inode.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/highuid.h>
  25. #include <linux/quotaops.h>
  26. #include <linux/writeback.h>
  27. #include <linux/mpage.h>
  28. #include <linux/namei.h>
  29. #include "ext3.h"
  30. #include "xattr.h"
  31. #include "acl.h"
  32. static int ext3_writepage_trans_blocks(struct inode *inode);
  33. static int ext3_block_truncate_page(struct inode *inode, loff_t from);
  34. /*
  35. * Test whether an inode is a fast symlink.
  36. */
  37. static int ext3_inode_is_fast_symlink(struct inode *inode)
  38. {
  39. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  40. (inode->i_sb->s_blocksize >> 9) : 0;
  41. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  42. }
  43. /*
  44. * The ext3 forget function must perform a revoke if we are freeing data
  45. * which has been journaled. Metadata (eg. indirect blocks) must be
  46. * revoked in all cases.
  47. *
  48. * "bh" may be NULL: a metadata block may have been freed from memory
  49. * but there may still be a record of it in the journal, and that record
  50. * still needs to be revoked.
  51. */
  52. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  53. struct buffer_head *bh, ext3_fsblk_t blocknr)
  54. {
  55. int err;
  56. might_sleep();
  57. trace_ext3_forget(inode, is_metadata, blocknr);
  58. BUFFER_TRACE(bh, "enter");
  59. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  60. "data mode %lx\n",
  61. bh, is_metadata, inode->i_mode,
  62. test_opt(inode->i_sb, DATA_FLAGS));
  63. /* Never use the revoke function if we are doing full data
  64. * journaling: there is no need to, and a V1 superblock won't
  65. * support it. Otherwise, only skip the revoke on un-journaled
  66. * data blocks. */
  67. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  68. (!is_metadata && !ext3_should_journal_data(inode))) {
  69. if (bh) {
  70. BUFFER_TRACE(bh, "call journal_forget");
  71. return ext3_journal_forget(handle, bh);
  72. }
  73. return 0;
  74. }
  75. /*
  76. * data!=journal && (is_metadata || should_journal_data(inode))
  77. */
  78. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  79. err = ext3_journal_revoke(handle, blocknr, bh);
  80. if (err)
  81. ext3_abort(inode->i_sb, __func__,
  82. "error %d when attempting revoke", err);
  83. BUFFER_TRACE(bh, "exit");
  84. return err;
  85. }
  86. /*
  87. * Work out how many blocks we need to proceed with the next chunk of a
  88. * truncate transaction.
  89. */
  90. static unsigned long blocks_for_truncate(struct inode *inode)
  91. {
  92. unsigned long needed;
  93. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  94. /* Give ourselves just enough room to cope with inodes in which
  95. * i_blocks is corrupt: we've seen disk corruptions in the past
  96. * which resulted in random data in an inode which looked enough
  97. * like a regular file for ext3 to try to delete it. Things
  98. * will go a bit crazy if that happens, but at least we should
  99. * try not to panic the whole kernel. */
  100. if (needed < 2)
  101. needed = 2;
  102. /* But we need to bound the transaction so we don't overflow the
  103. * journal. */
  104. if (needed > EXT3_MAX_TRANS_DATA)
  105. needed = EXT3_MAX_TRANS_DATA;
  106. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  107. }
  108. /*
  109. * Truncate transactions can be complex and absolutely huge. So we need to
  110. * be able to restart the transaction at a conventient checkpoint to make
  111. * sure we don't overflow the journal.
  112. *
  113. * start_transaction gets us a new handle for a truncate transaction,
  114. * and extend_transaction tries to extend the existing one a bit. If
  115. * extend fails, we need to propagate the failure up and restart the
  116. * transaction in the top-level truncate loop. --sct
  117. */
  118. static handle_t *start_transaction(struct inode *inode)
  119. {
  120. handle_t *result;
  121. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  122. if (!IS_ERR(result))
  123. return result;
  124. ext3_std_error(inode->i_sb, PTR_ERR(result));
  125. return result;
  126. }
  127. /*
  128. * Try to extend this transaction for the purposes of truncation.
  129. *
  130. * Returns 0 if we managed to create more room. If we can't create more
  131. * room, and the transaction must be restarted we return 1.
  132. */
  133. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  134. {
  135. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  136. return 0;
  137. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  138. return 0;
  139. return 1;
  140. }
  141. /*
  142. * Restart the transaction associated with *handle. This does a commit,
  143. * so before we call here everything must be consistently dirtied against
  144. * this transaction.
  145. */
  146. static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  147. {
  148. int ret;
  149. jbd_debug(2, "restarting handle %p\n", handle);
  150. /*
  151. * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  152. * At this moment, get_block can be called only for blocks inside
  153. * i_size since page cache has been already dropped and writes are
  154. * blocked by i_mutex. So we can safely drop the truncate_mutex.
  155. */
  156. mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  157. ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  158. mutex_lock(&EXT3_I(inode)->truncate_mutex);
  159. return ret;
  160. }
  161. /*
  162. * Called at inode eviction from icache
  163. */
  164. void ext3_evict_inode (struct inode *inode)
  165. {
  166. struct ext3_inode_info *ei = EXT3_I(inode);
  167. struct ext3_block_alloc_info *rsv;
  168. handle_t *handle;
  169. int want_delete = 0;
  170. trace_ext3_evict_inode(inode);
  171. if (!inode->i_nlink && !is_bad_inode(inode)) {
  172. dquot_initialize(inode);
  173. want_delete = 1;
  174. }
  175. /*
  176. * When journalling data dirty buffers are tracked only in the journal.
  177. * So although mm thinks everything is clean and ready for reaping the
  178. * inode might still have some pages to write in the running
  179. * transaction or waiting to be checkpointed. Thus calling
  180. * journal_invalidatepage() (via truncate_inode_pages()) to discard
  181. * these buffers can cause data loss. Also even if we did not discard
  182. * these buffers, we would have no way to find them after the inode
  183. * is reaped and thus user could see stale data if he tries to read
  184. * them before the transaction is checkpointed. So be careful and
  185. * force everything to disk here... We use ei->i_datasync_tid to
  186. * store the newest transaction containing inode's data.
  187. *
  188. * Note that directories do not have this problem because they don't
  189. * use page cache.
  190. *
  191. * The s_journal check handles the case when ext3_get_journal() fails
  192. * and puts the journal inode.
  193. */
  194. if (inode->i_nlink && ext3_should_journal_data(inode) &&
  195. EXT3_SB(inode->i_sb)->s_journal &&
  196. (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
  197. inode->i_ino != EXT3_JOURNAL_INO) {
  198. tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
  199. journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
  200. log_start_commit(journal, commit_tid);
  201. log_wait_commit(journal, commit_tid);
  202. filemap_write_and_wait(&inode->i_data);
  203. }
  204. truncate_inode_pages(&inode->i_data, 0);
  205. ext3_discard_reservation(inode);
  206. rsv = ei->i_block_alloc_info;
  207. ei->i_block_alloc_info = NULL;
  208. if (unlikely(rsv))
  209. kfree(rsv);
  210. if (!want_delete)
  211. goto no_delete;
  212. handle = start_transaction(inode);
  213. if (IS_ERR(handle)) {
  214. /*
  215. * If we're going to skip the normal cleanup, we still need to
  216. * make sure that the in-core orphan linked list is properly
  217. * cleaned up.
  218. */
  219. ext3_orphan_del(NULL, inode);
  220. goto no_delete;
  221. }
  222. if (IS_SYNC(inode))
  223. handle->h_sync = 1;
  224. inode->i_size = 0;
  225. if (inode->i_blocks)
  226. ext3_truncate(inode);
  227. /*
  228. * Kill off the orphan record created when the inode lost the last
  229. * link. Note that ext3_orphan_del() has to be able to cope with the
  230. * deletion of a non-existent orphan - ext3_truncate() could
  231. * have removed the record.
  232. */
  233. ext3_orphan_del(handle, inode);
  234. ei->i_dtime = get_seconds();
  235. /*
  236. * One subtle ordering requirement: if anything has gone wrong
  237. * (transaction abort, IO errors, whatever), then we can still
  238. * do these next steps (the fs will already have been marked as
  239. * having errors), but we can't free the inode if the mark_dirty
  240. * fails.
  241. */
  242. if (ext3_mark_inode_dirty(handle, inode)) {
  243. /* If that failed, just dquot_drop() and be done with that */
  244. dquot_drop(inode);
  245. end_writeback(inode);
  246. } else {
  247. ext3_xattr_delete_inode(handle, inode);
  248. dquot_free_inode(inode);
  249. dquot_drop(inode);
  250. end_writeback(inode);
  251. ext3_free_inode(handle, inode);
  252. }
  253. ext3_journal_stop(handle);
  254. return;
  255. no_delete:
  256. end_writeback(inode);
  257. dquot_drop(inode);
  258. }
  259. typedef struct {
  260. __le32 *p;
  261. __le32 key;
  262. struct buffer_head *bh;
  263. } Indirect;
  264. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  265. {
  266. p->key = *(p->p = v);
  267. p->bh = bh;
  268. }
  269. static int verify_chain(Indirect *from, Indirect *to)
  270. {
  271. while (from <= to && from->key == *from->p)
  272. from++;
  273. return (from > to);
  274. }
  275. /**
  276. * ext3_block_to_path - parse the block number into array of offsets
  277. * @inode: inode in question (we are only interested in its superblock)
  278. * @i_block: block number to be parsed
  279. * @offsets: array to store the offsets in
  280. * @boundary: set this non-zero if the referred-to block is likely to be
  281. * followed (on disk) by an indirect block.
  282. *
  283. * To store the locations of file's data ext3 uses a data structure common
  284. * for UNIX filesystems - tree of pointers anchored in the inode, with
  285. * data blocks at leaves and indirect blocks in intermediate nodes.
  286. * This function translates the block number into path in that tree -
  287. * return value is the path length and @offsets[n] is the offset of
  288. * pointer to (n+1)th node in the nth one. If @block is out of range
  289. * (negative or too large) warning is printed and zero returned.
  290. *
  291. * Note: function doesn't find node addresses, so no IO is needed. All
  292. * we need to know is the capacity of indirect blocks (taken from the
  293. * inode->i_sb).
  294. */
  295. /*
  296. * Portability note: the last comparison (check that we fit into triple
  297. * indirect block) is spelled differently, because otherwise on an
  298. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  299. * if our filesystem had 8Kb blocks. We might use long long, but that would
  300. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  301. * i_block would have to be negative in the very beginning, so we would not
  302. * get there at all.
  303. */
  304. static int ext3_block_to_path(struct inode *inode,
  305. long i_block, int offsets[4], int *boundary)
  306. {
  307. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  308. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  309. const long direct_blocks = EXT3_NDIR_BLOCKS,
  310. indirect_blocks = ptrs,
  311. double_blocks = (1 << (ptrs_bits * 2));
  312. int n = 0;
  313. int final = 0;
  314. if (i_block < 0) {
  315. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  316. } else if (i_block < direct_blocks) {
  317. offsets[n++] = i_block;
  318. final = direct_blocks;
  319. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  320. offsets[n++] = EXT3_IND_BLOCK;
  321. offsets[n++] = i_block;
  322. final = ptrs;
  323. } else if ((i_block -= indirect_blocks) < double_blocks) {
  324. offsets[n++] = EXT3_DIND_BLOCK;
  325. offsets[n++] = i_block >> ptrs_bits;
  326. offsets[n++] = i_block & (ptrs - 1);
  327. final = ptrs;
  328. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  329. offsets[n++] = EXT3_TIND_BLOCK;
  330. offsets[n++] = i_block >> (ptrs_bits * 2);
  331. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  332. offsets[n++] = i_block & (ptrs - 1);
  333. final = ptrs;
  334. } else {
  335. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  336. }
  337. if (boundary)
  338. *boundary = final - 1 - (i_block & (ptrs - 1));
  339. return n;
  340. }
  341. /**
  342. * ext3_get_branch - read the chain of indirect blocks leading to data
  343. * @inode: inode in question
  344. * @depth: depth of the chain (1 - direct pointer, etc.)
  345. * @offsets: offsets of pointers in inode/indirect blocks
  346. * @chain: place to store the result
  347. * @err: here we store the error value
  348. *
  349. * Function fills the array of triples <key, p, bh> and returns %NULL
  350. * if everything went OK or the pointer to the last filled triple
  351. * (incomplete one) otherwise. Upon the return chain[i].key contains
  352. * the number of (i+1)-th block in the chain (as it is stored in memory,
  353. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  354. * number (it points into struct inode for i==0 and into the bh->b_data
  355. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  356. * block for i>0 and NULL for i==0. In other words, it holds the block
  357. * numbers of the chain, addresses they were taken from (and where we can
  358. * verify that chain did not change) and buffer_heads hosting these
  359. * numbers.
