namespace.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/acct.h> /* acct_auto_close_mnt */
  19. #include <linux/ramfs.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_fs.h>
  24. #include "pnode.h"
  25. #include "internal.h"
  26. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  27. #define HASH_SIZE (1UL << HASH_SHIFT)
  28. static int event;
  29. static DEFINE_IDA(mnt_id_ida);
  30. static DEFINE_IDA(mnt_group_ida);
  31. static DEFINE_SPINLOCK(mnt_id_lock);
  32. static int mnt_id_start = 0;
  33. static int mnt_group_start = 1;
  34. static struct list_head *mount_hashtable __read_mostly;
  35. static struct kmem_cache *mnt_cache __read_mostly;
  36. static struct rw_semaphore namespace_sem;
  37. /* /sys/fs */
  38. struct kobject *fs_kobj;
  39. EXPORT_SYMBOL_GPL(fs_kobj);
  40. /*
  41. * vfsmount lock may be taken for read to prevent changes to the
  42. * vfsmount hash, ie. during mountpoint lookups or walking back
  43. * up the tree.
  44. *
  45. * It should be taken for write in all cases where the vfsmount
  46. * tree or hash is modified or when a vfsmount structure is modified.
  47. */
  48. DEFINE_BRLOCK(vfsmount_lock);
  49. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  50. {
  51. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  52. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  53. tmp = tmp + (tmp >> HASH_SHIFT);
  54. return tmp & (HASH_SIZE - 1);
  55. }
  56. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  57. /*
  58. * allocation is serialized by namespace_sem, but we need the spinlock to
  59. * serialize with freeing.
  60. */
  61. static int mnt_alloc_id(struct mount *mnt)
  62. {
  63. int res;
  64. retry:
  65. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  66. spin_lock(&mnt_id_lock);
  67. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  68. if (!res)
  69. mnt_id_start = mnt->mnt_id + 1;
  70. spin_unlock(&mnt_id_lock);
  71. if (res == -EAGAIN)
  72. goto retry;
  73. return res;
  74. }
  75. static void mnt_free_id(struct mount *mnt)
  76. {
  77. int id = mnt->mnt_id;
  78. spin_lock(&mnt_id_lock);
  79. ida_remove(&mnt_id_ida, id);
  80. if (mnt_id_start > id)
  81. mnt_id_start = id;
  82. spin_unlock(&mnt_id_lock);
  83. }
  84. /*
  85. * Allocate a new peer group ID
  86. *
  87. * mnt_group_ida is protected by namespace_sem
  88. */
  89. static int mnt_alloc_group_id(struct mount *mnt)
  90. {
  91. int res;
  92. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  93. return -ENOMEM;
  94. res = ida_get_new_above(&mnt_group_ida,
  95. mnt_group_start,
  96. &mnt->mnt_group_id);
  97. if (!res)
  98. mnt_group_start = mnt->mnt_group_id + 1;
  99. return res;
  100. }
  101. /*
  102. * Release a peer group ID
  103. */
  104. void mnt_release_group_id(struct mount *mnt)
  105. {
  106. int id = mnt->mnt_group_id;
  107. ida_remove(&mnt_group_ida, id);
  108. if (mnt_group_start > id)
  109. mnt_group_start = id;
  110. mnt->mnt_group_id = 0;
  111. }
  112. /*
  113. * vfsmount lock must be held for read
  114. */
  115. static inline void mnt_add_count(struct mount *mnt, int n)
  116. {
  117. #ifdef CONFIG_SMP
  118. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  119. #else
  120. preempt_disable();
  121. mnt->mnt_count += n;
  122. preempt_enable();
  123. #endif
  124. }
  125. /*
  126. * vfsmount lock must be held for write
  127. */
  128. unsigned int mnt_get_count(struct mount *mnt)
  129. {
  130. #ifdef CONFIG_SMP
  131. unsigned int count = 0;
  132. int cpu;
  133. for_each_possible_cpu(cpu) {
  134. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  135. }
  136. return count;
  137. #else
  138. return mnt->mnt_count;
  139. #endif
  140. }
  141. static struct mount *alloc_vfsmnt(const char *name)
  142. {
  143. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  144. if (mnt) {
  145. int err;
  146. err = mnt_alloc_id(mnt);
  147. if (err)
  148. goto out_free_cache;
  149. if (name) {
  150. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  151. if (!mnt->mnt_devname)
  152. goto out_free_id;
  153. }
  154. #ifdef CONFIG_SMP
  155. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  156. if (!mnt->mnt_pcp)
  157. goto out_free_devname;
  158. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  159. #else
  160. mnt->mnt_count = 1;
  161. mnt->mnt_writers = 0;
  162. #endif
  163. mnt->mnt.data = NULL;
  164. INIT_LIST_HEAD(&mnt->mnt_hash);
  165. INIT_LIST_HEAD(&mnt->mnt_child);
  166. INIT_LIST_HEAD(&mnt->mnt_mounts);
  167. INIT_LIST_HEAD(&mnt->mnt_list);
  168. INIT_LIST_HEAD(&mnt->mnt_expire);
  169. INIT_LIST_HEAD(&mnt->mnt_share);
  170. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  171. INIT_LIST_HEAD(&mnt->mnt_slave);
  172. #ifdef CONFIG_FSNOTIFY
  173. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  174. #endif
  175. }
  176. return mnt;
  177. #ifdef CONFIG_SMP
  178. out_free_devname:
  179. kfree(mnt->mnt_devname);
  180. #endif
  181. out_free_id:
  182. mnt_free_id(mnt);
  183. out_free_cache:
  184. kmem_cache_free(mnt_cache, mnt);
  185. return NULL;
  186. }
  187. /*
  188. * Most r/o checks on a fs are for operations that take
  189. * discrete amounts of time, like a write() or unlink().
  190. * We must keep track of when those operations start
  191. * (for permission checks) and when they end, so that
  192. * we can determine when writes are able to occur to
  193. * a filesystem.
  194. */
  195. /*
  196. * __mnt_is_readonly: check whether a mount is read-only
  197. * @mnt: the mount to check for its write status
  198. *
  199. * This shouldn't be used directly ouside of the VFS.
  200. * It does not guarantee that the filesystem will stay
  201. * r/w, just that it is right *now*. This can not and
  202. * should not be used in place of IS_RDONLY(inode).
  203. * mnt_want/drop_write() will _keep_ the filesystem
  204. * r/w.
  205. */
  206. int __mnt_is_readonly(struct vfsmount *mnt)
  207. {
  208. if (mnt->mnt_flags & MNT_READONLY)
  209. return 1;
  210. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  211. return 1;
  212. return 0;
  213. }
  214. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  215. static inline void mnt_inc_writers(struct mount *mnt)
  216. {
  217. #ifdef CONFIG_SMP
  218. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  219. #else
  220. mnt->mnt_writers++;
  221. #endif
  222. }
  223. static inline void mnt_dec_writers(struct mount *mnt)
  224. {
  225. #ifdef CONFIG_SMP
  226. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  227. #else
  228. mnt->mnt_writers--;
  229. #endif
  230. }
  231. static unsigned int mnt_get_writers(struct mount *mnt)
  232. {
  233. #ifdef CONFIG_SMP
  234. unsigned int count = 0;
  235. int cpu;
  236. for_each_possible_cpu(cpu) {
  237. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  238. }
  239. return count;
  240. #else
  241. return mnt->mnt_writers;
  242. #endif
  243. }
  244. static int mnt_is_readonly(struct vfsmount *mnt)
  245. {
  246. if (mnt->mnt_sb->s_readonly_remount)
  247. return 1;
  248. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  249. smp_rmb();
  250. return __mnt_is_readonly(mnt);
  251. }
  252. /*
  253. * Most r/o checks on a fs are for operations that take
  254. * discrete amounts of time, like a write() or unlink().
  255. * We must keep track of when those operations start
  256. * (for permission checks) and when they end, so that
  257. * we can determine when writes are able to occur to
  258. * a filesystem.
  259. */
  260. /**
  261. * mnt_want_write - get write access to a mount
  262. * @m: the mount on which to take a write
  263. *
  264. * This tells the low-level filesystem that a write is
  265. * about to be performed to it, and makes sure that
  266. * writes are allowed before returning success. When
  267. * the write operation is finished, mnt_drop_write()
  268. * must be called. This is effectively a refcount.
  269. */
  270. int mnt_want_write(struct vfsmount *m)
  271. {
  272. struct mount *mnt = real_mount(m);
  273. int ret = 0;
  274. preempt_disable();
  275. mnt_inc_writers(mnt);
  276. /*
  277. * The store to mnt_inc_writers must be visible before we pass
  278. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  279. * incremented count after it has set MNT_WRITE_HOLD.
  280. */
  281. smp_mb();
  282. while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  283. cpu_relax();
  284. /*
  285. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  286. * be set to match its requirements. So we must not load that until
  287. * MNT_WRITE_HOLD is cleared.
  288. */
  289. smp_rmb();
  290. if (mnt_is_readonly(m)) {
  291. mnt_dec_writers(mnt);
  292. ret = -EROFS;
  293. }
  294. preempt_enable();
  295. return ret;
  296. }
  297. EXPORT_SYMBOL_GPL(mnt_want_write);
  298. /**
  299. * mnt_clone_write - get write access to a mount
  300. * @mnt: the mount on which to take a write
  301. *
  302. * This is effectively like mnt_want_write, except
  303. * it must only be used to take an extra write reference
  304. * on a mountpoint that we already know has a write reference
  305. * on it. This allows some optimisation.
  306. *
  307. * After finished, mnt_drop_write must be called as usual to
  308. * drop the reference.
  309. */
  310. int mnt_clone_write(struct vfsmount *mnt)
  311. {
  312. /* superblock may be r/o */
  313. if (__mnt_is_readonly(mnt))
  314. return -EROFS;
  315. preempt_disable();
  316. mnt_inc_writers(real_mount(mnt));
  317. preempt_enable();
  318. return 0;
  319. }
  320. EXPORT_SYMBOL_GPL(mnt_clone_write);
  321. /**
  322. * mnt_want_write_file - get write access to a file's mount
  323. * @file: the file who's mount on which to take a write
  324. *
  325. * This is like mnt_want_write, but it takes a file and can
  326. * do some optimisations if the file is open for write already
  327. */
  328. int mnt_want_write_file(struct file *file)
  329. {
  330. struct inode *inode = file->f_dentry->d_inode;
  331. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  332. return mnt_want_write(file->f_path.mnt);
  333. else
  334. return mnt_clone_write(file->f_path.mnt);
  335. }
  336. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  337. /**
  338. * mnt_drop_write - give up write access to a mount
  339. * @mnt: the mount on which to give up write access
  340. *
  341. * Tells the low-level filesystem that we are done
  342. * performing writes to it. Must be matched with
  343. * mnt_want_write() call above.
