process_counts);
  1281. } else {
  1282. current->signal->nr_threads++;
  1283. atomic_inc(&current->signal->live);
  1284. atomic_inc(&current->signal->sigcnt);
  1285. p->group_leader = current->group_leader;
  1286. list_add_tail_rcu(&p->thread_group,
  1287. &p->group_leader->thread_group);
  1288. list_add_tail_rcu(&p->thread_node,
  1289. &p->signal->thread_head);
  1290. }
  1291. attach_pid(p, PIDTYPE_PID, pid);
  1292. nr_threads++;
  1293. }
  1294. total_forks++;
  1295. spin_unlock(&current->sighand->siglock);
  1296. syscall_tracepoint_update(p);
  1297. write_unlock_irq(&tasklist_lock);
  1298. proc_fork_connector(p);
  1299. cgroup_post_fork(p);
  1300. if (clone_flags & CLONE_THREAD)
  1301. threadgroup_change_end(current);
  1302. perf_event_fork(p);
  1303. trace_task_newtask(p, clone_flags);
  1304. return p;
  1305. bad_fork_free_pid:
  1306. if (pid != &init_struct_pid)
  1307. free_pid(pid);
  1308. bad_fork_cleanup_io:
  1309. if (p->io_context)
  1310. exit_io_context(p);
  1311. bad_fork_cleanup_namespaces:
  1312. if (unlikely(clone_flags & CLONE_NEWPID))
  1313. pid_ns_release_proc(p->nsproxy->pid_ns);
  1314. exit_task_namespaces(p);
  1315. bad_fork_cleanup_mm:
  1316. if (p->mm)
  1317. mmput(p->mm);
  1318. bad_fork_cleanup_signal:
  1319. if (!(clone_flags & CLONE_THREAD))
  1320. free_signal_struct(p->signal);
  1321. bad_fork_cleanup_sighand:
  1322. __cleanup_sighand(p->sighand);
  1323. bad_fork_cleanup_fs:
  1324. exit_fs(p); /* blocking */
  1325. bad_fork_cleanup_files:
  1326. exit_files(p); /* blocking */
  1327. bad_fork_cleanup_semundo:
  1328. exit_sem(p);
  1329. bad_fork_cleanup_audit:
  1330. audit_free(p);
  1331. bad_fork_cleanup_perf:
  1332. perf_event_free_task(p);
  1333. bad_fork_cleanup_policy:
  1334. #ifdef CONFIG_NUMA
  1335. mpol_put(p->mempolicy);
  1336. bad_fork_cleanup_cgroup:
  1337. #endif
  1338. if (clone_flags & CLONE_THREAD)
  1339. threadgroup_change_end(current);
  1340. cgroup_exit(p, 0);
  1341. delayacct_tsk_free(p);
  1342. module_put(task_thread_info(p)->exec_domain->module);
  1343. bad_fork_cleanup_count:
  1344. atomic_dec(&p->cred->user->processes);
  1345. exit_creds(p);
  1346. bad_fork_free:
  1347. free_task(p);
  1348. fork_out:
  1349. return ERR_PTR(retval);
  1350. }
  1351. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1352. {
  1353. memset(regs, 0, sizeof(struct pt_regs));
  1354. return regs;
  1355. }
  1356. static inline void init_idle_pids(struct pid_link *links)
  1357. {
  1358. enum pid_type type;
  1359. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1360. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1361. links[type].pid = &init_struct_pid;
  1362. }
  1363. }
  1364. struct task_struct * __cpuinit fork_idle(int cpu)
  1365. {
  1366. struct task_struct *task;
  1367. struct pt_regs regs;
  1368. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1369. &init_struct_pid, 0);
  1370. if (!IS_ERR(task)) {
  1371. init_idle_pids(task->pids);
  1372. init_idle(task, cpu);
  1373. }
  1374. return task;
  1375. }
  1376. /*
  1377. * Ok, this is the main fork-routine.
  1378. *
  1379. * It copies the process, and if successful kick-starts
  1380. * it and waits for it to finish using the VM if required.