  360. *
  361. * Function stops when it stumbles upon zero pointer (absent block)
  362. * (pointer to last triple returned, *@err == 0)
  363. * or when it gets an IO error reading an indirect block
  364. * (ditto, *@err == -EIO)
  365. * or when it notices that chain had been changed while it was reading
  366. * (ditto, *@err == -EAGAIN)
  367. * or when it reads all @depth-1 indirect blocks successfully and finds
  368. * the whole chain, all way to the data (returns %NULL, *err == 0).
  369. */
  370. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  371. Indirect chain[4], int *err)
  372. {
  373. struct super_block *sb = inode->i_sb;
  374. Indirect *p = chain;
  375. struct buffer_head *bh;
  376. *err = 0;
  377. /* i_data is not going away, no lock needed */
  378. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  379. if (!p->key)
  380. goto no_block;
  381. while (--depth) {
  382. bh = sb_bread(sb, le32_to_cpu(p->key));
  383. if (!bh)
  384. goto failure;
  385. /* Reader: pointers */
  386. if (!verify_chain(chain, p))
  387. goto changed;
  388. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  389. /* Reader: end */
  390. if (!p->key)
  391. goto no_block;
  392. }
  393. return NULL;
  394. changed:
  395. brelse(bh);
  396. *err = -EAGAIN;
  397. goto no_block;
  398. failure:
  399. *err = -EIO;
  400. no_block:
  401. return p;
  402. }
  403. /**
  404. * ext3_find_near - find a place for allocation with sufficient locality
  405. * @inode: owner
  406. * @ind: descriptor of indirect block.
  407. *
  408. * This function returns the preferred place for block allocation.
  409. * It is used when heuristic for sequential allocation fails.
  410. * Rules are:
  411. * + if there is a block to the left of our position - allocate near it.
  412. * + if pointer will live in indirect block - allocate near that block.
  413. * + if pointer will live in inode - allocate in the same
  414. * cylinder group.
  415. *
  416. * In the latter case we colour the starting block by the callers PID to
  417. * prevent it from clashing with concurrent allocations for a different inode
  418. * in the same block group. The PID is used here so that functionally related
  419. * files will be close-by on-disk.
  420. *
  421. * Caller must make sure that @ind is valid and will stay that way.
  422. */
  423. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  424. {
  425. struct ext3_inode_info *ei = EXT3_I(inode);
  426. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  427. __le32 *p;
  428. ext3_fsblk_t bg_start;
  429. ext3_grpblk_t colour;
  430. /* Try to find previous block */
  431. for (p = ind->p - 1; p >= start; p--) {
  432. if (*p)
  433. return le32_to_cpu(*p);
  434. }
  435. /* No such thing, so let's try location of indirect block */
  436. if (ind->bh)
  437. return ind->bh->b_blocknr;
  438. /*
  439. * It is going to be referred to from the inode itself? OK, just put it
  440. * into the same cylinder group then.
  441. */
  442. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  443. colour = (current->pid % 16) *
  444. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  445. return bg_start + colour;
  446. }
  447. /**
  448. * ext3_find_goal - find a preferred place for allocation.
  449. * @inode: owner
  450. * @block: block we want
  451. * @partial: pointer to the last triple within a chain
  452. *
  453. * Normally this function find the preferred place for block allocation,
  454. * returns it.
  455. */
  456. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  457. Indirect *partial)
  458. {
  459. struct ext3_block_alloc_info *block_i;
  460. block_i = EXT3_I(inode)->i_block_alloc_info;
  461. /*
  462. * try the heuristic for sequential allocation,
  463. * failing that at least try to get decent locality.
  464. */
  465. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  466. && (block_i->last_alloc_physical_block != 0)) {
  467. return block_i->last_alloc_physical_block + 1;
  468. }
  469. return ext3_find_near(inode, partial);
  470. }
  471. /**
  472. * ext3_blks_to_allocate - Look up the block map and count the number
  473. * of direct blocks need to be allocated for the given branch.
  474. *
  475. * @branch: chain of indirect blocks
  476. * @k: number of blocks need for indirect blocks
  477. * @blks: number of data blocks to be mapped.
  478. * @blocks_to_boundary: the offset in the indirect block
  479. *
  480. * return the total number of blocks to be allocate, including the
  481. * direct and indirect blocks.
  482. */
  483. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  484. int blocks_to_boundary)
  485. {
  486. unsigned long count = 0;
  487. /*
  488. * Simple case, [t,d]Indirect block(s) has not allocated yet
  489. * then it's clear blocks on that path have not allocated
  490. */
  491. if (k > 0) {
  492. /* right now we don't handle cross boundary allocation */
  493. if (blks < blocks_to_boundary + 1)
  494. count += blks;
  495. else
  496. count += blocks_to_boundary + 1;
  497. return count;
  498. }
  499. count++;
  500. while (count < blks && count <= blocks_to_boundary &&
  501. le32_to_cpu(*(branch[0].p + count)) == 0) {
  502. count++;
  503. }
  504. return count;
  505. }
  506. /**
  507. * ext3_alloc_blocks - multiple allocate blocks needed for a branch
  508. * @handle: handle for this transaction
  509. * @inode: owner
  510. * @goal: preferred place for allocation
  511. * @indirect_blks: the number of blocks need to allocate for indirect
  512. * blocks
  513. * @blks: number of blocks need to allocated for direct blocks
  514. * @new_blocks: on return it will store the new block numbers for
  515. * the indirect blocks(if needed) and the first direct block,
  516. * @err: here we store the error value
  517. *
  518. * return the number of direct blocks allocated
  519. */
  520. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  521. ext3_fsblk_t goal, int indirect_blks, int blks,
  522. ext3_fsblk_t new_blocks[4], int *err)
  523. {
  524. int target, i;
  525. unsigned long count = 0;
  526. int index = 0;
  527. ext3_fsblk_t current_block = 0;
  528. int ret = 0;
  529. /*
  530. * Here we try to allocate the requested multiple blocks at once,
  531. * on a best-effort basis.
  532. * To build a branch, we should allocate blocks for
  533. * the indirect blocks(if not allocated yet), and at least
  534. * the first direct block of this branch. That's the
  535. * minimum number of blocks need to allocate(required)
  536. */
  537. target = blks + indirect_blks;
  538. while (1) {
  539. count = target;
  540. /* allocating blocks for indirect blocks and direct blocks */
  541. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  542. if (*err)
  543. goto failed_out;
  544. target -= count;
  545. /* allocate blocks for indirect blocks */
  546. while (index < indirect_blks && count) {
  547. new_blocks[index++] = current_block++;
  548. count--;
  549. }
  550. if (count > 0)
  551. break;
  552. }
  553. /* save the new block number for the first direct block */
  554. new_blocks[index] = current_block;
  555. /* total number of blocks allocated for direct blocks */
  556. ret = count;
  557. *err = 0;
  558. return ret;
  559. failed_out:
  560. for (i = 0; i <index; i++)
  561. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  562. return ret;
  563. }
  564. /**
  565. * ext3_alloc_branch - allocate and set up a chain of blocks.
  566. * @handle: handle for this transaction
  567. * @inode: owner
  568. * @indirect_blks: number of allocated indirect blocks
  569. * @blks: number of allocated direct blocks
  570. * @goal: preferred place for allocation
  571. * @offsets: offsets (in the blocks) to store the pointers to next.
  572. * @branch: place to store the chain in.
  573. *
  574. * This function allocates blocks, zeroes out all but the last one,
  575. * links them into chain and (if we are synchronous) writes them to disk.
  576. * In other words, it prepares a branch that can be spliced onto the
  577. * inode. It stores the information about that chain in the branch[], in
  578. * the same format as ext3_get_branch() would do. We are calling it after
  579. * we had read the existing part of chain and partial points to the last
  580. * triple of that (one with zero ->key). Upon the exit we have the same
  581. * picture as after the successful ext3_get_block(), except that in one
  582. * place chain is disconnected - *branch->p is still zero (we did not
  583. * set the last link), but branch->key contains the number that should
  584. * be placed into *branch->p to fill that gap.
  585. *
  586. * If allocation fails we free all blocks we've allocated (and forget
  587. * their buffer_heads) and return the error value the from failed
  588. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  589. * as described above and return 0.
  590. */
  591. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  592. int indirect_blks, int *blks, ext3_fsblk_t goal,
  593. int *offsets, Indirect *branch)
  594. {
  595. int blocksize = inode->i_sb->s_blocksize;
  596. int i, n = 0;
  597. int err = 0;
  598. struct buffer_head *bh;
  599. int num;
  600. ext3_fsblk_t new_blocks[4];
  601. ext3_fsblk_t current_block;
  602. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  603. *blks, new_blocks, &err);
  604. if (err)
  605. return err;
  606. branch[0].key = cpu_to_le32(new_blocks[0]);
  607. /*
  608. * metadata blocks and data blocks are allocated.
  609. */
  610. for (n = 1; n <= indirect_blks; n++) {
  611. /*
  612. * Get buffer_head for parent block, zero it out
  613. * and set the pointer to new one, then send
  614. * parent to disk.
  615. */
  616. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  617. branch[n].bh = bh;
  618. lock_buffer(bh);
  619. BUFFER_TRACE(bh, "call get_create_access");
  620. err = ext3_journal_get_create_access(handle, bh);
  621. if (err) {
  622. unlock_buffer(bh);
  623. brelse(bh);
  624. goto failed;
  625. }
  626. memset(bh->b_data, 0, blocksize);
  627. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  628. branch[n].key = cpu_to_le32(new_blocks[n]);
  629. *branch[n].p = branch[n].key;
  630. if ( n == indirect_blks) {
  631. current_block = new_blocks[n];
  632. /*
  633. * End of chain, update the last new metablock of
  634. * the chain to point to the new allocated
  635. * data blocks numbers
  636. */
  637. for (i=1; i < num; i++)
  638. *(branch[n].p + i) = cpu_to_le32(++current_block);
  639. }
  640. BUFFER_TRACE(bh, "marking uptodate");
  641. set_buffer_uptodate(bh);
  642. unlock_buffer(bh);
  643. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  644. err = ext3_journal_dirty_metadata(handle, bh);
  645. if (err)
  646. goto failed;
  647. }
  648. *blks = num;
  649. return err;
  650. failed:
  651. /* Allocation failed, free what we already allocated */
  652. for (i = 1; i <= n ; i++) {
  653. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  654. ext3_journal_forget(handle, branch[i].bh);
  655. }
  656. for (i = 0; i <indirect_blks; i++)
  657. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  658. ext3_free_blocks(handle, inode, new_blocks[i], num);
  659. return err;
  660. }
  661. /**
  662. * ext3_splice_branch - splice the allocated branch onto inode.
  663. * @handle: handle for this transaction
  664. * @inode: owner
  665. * @block: (logical) number of block we are adding
  666. * @where: location of missing link
  667. * @num: number of indirect blocks we are adding
  668. * @blks: number of direct blocks we are adding
  669. *
  670. * This function fills the missing link and does all housekeeping needed in
  671. * inode (->i_blocks, etc.). In case of success we end up with the full
  672. * chain to new block and return 0.
  673. */
  674. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  675. long block, Indirect *where, int num, int blks)
  676. {
  677. int i;
  678. int err = 0;
  679. struct ext3_block_alloc_info *block_i;
  680. ext3_fsblk_t current_block;
  681. struct ext3_inode_info *ei = EXT3_I(inode);
  682. struct timespec now;
  683. block_i = ei->i_block_alloc_info;
  684. /*
  685. * If we're splicing into a [td]indirect block (as opposed to the
  686. * inode) then we need to get write access to the [td]indirect block
  687. * before the splice.
  688. */
  689. if (where->bh) {
  690. BUFFER_TRACE(where->bh, "get_write_access");
  691. err = ext3_journal_get_write_access(handle, where->bh);
  692. if (err)
  693. goto err_out;
  694. }
  695. /* That's it */
  696. *where->p = where->key;
  697. /*
  698. * Update the host buffer_head or inode to point to more just allocated
  699. * direct blocks blocks
  700. */
  701. if (num == 0 && blks > 1) {
  702. current_block = le32_to_cpu(where->key) + 1;
  703. for (i = 1; i < blks; i++)
  704. *(where->p + i ) = cpu_to_le32(current_block++);
  705. }
  706. /*
  707. * update the most recently allocated logical & physical block
  708. * in i_block_alloc_info, to assist find the proper goal block for next
  709. * allocation
  710. */
  711. if (block_i) {
  712. block_i->last_alloc_logical_block = block + blks - 1;
  713. block_i->last_alloc_physical_block =
  714. le32_to_cpu(where[num].key) + blks - 1;
  715. }
  716. /* We are done with atomic stuff, now do the rest of housekeeping */
  717. now = CURRENT_TIME_SEC;
  718. if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
  719. inode->i_ctime = now;
  720. ext3_mark_inode_dirty(handle, inode);
  721. }
  722. /* ext3_mark_inode_dirty already updated i_sync_tid */
  723. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  724. /* had we spliced it onto indirect block? */
  725. if (where->bh) {
  726. /*
  727. * If we spliced it onto an indirect block, we haven't
  728. * altered the inode. Note however that if it is being spliced
  729. * onto an indirect block at the very end of the file (the
  730. * file is growing) then we *will* alter the inode to reflect
  731. * the new i_size. But that is not done here - it is done in
  732. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  733. */
  734. jbd_debug(5, "splicing indirect only\n");
  735. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  736. err = ext3_journal_dirty_metadata(handle, where->bh);
  737. if (err)
  738. goto err_out;
  739. } else {
  740. /*
  741. * OK, we spliced it into the inode itself on a direct block.