  344. */
  345. void mnt_drop_write(struct vfsmount *mnt)
  346. {
  347. preempt_disable();
  348. mnt_dec_writers(real_mount(mnt));
  349. preempt_enable();
  350. }
  351. EXPORT_SYMBOL_GPL(mnt_drop_write);
  352. void mnt_drop_write_file(struct file *file)
  353. {
  354. mnt_drop_write(file->f_path.mnt);
  355. }
  356. EXPORT_SYMBOL(mnt_drop_write_file);
  357. static int mnt_make_readonly(struct mount *mnt)
  358. {
  359. int ret = 0;
  360. br_write_lock(&vfsmount_lock);
  361. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  362. /*
  363. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  364. * should be visible before we do.
  365. */
  366. smp_mb();
  367. /*
  368. * With writers on hold, if this value is zero, then there are
  369. * definitely no active writers (although held writers may subsequently
  370. * increment the count, they'll have to wait, and decrement it after
  371. * seeing MNT_READONLY).
  372. *
  373. * It is OK to have counter incremented on one CPU and decremented on
  374. * another: the sum will add up correctly. The danger would be when we
  375. * sum up each counter, if we read a counter before it is incremented,
  376. * but then read another CPU's count which it has been subsequently
  377. * decremented from -- we would see more decrements than we should.
  378. * MNT_WRITE_HOLD protects against this scenario, because
  379. * mnt_want_write first increments count, then smp_mb, then spins on
  380. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  381. * we're counting up here.
  382. */
  383. if (mnt_get_writers(mnt) > 0)
  384. ret = -EBUSY;
  385. else
  386. mnt->mnt.mnt_flags |= MNT_READONLY;
  387. /*
  388. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  389. * that become unheld will see MNT_READONLY.
  390. */
  391. smp_wmb();
  392. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  393. br_write_unlock(&vfsmount_lock);
  394. return ret;
  395. }
  396. static void __mnt_unmake_readonly(struct mount *mnt)
  397. {
  398. br_write_lock(&vfsmount_lock);
  399. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  400. br_write_unlock(&vfsmount_lock);
  401. }
  402. int sb_prepare_remount_readonly(struct super_block *sb)
  403. {
  404. struct mount *mnt;
  405. int err = 0;
  406. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  407. if (atomic_long_read(&sb->s_remove_count))
  408. return -EBUSY;
  409. br_write_lock(&vfsmount_lock);
  410. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  411. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  412. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  413. smp_mb();
  414. if (mnt_get_writers(mnt) > 0) {
  415. err = -EBUSY;
  416. break;
  417. }
  418. }
  419. }
  420. if (!err && atomic_long_read(&sb->s_remove_count))
  421. err = -EBUSY;
  422. if (!err) {
  423. sb->s_readonly_remount = 1;
  424. smp_wmb();
  425. }
  426. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  427. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  428. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  429. }
  430. br_write_unlock(&vfsmount_lock);
  431. return err;
  432. }
  433. static void free_vfsmnt(struct mount *mnt)
  434. {
  435. kfree(mnt->mnt.data);
  436. kfree(mnt->mnt_devname);
  437. mnt_free_id(mnt);
  438. #ifdef CONFIG_SMP
  439. free_percpu(mnt->mnt_pcp);
  440. #endif
  441. kmem_cache_free(mnt_cache, mnt);
  442. }
  443. /*
  444. * find the first or last mount at @dentry on vfsmount @mnt depending on
  445. * @dir. If @dir is set return the first mount else return the last mount.
  446. * vfsmount_lock must be held for read or write.
  447. */
  448. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  449. int dir)
  450. {
  451. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  452. struct list_head *tmp = head;
  453. struct mount *p, *found = NULL;
  454. for (;;) {
  455. tmp = dir ? tmp->next : tmp->prev;
  456. p = NULL;
  457. if (tmp == head)
  458. break;
  459. p = list_entry(tmp, struct mount, mnt_hash);
  460. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
  461. found = p;
  462. break;
  463. }
  464. }
  465. return found;
  466. }
  467. /*
  468. * lookup_mnt - Return the first child mount mounted at path
  469. *
  470. * "First" means first mounted chronologically. If you create the
  471. * following mounts:
  472. *
  473. * mount /dev/sda1 /mnt
  474. * mount /dev/sda2 /mnt
  475. * mount /dev/sda3 /mnt
  476. *
  477. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  478. * return successively the root dentry and vfsmount of /dev/sda1, then
  479. * /dev/sda2, then /dev/sda3, then NULL.
  480. *
  481. * lookup_mnt takes a reference to the found vfsmount.
  482. */
  483. struct vfsmount *lookup_mnt(struct path *path)
  484. {
  485. struct mount *child_mnt;
  486. br_read_lock(&vfsmount_lock);
  487. child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  488. if (child_mnt) {
  489. mnt_add_count(child_mnt, 1);
  490. br_read_unlock(&vfsmount_lock);
  491. return &child_mnt->mnt;
  492. } else {
  493. br_read_unlock(&vfsmount_lock);
  494. return NULL;
  495. }
  496. }
  497. static inline int check_mnt(struct mount *mnt)
  498. {
  499. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  500. }
  501. /*
  502. * vfsmount lock must be held for write
  503. */
  504. static void touch_mnt_namespace(struct mnt_namespace *ns)
  505. {
  506. if (ns) {
  507. ns->event = ++event;
  508. wake_up_interruptible(&ns->poll);
  509. }
  510. }
  511. /*
  512. * vfsmount lock must be held for write
  513. */
  514. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  515. {
  516. if (ns && ns->event != event) {
  517. ns->event = event;
  518. wake_up_interruptible(&ns->poll);
  519. }
  520. }
  521. /*
  522. * Clear dentry's mounted state if it has no remaining mounts.
  523. * vfsmount_lock must be held for write.
  524. */
  525. static void dentry_reset_mounted(struct dentry *dentry)
  526. {
  527. unsigned u;
  528. for (u = 0; u < HASH_SIZE; u++) {
  529. struct mount *p;
  530. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  531. if (p->mnt_mountpoint == dentry)
  532. return;
  533. }
  534. }
  535. spin_lock(&dentry->d_lock);
  536. dentry->d_flags &= ~DCACHE_MOUNTED;
  537. spin_unlock(&dentry->d_lock);
  538. }
  539. /*
  540. * vfsmount lock must be held for write
  541. */
  542. static void detach_mnt(struct mount *mnt, struct path *old_path)
  543. {
  544. old_path->dentry = mnt->mnt_mountpoint;
  545. old_path->mnt = &mnt->mnt_parent->mnt;
  546. mnt->mnt_parent = mnt;
  547. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  548. list_del_init(&mnt->mnt_child);
  549. list_del_init(&mnt->mnt_hash);
  550. dentry_reset_mounted(old_path->dentry);
  551. }
  552. /*
  553. * vfsmount lock must be held for write
  554. */
  555. void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
  556. struct mount *child_mnt)
  557. {
  558. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  559. child_mnt->mnt_mountpoint = dget(dentry);
  560. child_mnt->mnt_parent = mnt;
  561. spin_lock(&dentry->d_lock);
  562. dentry->d_flags |= DCACHE_MOUNTED;
  563. spin_unlock(&dentry->d_lock);
  564. }
  565. /*
  566. * vfsmount lock must be held for write
  567. */
  568. static void attach_mnt(struct mount *mnt, struct path *path)
  569. {
  570. mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
  571. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  572. hash(path->mnt, path->dentry));
  573. list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
  574. }
  575. /*
  576. * vfsmount lock must be held for write
  577. */
  578. static void commit_tree(struct mount *mnt)
  579. {
  580. struct mount *parent = mnt->mnt_parent;
  581. struct mount *m;
  582. LIST_HEAD(head);
  583. struct mnt_namespace *n = parent->mnt_ns;
  584. BUG_ON(parent == mnt);
  585. list_add_tail(&head, &mnt->mnt_list);
  586. list_for_each_entry(m, &head, mnt_list)
  587. m->mnt_ns = n;
  588. list_splice(&head, n->list.prev);
  589. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  590. hash(&parent->mnt, mnt->mnt_mountpoint));
  591. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  592. touch_mnt_namespace(n);
  593. }
  594. static struct mount *next_mnt(struct mount *p, struct mount *root)
  595. {
  596. struct list_head *next = p->mnt_mounts.next;
  597. if (next == &p->mnt_mounts) {
  598. while (1) {
  599. if (p == root)
  600. return NULL;
  601. next = p->mnt_child.next;
  602. if (next != &p->mnt_parent->mnt_mounts)
  603. break;
  604. p = p->mnt_parent;
  605. }
  606. }
  607. return list_entry(next, struct mount, mnt_child);
  608. }
  609. static struct mount *skip_mnt_tree(struct mount *p)
  610. {
  611. struct list_head *prev = p->mnt_mounts.prev;
  612. while (prev != &p->mnt_mounts) {
  613. p = list_entry(prev, struct mount, mnt_child);
  614. prev = p->mnt_mounts.prev;
  615. }
  616. return p;
  617. }
  618. struct vfsmount *
  619. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  620. {
  621. struct mount *mnt;
  622. struct dentry *root;
  623. if (!type)
  624. return ERR_PTR(-ENODEV);
  625. mnt = alloc_vfsmnt(name);
  626. if (!mnt)
  627. return ERR_PTR(-ENOMEM);
  628. if (type->alloc_mnt_data) {
  629. mnt->mnt.data = type->alloc_mnt_data();
  630. if (!mnt->mnt.data) {
  631. mnt_free_id(mnt);
  632. free_vfsmnt(mnt);
  633. return ERR_PTR(-ENOMEM);
  634. }
  635. }
  636. if (flags & MS_KERNMOUNT)
  637. mnt->mnt.mnt_flags = MNT_INTERNAL;
  638. root = mount_fs(type, flags, name, &mnt->mnt, data);
  639. if (IS_ERR(root)) {
  640. free_vfsmnt(mnt);
  641. return ERR_CAST(root);
  642. }
  643. mnt->mnt.mnt_root = root;
  644. mnt->mnt.mnt_sb = root->d_sb;
  645. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  646. mnt->mnt_parent = mnt;
  647. br_write_lock(&vfsmount_lock);
  648. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  649. br_write_unlock(&vfsmount_lock);
  650. return &mnt->mnt;
  651. }
  652. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  653. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  654. int flag)
  655. {
  656. struct super_block *sb = old->mnt.mnt_sb;
  657. struct mount *mnt;
  658. int err;
  659. mnt = alloc_vfsmnt(old->mnt_devname);
  660. if (!mnt)
  661. return ERR_PTR(-ENOMEM);
  662. if (sb->s_op->clone_mnt_data) {
  663. mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
  664. if (!mnt->mnt.data) {
  665. goto out_free;
  666. }
  667. }
  668. if (flag & (CL_SLAVE | CL_PRIVATE))
  669. mnt->mnt_group_id = 0; /* not a peer of original */
  670. else
  671. mnt->mnt_group_id = old->mnt_group_id;
  672. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  673. err = mnt_alloc_group_id(mnt);
  674. if (err)
  675. goto out_free;
  676. }
  677. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  678. atomic_inc(&sb->s_active);
  679. mnt->mnt.mnt_sb = sb;
  680. mnt->mnt.mnt_root = dget(root);
  681. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  682. mnt->mnt_parent = mnt;
  683. br_write_lock(&vfsmount_lock);
  684. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  685. br_write_unlock(&vfsmount_lock);
  686. if (flag & CL_SLAVE) {
  687. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  688. mnt->mnt_master = old;
  689. CLEAR_MNT_SHARED(mnt);
  690. } else if (!(flag & CL_PRIVATE)) {
  691. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  692. list_add(&mnt->mnt_share, &old->mnt_share);
  693. if (IS_MNT_SLAVE(old))
  694. list_add(&mnt->mnt_slave, &old->mnt_slave);
  695. mnt->mnt_master = old->mnt_master;
  696. }
  697. if (flag & CL_MAKE_SHARED)
  698. set_mnt_shared(mnt);
  699. /* stick the duplicate mount on the same expiry list
  700. * as the original if that was on one */
  701. if (flag & CL_EXPIRE) {
  702. if (!list_empty(&old->mnt_expire))
  703. list_add(&mnt->mnt_expire, &old->mnt_expire);
  704. }
  705. return mnt;
  706. out_free:
  707. free_vfsmnt(mnt);
  708. return ERR_PTR(err);
  709. }
  710. static inline void mntfree(struct mount *mnt)
  711. {
  712. struct vfsmount *m = &mnt->mnt;
  713. struct super_block *sb = m->mnt_sb;
  714. /*
  715. * This probably indicates that somebody messed
  716. * up a mnt_want/drop_write() pair. If this
  717. * happens, the filesystem was probably unable
  718. * to make r/w->r/o transitions.