  1381. */
  1382. long do_fork(unsigned long clone_flags,
  1383. unsigned long stack_start,
  1384. struct pt_regs *regs,
  1385. unsigned long stack_size,
  1386. int __user *parent_tidptr,
  1387. int __user *child_tidptr)
  1388. {
  1389. struct task_struct *p;
  1390. int trace = 0;
  1391. long nr;
  1392. /*
  1393. * Do some preliminary argument and permissions checking before we
  1394. * actually start allocating stuff
  1395. */
  1396. if (clone_flags & CLONE_NEWUSER) {
  1397. if (clone_flags & CLONE_THREAD)
  1398. return -EINVAL;
  1399. /* hopefully this check will go away when userns support is
  1400. * complete
  1401. */
  1402. if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
  1403. !capable(CAP_SETGID))
  1404. return -EPERM;
  1405. }
  1406. /*
  1407. * Determine whether and which event to report to ptracer. When
  1408. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1409. * requested, no event is reported; otherwise, report if the event
  1410. * for the type of forking is enabled.
  1411. */
  1412. if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
  1413. if (clone_flags & CLONE_VFORK)
  1414. trace = PTRACE_EVENT_VFORK;
  1415. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1416. trace = PTRACE_EVENT_CLONE;
  1417. else
  1418. trace = PTRACE_EVENT_FORK;
  1419. if (likely(!ptrace_event_enabled(current, trace)))
  1420. trace = 0;
  1421. }
  1422. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1423. child_tidptr, NULL, trace);
  1424. /*
  1425. * Do this prior waking up the new thread - the thread pointer
  1426. * might get invalid after that point, if the thread exits quickly.
  1427. */
  1428. if (!IS_ERR(p)) {
  1429. struct completion vfork;
  1430. trace_sched_process_fork(current, p);
  1431. nr = task_pid_vnr(p);
  1432. if (clone_flags & CLONE_PARENT_SETTID)
  1433. put_user(nr, parent_tidptr);
  1434. if (clone_flags & CLONE_VFORK) {
  1435. p->vfork_done = &vfork;
  1436. init_completion(&vfork);
  1437. get_task_struct(p);
  1438. }
  1439. wake_up_new_task(p);
  1440. /* forking complete and child started to run, tell ptracer */
  1441. if (unlikely(trace))
  1442. ptrace_event(trace, nr);
  1443. if (clone_flags & CLONE_VFORK) {
  1444. if (!wait_for_vfork_done(p, &vfork))
  1445. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1446. }
  1447. } else {
  1448. nr = PTR_ERR(p);
  1449. }
  1450. return nr;
  1451. }
  1452. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1453. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1454. #endif
  1455. static void sighand_ctor(void *data)
  1456. {
  1457. struct sighand_struct *sighand = data;
  1458. spin_lock_init(&sighand->siglock);
  1459. init_waitqueue_head(&sighand->signalfd_wqh);
  1460. }
  1461. void __init proc_caches_init(void)
  1462. {
  1463. sighand_cachep = kmem_cache_create("sighand_cache",
  1464. sizeof(struct sighand_struct), 0,
  1465. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1466. SLAB_NOTRACK, sighand_ctor);
  1467. signal_cachep = kmem_cache_create("signal_cache",
  1468. sizeof(struct signal_struct), 0,
  1469. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1470. files_cachep = kmem_cache_create("files_cache",
  1471. sizeof(struct files_struct), 0,
  1472. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1473. fs_cachep = kmem_cache_create("fs_cache",
  1474. sizeof(struct fs_struct), 0,
  1475. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1476. /*
  1477. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1478. * whole struct cpumask for the OFFSTACK case. We could change
  1479. * this to *only* allocate as much of it as required by the
  1480. * maximum number of CPU's we can ever have. The cpumask_allocation
  1481. * is at the end of the structure, exactly for that reason.
  1482. */
  1483. mm_cachep = kmem_cache_create("mm_struct",
  1484. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1485. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1486. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1487. mmap_init();
  1488. nsproxy_cache_init();
  1489. }
  1490. /*
  1491. * Check constraints on flags passed to the unshare system call.
  1492. */
  1493. static int check_unshare_flags(unsigned long unshare_flags)
  1494. {
  1495. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1496. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1497. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
  1498. return -EINVAL;
  1499. /*
  1500. * Not implemented, but pretend it works if there is nothing to
  1501. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1502. * needs to unshare vm.