  742. * Inode was dirtied above.
  743. */
  744. jbd_debug(5, "splicing direct\n");
  745. }
  746. return err;
  747. err_out:
  748. for (i = 1; i <= num; i++) {
  749. BUFFER_TRACE(where[i].bh, "call journal_forget");
  750. ext3_journal_forget(handle, where[i].bh);
  751. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  752. }
  753. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  754. return err;
  755. }
  756. /*
  757. * Allocation strategy is simple: if we have to allocate something, we will
  758. * have to go the whole way to leaf. So let's do it before attaching anything
  759. * to tree, set linkage between the newborn blocks, write them if sync is
  760. * required, recheck the path, free and repeat if check fails, otherwise
  761. * set the last missing link (that will protect us from any truncate-generated
  762. * removals - all blocks on the path are immune now) and possibly force the
  763. * write on the parent block.
  764. * That has a nice additional property: no special recovery from the failed
  765. * allocations is needed - we simply release blocks and do not touch anything
  766. * reachable from inode.
  767. *
  768. * `handle' can be NULL if create == 0.
  769. *
  770. * The BKL may not be held on entry here. Be sure to take it early.
  771. * return > 0, # of blocks mapped or allocated.
  772. * return = 0, if plain lookup failed.
  773. * return < 0, error case.
  774. */
  775. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  776. sector_t iblock, unsigned long maxblocks,
  777. struct buffer_head *bh_result,
  778. int create)
  779. {
  780. int err = -EIO;
  781. int offsets[4];
  782. Indirect chain[4];
  783. Indirect *partial;
  784. ext3_fsblk_t goal;
  785. int indirect_blks;
  786. int blocks_to_boundary = 0;
  787. int depth;
  788. struct ext3_inode_info *ei = EXT3_I(inode);
  789. int count = 0;
  790. ext3_fsblk_t first_block = 0;
  791. trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
  792. J_ASSERT(handle != NULL || create == 0);
  793. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  794. if (depth == 0)
  795. goto out;
  796. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  797. /* Simplest case - block found, no allocation needed */
  798. if (!partial) {
  799. first_block = le32_to_cpu(chain[depth - 1].key);
  800. clear_buffer_new(bh_result);
  801. count++;
  802. /*map more blocks*/
  803. while (count < maxblocks && count <= blocks_to_boundary) {
  804. ext3_fsblk_t blk;
  805. if (!verify_chain(chain, chain + depth - 1)) {
  806. /*
  807. * Indirect block might be removed by
  808. * truncate while we were reading it.
  809. * Handling of that case: forget what we've
  810. * got now. Flag the err as EAGAIN, so it
  811. * will reread.
  812. */
  813. err = -EAGAIN;
  814. count = 0;
  815. break;
  816. }
  817. blk = le32_to_cpu(*(chain[depth-1].p + count));
  818. if (blk == first_block + count)
  819. count++;
  820. else
  821. break;
  822. }
  823. if (err != -EAGAIN)
  824. goto got_it;
  825. }
  826. /* Next simple case - plain lookup or failed read of indirect block */
  827. if (!create || err == -EIO)
  828. goto cleanup;
  829. /*
  830. * Block out ext3_truncate while we alter the tree
  831. */
  832. mutex_lock(&ei->truncate_mutex);
  833. /*
  834. * If the indirect block is missing while we are reading
  835. * the chain(ext3_get_branch() returns -EAGAIN err), or
  836. * if the chain has been changed after we grab the semaphore,
  837. * (either because another process truncated this branch, or
  838. * another get_block allocated this branch) re-grab the chain to see if
  839. * the request block has been allocated or not.
  840. *
  841. * Since we already block the truncate/other get_block
  842. * at this point, we will have the current copy of the chain when we
  843. * splice the branch into the tree.
  844. */
  845. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  846. while (partial > chain) {
  847. brelse(partial->bh);
  848. partial--;
  849. }
  850. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  851. if (!partial) {
  852. count++;
  853. mutex_unlock(&ei->truncate_mutex);
  854. if (err)
  855. goto cleanup;
  856. clear_buffer_new(bh_result);
  857. goto got_it;
  858. }
  859. }
  860. /*
  861. * Okay, we need to do block allocation. Lazily initialize the block
  862. * allocation info here if necessary
  863. */
  864. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  865. ext3_init_block_alloc_info(inode);
  866. goal = ext3_find_goal(inode, iblock, partial);
  867. /* the number of blocks need to allocate for [d,t]indirect blocks */
  868. indirect_blks = (chain + depth) - partial - 1;
  869. /*
  870. * Next look up the indirect map to count the totoal number of
  871. * direct blocks to allocate for this branch.
  872. */
  873. count = ext3_blks_to_allocate(partial, indirect_blks,
  874. maxblocks, blocks_to_boundary);
  875. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  876. offsets + (partial - chain), partial);
  877. /*
  878. * The ext3_splice_branch call will free and forget any buffers
  879. * on the new chain if there is a failure, but that risks using
  880. * up transaction credits, especially for bitmaps where the
  881. * credits cannot be returned. Can we handle this somehow? We
  882. * may need to return -EAGAIN upwards in the worst case. --sct
  883. */
  884. if (!err)
  885. err = ext3_splice_branch(handle, inode, iblock,
  886. partial, indirect_blks, count);
  887. mutex_unlock(&ei->truncate_mutex);
  888. if (err)
  889. goto cleanup;
  890. set_buffer_new(bh_result);
  891. got_it:
  892. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  893. if (count > blocks_to_boundary)
  894. set_buffer_boundary(bh_result);
  895. err = count;
  896. /* Clean up and exit */
  897. partial = chain + depth - 1; /* the whole chain */
  898. cleanup:
  899. while (partial > chain) {
  900. BUFFER_TRACE(partial->bh, "call brelse");
  901. brelse(partial->bh);
  902. partial--;
  903. }
  904. BUFFER_TRACE(bh_result, "returned");
  905. out:
  906. trace_ext3_get_blocks_exit(inode, iblock,
  907. depth ? le32_to_cpu(chain[depth-1].key) : 0,
  908. count, err);
  909. return err;
  910. }
  911. /* Maximum number of blocks we map for direct IO at once. */
  912. #define DIO_MAX_BLOCKS 4096
  913. /*
  914. * Number of credits we need for writing DIO_MAX_BLOCKS:
  915. * We need sb + group descriptor + bitmap + inode -> 4
  916. * For B blocks with A block pointers per block we need:
  917. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  918. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  919. */
  920. #define DIO_CREDITS 25
  921. static int ext3_get_block(struct inode *inode, sector_t iblock,
  922. struct buffer_head *bh_result, int create)
  923. {
  924. handle_t *handle = ext3_journal_current_handle();
  925. int ret = 0, started = 0;
  926. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  927. if (create && !handle) { /* Direct IO write... */
  928. if (max_blocks > DIO_MAX_BLOCKS)
  929. max_blocks = DIO_MAX_BLOCKS;
  930. handle = ext3_journal_start(inode, DIO_CREDITS +
  931. EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
  932. if (IS_ERR(handle)) {
  933. ret = PTR_ERR(handle);
  934. goto out;
  935. }
  936. started = 1;
  937. }
  938. ret = ext3_get_blocks_handle(handle, inode, iblock,
  939. max_blocks, bh_result, create);
  940. if (ret > 0) {
  941. bh_result->b_size = (ret << inode->i_blkbits);
  942. ret = 0;
  943. }
  944. if (started)
  945. ext3_journal_stop(handle);
  946. out:
  947. return ret;
  948. }
  949. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  950. u64 start, u64 len)
  951. {
  952. return generic_block_fiemap(inode, fieinfo, start, len,
  953. ext3_get_block);
  954. }
  955. /*
  956. * `handle' can be NULL if create is zero
  957. */
  958. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  959. long block, int create, int *errp)
  960. {
  961. struct buffer_head dummy;
  962. int fatal = 0, err;
  963. J_ASSERT(handle != NULL || create == 0);
  964. dummy.b_state = 0;
  965. dummy.b_blocknr = -1000;
  966. buffer_trace_init(&dummy.b_history);
  967. err = ext3_get_blocks_handle(handle, inode, block, 1,
  968. &dummy, create);
  969. /*
  970. * ext3_get_blocks_handle() returns number of blocks
  971. * mapped. 0 in case of a HOLE.
  972. */
  973. if (err > 0) {
  974. if (err > 1)
  975. WARN_ON(1);
  976. err = 0;
  977. }
  978. *errp = err;
  979. if (!err && buffer_mapped(&dummy)) {
  980. struct buffer_head *bh;
  981. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  982. if (!bh) {
  983. *errp = -EIO;
  984. goto err;
  985. }
  986. if (buffer_new(&dummy)) {
  987. J_ASSERT(create != 0);
  988. J_ASSERT(handle != NULL);
  989. /*
  990. * Now that we do not always journal data, we should
  991. * keep in mind whether this should always journal the
  992. * new buffer as metadata. For now, regular file
  993. * writes use ext3_get_block instead, so it's not a
  994. * problem.
  995. */
  996. lock_buffer(bh);
  997. BUFFER_TRACE(bh, "call get_create_access");
  998. fatal = ext3_journal_get_create_access(handle, bh);
  999. if (!fatal && !buffer_uptodate(bh)) {
  1000. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  1001. set_buffer_uptodate(bh);
  1002. }
  1003. unlock_buffer(bh);
  1004. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1005. err = ext3_journal_dirty_metadata(handle, bh);
  1006. if (!fatal)
  1007. fatal = err;
  1008. } else {
  1009. BUFFER_TRACE(bh, "not a new buffer");
  1010. }
  1011. if (fatal) {
  1012. *errp = fatal;
  1013. brelse(bh);
  1014. bh = NULL;
  1015. }
  1016. return bh;
  1017. }
  1018. err:
  1019. return NULL;
  1020. }
  1021. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  1022. int block, int create, int *err)
  1023. {
  1024. struct buffer_head * bh;
  1025. bh = ext3_getblk(handle, inode, block, create, err);
  1026. if (!bh)
  1027. return bh;
  1028. if (bh_uptodate_or_lock(bh))
  1029. return bh;
  1030. get_bh(bh);
  1031. bh->b_end_io = end_buffer_read_sync;
  1032. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  1033. wait_on_buffer(bh);
  1034. if (buffer_uptodate(bh))
  1035. return bh;
  1036. put_bh(bh);
  1037. *err = -EIO;
  1038. return NULL;
  1039. }
  1040. static int walk_page_buffers( handle_t *handle,
  1041. struct buffer_head *head,
  1042. unsigned from,
  1043. unsigned to,
  1044. int *partial,
  1045. int (*fn)( handle_t *handle,
  1046. struct buffer_head *bh))
  1047. {
  1048. struct buffer_head *bh;
  1049. unsigned block_start, block_end;
  1050. unsigned blocksize = head->b_size;
  1051. int err, ret = 0;
  1052. struct buffer_head *next;
  1053. for ( bh = head, block_start = 0;
  1054. ret == 0 && (bh != head || !block_start);
  1055. block_start = block_end, bh = next)
  1056. {
  1057. next = bh->b_this_page;
  1058. block_end = block_start + blocksize;
  1059. if (block_end <= from || block_start >= to) {
  1060. if (partial && !buffer_uptodate(bh))
  1061. *partial = 1;
  1062. continue;
  1063. }
  1064. err = (*fn)(handle, bh);
  1065. if (!ret)
  1066. ret = err;
  1067. }
  1068. return ret;
  1069. }
  1070. /*
  1071. * To preserve ordering, it is essential that the hole instantiation and
  1072. * the data write be encapsulated in a single transaction. We cannot
  1073. * close off a transaction and start a new one between the ext3_get_block()
  1074. * and the commit_write(). So doing the journal_start at the start of
  1075. * prepare_write() is the right place.
  1076. *
  1077. * Also, this function can nest inside ext3_writepage() ->
  1078. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1079. * has generated enough buffer credits to do the whole page. So we won't
  1080. * block on the journal in that case, which is good, because the caller may
  1081. * be PF_MEMALLOC.
  1082. *
  1083. * By accident, ext3 can be reentered when a transaction is open via
  1084. * quota file writes. If we were to commit the transaction while thus
  1085. * reentered, there can be a deadlock - we would be holding a quota
  1086. * lock, and the commit would never complete if another thread had a
  1087. * transaction open and was blocking on the quota lock - a ranking
  1088. * violation.