  719. */
  720. /*
  721. * The locking used to deal with mnt_count decrement provides barriers,
  722. * so mnt_get_writers() below is safe.
  723. */
  724. WARN_ON(mnt_get_writers(mnt));
  725. fsnotify_vfsmount_delete(m);
  726. dput(m->mnt_root);
  727. free_vfsmnt(mnt);
  728. deactivate_super(sb);
  729. }
  730. static void mntput_no_expire(struct mount *mnt)
  731. {
  732. put_again:
  733. #ifdef CONFIG_SMP
  734. br_read_lock(&vfsmount_lock);
  735. if (likely(mnt->mnt_ns)) {
  736. /* shouldn't be the last one */
  737. mnt_add_count(mnt, -1);
  738. br_read_unlock(&vfsmount_lock);
  739. return;
  740. }
  741. br_read_unlock(&vfsmount_lock);
  742. br_write_lock(&vfsmount_lock);
  743. mnt_add_count(mnt, -1);
  744. if (mnt_get_count(mnt)) {
  745. br_write_unlock(&vfsmount_lock);
  746. return;
  747. }
  748. #else
  749. mnt_add_count(mnt, -1);
  750. if (likely(mnt_get_count(mnt)))
  751. return;
  752. br_write_lock(&vfsmount_lock);
  753. #endif
  754. if (unlikely(mnt->mnt_pinned)) {
  755. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  756. mnt->mnt_pinned = 0;
  757. br_write_unlock(&vfsmount_lock);
  758. acct_auto_close_mnt(&mnt->mnt);
  759. goto put_again;
  760. }
  761. list_del(&mnt->mnt_instance);
  762. br_write_unlock(&vfsmount_lock);
  763. mntfree(mnt);
  764. }
  765. void mntput(struct vfsmount *mnt)
  766. {
  767. if (mnt) {
  768. struct mount *m = real_mount(mnt);
  769. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  770. if (unlikely(m->mnt_expiry_mark))
  771. m->mnt_expiry_mark = 0;
  772. mntput_no_expire(m);
  773. }
  774. }
  775. EXPORT_SYMBOL(mntput);
  776. struct vfsmount *mntget(struct vfsmount *mnt)
  777. {
  778. if (mnt)
  779. mnt_add_count(real_mount(mnt), 1);
  780. return mnt;
  781. }
  782. EXPORT_SYMBOL(mntget);
  783. void mnt_pin(struct vfsmount *mnt)
  784. {
  785. br_write_lock(&vfsmount_lock);
  786. real_mount(mnt)->mnt_pinned++;
  787. br_write_unlock(&vfsmount_lock);
  788. }
  789. EXPORT_SYMBOL(mnt_pin);
  790. void mnt_unpin(struct vfsmount *m)
  791. {
  792. struct mount *mnt = real_mount(m);
  793. br_write_lock(&vfsmount_lock);
  794. if (mnt->mnt_pinned) {
  795. mnt_add_count(mnt, 1);
  796. mnt->mnt_pinned--;
  797. }
  798. br_write_unlock(&vfsmount_lock);
  799. }
  800. EXPORT_SYMBOL(mnt_unpin);
  801. static inline void mangle(struct seq_file *m, const char *s)
  802. {
  803. seq_escape(m, s, " \t\n\\");
  804. }
  805. /*
  806. * Simple .show_options callback for filesystems which don't want to
  807. * implement more complex mount option showing.
  808. *
  809. * See also save_mount_options().
  810. */
  811. int generic_show_options(struct seq_file *m, struct dentry *root)
  812. {
  813. const char *options;
  814. rcu_read_lock();
  815. options = rcu_dereference(root->d_sb->s_options);
  816. if (options != NULL && options[0]) {
  817. seq_putc(m, ',');
  818. mangle(m, options);
  819. }
  820. rcu_read_unlock();
  821. return 0;
  822. }
  823. EXPORT_SYMBOL(generic_show_options);
  824. /*
  825. * If filesystem uses generic_show_options(), this function should be
  826. * called from the fill_super() callback.
  827. *
  828. * The .remount_fs callback usually needs to be handled in a special
  829. * way, to make sure, that previous options are not overwritten if the
  830. * remount fails.
  831. *
  832. * Also note, that if the filesystem's .remount_fs function doesn't
  833. * reset all options to their default value, but changes only newly
  834. * given options, then the displayed options will not reflect reality
  835. * any more.
  836. */
  837. void save_mount_options(struct super_block *sb, char *options)
  838. {
  839. BUG_ON(sb->s_options);
  840. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  841. }
  842. EXPORT_SYMBOL(save_mount_options);
  843. void replace_mount_options(struct super_block *sb, char *options)
  844. {
  845. char *old = sb->s_options;
  846. rcu_assign_pointer(sb->s_options, options);
  847. if (old) {
  848. synchronize_rcu();
  849. kfree(old);
  850. }
  851. }
  852. EXPORT_SYMBOL(replace_mount_options);
  853. #ifdef CONFIG_PROC_FS
  854. /* iterator; we want it to have access to namespace_sem, thus here... */
  855. static void *m_start(struct seq_file *m, loff_t *pos)
  856. {
  857. struct proc_mounts *p = proc_mounts(m);
  858. down_read(&namespace_sem);
  859. return seq_list_start(&p->ns->list, *pos);
  860. }
  861. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  862. {
  863. struct proc_mounts *p = proc_mounts(m);
  864. return seq_list_next(v, &p->ns->list, pos);
  865. }
  866. static void m_stop(struct seq_file *m, void *v)
  867. {
  868. up_read(&namespace_sem);
  869. }
  870. static int m_show(struct seq_file *m, void *v)
  871. {
  872. struct proc_mounts *p = proc_mounts(m);
  873. struct mount *r = list_entry(v, struct mount, mnt_list);
  874. return p->show(m, &r->mnt);
  875. }
  876. const struct seq_operations mounts_op = {
  877. .start = m_start,
  878. .next = m_next,
  879. .stop = m_stop,
  880. .show = m_show,
  881. };
  882. #endif /* CONFIG_PROC_FS */
  883. /**
  884. * may_umount_tree - check if a mount tree is busy
  885. * @mnt: root of mount tree
  886. *
  887. * This is called to check if a tree of mounts has any
  888. * open files, pwds, chroots or sub mounts that are
  889. * busy.
  890. */
  891. int may_umount_tree(struct vfsmount *m)
  892. {
  893. struct mount *mnt = real_mount(m);
  894. int actual_refs = 0;
  895. int minimum_refs = 0;
  896. struct mount *p;
  897. BUG_ON(!m);
  898. /* write lock needed for mnt_get_count */
  899. br_write_lock(&vfsmount_lock);
  900. for (p = mnt; p; p = next_mnt(p, mnt)) {
  901. actual_refs += mnt_get_count(p);
  902. minimum_refs += 2;
  903. }
  904. br_write_unlock(&vfsmount_lock);
  905. if (actual_refs > minimum_refs)
  906. return 0;
  907. return 1;
  908. }
  909. EXPORT_SYMBOL(may_umount_tree);
  910. /**
  911. * may_umount - check if a mount point is busy
  912. * @mnt: root of mount
  913. *
  914. * This is called to check if a mount point has any
  915. * open files, pwds, chroots or sub mounts. If the
  916. * mount has sub mounts this will return busy
  917. * regardless of whether the sub mounts are busy.
  918. *
  919. * Doesn't take quota and stuff into account. IOW, in some cases it will
  920. * give false negatives. The main reason why it's here is that we need
  921. * a non-destructive way to look for easily umountable filesystems.