  1503. */
  1504. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1505. /* FIXME: get_task_mm() increments ->mm_users */
  1506. if (atomic_read(&current->mm->mm_users) > 1)
  1507. return -EINVAL;
  1508. }
  1509. return 0;
  1510. }
  1511. /*
  1512. * Unshare the filesystem structure if it is being shared
  1513. */
  1514. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1515. {
  1516. struct fs_struct *fs = current->fs;
  1517. if (!(unshare_flags & CLONE_FS) || !fs)
  1518. return 0;
  1519. /* don't need lock here; in the worst case we'll do useless copy */
  1520. if (fs->users == 1)
  1521. return 0;
  1522. *new_fsp = copy_fs_struct(fs);
  1523. if (!*new_fsp)
  1524. return -ENOMEM;
  1525. return 0;
  1526. }
  1527. /*
  1528. * Unshare file descriptor table if it is being shared
  1529. */
  1530. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1531. {
  1532. struct files_struct *fd = current->files;
  1533. int error = 0;
  1534. if ((unshare_flags & CLONE_FILES) &&
  1535. (fd && atomic_read(&fd->count) > 1)) {
  1536. *new_fdp = dup_fd(fd, &error);
  1537. if (!*new_fdp)
  1538. return error;
  1539. }
  1540. return 0;
  1541. }
  1542. /*
  1543. * unshare allows a process to 'unshare' part of the process
  1544. * context which was originally shared using clone. copy_*
  1545. * functions used by do_fork() cannot be used here directly
  1546. * because they modify an inactive task_struct that is being
  1547. * constructed. Here we are modifying the current, active,
  1548. * task_struct.
  1549. */
  1550. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1551. {
  1552. struct fs_struct *fs, *new_fs = NULL;
  1553. struct files_struct *fd, *new_fd = NULL;
  1554. struct nsproxy *new_nsproxy = NULL;
  1555. int do_sysvsem = 0;
  1556. int err;
  1557. err = check_unshare_flags(unshare_flags);
  1558. if (err)
  1559. goto bad_unshare_out;
  1560. /*
  1561. * If unsharing namespace, must also unshare filesystem information.
  1562. */
  1563. if (unshare_flags & CLONE_NEWNS)
  1564. unshare_flags |= CLONE_FS;
  1565. /*
  1566. * CLONE_NEWIPC must also detach from the undolist: after switching
  1567. * to a new ipc namespace, the semaphore arrays from the old
  1568. * namespace are unreachable.
  1569. */
  1570. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1571. do_sysvsem = 1;
  1572. err = unshare_fs(unshare_flags, &new_fs);
  1573. if (err)
  1574. goto bad_unshare_out;
  1575. err = unshare_fd(unshare_flags, &new_fd);
  1576. if (err)
  1577. goto bad_unshare_cleanup_fs;
  1578. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
  1579. if (err)
  1580. goto bad_unshare_cleanup_fd;
  1581. if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
  1582. if (do_sysvsem) {
  1583. /*
  1584. * CLONE_SYSVSEM is equivalent to sys_exit().
  1585. */
  1586. exit_sem(current);
  1587. }
  1588. if (new_nsproxy) {
  1589. switch_task_namespaces(current, new_nsproxy);
  1590. new_nsproxy = NULL;
  1591. }
  1592. task_lock(current);
  1593. if (new_fs) {
  1594. fs = current->fs;
  1595. spin_lock(&fs->lock);
  1596. current->fs = new_fs;
  1597. if (--fs->users)
  1598. new_fs = NULL;
  1599. else
  1600. new_fs = fs;
  1601. spin_unlock(&fs->lock);
  1602. }
  1603. if (new_fd) {
  1604. fd = current->files;
  1605. current->files = new_fd;
  1606. new_fd = fd;
  1607. }
  1608. task_unlock(current);
  1609. }
  1610. if (new_nsproxy)
  1611. put_nsproxy(new_nsproxy);
  1612. bad_unshare_cleanup_fd:
  1613. if (new_fd)
  1614. put_files_struct(new_fd);
  1615. bad_unshare_cleanup_fs:
  1616. if (new_fs)
  1617. free_fs_struct(new_fs);
  1618. bad_unshare_out:
  1619. return err;
  1620. }
  1621. /*
  1622. * Helper to unshare the files of the current task.
  1623. * We don't want to expose copy_files internals to
  1624. * the exec layer of the kernel.
  1625. */
  1626. int unshare_files(struct files_struct **displaced)
  1627. {
  1628. struct task_struct *task = current;
  1629. struct files_struct *copy = NULL;
  1630. int error;
  1631. error = unshare_fd(CLONE_FILES, &copy);
  1632. if (error || !copy) {
  1633. *displaced = NULL;
  1634. return error;
  1635. }
  1636. *displaced = task->files;
  1637. task_lock(task);
  1638. task->files = copy;
  1639. task_unlock(task);
  1640. return 0;
  1641. }