  1089. *
  1090. * So what we do is to rely on the fact that journal_stop/journal_start
  1091. * will _not_ run commit under these circumstances because handle->h_ref
  1092. * is elevated. We'll still have enough credits for the tiny quotafile
  1093. * write.
  1094. */
  1095. static int do_journal_get_write_access(handle_t *handle,
  1096. struct buffer_head *bh)
  1097. {
  1098. int dirty = buffer_dirty(bh);
  1099. int ret;
  1100. if (!buffer_mapped(bh) || buffer_freed(bh))
  1101. return 0;
  1102. /*
  1103. * __block_prepare_write() could have dirtied some buffers. Clean
  1104. * the dirty bit as jbd2_journal_get_write_access() could complain
  1105. * otherwise about fs integrity issues. Setting of the dirty bit
  1106. * by __block_prepare_write() isn't a real problem here as we clear
  1107. * the bit before releasing a page lock and thus writeback cannot
  1108. * ever write the buffer.
  1109. */
  1110. if (dirty)
  1111. clear_buffer_dirty(bh);
  1112. ret = ext3_journal_get_write_access(handle, bh);
  1113. if (!ret && dirty)
  1114. ret = ext3_journal_dirty_metadata(handle, bh);
  1115. return ret;
  1116. }
  1117. /*
  1118. * Truncate blocks that were not used by write. We have to truncate the
  1119. * pagecache as well so that corresponding buffers get properly unmapped.
  1120. */
  1121. static void ext3_truncate_failed_write(struct inode *inode)
  1122. {
  1123. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1124. ext3_truncate(inode);
  1125. }
  1126. /*
  1127. * Truncate blocks that were not used by direct IO write. We have to zero out
  1128. * the last file block as well because direct IO might have written to it.
  1129. */
  1130. static void ext3_truncate_failed_direct_write(struct inode *inode)
  1131. {
  1132. ext3_block_truncate_page(inode, inode->i_size);
  1133. ext3_truncate(inode);
  1134. }
  1135. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1136. loff_t pos, unsigned len, unsigned flags,
  1137. struct page **pagep, void **fsdata)
  1138. {
  1139. struct inode *inode = mapping->host;
  1140. int ret;
  1141. handle_t *handle;
  1142. int retries = 0;
  1143. struct page *page;
  1144. pgoff_t index;
  1145. unsigned from, to;
  1146. /* Reserve one block more for addition to orphan list in case
  1147. * we allocate blocks but write fails for some reason */
  1148. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1149. trace_ext3_write_begin(inode, pos, len, flags);
  1150. index = pos >> PAGE_CACHE_SHIFT;
  1151. from = pos & (PAGE_CACHE_SIZE - 1);
  1152. to = from + len;
  1153. retry:
  1154. page = grab_cache_page_write_begin(mapping, index, flags);
  1155. if (!page)
  1156. return -ENOMEM;
  1157. *pagep = page;
  1158. handle = ext3_journal_start(inode, needed_blocks);
  1159. if (IS_ERR(handle)) {
  1160. unlock_page(page);
  1161. page_cache_release(page);
  1162. ret = PTR_ERR(handle);
  1163. goto out;
  1164. }
  1165. ret = __block_write_begin(page, pos, len, ext3_get_block);
  1166. if (ret)
  1167. goto write_begin_failed;
  1168. if (ext3_should_journal_data(inode)) {
  1169. ret = walk_page_buffers(handle, page_buffers(page),
  1170. from, to, NULL, do_journal_get_write_access);
  1171. }
  1172. write_begin_failed:
  1173. if (ret) {
  1174. /*
  1175. * block_write_begin may have instantiated a few blocks
  1176. * outside i_size. Trim these off again. Don't need
  1177. * i_size_read because we hold i_mutex.
  1178. *
  1179. * Add inode to orphan list in case we crash before truncate
  1180. * finishes. Do this only if ext3_can_truncate() agrees so
  1181. * that orphan processing code is happy.
  1182. */
  1183. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1184. ext3_orphan_add(handle, inode);
  1185. ext3_journal_stop(handle);
  1186. unlock_page(page);
  1187. page_cache_release(page);
  1188. if (pos + len > inode->i_size)
  1189. ext3_truncate_failed_write(inode);
  1190. }
  1191. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1192. goto retry;
  1193. out:
  1194. return ret;
  1195. }
  1196. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1197. {
  1198. int err = journal_dirty_data(handle, bh);
  1199. if (err)
  1200. ext3_journal_abort_handle(__func__, __func__,
  1201. bh, handle, err);
  1202. return err;
  1203. }
  1204. /* For ordered writepage and write_end functions */
  1205. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1206. {
  1207. /*
  1208. * Write could have mapped the buffer but it didn't copy the data in
  1209. * yet. So avoid filing such buffer into a transaction.
  1210. */
  1211. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1212. return ext3_journal_dirty_data(handle, bh);
  1213. return 0;
  1214. }
  1215. /* For write_end() in data=journal mode */
  1216. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1217. {
  1218. if (!buffer_mapped(bh) || buffer_freed(bh))
  1219. return 0;
  1220. set_buffer_uptodate(bh);
  1221. return ext3_journal_dirty_metadata(handle, bh);
  1222. }
  1223. /*
  1224. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1225. * for the whole page but later we failed to copy the data in. Update inode
  1226. * size according to what we managed to copy. The rest is going to be
  1227. * truncated in write_end function.
  1228. */
  1229. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1230. {
  1231. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1232. if (pos + copied > inode->i_size)
  1233. i_size_write(inode, pos + copied);
  1234. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1235. EXT3_I(inode)->i_disksize = pos + copied;
  1236. mark_inode_dirty(inode);
  1237. }
  1238. }
  1239. /*
  1240. * We need to pick up the new inode size which generic_commit_write gave us
  1241. * `file' can be NULL - eg, when called from page_symlink().
  1242. *
  1243. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1244. * buffers are managed internally.
  1245. */
  1246. static int ext3_ordered_write_end(struct file *file,
  1247. struct address_space *mapping,
  1248. loff_t pos, unsigned len, unsigned copied,
  1249. struct page *page, void *fsdata)
  1250. {
  1251. handle_t *handle = ext3_journal_current_handle();
  1252. struct inode *inode = file->f_mapping->host;
  1253. unsigned from, to;
  1254. int ret = 0, ret2;
  1255. trace_ext3_ordered_write_end(inode, pos, len, copied);
  1256. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1257. from = pos & (PAGE_CACHE_SIZE - 1);
  1258. to = from + copied;
  1259. ret = walk_page_buffers(handle, page_buffers(page),
  1260. from, to, NULL, journal_dirty_data_fn);
  1261. if (ret == 0)
  1262. update_file_sizes(inode, pos, copied);
  1263. /*
  1264. * There may be allocated blocks outside of i_size because
  1265. * we failed to copy some data. Prepare for truncate.
  1266. */
  1267. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1268. ext3_orphan_add(handle, inode);
  1269. ret2 = ext3_journal_stop(handle);
  1270. if (!ret)
  1271. ret = ret2;
  1272. unlock_page(page);
  1273. page_cache_release(page);
  1274. if (pos + len > inode->i_size)
  1275. ext3_truncate_failed_write(inode);
  1276. return ret ? ret : copied;
  1277. }
  1278. static int ext3_writeback_write_end(struct file *file,
  1279. struct address_space *mapping,
  1280. loff_t pos, unsigned len, unsigned copied,
  1281. struct page *page, void *fsdata)
  1282. {
  1283. handle_t *handle = ext3_journal_current_handle();
  1284. struct inode *inode = file->f_mapping->host;
  1285. int ret;
  1286. trace_ext3_writeback_write_end(inode, pos, len, copied);
  1287. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1288. update_file_sizes(inode, pos, copied);
  1289. /*
  1290. * There may be allocated blocks outside of i_size because
  1291. * we failed to copy some data. Prepare for truncate.
  1292. */
  1293. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1294. ext3_orphan_add(handle, inode);
  1295. ret = ext3_journal_stop(handle);
  1296. unlock_page(page);
  1297. page_cache_release(page);
  1298. if (pos + len > inode->i_size)
  1299. ext3_truncate_failed_write(inode);
  1300. return ret ? ret : copied;
  1301. }
  1302. static int ext3_journalled_write_end(struct file *file,
  1303. struct address_space *mapping,
  1304. loff_t pos, unsigned len, unsigned copied,
  1305. struct page *page, void *fsdata)
  1306. {
  1307. handle_t *handle = ext3_journal_current_handle();
  1308. struct inode *inode = mapping->host;
  1309. struct ext3_inode_info *ei = EXT3_I(inode);
  1310. int ret = 0, ret2;
  1311. int partial = 0;
  1312. unsigned from, to;
  1313. trace_ext3_journalled_write_end(inode, pos, len, copied);
  1314. from = pos & (PAGE_CACHE_SIZE - 1);
  1315. to = from + len;
  1316. if (copied < len) {
  1317. if (!PageUptodate(page))
  1318. copied = 0;
  1319. page_zero_new_buffers(page, from + copied, to);
  1320. to = from + copied;
  1321. }
  1322. ret = walk_page_buffers(handle, page_buffers(page), from,
  1323. to, &partial, write_end_fn);
  1324. if (!partial)
  1325. SetPageUptodate(page);
  1326. if (pos + copied > inode->i_size)
  1327. i_size_write(inode, pos + copied);
  1328. /*
  1329. * There may be allocated blocks outside of i_size because
  1330. * we failed to copy some data. Prepare for truncate.
  1331. */
  1332. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1333. ext3_orphan_add(handle, inode);
  1334. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1335. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  1336. if (inode->i_size > ei->i_disksize) {
  1337. ei->i_disksize = inode->i_size;
  1338. ret2 = ext3_mark_inode_dirty(handle, inode);
  1339. if (!ret)
  1340. ret = ret2;
  1341. }
  1342. ret2 = ext3_journal_stop(handle);
  1343. if (!ret)
  1344. ret = ret2;
  1345. unlock_page(page);
  1346. page_cache_release(page);
  1347. if (pos + len > inode->i_size)
  1348. ext3_truncate_failed_write(inode);
  1349. return ret ? ret : copied;
  1350. }
  1351. /*
  1352. * bmap() is special. It gets used by applications such as lilo and by
  1353. * the swapper to find the on-disk block of a specific piece of data.
  1354. *
  1355. * Naturally, this is dangerous if the block concerned is still in the
  1356. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1357. * filesystem and enables swap, then they may get a nasty shock when the
  1358. * data getting swapped to that swapfile suddenly gets overwritten by
  1359. * the original zero's written out previously to the journal and
  1360. * awaiting writeback in the kernel's buffer cache.
  1361. *
  1362. * So, if we see any bmap calls here on a modified, data-journaled file,
  1363. * take extra steps to flush any blocks which might be in the cache.
  1364. */
  1365. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1366. {
  1367. struct inode *inode = mapping->host;
  1368. journal_t *journal;
  1369. int err;
  1370. if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
  1371. /*
  1372. * This is a REALLY heavyweight approach, but the use of
  1373. * bmap on dirty files is expected to be extremely rare:
  1374. * only if we run lilo or swapon on a freshly made file
  1375. * do we expect this to happen.
  1376. *
  1377. * (bmap requires CAP_SYS_RAWIO so this does not
  1378. * represent an unprivileged user DOS attack --- we'd be
  1379. * in trouble if mortal users could trigger this path at
  1380. * will.)
  1381. *
  1382. * NB. EXT3_STATE_JDATA is not set on files other than
  1383. * regular files. If somebody wants to bmap a directory
  1384. * or symlink and gets confused because the buffer
  1385. * hasn't yet been flushed to disk, they deserve
  1386. * everything they get.
  1387. */
  1388. ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
  1389. journal = EXT3_JOURNAL(inode);
  1390. journal_lock_updates(journal);
  1391. err = journal_flush(journal);
  1392. journal_unlock_updates(journal);
  1393. if (err)
  1394. return 0;
  1395. }
  1396. return generic_block_bmap(mapping,block,ext3_get_block);
  1397. }
  1398. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1399. {
  1400. get_bh(bh);
  1401. return 0;
  1402. }
  1403. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1404. {
  1405. put_bh(bh);
  1406. return 0;
  1407. }
  1408. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1409. {
  1410. return !buffer_mapped(bh);
  1411. }
  1412. /*
  1413. * Note that we always start a transaction even if we're not journalling
  1414. * data. This is to preserve ordering: any hole instantiation within
  1415. * __block_write_full_page -> ext3_get_block() should be journalled
  1416. * along with the data so we don't crash and then get metadata which
  1417. * refers to old data.
  1418. *
  1419. * In all journalling modes block_write_full_page() will start the I/O.
  1420. *
  1421. * Problem:
  1422. *
  1423. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1424. * ext3_writepage()
  1425. *
  1426. * Similar for:
  1427. *
  1428. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1429. *
  1430. * Same applies to ext3_get_block(). We will deadlock on various things like
  1431. * lock_journal and i_truncate_mutex.