  922. */
  923. int may_umount(struct vfsmount *mnt)
  924. {
  925. int ret = 1;
  926. down_read(&namespace_sem);
  927. br_write_lock(&vfsmount_lock);
  928. if (propagate_mount_busy(real_mount(mnt), 2))
  929. ret = 0;
  930. br_write_unlock(&vfsmount_lock);
  931. up_read(&namespace_sem);
  932. return ret;
  933. }
  934. EXPORT_SYMBOL(may_umount);
  935. void release_mounts(struct list_head *head)
  936. {
  937. struct mount *mnt;
  938. while (!list_empty(head)) {
  939. mnt = list_first_entry(head, struct mount, mnt_hash);
  940. list_del_init(&mnt->mnt_hash);
  941. if (mnt_has_parent(mnt)) {
  942. struct dentry *dentry;
  943. struct mount *m;
  944. br_write_lock(&vfsmount_lock);
  945. dentry = mnt->mnt_mountpoint;
  946. m = mnt->mnt_parent;
  947. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  948. mnt->mnt_parent = mnt;
  949. m->mnt_ghosts--;
  950. br_write_unlock(&vfsmount_lock);
  951. dput(dentry);
  952. mntput(&m->mnt);
  953. }
  954. mntput(&mnt->mnt);
  955. }
  956. }
  957. /*
  958. * vfsmount lock must be held for write
  959. * namespace_sem must be held for write
  960. */
  961. void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
  962. {
  963. LIST_HEAD(tmp_list);
  964. struct mount *p;
  965. for (p = mnt; p; p = next_mnt(p, mnt))
  966. list_move(&p->mnt_hash, &tmp_list);
  967. list_for_each_entry(p, &tmp_list, mnt_hash)
  968. list_del_init(&p->mnt_child);
  969. if (propagate)
  970. propagate_umount(&tmp_list);
  971. list_for_each_entry(p, &tmp_list, mnt_hash) {
  972. list_del_init(&p->mnt_expire);
  973. list_del_init(&p->mnt_list);
  974. __touch_mnt_namespace(p->mnt_ns);
  975. p->mnt_ns = NULL;
  976. if (mnt_has_parent(p)) {
  977. p->mnt_parent->mnt_ghosts++;
  978. dentry_reset_mounted(p->mnt_mountpoint);
  979. }
  980. change_mnt_propagation(p, MS_PRIVATE);
  981. }
  982. list_splice(&tmp_list, kill);
  983. }
  984. static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
  985. static int do_umount(struct mount *mnt, int flags)
  986. {
  987. struct super_block *sb = mnt->mnt.mnt_sb;
  988. int retval;
  989. LIST_HEAD(umount_list);
  990. retval = security_sb_umount(&mnt->mnt, flags);
  991. if (retval)
  992. return retval;
  993. /*
  994. * Allow userspace to request a mountpoint be expired rather than
  995. * unmounting unconditionally. Unmount only happens if:
  996. * (1) the mark is already set (the mark is cleared by mntput())
  997. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  998. */
  999. if (flags & MNT_EXPIRE) {
  1000. if (&mnt->mnt == current->fs->root.mnt ||
  1001. flags & (MNT_FORCE | MNT_DETACH))
  1002. return -EINVAL;
  1003. /*
  1004. * probably don't strictly need the lock here if we examined
  1005. * all race cases, but it's a slowpath.
  1006. */
  1007. br_write_lock(&vfsmount_lock);
  1008. if (mnt_get_count(mnt) != 2) {
  1009. br_write_unlock(&vfsmount_lock);
  1010. return -EBUSY;
  1011. }
  1012. br_write_unlock(&vfsmount_lock);
  1013. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1014. return -EAGAIN;
  1015. }
  1016. /*
  1017. * If we may have to abort operations to get out of this
  1018. * mount, and they will themselves hold resources we must
  1019. * allow the fs to do things. In the Unix tradition of
  1020. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1021. * might fail to complete on the first run through as other tasks
  1022. * must return, and the like. Thats for the mount program to worry
  1023. * about for the moment.
  1024. */
  1025. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1026. sb->s_op->umount_begin(sb);
  1027. }
  1028. /*
  1029. * No sense to grab the lock for this test, but test itself looks
  1030. * somewhat bogus. Suggestions for better replacement?
  1031. * Ho-hum... In principle, we might treat that as umount + switch
  1032. * to rootfs. GC would eventually take care of the old vfsmount.
  1033. * Actually it makes sense, especially if rootfs would contain a
  1034. * /reboot - static binary that would close all descriptors and
  1035. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1036. */
  1037. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1038. /*
  1039. * Special case for "unmounting" root ...
  1040. * we just try to remount it readonly.
  1041. */
  1042. down_write(&sb->s_umount);
  1043. if (!(sb->s_flags & MS_RDONLY))
  1044. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1045. up_write(&sb->s_umount);
  1046. return retval;
  1047. }
  1048. down_write(&namespace_sem);
  1049. br_write_lock(&vfsmount_lock);
  1050. event++;
  1051. if (!(flags & MNT_DETACH))
  1052. shrink_submounts(mnt, &umount_list);
  1053. retval = -EBUSY;
  1054. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1055. if (!list_empty(&mnt->mnt_list))
  1056. umount_tree(mnt, 1, &umount_list);
  1057. retval = 0;
  1058. }
  1059. br_write_unlock(&vfsmount_lock);
  1060. up_write(&namespace_sem);
  1061. release_mounts(&umount_list);
  1062. return retval;
  1063. }
  1064. /*
  1065. * Now umount can handle mount points as well as block devices.
  1066. * This is important for filesystems which use unnamed block devices.
  1067. *
  1068. * We now support a flag for forced unmount like the other 'big iron'
  1069. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1070. */
  1071. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1072. {
  1073. struct path path;
  1074. struct mount *mnt;
  1075. int retval;
  1076. int lookup_flags = 0;
  1077. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1078. return -EINVAL;
  1079. if (!(flags & UMOUNT_NOFOLLOW))
  1080. lookup_flags |= LOOKUP_FOLLOW;
  1081. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1082. if (retval)
  1083. goto out;
  1084. mnt = real_mount(path.mnt);
  1085. retval = -EINVAL;
  1086. if (path.dentry != path.mnt->mnt_root)
  1087. goto dput_and_out;
  1088. if (!check_mnt(mnt))
  1089. goto dput_and_out;
  1090. retval = -EPERM;
  1091. if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
  1092. goto dput_and_out;
  1093. retval = do_umount(mnt, flags);
  1094. dput_and_out:
  1095. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1096. dput(path.dentry);
  1097. mntput_no_expire(mnt);
  1098. out:
  1099. return retval;
  1100. }
  1101. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1102. /*
  1103. * The 2.0 compatible umount. No flags.
  1104. */
  1105. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1106. {
  1107. return sys_umount(name, 0);
  1108. }
  1109. #endif
  1110. static int mount_is_safe(struct path *path)
  1111. {
  1112. if (ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
  1113. return 0;
  1114. return -EPERM;
  1115. #ifdef notyet
  1116. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1117. return -EPERM;
  1118. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1119. if (current_uid() != path->dentry->d_inode->i_uid)
  1120. return -EPERM;
  1121. }
  1122. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1123. return -EPERM;
  1124. return 0;
  1125. #endif
  1126. }
  1127. static bool mnt_ns_loop(struct path *path)
  1128. {
  1129. /* Could bind mounting the mount namespace inode cause a
  1130. * mount namespace loop?
  1131. */
  1132. struct inode *inode = path->dentry->d_inode;
  1133. struct proc_inode *ei;
  1134. struct mnt_namespace *mnt_ns;
  1135. if (!proc_ns_inode(inode))
  1136. return false;
  1137. ei = PROC_I(inode);
  1138. if (ei->ns_ops != &mntns_operations)
  1139. return false;
  1140. mnt_ns = ei->ns;
  1141. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1142. }
  1143. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1144. int flag)
  1145. {
  1146. struct mount *res, *p, *q, *r;
  1147. struct path path;
  1148. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1149. return ERR_PTR(-EINVAL);
  1150. res = q = clone_mnt(mnt, dentry, flag);
  1151. if (IS_ERR(q))
  1152. return q;
  1153. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1154. p = mnt;
  1155. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1156. struct mount *s;
  1157. if (!is_subdir(r->mnt_mountpoint, dentry))
  1158. continue;
  1159. for (s = r; s; s = next_mnt(s, r)) {
  1160. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1161. s = skip_mnt_tree(s);
  1162. continue;
  1163. }
  1164. while (p != s->mnt_parent) {
  1165. p = p->mnt_parent;
  1166. q = q->mnt_parent;
  1167. }
  1168. p = s;
  1169. path.mnt = &q->mnt;
  1170. path.dentry = p->mnt_mountpoint;
  1171. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1172. if (IS_ERR(q))
  1173. goto out;
  1174. br_write_lock(&vfsmount_lock);
  1175. list_add_tail(&q->mnt_list, &res->mnt_list);
  1176. attach_mnt(q, &path);
  1177. br_write_unlock(&vfsmount_lock);
  1178. }
  1179. }
  1180. return res;
  1181. out:
  1182. if (res) {
  1183. LIST_HEAD(umount_list);
  1184. br_write_lock(&vfsmount_lock);
  1185. umount_tree(res, 0, &umount_list);
  1186. br_write_unlock(&vfsmount_lock);
  1187. release_mounts(&umount_list);
  1188. }
  1189. return q;
  1190. }
  1191. /* Caller should check returned pointer for errors */
  1192. struct vfsmount *collect_mounts(struct path *path)
  1193. {
  1194. struct mount *tree;
  1195. down_write(&namespace_sem);
  1196. if (!check_mnt(real_mount(path->mnt)))
  1197. tree = ERR_PTR(-EINVAL);
  1198. else
  1199. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1200. CL_COPY_ALL | CL_PRIVATE);
  1201. up_write(&namespace_sem);
  1202. if (IS_ERR(tree))
  1203. return NULL;
  1204. return &tree->mnt;
  1205. }
  1206. void drop_collected_mounts(struct vfsmount *mnt)
  1207. {
  1208. LIST_HEAD(umount_list);
  1209. down_write(&namespace_sem);
  1210. br_write_lock(&vfsmount_lock);
  1211. umount_tree(real_mount(mnt), 0, &umount_list);
  1212. br_write_unlock(&vfsmount_lock);
  1213. up_write(&namespace_sem);
  1214. release_mounts(&umount_list);
  1215. }
  1216. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1217. struct vfsmount *root)
  1218. {
  1219. struct mount *mnt;
  1220. int res = f(root, arg);
  1221. if (res)
  1222. return res;
  1223. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1224. res = f(&mnt->mnt, arg);
  1225. if (res)
  1226. return res;
  1227. }
  1228. return 0;
  1229. }
  1230. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1231. {
  1232. struct mount *p;
  1233. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1234. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1235. mnt_release_group_id(p);
  1236. }
  1237. }
  1238. static int invent_group_ids(struct mount *mnt, bool recurse)
  1239. {
  1240. struct mount *p;
  1241. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1242. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1243. int err = mnt_alloc_group_id(p);
  1244. if (err) {
  1245. cleanup_group_ids(mnt, p);
  1246. return err;
  1247. }
  1248. }
  1249. }
  1250. return 0;
  1251. }
  1252. /*
  1253. * @source_mnt : mount tree to be attached
  1254. * @nd : place the mount tree @source_mnt is attached
  1255. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1256. * store the parent mount and mountpoint dentry.