  1432. *
  1433. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1434. * allocations fail.
  1435. *
  1436. * 16May01: If we're reentered then journal_current_handle() will be
  1437. * non-zero. We simply *return*.
  1438. *
  1439. * 1 July 2001: @@@ FIXME:
  1440. * In journalled data mode, a data buffer may be metadata against the
  1441. * current transaction. But the same file is part of a shared mapping
  1442. * and someone does a writepage() on it.
  1443. *
  1444. * We will move the buffer onto the async_data list, but *after* it has
  1445. * been dirtied. So there's a small window where we have dirty data on
  1446. * BJ_Metadata.
  1447. *
  1448. * Note that this only applies to the last partial page in the file. The
  1449. * bit which block_write_full_page() uses prepare/commit for. (That's
  1450. * broken code anyway: it's wrong for msync()).
  1451. *
  1452. * It's a rare case: affects the final partial page, for journalled data
  1453. * where the file is subject to bith write() and writepage() in the same
  1454. * transction. To fix it we'll need a custom block_write_full_page().
  1455. * We'll probably need that anyway for journalling writepage() output.
  1456. *
  1457. * We don't honour synchronous mounts for writepage(). That would be
  1458. * disastrous. Any write() or metadata operation will sync the fs for
  1459. * us.
  1460. *
  1461. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1462. * we don't need to open a transaction here.
  1463. */
  1464. static int ext3_ordered_writepage(struct page *page,
  1465. struct writeback_control *wbc)
  1466. {
  1467. struct inode *inode = page->mapping->host;
  1468. struct buffer_head *page_bufs;
  1469. handle_t *handle = NULL;
  1470. int ret = 0;
  1471. int err;
  1472. J_ASSERT(PageLocked(page));
  1473. /*
  1474. * We don't want to warn for emergency remount. The condition is
  1475. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1476. * avoid slow-downs.
  1477. */
  1478. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1479. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1480. /*
  1481. * We give up here if we're reentered, because it might be for a
  1482. * different filesystem.
  1483. */
  1484. if (ext3_journal_current_handle())
  1485. goto out_fail;
  1486. trace_ext3_ordered_writepage(page);
  1487. if (!page_has_buffers(page)) {
  1488. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1489. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1490. page_bufs = page_buffers(page);
  1491. } else {
  1492. page_bufs = page_buffers(page);
  1493. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1494. NULL, buffer_unmapped)) {
  1495. /* Provide NULL get_block() to catch bugs if buffers
  1496. * weren't really mapped */
  1497. return block_write_full_page(page, NULL, wbc);
  1498. }
  1499. }
  1500. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1501. if (IS_ERR(handle)) {
  1502. ret = PTR_ERR(handle);
  1503. goto out_fail;
  1504. }
  1505. walk_page_buffers(handle, page_bufs, 0,
  1506. PAGE_CACHE_SIZE, NULL, bget_one);
  1507. ret = block_write_full_page(page, ext3_get_block, wbc);
  1508. /*
  1509. * The page can become unlocked at any point now, and
  1510. * truncate can then come in and change things. So we
  1511. * can't touch *page from now on. But *page_bufs is
  1512. * safe due to elevated refcount.
  1513. */
  1514. /*
  1515. * And attach them to the current transaction. But only if
  1516. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1517. * and generally junk.
  1518. */
  1519. if (ret == 0) {
  1520. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1521. NULL, journal_dirty_data_fn);
  1522. if (!ret)
  1523. ret = err;
  1524. }
  1525. walk_page_buffers(handle, page_bufs, 0,
  1526. PAGE_CACHE_SIZE, NULL, bput_one);
  1527. err = ext3_journal_stop(handle);
  1528. if (!ret)
  1529. ret = err;
  1530. return ret;
  1531. out_fail:
  1532. redirty_page_for_writepage(wbc, page);
  1533. unlock_page(page);
  1534. return ret;
  1535. }
  1536. static int ext3_writeback_writepage(struct page *page,
  1537. struct writeback_control *wbc)
  1538. {
  1539. struct inode *inode = page->mapping->host;
  1540. handle_t *handle = NULL;
  1541. int ret = 0;
  1542. int err;
  1543. J_ASSERT(PageLocked(page));
  1544. /*
  1545. * We don't want to warn for emergency remount. The condition is
  1546. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1547. * avoid slow-downs.
  1548. */
  1549. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1550. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1551. if (ext3_journal_current_handle())
  1552. goto out_fail;
  1553. trace_ext3_writeback_writepage(page);
  1554. if (page_has_buffers(page)) {
  1555. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1556. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1557. /* Provide NULL get_block() to catch bugs if buffers
  1558. * weren't really mapped */
  1559. return block_write_full_page(page, NULL, wbc);
  1560. }
  1561. }
  1562. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1563. if (IS_ERR(handle)) {
  1564. ret = PTR_ERR(handle);
  1565. goto out_fail;
  1566. }
  1567. ret = block_write_full_page(page, ext3_get_block, wbc);
  1568. err = ext3_journal_stop(handle);
  1569. if (!ret)
  1570. ret = err;
  1571. return ret;
  1572. out_fail:
  1573. redirty_page_for_writepage(wbc, page);
  1574. unlock_page(page);
  1575. return ret;
  1576. }
  1577. static int ext3_journalled_writepage(struct page *page,
  1578. struct writeback_control *wbc)
  1579. {
  1580. struct inode *inode = page->mapping->host;
  1581. handle_t *handle = NULL;
  1582. int ret = 0;
  1583. int err;
  1584. J_ASSERT(PageLocked(page));
  1585. /*
  1586. * We don't want to warn for emergency remount. The condition is
  1587. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1588. * avoid slow-downs.
  1589. */
  1590. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1591. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1592. if (ext3_journal_current_handle())
  1593. goto no_write;
  1594. trace_ext3_journalled_writepage(page);
  1595. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1596. if (IS_ERR(handle)) {
  1597. ret = PTR_ERR(handle);
  1598. goto no_write;
  1599. }
  1600. if (!page_has_buffers(page) || PageChecked(page)) {
  1601. /*
  1602. * It's mmapped pagecache. Add buffers and journal it. There
  1603. * doesn't seem much point in redirtying the page here.
  1604. */
  1605. ClearPageChecked(page);
  1606. ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
  1607. ext3_get_block);
  1608. if (ret != 0) {
  1609. ext3_journal_stop(handle);
  1610. goto out_unlock;
  1611. }
  1612. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1613. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1614. err = walk_page_buffers(handle, page_buffers(page), 0,
  1615. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1616. if (ret == 0)
  1617. ret = err;
  1618. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1619. atomic_set(&EXT3_I(inode)->i_datasync_tid,
  1620. handle->h_transaction->t_tid);
  1621. unlock_page(page);
  1622. } else {
  1623. /*
  1624. * It may be a page full of checkpoint-mode buffers. We don't
  1625. * really know unless we go poke around in the buffer_heads.
  1626. * But block_write_full_page will do the right thing.
  1627. */
  1628. ret = block_write_full_page(page, ext3_get_block, wbc);
  1629. }
  1630. err = ext3_journal_stop(handle);
  1631. if (!ret)
  1632. ret = err;
  1633. out:
  1634. return ret;
  1635. no_write:
  1636. redirty_page_for_writepage(wbc, page);
  1637. out_unlock:
  1638. unlock_page(page);
  1639. goto out;
  1640. }
  1641. static int ext3_readpage(struct file *file, struct page *page)
  1642. {
  1643. trace_ext3_readpage(page);
  1644. return mpage_readpage(page, ext3_get_block);
  1645. }
  1646. static int
  1647. ext3_readpages(struct file *file, struct address_space *mapping,
  1648. struct list_head *pages, unsigned nr_pages)
  1649. {
  1650. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1651. }
  1652. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1653. {
  1654. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1655. trace_ext3_invalidatepage(page, offset);
  1656. /*
  1657. * If it's a full truncate we just forget about the pending dirtying
  1658. */
  1659. if (offset == 0)
  1660. ClearPageChecked(page);
  1661. journal_invalidatepage(journal, page, offset);
  1662. }
  1663. static int ext3_releasepage(struct page *page, gfp_t wait)
  1664. {
  1665. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1666. trace_ext3_releasepage(page);
  1667. WARN_ON(PageChecked(page));
  1668. if (!page_has_buffers(page))
  1669. return 0;
  1670. return journal_try_to_free_buffers(journal, page, wait);
  1671. }
  1672. /*
  1673. * If the O_DIRECT write will extend the file then add this inode to the
  1674. * orphan list. So recovery will truncate it back to the original size
  1675. * if the machine crashes during the write.
  1676. *
  1677. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1678. * crashes then stale disk data _may_ be exposed inside the file. But current
  1679. * VFS code falls back into buffered path in that case so we are safe.
  1680. */
  1681. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1682. const struct iovec *iov, loff_t offset,
  1683. unsigned long nr_segs)
  1684. {
  1685. struct file *file = iocb->ki_filp;
  1686. struct inode *inode = file->f_mapping->host;
  1687. struct ext3_inode_info *ei = EXT3_I(inode);
  1688. handle_t *handle;
  1689. ssize_t ret;
  1690. int orphan = 0;
  1691. size_t count = iov_length(iov, nr_segs);
  1692. int retries = 0;
  1693. trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
  1694. if (rw == WRITE) {
  1695. loff_t final_size = offset + count;
  1696. if (final_size > inode->i_size) {
  1697. /* Credits for sb + inode write */
  1698. handle = ext3_journal_start(inode, 2);
  1699. if (IS_ERR(handle)) {
  1700. ret = PTR_ERR(handle);
  1701. goto out;
  1702. }
  1703. ret = ext3_orphan_add(handle, inode);
  1704. if (ret) {
  1705. ext3_journal_stop(handle);
  1706. goto out;
  1707. }
  1708. orphan = 1;
  1709. ei->i_disksize = inode->i_size;
  1710. ext3_journal_stop(handle);
  1711. }
  1712. }
  1713. retry:
  1714. ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  1715. ext3_get_block);
  1716. /*
  1717. * In case of error extending write may have instantiated a few
  1718. * blocks outside i_size. Trim these off again.
  1719. */
  1720. if (unlikely((rw & WRITE) && ret < 0)) {
  1721. loff_t isize = i_size_read(inode);
  1722. loff_t end = offset + iov_length(iov, nr_segs);
  1723. if (end > isize)
  1724. ext3_truncate_failed_direct_write(inode);
  1725. }
  1726. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1727. goto retry;
  1728. if (orphan) {
  1729. int err;
  1730. /* Credits for sb + inode write */
  1731. handle = ext3_journal_start(inode, 2);
  1732. if (IS_ERR(handle)) {
  1733. /* This is really bad luck. We've written the data
  1734. * but cannot extend i_size. Truncate allocated blocks
  1735. * and pretend the write failed... */
  1736. ext3_truncate_failed_direct_write(inode);
  1737. ret = PTR_ERR(handle);
  1738. goto out;
  1739. }
  1740. if (inode->i_nlink)
  1741. ext3_orphan_del(handle, inode);
  1742. if (ret > 0) {
  1743. loff_t end = offset + ret;
  1744. if (end > inode->i_size) {
  1745. ei->i_disksize = end;
  1746. i_size_write(inode, end);
  1747. /*
  1748. * We're going to return a positive `ret'
  1749. * here due to non-zero-length I/O, so there's
  1750. * no way of reporting error returns from
  1751. * ext3_mark_inode_dirty() to userspace. So
  1752. * ignore it.
  1753. */
  1754. ext3_mark_inode_dirty(handle, inode);
  1755. }
  1756. }
  1757. err = ext3_journal_stop(handle);
  1758. if (ret == 0)
  1759. ret = err;
  1760. }
  1761. out:
  1762. trace_ext3_direct_IO_exit(inode, offset,
  1763. iov_length(iov, nr_segs), rw, ret);
  1764. return ret;
  1765. }
  1766. /*
  1767. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1768. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1769. * much here because ->set_page_dirty is called under VFS locks. The page is
  1770. * not necessarily locked.
  1771. *
  1772. * We cannot just dirty the page and leave attached buffers clean, because the
  1773. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1774. * or jbddirty because all the journalling code will explode.
  1775. *
  1776. * So what we do is to mark the page "pending dirty" and next time writepage
  1777. * is called, propagate that into the buffers appropriately.
  1778. */
  1779. static int ext3_journalled_set_page_dirty(struct page *page)
  1780. {
  1781. SetPageChecked(page);
  1782. return __set_page_dirty_nobuffers(page);
  1783. }
  1784. static const struct address_space_operations ext3_ordered_aops = {
  1785. .readpage = ext3_readpage,
  1786. .readpages = ext3_readpages,
  1787. .writepage = ext3_ordered_writepage,
  1788. .write_begin = ext3_write_begin,
  1789. .write_end = ext3_ordered_write_end,
  1790. .bmap = ext3_bmap,
  1791. .invalidatepage = ext3_invalidatepage,
  1792. .releasepage = ext3_releasepage,
  1793. .direct_IO = ext3_direct_IO,
  1794. .migratepage = buffer_migrate_page,
  1795. .is_partially_uptodate = block_is_partially_uptodate,
  1796. .error_remove_page = generic_error_remove_page,
  1797. };
  1798. static const struct address_space_operations ext3_writeback_aops = {
  1799. .readpage = ext3_readpage,
  1800. .readpages = ext3_readpages,
  1801. .writepage = ext3_writeback_writepage,
  1802. .write_begin = ext3_write_begin,
  1803. .write_end = ext3_writeback_write_end,
  1804. .bmap = ext3_bmap,
  1805. .invalidatepage = ext3_invalidatepage,
  1806. .releasepage = ext3_releasepage,
  1807. .direct_IO = ext3_direct_IO,
  1808. .migratepage = buffer_migrate_page,
  1809. .is_partially_uptodate = block_is_partially_uptodate,
  1810. .error_remove_page = generic_error_remove_page,
  1811. };
  1812. static const struct address_space_operations ext3_journalled_aops = {
  1813. .readpage = ext3_readpage,
  1814. .readpages = ext3_readpages,
  1815. .writepage = ext3_journalled_writepage,
  1816. .write_begin = ext3_write_begin,
  1817. .write_end = ext3_journalled_write_end,
  1818. .set_page_dirty = ext3_journalled_set_page_dirty,
  1819. .bmap = ext3_bmap,
  1820. .invalidatepage = ext3_invalidatepage,
  1821. .releasepage = ext3_releasepage,
  1822. .is_partially_uptodate = block_is_partially_uptodate,
  1823. .error_remove_page = generic_error_remove_page,
  1824. };
  1825. void ext3_set_aops(struct inode *inode)
  1826. {
  1827. if (ext3_should_order_data(inode))
  1828. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1829. else if (ext3_should_writeback_data(inode))
  1830. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1831. else
  1832. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1833. }
  1834. /*
  1835. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1836. * up to the end of the block which corresponds to `from'.
  1837. * This required during truncate. We need to physically zero the tail end
  1838. * of that block so it doesn't yield old data if the file is later grown.
  1839. */
  1840. static int ext3_block_truncate_page(struct inode *inode, loff_t from)
  1841. {
  1842. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1843. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  1844. unsigned blocksize, iblock, length, pos;
  1845. struct page *page;
  1846. handle_t *handle = NULL;
  1847. struct buffer_head *bh;
  1848. int err = 0;
  1849. /* Truncated on block boundary - nothing to do */
  1850. blocksize = inode->i_sb->s_blocksize;
  1851. if ((from & (blocksize - 1)) == 0)
  1852. return 0;
  1853. page = grab_cache_page(inode->i_mapping, index);
  1854. if (!page)
  1855. return -ENOMEM;
  1856. length = blocksize - (offset & (blocksize - 1));
  1857. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1858. if (!page_has_buffers(page))
  1859. create_empty_buffers(page, blocksize, 0);
  1860. /* Find the buffer that contains "offset" */
  1861. bh = page_buffers(page);
  1862. pos = blocksize;
  1863. while (offset >= pos) {
  1864. bh = bh->b_this_page;
  1865. iblock++;
  1866. pos += blocksize;
  1867. }
  1868. err = 0;
  1869. if (buffer_freed(bh)) {
  1870. BUFFER_TRACE(bh, "freed: skip");
  1871. goto unlock;
  1872. }
  1873. if (!buffer_mapped(bh)) {
  1874. BUFFER_TRACE(bh, "unmapped");
  1875. ext3_get_block(inode, iblock, bh, 0);
  1876. /* unmapped? It's a hole - nothing to do */
  1877. if (!buffer_mapped(bh)) {
  1878. BUFFER_TRACE(bh, "still unmapped");
  1879. goto unlock;
  1880. }
  1881. }
  1882. /* Ok, it's mapped. Make sure it's up-to-date */
  1883. if (PageUptodate(page))
  1884. set_buffer_uptodate(bh);
  1885. if (!bh_uptodate_or_lock(bh)) {
  1886. err = bh_submit_read(bh);
  1887. /* Uhhuh. Read error. Complain and punt. */
  1888. if (err)
  1889. goto unlock;
  1890. }
  1891. /* data=writeback mode doesn't need transaction to zero-out data */
  1892. if (!ext3_should_writeback_data(inode)) {
  1893. /* We journal at most one block */
  1894. handle = ext3_journal_start(inode, 1);
  1895. if (IS_ERR(handle)) {
  1896. clear_highpage(page);
  1897. flush_dcache_page(page);
  1898. err = PTR_ERR(handle);
  1899. goto unlock;
  1900. }
  1901. }
  1902. if (ext3_should_journal_data(inode)) {
  1903. BUFFER_TRACE(bh, "get write access");
  1904. err = ext3_journal_get_write_access(handle, bh);
  1905. if (err)
  1906. goto stop;
  1907. }
  1908. zero_user(page, offset, length);
  1909. BUFFER_TRACE(bh, "zeroed end of block");
  1910. err = 0;
  1911. if (ext3_should_journal_data(inode)) {
  1912. err = ext3_journal_dirty_metadata(handle, bh);
  1913. } else {
  1914. if (ext3_should_order_data(inode))
  1915. err = ext3_journal_dirty_data(handle, bh);
  1916. mark_buffer_dirty(bh);
  1917. }
  1918. stop:
  1919. if (handle)
  1920. ext3_journal_stop(handle);
  1921. unlock:
  1922. unlock_page(page);
  1923. page_cache_release(page);
  1924. return err;
  1925. }
  1926. /*
  1927. * Probably it should be a library function... search for first non-zero word
  1928. * or memcmp with zero_page, whatever is better for particular architecture.
  1929. * Linus?
  1930. */
  1931. static inline int all_zeroes(__le32 *p, __le32 *q)
  1932. {
  1933. while (p < q)
  1934. if (*p++)
  1935. return 0;
  1936. return 1;
  1937. }
  1938. /**
  1939. * ext3_find_shared - find the indirect blocks for partial truncation.
  1940. * @inode: inode in question
  1941. * @depth: depth of the affected branch
  1942. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1943. * @chain: place to store the pointers to partial indirect blocks
  1944. * @top: place to the (detached) top of branch
  1945. *
  1946. * This is a helper function used by ext3_truncate().
  1947. *
  1948. * When we do truncate() we may have to clean the ends of several
  1949. * indirect blocks but leave the blocks themselves alive. Block is
  1950. * partially truncated if some data below the new i_size is referred
  1951. * from it (and it is on the path to the first completely truncated
  1952. * data block, indeed). We have to free the top of that path along
  1953. * with everything to the right of the path. Since no allocation
  1954. * past the truncation point is possible until ext3_truncate()
  1955. * finishes, we may safely do the latter, but top of branch may
  1956. * require special attention - pageout below the truncation point
  1957. * might try to populate it.
  1958. *
  1959. * We atomically detach the top of branch from the tree, store the
  1960. * block number of its root in *@top, pointers to buffer_heads of
  1961. * partially truncated blocks - in @chain[].bh and pointers to
  1962. * their last elements that should not be removed - in
  1963. * @chain[].p. Return value is the pointer to last filled element
  1964. * of @chain.
  1965. *
  1966. * The work left to caller to do the actual freeing of subtrees:
  1967. * a) free the subtree starting from *@top
  1968. * b) free the subtrees whose roots are stored in
  1969. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1970. * c) free the subtrees growing from the inode past the @chain[0].
  1971. * (no partially truncated stuff there). */
  1972. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1973. int offsets[4], Indirect chain[4], __le32 *top)
  1974. {
  1975. Indirect *partial, *p;
  1976. int k, err;
  1977. *top = 0;
  1978. /* Make k index the deepest non-null offset + 1 */
  1979. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1980. ;
  1981. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1982. /* Writer: pointers */
  1983. if (!partial)
  1984. partial = chain + k-1;
  1985. /*
  1986. * If the branch acquired continuation since we've looked at it -
  1987. * fine, it should all survive and (new) top doesn't belong to us.
  1988. */
  1989. if (!partial->key && *partial->p)
  1990. /* Writer: end */
  1991. goto no_top;
  1992. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1993. ;
  1994. /*
  1995. * OK, we've found the last block that must survive. The rest of our
  1996. * branch should be detached before unlocking. However, if that rest
  1997. * of branch is all ours and does not grow immediately from the inode
  1998. * it's easier to cheat and just decrement partial->p.
  1999. */
  2000. if (p == chain + k - 1 && p > chain) {
  2001. p->p--;
  2002. } else {
  2003. *top = *p->p;
  2004. /* Nope, don't do this in ext3. Must leave the tree intact */
  2005. #if 0
  2006. *p->p = 0;
  2007. #endif
  2008. }
  2009. /* Writer: end */
  2010. while(partial > p) {
  2011. brelse(partial->bh);
  2012. partial--;
  2013. }
  2014. no_top:
  2015. return partial;
  2016. }
  2017. /*
  2018. * Zero a number of block pointers in either an inode or an indirect block.
  2019. * If we restart the transaction we must again get write access to the
  2020. * indirect block for further modification.
  2021. *
  2022. * We release `count' blocks on disk, but (last - first) may be greater
  2023. * than `count' because there can be holes in there.
  2024. */
  2025. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  2026. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  2027. unsigned long count, __le32 *first, __le32 *last)
  2028. {
  2029. __le32 *p;
  2030. if (try_to_extend_transaction(handle, inode)) {
  2031. if (bh) {
  2032. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2033. if (ext3_journal_dirty_metadata(handle, bh))
  2034. return;
  2035. }
  2036. ext3_mark_inode_dirty(handle, inode);
  2037. truncate_restart_transaction(handle, inode);
  2038. if (bh) {
  2039. BUFFER_TRACE(bh, "retaking write access");
  2040. if (ext3_journal_get_write_access(handle, bh))
  2041. return;
  2042. }
  2043. }
  2044. /*
  2045. * Any buffers which are on the journal will be in memory. We find
  2046. * them on the hash table so journal_revoke() will run journal_forget()
  2047. * on them. We've already detached each block from the file, so
  2048. * bforget() in journal_forget() should be safe.
  2049. *
  2050. * AKPM: turn on bforget in journal_forget()!!!
  2051. */
  2052. for (p = first; p < last; p++) {
  2053. u32 nr = le32_to_cpu(*p);
  2054. if (nr) {
  2055. struct buffer_head *bh;
  2056. *p = 0;
  2057. bh = sb_find_get_block(inode->i_sb, nr);
  2058. ext3_forget(handle, 0, inode, bh, nr);
  2059. }
  2060. }
  2061. ext3_free_blocks(handle, inode, block_to_free, count);
  2062. }
  2063. /**
  2064. * ext3_free_data - free a list of data blocks
  2065. * @handle: handle for this transaction
  2066. * @inode: inode we are dealing with
  2067. * @this_bh: indirect buffer_head which contains *@first and *@last
  2068. * @first: array of block numbers
  2069. * @last: points immediately past the end of array
  2070. *
  2071. * We are freeing all blocks referred from that array (numbers are stored as
  2072. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  2073. *
  2074. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  2075. * blocks are contiguous then releasing them at one time will only affect one
  2076. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  2077. * actually use a lot of journal space.
  2078. *
  2079. * @this_bh will be %NULL if @first and @last point into the inode's direct
  2080. * block pointers.
  2081. */
  2082. static void ext3_free_data(handle_t *handle, struct inode *inode,
  2083. struct buffer_head *this_bh,
  2084. __le32 *first, __le32 *last)
  2085. {
  2086. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  2087. unsigned long count = 0; /* Number of blocks in the run */
  2088. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  2089. corresponding to
  2090. block_to_free */
  2091. ext3_fsblk_t nr; /* Current block # */
  2092. __le32 *p; /* Pointer into inode/ind
  2093. for current block */
  2094. int err;
  2095. if (this_bh) { /* For indirect block */
  2096. BUFFER_TRACE(this_bh, "get_write_access");
  2097. err = ext3_journal_get_write_access(handle, this_bh);
  2098. /* Important: if we can't update the indirect pointers
  2099. * to the blocks, we can't free them. */
  2100. if (err)
  2101. return;
  2102. }
  2103. for (p = first; p < last; p++) {
  2104. nr = le32_to_cpu(*p);
  2105. if (nr) {
  2106. /* accumulate blocks to free if they're contiguous */
  2107. if (count == 0) {
  2108. block_to_free = nr;
  2109. block_to_free_p = p;
  2110. count = 1;
  2111. } else if (nr == block_to_free + count) {
  2112. count++;
  2113. } else {
  2114. ext3_clear_blocks(handle, inode, this_bh,
  2115. block_to_free,
  2116. count, block_to_free_p, p);
  2117. block_to_free = nr;
  2118. block_to_free_p = p;
  2119. count = 1;
  2120. }
  2121. }
  2122. }
  2123. if (count > 0)
  2124. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  2125. count, block_to_free_p, p);
  2126. if (this_bh) {
  2127. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  2128. /*
  2129. * The buffer head should have an attached journal head at this
  2130. * point. However, if the data is corrupted and an indirect
  2131. * block pointed to itself, it would have been detached when
  2132. * the block was cleared. Check for this instead of OOPSing.