  1257. * (done when source_mnt is moved)
  1258. *
  1259. * NOTE: in the table below explains the semantics when a source mount
  1260. * of a given type is attached to a destination mount of a given type.
  1261. * ---------------------------------------------------------------------------
  1262. * | BIND MOUNT OPERATION |
  1263. * |**************************************************************************
  1264. * | source-->| shared | private | slave | unbindable |
  1265. * | dest | | | | |
  1266. * | | | | | | |
  1267. * | v | | | | |
  1268. * |**************************************************************************
  1269. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1270. * | | | | | |
  1271. * |non-shared| shared (+) | private | slave (*) | invalid |
  1272. * ***************************************************************************
  1273. * A bind operation clones the source mount and mounts the clone on the
  1274. * destination mount.
  1275. *
  1276. * (++) the cloned mount is propagated to all the mounts in the propagation
  1277. * tree of the destination mount and the cloned mount is added to
  1278. * the peer group of the source mount.
  1279. * (+) the cloned mount is created under the destination mount and is marked
  1280. * as shared. The cloned mount is added to the peer group of the source
  1281. * mount.
  1282. * (+++) the mount is propagated to all the mounts in the propagation tree
  1283. * of the destination mount and the cloned mount is made slave
  1284. * of the same master as that of the source mount. The cloned mount
  1285. * is marked as 'shared and slave'.
  1286. * (*) the cloned mount is made a slave of the same master as that of the
  1287. * source mount.
  1288. *
  1289. * ---------------------------------------------------------------------------
  1290. * | MOVE MOUNT OPERATION |
  1291. * |**************************************************************************
  1292. * | source-->| shared | private | slave | unbindable |
  1293. * | dest | | | | |
  1294. * | | | | | | |
  1295. * | v | | | | |
  1296. * |**************************************************************************
  1297. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1298. * | | | | | |
  1299. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1300. * ***************************************************************************
  1301. *
  1302. * (+) the mount is moved to the destination. And is then propagated to
  1303. * all the mounts in the propagation tree of the destination mount.
  1304. * (+*) the mount is moved to the destination.
  1305. * (+++) the mount is moved to the destination and is then propagated to
  1306. * all the mounts belonging to the destination mount's propagation tree.
  1307. * the mount is marked as 'shared and slave'.
  1308. * (*) the mount continues to be a slave at the new location.
  1309. *
  1310. * if the source mount is a tree, the operations explained above is
  1311. * applied to each mount in the tree.
  1312. * Must be called without spinlocks held, since this function can sleep
  1313. * in allocations.
  1314. */
  1315. static int attach_recursive_mnt(struct mount *source_mnt,
  1316. struct path *path, struct path *parent_path)
  1317. {
  1318. LIST_HEAD(tree_list);
  1319. struct mount *dest_mnt = real_mount(path->mnt);
  1320. struct dentry *dest_dentry = path->dentry;
  1321. struct mount *child, *p;
  1322. int err;
  1323. if (IS_MNT_SHARED(dest_mnt)) {
  1324. err = invent_group_ids(source_mnt, true);
  1325. if (err)
  1326. goto out;
  1327. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1328. br_write_lock(&vfsmount_lock);
  1329. if (err)
  1330. goto out_cleanup_ids;
  1331. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1332. set_mnt_shared(p);
  1333. } else {
  1334. br_write_lock(&vfsmount_lock);
  1335. }
  1336. if (parent_path) {
  1337. detach_mnt(source_mnt, parent_path);
  1338. attach_mnt(source_mnt, path);
  1339. touch_mnt_namespace(source_mnt->mnt_ns);
  1340. } else {
  1341. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1342. commit_tree(source_mnt);
  1343. }
  1344. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1345. list_del_init(&child->mnt_hash);
  1346. commit_tree(child);
  1347. }
  1348. br_write_unlock(&vfsmount_lock);
  1349. return 0;
  1350. out_cleanup_ids:
  1351. while (!list_empty(&tree_list)) {
  1352. child = list_first_entry(&tree_list, struct mount, mnt_hash);
  1353. umount_tree(child, 0, &tree_list);
  1354. }
  1355. br_write_unlock(&vfsmount_lock);
  1356. cleanup_group_ids(source_mnt, NULL);
  1357. out:
  1358. return err;
  1359. }
  1360. static int lock_mount(struct path *path)
  1361. {
  1362. struct vfsmount *mnt;
  1363. retry:
  1364. mutex_lock(&path->dentry->d_inode->i_mutex);
  1365. if (unlikely(cant_mount(path->dentry))) {
  1366. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1367. return -ENOENT;
  1368. }
  1369. down_write(&namespace_sem);
  1370. mnt = lookup_mnt(path);
  1371. if (likely(!mnt))
  1372. return 0;
  1373. up_write(&namespace_sem);
  1374. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1375. path_put(path);
  1376. path->mnt = mnt;
  1377. path->dentry = dget(mnt->mnt_root);
  1378. goto retry;
  1379. }
  1380. static void unlock_mount(struct path *path)
  1381. {
  1382. up_write(&namespace_sem);
  1383. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1384. }
  1385. static int graft_tree(struct mount *mnt, struct path *path)
  1386. {
  1387. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1388. return -EINVAL;
  1389. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1390. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1391. return -ENOTDIR;
  1392. if (d_unlinked(path->dentry))
  1393. return -ENOENT;
  1394. return attach_recursive_mnt(mnt, path, NULL);
  1395. }
  1396. /*
  1397. * Sanity check the flags to change_mnt_propagation.
  1398. */
  1399. static int flags_to_propagation_type(int flags)
  1400. {
  1401. int type = flags & ~(MS_REC | MS_SILENT);
  1402. /* Fail if any non-propagation flags are set */
  1403. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1404. return 0;
  1405. /* Only one propagation flag should be set */
  1406. if (!is_power_of_2(type))
  1407. return 0;
  1408. return type;
  1409. }
  1410. /*
  1411. * recursively change the type of the mountpoint.
  1412. */
  1413. static int do_change_type(struct path *path, int flag)
  1414. {
  1415. struct mount *m;
  1416. struct mount *mnt = real_mount(path->mnt);
  1417. int recurse = flag & MS_REC;
  1418. int type;
  1419. int err = 0;
  1420. if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
  1421. return -EPERM;
  1422. if (path->dentry != path->mnt->mnt_root)
  1423. return -EINVAL;
  1424. type = flags_to_propagation_type(flag);
  1425. if (!type)
  1426. return -EINVAL;
  1427. down_write(&namespace_sem);
  1428. if (type == MS_SHARED) {
  1429. err = invent_group_ids(mnt, recurse);
  1430. if (err)
  1431. goto out_unlock;
  1432. }
  1433. br_write_lock(&vfsmount_lock);
  1434. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1435. change_mnt_propagation(m, type);
  1436. br_write_unlock(&vfsmount_lock);
  1437. out_unlock:
  1438. up_write(&namespace_sem);
  1439. return err;
  1440. }
  1441. /*
  1442. * do loopback mount.
  1443. */
  1444. static int do_loopback(struct path *path, const char *old_name,
  1445. int recurse)
  1446. {
  1447. LIST_HEAD(umount_list);
  1448. struct path old_path;
  1449. struct mount *mnt = NULL, *old;
  1450. int err = mount_is_safe(path);
  1451. if (err)
  1452. return err;
  1453. if (!old_name || !*old_name)
  1454. return -EINVAL;
  1455. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1456. if (err)
  1457. return err;
  1458. err = -EINVAL;
  1459. if (mnt_ns_loop(&old_path))
  1460. goto out;
  1461. err = lock_mount(path);
  1462. if (err)
  1463. goto out;
  1464. old = real_mount(old_path.mnt);
  1465. err = -EINVAL;
  1466. if (IS_MNT_UNBINDABLE(old))
  1467. goto out2;
  1468. if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
  1469. goto out2;
  1470. if (recurse)
  1471. mnt = copy_tree(old, old_path.dentry, 0);
  1472. else
  1473. mnt = clone_mnt(old, old_path.dentry, 0);
  1474. if (IS_ERR(mnt)) {
  1475. err = PTR_ERR(mnt);
  1476. goto out;
  1477. }
  1478. err = graft_tree(mnt, path);
  1479. if (err) {
  1480. br_write_lock(&vfsmount_lock);
  1481. umount_tree(mnt, 0, &umount_list);
  1482. br_write_unlock(&vfsmount_lock);
  1483. }
  1484. out2:
  1485. unlock_mount(path);
  1486. release_mounts(&umount_list);
  1487. out:
  1488. path_put(&old_path);
  1489. return err;
  1490. }
  1491. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1492. {
  1493. int error = 0;
  1494. int readonly_request = 0;
  1495. if (ms_flags & MS_RDONLY)
  1496. readonly_request = 1;
  1497. if (readonly_request == __mnt_is_readonly(mnt))
  1498. return 0;
  1499. if (readonly_request)
  1500. error = mnt_make_readonly(real_mount(mnt));
  1501. else
  1502. __mnt_unmake_readonly(real_mount(mnt));
  1503. return error;
  1504. }
  1505. /*
  1506. * change filesystem flags. dir should be a physical root of filesystem.
  1507. * If you've mounted a non-root directory somewhere and want to do remount
  1508. * on it - tough luck.