  2133. */
  2134. if (bh2jh(this_bh))
  2135. ext3_journal_dirty_metadata(handle, this_bh);
  2136. else
  2137. ext3_error(inode->i_sb, "ext3_free_data",
  2138. "circular indirect block detected, "
  2139. "inode=%lu, block=%llu",
  2140. inode->i_ino,
  2141. (unsigned long long)this_bh->b_blocknr);
  2142. }
  2143. }
  2144. /**
  2145. * ext3_free_branches - free an array of branches
  2146. * @handle: JBD handle for this transaction
  2147. * @inode: inode we are dealing with
  2148. * @parent_bh: the buffer_head which contains *@first and *@last
  2149. * @first: array of block numbers
  2150. * @last: pointer immediately past the end of array
  2151. * @depth: depth of the branches to free
  2152. *
  2153. * We are freeing all blocks referred from these branches (numbers are
  2154. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2155. * appropriately.
  2156. */
  2157. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2158. struct buffer_head *parent_bh,
  2159. __le32 *first, __le32 *last, int depth)
  2160. {
  2161. ext3_fsblk_t nr;
  2162. __le32 *p;
  2163. if (is_handle_aborted(handle))
  2164. return;
  2165. if (depth--) {
  2166. struct buffer_head *bh;
  2167. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2168. p = last;
  2169. while (--p >= first) {
  2170. nr = le32_to_cpu(*p);
  2171. if (!nr)
  2172. continue; /* A hole */
  2173. /* Go read the buffer for the next level down */
  2174. bh = sb_bread(inode->i_sb, nr);
  2175. /*
  2176. * A read failure? Report error and clear slot
  2177. * (should be rare).
  2178. */
  2179. if (!bh) {
  2180. ext3_error(inode->i_sb, "ext3_free_branches",
  2181. "Read failure, inode=%lu, block="E3FSBLK,
  2182. inode->i_ino, nr);
  2183. continue;
  2184. }
  2185. /* This zaps the entire block. Bottom up. */
  2186. BUFFER_TRACE(bh, "free child branches");
  2187. ext3_free_branches(handle, inode, bh,
  2188. (__le32*)bh->b_data,
  2189. (__le32*)bh->b_data + addr_per_block,
  2190. depth);
  2191. /*
  2192. * Everything below this this pointer has been
  2193. * released. Now let this top-of-subtree go.
  2194. *
  2195. * We want the freeing of this indirect block to be
  2196. * atomic in the journal with the updating of the
  2197. * bitmap block which owns it. So make some room in
  2198. * the journal.
  2199. *
  2200. * We zero the parent pointer *after* freeing its
  2201. * pointee in the bitmaps, so if extend_transaction()
  2202. * for some reason fails to put the bitmap changes and
  2203. * the release into the same transaction, recovery
  2204. * will merely complain about releasing a free block,
  2205. * rather than leaking blocks.
  2206. */
  2207. if (is_handle_aborted(handle))
  2208. return;
  2209. if (try_to_extend_transaction(handle, inode)) {
  2210. ext3_mark_inode_dirty(handle, inode);
  2211. truncate_restart_transaction(handle, inode);
  2212. }
  2213. /*
  2214. * We've probably journalled the indirect block several
  2215. * times during the truncate. But it's no longer
  2216. * needed and we now drop it from the transaction via
  2217. * journal_revoke().
  2218. *
  2219. * That's easy if it's exclusively part of this
  2220. * transaction. But if it's part of the committing
  2221. * transaction then journal_forget() will simply
  2222. * brelse() it. That means that if the underlying
  2223. * block is reallocated in ext3_get_block(),
  2224. * unmap_underlying_metadata() will find this block
  2225. * and will try to get rid of it. damn, damn. Thus
  2226. * we don't allow a block to be reallocated until
  2227. * a transaction freeing it has fully committed.
  2228. *
  2229. * We also have to make sure journal replay after a
  2230. * crash does not overwrite non-journaled data blocks
  2231. * with old metadata when the block got reallocated for
  2232. * data. Thus we have to store a revoke record for a
  2233. * block in the same transaction in which we free the
  2234. * block.
  2235. */
  2236. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2237. ext3_free_blocks(handle, inode, nr, 1);
  2238. if (parent_bh) {
  2239. /*
  2240. * The block which we have just freed is
  2241. * pointed to by an indirect block: journal it
  2242. */
  2243. BUFFER_TRACE(parent_bh, "get_write_access");
  2244. if (!ext3_journal_get_write_access(handle,
  2245. parent_bh)){
  2246. *p = 0;
  2247. BUFFER_TRACE(parent_bh,
  2248. "call ext3_journal_dirty_metadata");
  2249. ext3_journal_dirty_metadata(handle,
  2250. parent_bh);
  2251. }
  2252. }
  2253. }
  2254. } else {
  2255. /* We have reached the bottom of the tree. */
  2256. BUFFER_TRACE(parent_bh, "free data blocks");
  2257. ext3_free_data(handle, inode, parent_bh, first, last);
  2258. }
  2259. }
  2260. int ext3_can_truncate(struct inode *inode)
  2261. {
  2262. if (S_ISREG(inode->i_mode))
  2263. return 1;
  2264. if (S_ISDIR(inode->i_mode))
  2265. return 1;
  2266. if (S_ISLNK(inode->i_mode))
  2267. return !ext3_inode_is_fast_symlink(inode);
  2268. return 0;
  2269. }
  2270. /*
  2271. * ext3_truncate()
  2272. *
  2273. * We block out ext3_get_block() block instantiations across the entire
  2274. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2275. * simultaneously on behalf of the same inode.
  2276. *
  2277. * As we work through the truncate and commit bits of it to the journal there
  2278. * is one core, guiding principle: the file's tree must always be consistent on
  2279. * disk. We must be able to restart the truncate after a crash.
  2280. *
  2281. * The file's tree may be transiently inconsistent in memory (although it
  2282. * probably isn't), but whenever we close off and commit a journal transaction,
  2283. * the contents of (the filesystem + the journal) must be consistent and
  2284. * restartable. It's pretty simple, really: bottom up, right to left (although
  2285. * left-to-right works OK too).
  2286. *
  2287. * Note that at recovery time, journal replay occurs *before* the restart of
  2288. * truncate against the orphan inode list.
  2289. *
  2290. * The committed inode has the new, desired i_size (which is the same as
  2291. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2292. * that this inode's truncate did not complete and it will again call
  2293. * ext3_truncate() to have another go. So there will be instantiated blocks
  2294. * to the right of the truncation point in a crashed ext3 filesystem. But
  2295. * that's fine - as long as they are linked from the inode, the post-crash
  2296. * ext3_truncate() run will find them and release them.
  2297. */
  2298. void ext3_truncate(struct inode *inode)
  2299. {
  2300. handle_t *handle;
  2301. struct ext3_inode_info *ei = EXT3_I(inode);
  2302. __le32 *i_data = ei->i_data;
  2303. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2304. int offsets[4];
  2305. Indirect chain[4];
  2306. Indirect *partial;
  2307. __le32 nr = 0;
  2308. int n;
  2309. long last_block;
  2310. unsigned blocksize = inode->i_sb->s_blocksize;
  2311. trace_ext3_truncate_enter(inode);
  2312. if (!ext3_can_truncate(inode))
  2313. goto out_notrans;
  2314. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2315. ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
  2316. handle = start_transaction(inode);
  2317. if (IS_ERR(handle))
  2318. goto out_notrans;
  2319. last_block = (inode->i_size + blocksize-1)
  2320. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2321. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2322. if (n == 0)
  2323. goto out_stop; /* error */
  2324. /*
  2325. * OK. This truncate is going to happen. We add the inode to the
  2326. * orphan list, so that if this truncate spans multiple transactions,
  2327. * and we crash, we will resume the truncate when the filesystem
  2328. * recovers. It also marks the inode dirty, to catch the new size.
  2329. *
  2330. * Implication: the file must always be in a sane, consistent
  2331. * truncatable state while each transaction commits.
  2332. */
  2333. if (ext3_orphan_add(handle, inode))
  2334. goto out_stop;
  2335. /*
  2336. * The orphan list entry will now protect us from any crash which
  2337. * occurs before the truncate completes, so it is now safe to propagate
  2338. * the new, shorter inode size (held for now in i_size) into the
  2339. * on-disk inode. We do this via i_disksize, which is the value which
  2340. * ext3 *really* writes onto the disk inode.
  2341. */
  2342. ei->i_disksize = inode->i_size;
  2343. /*
  2344. * From here we block out all ext3_get_block() callers who want to
  2345. * modify the block allocation tree.
  2346. */
  2347. mutex_lock(&ei->truncate_mutex);
  2348. if (n == 1) { /* direct blocks */
  2349. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2350. i_data + EXT3_NDIR_BLOCKS);
  2351. goto do_indirects;
  2352. }
  2353. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2354. /* Kill the top of shared branch (not detached) */
  2355. if (nr) {
  2356. if (partial == chain) {
  2357. /* Shared branch grows from the inode */
  2358. ext3_free_branches(handle, inode, NULL,
  2359. &nr, &nr+1, (chain+n-1) - partial);
  2360. *partial->p = 0;
  2361. /*
  2362. * We mark the inode dirty prior to restart,
  2363. * and prior to stop. No need for it here.
  2364. */
  2365. } else {
  2366. /* Shared branch grows from an indirect block */
  2367. ext3_free_branches(handle, inode, partial->bh,
  2368. partial->p,
  2369. partial->p+1, (chain+n-1) - partial);
  2370. }
  2371. }
  2372. /* Clear the ends of indirect blocks on the shared branch */
  2373. while (partial > chain) {
  2374. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2375. (__le32*)partial->bh->b_data+addr_per_block,
  2376. (chain+n-1) - partial);
  2377. BUFFER_TRACE(partial->bh, "call brelse");
  2378. brelse (partial->bh);
  2379. partial--;
  2380. }
  2381. do_indirects:
  2382. /* Kill the remaining (whole) subtrees */
  2383. switch (offsets[0]) {
  2384. default:
  2385. nr = i_data[EXT3_IND_BLOCK];
  2386. if (nr) {
  2387. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2388. i_data[EXT3_IND_BLOCK] = 0;
  2389. }
  2390. case EXT3_IND_BLOCK:
  2391. nr = i_data[EXT3_DIND_BLOCK];
  2392. if (nr) {
  2393. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2394. i_data[EXT3_DIND_BLOCK] = 0;
  2395. }
  2396. case EXT3_DIND_BLOCK:
  2397. nr = i_data[EXT3_TIND_BLOCK];
  2398. if (nr) {
  2399. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2400. i_data[EXT3_TIND_BLOCK] = 0;
  2401. }
  2402. case EXT3_TIND_BLOCK:
  2403. ;
  2404. }
  2405. ext3_discard_reservation(inode);
  2406. mutex_unlock(&ei->truncate_mutex);
  2407. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2408. ext3_mark_inode_dirty(handle, inode);
  2409. /*
  2410. * In a multi-transaction truncate, we only make the final transaction
  2411. * synchronous
  2412. */
  2413. if (IS_SYNC(inode))
  2414. handle->h_sync = 1;
  2415. out_stop:
  2416. /*
  2417. * If this was a simple ftruncate(), and the file will remain alive
  2418. * then we need to clear up the orphan record which we created above.
  2419. * However, if this was a real unlink then we were called by
  2420. * ext3_evict_inode(), and we allow that function to clean up the
  2421. * orphan info for us.
  2422. */
  2423. if (inode->i_nlink)
  2424. ext3_orphan_del(handle, inode);
  2425. ext3_journal_stop(handle);
  2426. trace_ext3_truncate_exit(inode);
  2427. return;
  2428. out_notrans:
  2429. /*
  2430. * Delete the inode from orphan list so that it doesn't stay there
  2431. * forever and trigger assertion on umount.
  2432. */
  2433. if (inode->i_nlink)
  2434. ext3_orphan_del(NULL, inode);
  2435. trace_ext3_truncate_exit(inode);
  2436. }
  2437. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2438. unsigned long ino, struct ext3_iloc *iloc)
  2439. {
  2440. unsigned long block_group;
  2441. unsigned long offset;
  2442. ext3_fsblk_t block;
  2443. struct ext3_group_desc *gdp;
  2444. if (!ext3_valid_inum(sb, ino)) {
  2445. /*
  2446. * This error is already checked for in namei.c unless we are
  2447. * looking at an NFS filehandle, in which case no error
  2448. * report is needed
  2449. */
  2450. return 0;
  2451. }
  2452. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2453. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2454. if (!gdp)
  2455. return 0;
  2456. /*
  2457. * Figure out the offset within the block group inode table
  2458. */
  2459. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2460. EXT3_INODE_SIZE(sb);
  2461. block = le32_to_cpu(gdp->bg_inode_table) +
  2462. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2463. iloc->block_group = block_group;
  2464. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2465. return block;
  2466. }
  2467. /*
  2468. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2469. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2470. * data in memory that is needed to recreate the on-disk version of this
  2471. * inode.