  1509. */
  1510. static int do_remount(struct path *path, int flags, int mnt_flags,
  1511. void *data)
  1512. {
  1513. int err;
  1514. struct super_block *sb = path->mnt->mnt_sb;
  1515. struct mount *mnt = real_mount(path->mnt);
  1516. if (!capable(CAP_SYS_ADMIN))
  1517. return -EPERM;
  1518. if (!check_mnt(mnt))
  1519. return -EINVAL;
  1520. if (path->dentry != path->mnt->mnt_root)
  1521. return -EINVAL;
  1522. err = security_sb_remount(sb, data);
  1523. if (err)
  1524. return err;
  1525. down_write(&sb->s_umount);
  1526. if (flags & MS_BIND)
  1527. err = change_mount_flags(path->mnt, flags);
  1528. else {
  1529. err = do_remount_sb2(path->mnt, sb, flags, data, 0);
  1530. br_write_lock(&vfsmount_lock);
  1531. propagate_remount(mnt);
  1532. br_write_unlock(&vfsmount_lock);
  1533. }
  1534. if (!err) {
  1535. br_write_lock(&vfsmount_lock);
  1536. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  1537. mnt->mnt.mnt_flags = mnt_flags;
  1538. br_write_unlock(&vfsmount_lock);
  1539. }
  1540. up_write(&sb->s_umount);
  1541. if (!err) {
  1542. br_write_lock(&vfsmount_lock);
  1543. touch_mnt_namespace(mnt->mnt_ns);
  1544. br_write_unlock(&vfsmount_lock);
  1545. }
  1546. return err;
  1547. }
  1548. static inline int tree_contains_unbindable(struct mount *mnt)
  1549. {
  1550. struct mount *p;
  1551. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1552. if (IS_MNT_UNBINDABLE(p))
  1553. return 1;
  1554. }
  1555. return 0;
  1556. }
  1557. static int do_move_mount(struct path *path, const char *old_name)
  1558. {
  1559. struct path old_path, parent_path;
  1560. struct mount *p;
  1561. struct mount *old;
  1562. int err = 0;
  1563. if (!ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
  1564. return -EPERM;
  1565. if (!old_name || !*old_name)
  1566. return -EINVAL;
  1567. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1568. if (err)
  1569. return err;
  1570. err = lock_mount(path);
  1571. if (err < 0)
  1572. goto out;
  1573. old = real_mount(old_path.mnt);
  1574. p = real_mount(path->mnt);
  1575. err = -EINVAL;
  1576. if (!check_mnt(p) || !check_mnt(old))
  1577. goto out1;
  1578. if (d_unlinked(path->dentry))
  1579. goto out1;
  1580. err = -EINVAL;
  1581. if (old_path.dentry != old_path.mnt->mnt_root)
  1582. goto out1;
  1583. if (!mnt_has_parent(old))
  1584. goto out1;
  1585. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1586. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1587. goto out1;
  1588. /*
  1589. * Don't move a mount residing in a shared parent.
  1590. */
  1591. if (IS_MNT_SHARED(old->mnt_parent))
  1592. goto out1;
  1593. /*
  1594. * Don't move a mount tree containing unbindable mounts to a destination
  1595. * mount which is shared.
  1596. */
  1597. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1598. goto out1;
  1599. err = -ELOOP;
  1600. for (; mnt_has_parent(p); p = p->mnt_parent)
  1601. if (p == old)
  1602. goto out1;
  1603. err = attach_recursive_mnt(old, path, &parent_path);
  1604. if (err)
  1605. goto out1;
  1606. /* if the mount is moved, it should no longer be expire
  1607. * automatically */
  1608. list_del_init(&old->mnt_expire);
  1609. out1:
  1610. unlock_mount(path);
  1611. out:
  1612. if (!err)
  1613. path_put(&parent_path);
  1614. path_put(&old_path);
  1615. return err;
  1616. }
  1617. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1618. {
  1619. int err;
  1620. const char *subtype = strchr(fstype, '.');
  1621. if (subtype) {
  1622. subtype++;
  1623. err = -EINVAL;
  1624. if (!subtype[0])
  1625. goto err;
  1626. } else
  1627. subtype = "";
  1628. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1629. err = -ENOMEM;
  1630. if (!mnt->mnt_sb->s_subtype)
  1631. goto err;
  1632. return mnt;
  1633. err:
  1634. mntput(mnt);
  1635. return ERR_PTR(err);
  1636. }
  1637. /*
  1638. * add a mount into a namespace's mount tree
  1639. */
  1640. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1641. {
  1642. int err;
  1643. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  1644. err = lock_mount(path);
  1645. if (err)
  1646. return err;
  1647. err = -EINVAL;
  1648. if (unlikely(!check_mnt(real_mount(path->mnt)))) {
  1649. /* that's acceptable only for automounts done in private ns */
  1650. if (!(mnt_flags & MNT_SHRINKABLE))
  1651. goto unlock;
  1652. /* ... and for those we'd better have mountpoint still alive */
  1653. if (!real_mount(path->mnt)->mnt_ns)
  1654. goto unlock;
  1655. }
  1656. /* Refuse the same filesystem on the same mount point */
  1657. err = -EBUSY;
  1658. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1659. path->mnt->mnt_root == path->dentry)
  1660. goto unlock;
  1661. err = -EINVAL;
  1662. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1663. goto unlock;
  1664. newmnt->mnt.mnt_flags = mnt_flags;
  1665. err = graft_tree(newmnt, path);
  1666. unlock:
  1667. unlock_mount(path);
  1668. return err;
  1669. }
  1670. /*
  1671. * create a new mount for userspace and request it to be added into the
  1672. * namespace's tree
  1673. */
  1674. static int do_new_mount(struct path *path, const char *fstype, int flags,
  1675. int mnt_flags, const char *name, void *data)
  1676. {
  1677. struct file_system_type *type;
  1678. struct user_namespace *user_ns;
  1679. struct vfsmount *mnt;
  1680. int err;
  1681. if (!fstype)
  1682. return -EINVAL;
  1683. /* we need capabilities... */
  1684. user_ns = real_mount(path->mnt)->mnt_ns->user_ns;
  1685. if (!ns_capable(user_ns, CAP_SYS_ADMIN))
  1686. return -EPERM;
  1687. type = get_fs_type(fstype);
  1688. if (!type)
  1689. return -ENODEV;
  1690. if (user_ns != &init_user_ns) {
  1691. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  1692. put_filesystem(type);
  1693. return -EPERM;
  1694. }
  1695. /* Only in special cases allow devices from mounts
  1696. * created outside the initial user namespace.
  1697. */
  1698. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1699. flags |= MS_NODEV;
  1700. mnt_flags |= MNT_NODEV;
  1701. }
  1702. }
  1703. mnt = vfs_kern_mount(type, flags, name, data);
  1704. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1705. !mnt->mnt_sb->s_subtype)
  1706. mnt = fs_set_subtype(mnt, fstype);
  1707. put_filesystem(type);
  1708. if (IS_ERR(mnt))
  1709. return PTR_ERR(mnt);
  1710. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1711. if (err)
  1712. mntput(mnt);
  1713. return err;
  1714. }
  1715. int finish_automount(struct vfsmount *m, struct path *path)
  1716. {
  1717. struct mount *mnt = real_mount(m);
  1718. int err;
  1719. /* The new mount record should have at least 2 refs to prevent it being
  1720. * expired before we get a chance to add it
  1721. */
  1722. BUG_ON(mnt_get_count(mnt) < 2);
  1723. if (m->mnt_sb == path->mnt->mnt_sb &&
  1724. m->mnt_root == path->dentry) {
  1725. err = -ELOOP;
  1726. goto fail;
  1727. }
  1728. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1729. if (!err)
  1730. return 0;
  1731. fail:
  1732. /* remove m from any expiration list it may be on */
  1733. if (!list_empty(&mnt->mnt_expire)) {
  1734. down_write(&namespace_sem);
  1735. br_write_lock(&vfsmount_lock);
  1736. list_del_init(&mnt->mnt_expire);
  1737. br_write_unlock(&vfsmount_lock);
  1738. up_write(&namespace_sem);
  1739. }
  1740. mntput(m);
  1741. mntput(m);
  1742. return err;
  1743. }
  1744. /**
  1745. * mnt_set_expiry - Put a mount on an expiration list
  1746. * @mnt: The mount to list.
  1747. * @expiry_list: The list to add the mount to.
  1748. */
  1749. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1750. {
  1751. down_write(&namespace_sem);
  1752. br_write_lock(&vfsmount_lock);
  1753. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1754. br_write_unlock(&vfsmount_lock);
  1755. up_write(&namespace_sem);
  1756. }
  1757. EXPORT_SYMBOL(mnt_set_expiry);
  1758. /*
  1759. * process a list of expirable mountpoints with the intent of discarding any
  1760. * mountpoints that aren't in use and haven't been touched since last we came
  1761. * here
  1762. */
  1763. void mark_mounts_for_expiry(struct list_head *mounts)
  1764. {
  1765. struct mount *mnt, *next;
  1766. LIST_HEAD(graveyard);
  1767. LIST_HEAD(umounts);
  1768. if (list_empty(mounts))
  1769. return;
  1770. down_write(&namespace_sem);
  1771. br_write_lock(&vfsmount_lock);
  1772. /* extract from the expiration list every vfsmount that matches the
  1773. * following criteria:
  1774. * - only referenced by its parent vfsmount
  1775. * - still marked for expiry (marked on the last call here; marks are
  1776. * cleared by mntput())
  1777. */
  1778. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1779. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1780. propagate_mount_busy(mnt, 1))
  1781. continue;
  1782. list_move(&mnt->mnt_expire, &graveyard);
  1783. }
  1784. while (!list_empty(&graveyard)) {
  1785. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1786. touch_mnt_namespace(mnt->mnt_ns);
  1787. umount_tree(mnt, 1, &umounts);
  1788. }
  1789. br_write_unlock(&vfsmount_lock);
  1790. up_write(&namespace_sem);
  1791. release_mounts(&umounts);
  1792. }
  1793. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1794. /*
  1795. * Ripoff of 'select_parent()'
  1796. *
  1797. * search the list of submounts for a given mountpoint, and move any
  1798. * shrinkable submounts to the 'graveyard' list.
  1799. */
  1800. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1801. {
  1802. struct mount *this_parent = parent;
  1803. struct list_head *next;
  1804. int found = 0;
  1805. repeat:
  1806. next = this_parent->mnt_mounts.next;
  1807. resume:
  1808. while (next != &this_parent->mnt_mounts) {
  1809. struct list_head *tmp = next;
  1810. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1811. next = tmp->next;
  1812. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1813. continue;
  1814. /*
  1815. * Descend a level if the d_mounts list is non-empty.
  1816. */
  1817. if (!list_empty(&mnt->mnt_mounts)) {
  1818. this_parent = mnt;
  1819. goto repeat;
  1820. }
  1821. if (!propagate_mount_busy(mnt, 1)) {
  1822. list_move_tail(&mnt->mnt_expire, graveyard);
  1823. found++;
  1824. }
  1825. }
  1826. /*
  1827. * All done at this level ... ascend and resume the search
  1828. */
  1829. if (this_parent != parent) {
  1830. next = this_parent->mnt_child.next;
  1831. this_parent = this_parent->mnt_parent;
  1832. goto resume;
  1833. }
  1834. return found;
  1835. }
  1836. /*
  1837. * process a list of expirable mountpoints with the intent of discarding any
  1838. * submounts of a specific parent mountpoint
  1839. *
  1840. * vfsmount_lock must be held for write
  1841. */
  1842. static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
  1843. {
  1844. LIST_HEAD(graveyard);
  1845. struct mount *m;
  1846. /* extract submounts of 'mountpoint' from the expiration list */
  1847. while (select_submounts(mnt, &graveyard)) {
  1848. while (!list_empty(&graveyard)) {
  1849. m = list_first_entry(&graveyard, struct mount,
  1850. mnt_expire);
  1851. touch_mnt_namespace(m->mnt_ns);
  1852. umount_tree(m, 1, umounts);
  1853. }
  1854. }
  1855. }
  1856. /*
  1857. * Some copy_from_user() implementations do not return the exact number of
  1858. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1859. * Note that this function differs from copy_from_user() in that it will oops
  1860. * on bad values of `to', rather than returning a short copy.
  1861. */
  1862. static long exact_copy_from_user(void *to, const void __user * from,
  1863. unsigned long n)
  1864. {
  1865. char *t = to;
  1866. const char __user *f = from;
  1867. char c;
  1868. if (!access_ok(VERIFY_READ, from, n))
  1869. return n;
  1870. while (n) {
  1871. if (__get_user(c, f)) {
  1872. memset(t, 0, n);
  1873. break;
  1874. }
  1875. *t++ = c;
  1876. f++;
  1877. n--;
  1878. }
  1879. return n;
  1880. }
  1881. int copy_mount_options(const void __user * data, unsigned long *where)
  1882. {
  1883. int i;
  1884. unsigned long page;
  1885. unsigned long size;
  1886. *where = 0;
  1887. if (!data)
  1888. return 0;
  1889. if (!(page = __get_free_page(GFP_KERNEL)))
  1890. return -ENOMEM;
  1891. /* We only care that *some* data at the address the user
  1892. * gave us is valid. Just in case, we'll zero
  1893. * the remainder of the page.
  1894. */
  1895. /* copy_from_user cannot cross TASK_SIZE ! */
  1896. size = TASK_SIZE - (unsigned long)data;
  1897. if (size > PAGE_SIZE)
  1898. size = PAGE_SIZE;
  1899. i = size - exact_copy_from_user((void *)page, data, size);
  1900. if (!i) {
  1901. free_page(page);
  1902. return -EFAULT;
  1903. }
  1904. if (i != PAGE_SIZE)
  1905. memset((char *)page + i, 0, PAGE_SIZE - i);
  1906. *where = page;
  1907. return 0;
  1908. }
  1909. int copy_mount_string(const void __user *data, char **where)
  1910. {
  1911. char *tmp;
  1912. if (!data) {
  1913. *where = NULL;
  1914. return 0;
  1915. }
  1916. tmp = strndup_user(data, PAGE_SIZE);
  1917. if (IS_ERR(tmp))
  1918. return PTR_ERR(tmp);
  1919. *where = tmp;
  1920. return 0;
  1921. }
  1922. /*
  1923. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1924. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1925. *
  1926. * data is a (void *) that can point to any structure up to
  1927. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1928. * information (or be NULL).
  1929. *
  1930. * Pre-0.97 versions of mount() didn't have a flags word.
  1931. * When the flags word was introduced its top half was required
  1932. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1933. * Therefore, if this magic number is present, it carries no information
  1934. * and must be discarded.
  1935. */
  1936. long do_mount(const char *dev_name, const char *dir_name,
  1937. const char *type_page, unsigned long flags, void *data_page)
  1938. {
  1939. struct path path;
  1940. int retval = 0;
  1941. int mnt_flags = 0;
  1942. /* Discard magic */
  1943. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1944. flags &= ~MS_MGC_MSK;
  1945. /* Basic sanity checks */
  1946. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1947. return -EINVAL;
  1948. if (data_page)
  1949. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1950. /* ... and get the mountpoint */
  1951. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1952. if (retval)
  1953. return retval;
  1954. retval = security_sb_mount(dev_name, &path,
  1955. type_page, flags, data_page);
  1956. if (retval)
  1957. goto dput_out;
  1958. /* Default to relatime unless overriden */
  1959. if (!(flags & MS_NOATIME))
  1960. mnt_flags |= MNT_RELATIME;
  1961. /* Separate the per-mountpoint flags */
  1962. if (flags & MS_NOSUID)
  1963. mnt_flags |= MNT_NOSUID;
  1964. if (flags & MS_NODEV)
  1965. mnt_flags |= MNT_NODEV;
  1966. if (flags & MS_NOEXEC)
  1967. mnt_flags |= MNT_NOEXEC;
  1968. if (flags & MS_NOATIME)
  1969. mnt_flags |= MNT_NOATIME;
  1970. if (flags & MS_NODIRATIME)
  1971. mnt_flags |= MNT_NODIRATIME;
  1972. if (flags & MS_STRICTATIME)
  1973. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  1974. if (flags & MS_RDONLY)
  1975. mnt_flags |= MNT_READONLY;
  1976. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  1977. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  1978. MS_STRICTATIME);
  1979. if (flags & MS_REMOUNT)
  1980. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  1981. data_page);
  1982. else if (flags & MS_BIND)
  1983. retval = do_loopback(&path, dev_name, flags & MS_REC);
  1984. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1985. retval = do_change_type(&path, flags);
  1986. else if (flags & MS_MOVE)
  1987. retval = do_move_mount(&path, dev_name);
  1988. else
  1989. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  1990. dev_name, data_page);
  1991. dput_out:
  1992. path_put(&path);
  1993. return retval;
  1994. }
  1995. static void free_mnt_ns(struct mnt_namespace *ns)
  1996. {
  1997. proc_free_inum(ns->proc_inum);
  1998. put_user_ns(ns->user_ns);
  1999. kfree(ns);
  2000. }
  2001. /*
  2002. * Assign a sequence number so we can detect when we attempt to bind
  2003. * mount a reference to an older mount namespace into the current
  2004. * mount namespace, preventing reference counting loops. A 64bit
  2005. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2006. * is effectively never, so we can ignore the possibility.
  2007. */
  2008. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2009. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2010. {
  2011. struct mnt_namespace *new_ns;
  2012. int ret;
  2013. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2014. if (!new_ns)
  2015. return ERR_PTR(-ENOMEM);
  2016. ret = proc_alloc_inum(&new_ns->proc_inum);
  2017. if (ret) {
  2018. kfree(new_ns);
  2019. return ERR_PTR(ret);
  2020. }
  2021. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2022. atomic_set(&new_ns->count, 1);
  2023. new_ns->root = NULL;
  2024. INIT_LIST_HEAD(&new_ns->list);
  2025. init_waitqueue_head(&new_ns->poll);
  2026. new_ns->event = 0;
  2027. new_ns->user_ns = get_user_ns(user_ns);
  2028. return new_ns;
  2029. }
  2030. /*
  2031. * Allocate a new namespace structure and populate it with contents
  2032. * copied from the namespace of the passed in task structure.
  2033. */
  2034. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2035. struct user_namespace *user_ns, struct fs_struct *fs)
  2036. {
  2037. struct mnt_namespace *new_ns;
  2038. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2039. struct mount *p, *q;
  2040. struct mount *old = mnt_ns->root;
  2041. struct mount *new;
  2042. int copy_flags;
  2043. new_ns = alloc_mnt_ns(user_ns);
  2044. if (IS_ERR(new_ns))
  2045. return new_ns;
  2046. down_write(&namespace_sem);
  2047. /* First pass: copy the tree topology */
  2048. copy_flags = CL_COPY_ALL | CL_EXPIRE;
  2049. if (user_ns != mnt_ns->user_ns)
  2050. copy_flags |= CL_SHARED_TO_SLAVE;
  2051. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2052. if (IS_ERR(new)) {
  2053. up_write(&namespace_sem);
  2054. free_mnt_ns(new_ns);
  2055. return ERR_CAST(new);
  2056. }
  2057. new_ns->root = new;
  2058. br_write_lock(&vfsmount_lock);
  2059. list_add_tail(&new_ns->list, &new->mnt_list);
  2060. br_write_unlock(&vfsmount_lock);
  2061. /*
  2062. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2063. * as belonging to new namespace. We have already acquired a private
  2064. * fs_struct, so tsk->fs->lock is not needed.
  2065. */
  2066. p = old;
  2067. q = new;
  2068. while (p) {
  2069. q->mnt_ns = new_ns;
  2070. if (fs) {
  2071. if (&p->mnt == fs->root.mnt) {
  2072. fs->root.mnt = mntget(&q->mnt);
  2073. rootmnt = &p->mnt;
  2074. }
  2075. if (&p->mnt == fs->pwd.mnt) {
  2076. fs->pwd.mnt = mntget(&q->mnt);
  2077. pwdmnt = &p->mnt;
  2078. }
  2079. }
  2080. p = next_mnt(p, old);
  2081. q = next_mnt(q, new);
  2082. }
  2083. up_write(&namespace_sem);
  2084. if (rootmnt)
  2085. mntput(rootmnt);
  2086. if (pwdmnt)
  2087. mntput(pwdmnt);
  2088. return new_ns;
  2089. }
  2090. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2091. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2092. {
  2093. struct mnt_namespace *new_ns;
  2094. BUG_ON(!ns);
  2095. get_mnt_ns(ns);
  2096. if (!(flags & CLONE_NEWNS))
  2097. return ns;
  2098. new_ns = dup_mnt_ns(ns, user_ns, new_fs);
  2099. put_mnt_ns(ns);
  2100. return new_ns;
  2101. }
  2102. /**
  2103. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2104. * @mnt: pointer to the new root filesystem mountpoint
  2105. */
  2106. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2107. {
  2108. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2109. if (!IS_ERR(new_ns)) {
  2110. struct mount *mnt = real_mount(m);
  2111. mnt->mnt_ns = new_ns;
  2112. new_ns->root = mnt;
  2113. list_add(&new_ns->list, &mnt->mnt_list);
  2114. } else {
  2115. mntput(m);
  2116. }
  2117. return new_ns;
  2118. }
  2119. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2120. {
  2121. struct mnt_namespace *ns;
  2122. struct super_block *s;
  2123. struct path path;
  2124. int err;
  2125. ns = create_mnt_ns(mnt);
  2126. if (IS_ERR(ns))
  2127. return ERR_CAST(ns);
  2128. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2129. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2130. put_mnt_ns(ns);
  2131. if (err)
  2132. return ERR_PTR(err);
  2133. /* trade a vfsmount reference for active sb one */
  2134. s = path.mnt->mnt_sb;
  2135. atomic_inc(&s->s_active);
  2136. mntput(path.mnt);
  2137. /* lock the sucker */
  2138. down_write(&s->s_umount);
  2139. /* ... and return the root of (sub)tree on it */
  2140. return path.dentry;
  2141. }
  2142. EXPORT_SYMBOL(mount_subtree);
  2143. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2144. char __user *, type, unsigned long, flags, void __user *, data)
  2145. {
  2146. int ret;
  2147. char *kernel_type;
  2148. char *kernel_dir;
  2149. char *kernel_dev;
  2150. unsigned long data_page;
  2151. ret = copy_mount_string(type, &kernel_type);
  2152. if (ret < 0)
  2153. goto out_type;
  2154. kernel_dir = getname(dir_name);
  2155. if (IS_ERR(kernel_dir)) {
  2156. ret = PTR_ERR(kernel_dir);
  2157. goto out_dir;
  2158. }
  2159. ret = copy_mount_string(dev_name, &kernel_dev);
  2160. if (ret < 0)
  2161. goto out_dev;
  2162. ret = copy_mount_options(data, &data_page);
  2163. if (ret < 0)
  2164. goto out_data;
  2165. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  2166. (void *) data_page);
  2167. free_page(data_page);
  2168. out_data:
  2169. kfree(kernel_dev);
  2170. out_dev:
  2171. putname(kernel_dir);
  2172. out_dir:
  2173. kfree(kernel_type);
  2174. out_type:
  2175. return ret;
  2176. }
  2177. /*
  2178. * Return true if path is reachable from root
  2179. *
  2180. * namespace_sem or vfsmount_lock is held
  2181. */
  2182. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2183. const struct path *root)
  2184. {
  2185. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2186. dentry = mnt->mnt_mountpoint;
  2187. mnt = mnt->mnt_parent;
  2188. }
  2189. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2190. }
  2191. int path_is_under(struct path *path1, struct path *path2)
  2192. {
  2193. int res;
  2194. br_read_lock(&vfsmount_lock);
  2195. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2196. br_read_unlock(&vfsmount_lock);
  2197. return res;
  2198. }
  2199. EXPORT_SYMBOL(path_is_under);
  2200. /*
  2201. * pivot_root Semantics:
  2202. * Moves the root file system of the current process to the directory put_old,
  2203. * makes new_root as the new root file system of the current process, and sets
  2204. * root/cwd of all processes which had them on the current root to new_root.
  2205. *
  2206. * Restrictions:
  2207. * The new_root and put_old must be directories, and must not be on the
  2208. * same file system as the current process root. The put_old must be
  2209. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2210. * pointed to by put_old must yield the same directory as new_root. No other
  2211. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2212. *
  2213. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2214. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2215. * in this situation.
  2216. *
  2217. * Notes:
  2218. * - we don't move root/cwd if they are not at the root (reason: if something
  2219. * cared enough to change them, it's probably wrong to force them elsewhere)
  2220. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2221. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2222. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2223. * first.
  2224. */
  2225. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2226. const char __user *, put_old)
  2227. {
  2228. struct path new, old, parent_path, root_parent, root;
  2229. struct mount *new_mnt, *root_mnt;
  2230. int error;
  2231. if (!ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN))
  2232. return -EPERM;
  2233. error = user_path_dir(new_root, &new);
  2234. if (error)
  2235. goto out0;
  2236. error = user_path_dir(put_old, &old);
  2237. if (error)
  2238. goto out1;
  2239. error = security_sb_pivotroot(&old, &new);
  2240. if (error)
  2241. goto out2;
  2242. get_fs_root(current->fs, &root);
  2243. error = lock_mount(&old);
  2244. if (error)
  2245. goto out3;
  2246. error = -EINVAL;
  2247. new_mnt = real_mount(new.mnt);
  2248. root_mnt = real_mount(root.mnt);
  2249. if (IS_MNT_SHARED(real_mount(old.mnt)) ||
  2250. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2251. IS_MNT_SHARED(root_mnt->mnt_parent))
  2252. goto out4;
  2253. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2254. goto out4;
  2255. error = -ENOENT;
  2256. if (d_unlinked(new.dentry))
  2257. goto out4;
  2258. if (d_unlinked(old.dentry))
  2259. goto out4;
  2260. error = -EBUSY;
  2261. if (new.mnt == root.mnt ||
  2262. old.mnt == root.mnt)
  2263. goto out4; /* loop, on the same file system */
  2264. error = -EINVAL;
  2265. if (root.mnt->mnt_root != root.dentry)
  2266. goto out4; /* not a mountpoint */
  2267. if (!mnt_has_parent(root_mnt))
  2268. goto out4; /* not attached */
  2269. if (new.mnt->mnt_root != new.dentry)
  2270. goto out4; /* not a mountpoint */
  2271. if (!mnt_has_parent(new_mnt))
  2272. goto out4; /* not attached */
  2273. /* make sure we can reach put_old from new_root */
  2274. if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
  2275. goto out4;
  2276. /* make certain new is below the root */
  2277. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2278. goto out4;
  2279. br_write_lock(&vfsmount_lock);
  2280. detach_mnt(new_mnt, &parent_path);
  2281. detach_mnt(root_mnt, &root_parent);
  2282. /* mount old root on put_old */
  2283. attach_mnt(root_mnt, &old);
  2284. /* mount new_root on / */
  2285. attach_mnt(new_mnt, &root_parent);
  2286. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2287. br_write_unlock(&vfsmount_lock);
  2288. chroot_fs_refs(&root, &new);
  2289. error = 0;
  2290. out4:
  2291. unlock_mount(&old);
  2292. if (!error) {
  2293. path_put(&root_parent);
  2294. path_put(&parent_path);
  2295. }
  2296. out3:
  2297. path_put(&root);
  2298. out2:
  2299. path_put(&old);
  2300. out1:
  2301. path_put(&new);
  2302. out0:
  2303. return error;
  2304. }
  2305. static void __init init_mount_tree(void)
  2306. {
  2307. struct vfsmount *mnt;
  2308. struct mnt_namespace *ns;
  2309. struct path root;
  2310. struct file_system_type *type;
  2311. type = get_fs_type("rootfs");
  2312. if (!type)
  2313. panic("Can't find rootfs type");
  2314. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2315. put_filesystem(type);
  2316. if (IS_ERR(mnt))
  2317. panic("Can't create rootfs");
  2318. ns = create_mnt_ns(mnt);
  2319. if (IS_ERR(ns))
  2320. panic("Can't allocate initial namespace");
  2321. init_task.nsproxy->mnt_ns = ns;
  2322. get_mnt_ns(ns);
  2323. root.mnt = mnt;
  2324. root.dentry = mnt->mnt_root;
  2325. set_fs_pwd(current->fs, &root);
  2326. set_fs_root(current->fs, &root);
  2327. }
  2328. void __init mnt_init(void)
  2329. {
  2330. unsigned u;
  2331. int err;
  2332. init_rwsem(&namespace_sem);
  2333. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2334. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2335. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2336. if (!mount_hashtable)
  2337. panic("Failed to allocate mount hash table\n");
  2338. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2339. for (u = 0; u < HASH_SIZE; u++)
  2340. INIT_LIST_HEAD(&mount_hashtable[u]);
  2341. br_lock_init(&vfsmount_lock);
  2342. err = sysfs_init();
  2343. if (err)
  2344. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2345. __func__, err);
  2346. fs_kobj = kobject_create_and_add("fs", NULL);
  2347. if (!fs_kobj)
  2348. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2349. init_rootfs();
  2350. init_mount_tree();
  2351. }
  2352. void put_mnt_ns(struct mnt_namespace *ns)
  2353. {
  2354. LIST_HEAD(umount_list);
  2355. if (!atomic_dec_and_test(&ns->count))
  2356. return;
  2357. down_write(&namespace_sem);
  2358. br_write_lock(&vfsmount_lock);
  2359. umount_tree(ns->root, 0, &umount_list);
  2360. br_write_unlock(&vfsmount_lock);
  2361. up_write(&namespace_sem);
  2362. release_mounts(&umount_list);
  2363. free_mnt_ns(ns);
  2364. }
  2365. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2366. {
  2367. struct vfsmount *mnt;
  2368. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2369. if (!IS_ERR(mnt)) {
  2370. /*
  2371. * it is a longterm mount, don't release mnt until
  2372. * we unmount before file sys is unregistered
  2373. */
  2374. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2375. }
  2376. return mnt;
  2377. }
  2378. EXPORT_SYMBOL_GPL(kern_mount_data);
  2379. void kern_unmount(struct vfsmount *mnt)
  2380. {
  2381. /* release long term mount so mount point can be released */
  2382. if (!IS_ERR_OR_NULL(mnt)) {
  2383. br_write_lock(&vfsmount_lock);
  2384. real_mount(mnt)->mnt_ns = NULL;
  2385. br_write_unlock(&vfsmount_lock);
  2386. mntput(mnt);
  2387. }
  2388. }
  2389. EXPORT_SYMBOL(kern_unmount);
  2390. bool our_mnt(struct vfsmount *mnt)
  2391. {
  2392. return check_mnt(real_mount(mnt));
  2393. }
  2394. static void *mntns_get(struct task_struct *task)
  2395. {
  2396. struct mnt_namespace *ns = NULL;
  2397. struct nsproxy *nsproxy;
  2398. rcu_read_lock();
  2399. nsproxy = task_nsproxy(task);
  2400. if (nsproxy) {
  2401. ns = nsproxy->mnt_ns;
  2402. get_mnt_ns(ns);
  2403. }
  2404. rcu_read_unlock();
  2405. return ns;
  2406. }
  2407. static void mntns_put(void *ns)
  2408. {
  2409. put_mnt_ns(ns);
  2410. }
  2411. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2412. {
  2413. struct fs_struct *fs = current->fs;
  2414. struct mnt_namespace *mnt_ns = ns;
  2415. struct path root;
  2416. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2417. !nsown_capable(CAP_SYS_CHROOT))
  2418. return -EINVAL;
  2419. if (fs->users != 1)
  2420. return -EINVAL;
  2421. get_mnt_ns(mnt_ns);
  2422. put_mnt_ns(nsproxy->mnt_ns);
  2423. nsproxy->mnt_ns = mnt_ns;
  2424. /* Find the root */
  2425. root.mnt = &mnt_ns->root->mnt;
  2426. root.dentry = mnt_ns->root->mnt.mnt_root;
  2427. path_get(&root);
  2428. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2429. ;
  2430. /* Update the pwd and root */
  2431. set_fs_pwd(fs, &root);
  2432. set_fs_root(fs, &root);
  2433. path_put(&root);
  2434. return 0;
  2435. }
  2436. static unsigned int mntns_inum(void *ns)
  2437. {
  2438. struct mnt_namespace *mnt_ns = ns;
  2439. return mnt_ns->proc_inum;
  2440. }
  2441. const struct proc_ns_operations mntns_operations = {
  2442. .name = "mnt",
  2443. .type = CLONE_NEWNS,
  2444. .get = mntns_get,
  2445. .put = mntns_put,
  2446. .install = mntns_install,
  2447. .inum = mntns_inum,
  2448. };