  2472. */
  2473. static int __ext3_get_inode_loc(struct inode *inode,
  2474. struct ext3_iloc *iloc, int in_mem)
  2475. {
  2476. ext3_fsblk_t block;
  2477. struct buffer_head *bh;
  2478. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2479. if (!block)
  2480. return -EIO;
  2481. bh = sb_getblk(inode->i_sb, block);
  2482. if (!bh) {
  2483. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2484. "unable to read inode block - "
  2485. "inode=%lu, block="E3FSBLK,
  2486. inode->i_ino, block);
  2487. return -EIO;
  2488. }
  2489. if (!buffer_uptodate(bh)) {
  2490. lock_buffer(bh);
  2491. /*
  2492. * If the buffer has the write error flag, we have failed
  2493. * to write out another inode in the same block. In this
  2494. * case, we don't have to read the block because we may
  2495. * read the old inode data successfully.
  2496. */
  2497. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2498. set_buffer_uptodate(bh);
  2499. if (buffer_uptodate(bh)) {
  2500. /* someone brought it uptodate while we waited */
  2501. unlock_buffer(bh);
  2502. goto has_buffer;
  2503. }
  2504. /*
  2505. * If we have all information of the inode in memory and this
  2506. * is the only valid inode in the block, we need not read the
  2507. * block.
  2508. */
  2509. if (in_mem) {
  2510. struct buffer_head *bitmap_bh;
  2511. struct ext3_group_desc *desc;
  2512. int inodes_per_buffer;
  2513. int inode_offset, i;
  2514. int block_group;
  2515. int start;
  2516. block_group = (inode->i_ino - 1) /
  2517. EXT3_INODES_PER_GROUP(inode->i_sb);
  2518. inodes_per_buffer = bh->b_size /
  2519. EXT3_INODE_SIZE(inode->i_sb);
  2520. inode_offset = ((inode->i_ino - 1) %
  2521. EXT3_INODES_PER_GROUP(inode->i_sb));
  2522. start = inode_offset & ~(inodes_per_buffer - 1);
  2523. /* Is the inode bitmap in cache? */
  2524. desc = ext3_get_group_desc(inode->i_sb,
  2525. block_group, NULL);
  2526. if (!desc)
  2527. goto make_io;
  2528. bitmap_bh = sb_getblk(inode->i_sb,
  2529. le32_to_cpu(desc->bg_inode_bitmap));
  2530. if (!bitmap_bh)
  2531. goto make_io;
  2532. /*
  2533. * If the inode bitmap isn't in cache then the
  2534. * optimisation may end up performing two reads instead
  2535. * of one, so skip it.
  2536. */
  2537. if (!buffer_uptodate(bitmap_bh)) {
  2538. brelse(bitmap_bh);
  2539. goto make_io;
  2540. }
  2541. for (i = start; i < start + inodes_per_buffer; i++) {
  2542. if (i == inode_offset)
  2543. continue;
  2544. if (ext3_test_bit(i, bitmap_bh->b_data))
  2545. break;
  2546. }
  2547. brelse(bitmap_bh);
  2548. if (i == start + inodes_per_buffer) {
  2549. /* all other inodes are free, so skip I/O */
  2550. memset(bh->b_data, 0, bh->b_size);
  2551. set_buffer_uptodate(bh);
  2552. unlock_buffer(bh);
  2553. goto has_buffer;
  2554. }
  2555. }
  2556. make_io:
  2557. /*
  2558. * There are other valid inodes in the buffer, this inode
  2559. * has in-inode xattrs, or we don't have this inode in memory.
  2560. * Read the block from disk.
  2561. */
  2562. trace_ext3_load_inode(inode);
  2563. get_bh(bh);
  2564. bh->b_end_io = end_buffer_read_sync;
  2565. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  2566. wait_on_buffer(bh);
  2567. if (!buffer_uptodate(bh)) {
  2568. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2569. "unable to read inode block - "
  2570. "inode=%lu, block="E3FSBLK,
  2571. inode->i_ino, block);
  2572. brelse(bh);
  2573. return -EIO;
  2574. }
  2575. }
  2576. has_buffer:
  2577. iloc->bh = bh;
  2578. return 0;
  2579. }
  2580. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2581. {
  2582. /* We have all inode data except xattrs in memory here. */
  2583. return __ext3_get_inode_loc(inode, iloc,
  2584. !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
  2585. }
  2586. void ext3_set_inode_flags(struct inode *inode)
  2587. {
  2588. unsigned int flags = EXT3_I(inode)->i_flags;
  2589. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2590. if (flags & EXT3_SYNC_FL)
  2591. inode->i_flags |= S_SYNC;
  2592. if (flags & EXT3_APPEND_FL)
  2593. inode->i_flags |= S_APPEND;
  2594. if (flags & EXT3_IMMUTABLE_FL)
  2595. inode->i_flags |= S_IMMUTABLE;
  2596. if (flags & EXT3_NOATIME_FL)
  2597. inode->i_flags |= S_NOATIME;
  2598. if (flags & EXT3_DIRSYNC_FL)
  2599. inode->i_flags |= S_DIRSYNC;
  2600. }
  2601. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2602. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2603. {
  2604. unsigned int flags = ei->vfs_inode.i_flags;
  2605. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2606. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2607. if (flags & S_SYNC)
  2608. ei->i_flags |= EXT3_SYNC_FL;
  2609. if (flags & S_APPEND)
  2610. ei->i_flags |= EXT3_APPEND_FL;
  2611. if (flags & S_IMMUTABLE)
  2612. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2613. if (flags & S_NOATIME)
  2614. ei->i_flags |= EXT3_NOATIME_FL;
  2615. if (flags & S_DIRSYNC)
  2616. ei->i_flags |= EXT3_DIRSYNC_FL;
  2617. }
  2618. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2619. {
  2620. struct ext3_iloc iloc;
  2621. struct ext3_inode *raw_inode;
  2622. struct ext3_inode_info *ei;
  2623. struct buffer_head *bh;
  2624. struct inode *inode;
  2625. journal_t *journal = EXT3_SB(sb)->s_journal;
  2626. transaction_t *transaction;
  2627. long ret;
  2628. int block;
  2629. inode = iget_locked(sb, ino);
  2630. if (!inode)
  2631. return ERR_PTR(-ENOMEM);
  2632. if (!(inode->i_state & I_NEW))
  2633. return inode;
  2634. ei = EXT3_I(inode);
  2635. ei->i_block_alloc_info = NULL;
  2636. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2637. if (ret < 0)
  2638. goto bad_inode;
  2639. bh = iloc.bh;
  2640. raw_inode = ext3_raw_inode(&iloc);
  2641. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2642. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2643. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2644. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2645. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2646. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2647. }
  2648. set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
  2649. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2650. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2651. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2652. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2653. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2654. ei->i_state_flags = 0;
  2655. ei->i_dir_start_lookup = 0;
  2656. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2657. /* We now have enough fields to check if the inode was active or not.
  2658. * This is needed because nfsd might try to access dead inodes
  2659. * the test is that same one that e2fsck uses
  2660. * NeilBrown 1999oct15
  2661. */
  2662. if (inode->i_nlink == 0) {
  2663. if (inode->i_mode == 0 ||
  2664. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2665. /* this inode is deleted */
  2666. brelse (bh);
  2667. ret = -ESTALE;
  2668. goto bad_inode;
  2669. }
  2670. /* The only unlinked inodes we let through here have
  2671. * valid i_mode and are being read by the orphan
  2672. * recovery code: that's fine, we're about to complete
  2673. * the process of deleting those. */
  2674. }
  2675. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2676. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2677. #ifdef EXT3_FRAGMENTS
  2678. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2679. ei->i_frag_no = raw_inode->i_frag;
  2680. ei->i_frag_size = raw_inode->i_fsize;
  2681. #endif
  2682. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2683. if (!S_ISREG(inode->i_mode)) {
  2684. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2685. } else {
  2686. inode->i_size |=
  2687. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2688. }
  2689. ei->i_disksize = inode->i_size;
  2690. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2691. ei->i_block_group = iloc.block_group;
  2692. /*
  2693. * NOTE! The in-memory inode i_data array is in little-endian order
  2694. * even on big-endian machines: we do NOT byteswap the block numbers!
  2695. */
  2696. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2697. ei->i_data[block] = raw_inode->i_block[block];
  2698. INIT_LIST_HEAD(&ei->i_orphan);
  2699. /*
  2700. * Set transaction id's of transactions that have to be committed
  2701. * to finish f[data]sync. We set them to currently running transaction
  2702. * as we cannot be sure that the inode or some of its metadata isn't
  2703. * part of the transaction - the inode could have been reclaimed and
  2704. * now it is reread from disk.
  2705. */
  2706. if (journal) {
  2707. tid_t tid;
  2708. spin_lock(&journal->j_state_lock);
  2709. if (journal->j_running_transaction)
  2710. transaction = journal->j_running_transaction;
  2711. else
  2712. transaction = journal->j_committing_transaction;
  2713. if (transaction)
  2714. tid = transaction->t_tid;
  2715. else
  2716. tid = journal->j_commit_sequence;
  2717. spin_unlock(&journal->j_state_lock);
  2718. atomic_set(&ei->i_sync_tid, tid);
  2719. atomic_set(&ei->i_datasync_tid, tid);
  2720. }
  2721. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2722. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2723. /*
  2724. * When mke2fs creates big inodes it does not zero out
  2725. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2726. * so ignore those first few inodes.
  2727. */
  2728. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2729. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2730. EXT3_INODE_SIZE(inode->i_sb)) {
  2731. brelse (bh);
  2732. ret = -EIO;
  2733. goto bad_inode;
  2734. }
  2735. if (ei->i_extra_isize == 0) {
  2736. /* The extra space is currently unused. Use it. */
  2737. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2738. EXT3_GOOD_OLD_INODE_SIZE;
  2739. } else {
  2740. __le32 *magic = (void *)raw_inode +
  2741. EXT3_GOOD_OLD_INODE_SIZE +
  2742. ei->i_extra_isize;
  2743. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2744. ext3_set_inode_state(inode, EXT3_STATE_XATTR);
  2745. }
  2746. } else
  2747. ei->i_extra_isize = 0;
  2748. if (S_ISREG(inode->i_mode)) {
  2749. inode->i_op = &ext3_file_inode_operations;
  2750. inode->i_fop = &ext3_file_operations;
  2751. ext3_set_aops(inode);
  2752. } else if (S_ISDIR(inode->i_mode)) {
  2753. inode->i_op = &ext3_dir_inode_operations;
  2754. inode->i_fop = &ext3_dir_operations;
  2755. } else if (S_ISLNK(inode->i_mode)) {
  2756. if (ext3_inode_is_fast_symlink(inode)) {
  2757. inode->i_op = &ext3_fast_symlink_inode_operations;
  2758. nd_terminate_link(ei->i_data, inode->i_size,
  2759. sizeof(ei->i_data) - 1);
  2760. } else {
  2761. inode->i_op = &ext3_symlink_inode_operations;
  2762. ext3_set_aops(inode);
  2763. }
  2764. } else {
  2765. inode->i_op = &ext3_special_inode_operations;
  2766. if (raw_inode->i_block[0])
  2767. init_special_inode(inode, inode->i_mode,
  2768. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2769. else
  2770. init_special_inode(inode, inode->i_mode,
  2771. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2772. }
  2773. brelse (iloc.bh);
  2774. ext3_set_inode_flags(inode);
  2775. unlock_new_inode(inode);
  2776. return inode;
  2777. bad_inode:
  2778. iget_failed(inode);
  2779. return ERR_PTR(ret);
  2780. }
  2781. /*
  2782. * Post the struct inode info into an on-disk inode location in the
  2783. * buffer-cache. This gobbles the caller's reference to the
  2784. * buffer_head in the inode location struct.
  2785. *
  2786. * The caller must have write access to iloc->bh.
  2787. */
  2788. static int ext3_do_update_inode(handle_t *handle,
  2789. struct inode *inode,
  2790. struct ext3_iloc *iloc)
  2791. {
  2792. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2793. struct ext3_inode_info *ei = EXT3_I(inode);
  2794. struct buffer_head *bh = iloc->bh;
  2795. int err = 0, rc, block;
  2796. int need_datasync = 0;
  2797. __le32 disksize;
  2798. again:
  2799. /* we can't allow multiple procs in here at once, its a bit racey */
  2800. lock_buffer(bh);
  2801. /* For fields not not tracking in the in-memory inode,
  2802. * initialise them to zero for new inodes. */
  2803. if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
  2804. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2805. ext3_get_inode_flags(ei);
  2806. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2807. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2808. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2809. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2810. /*
  2811. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2812. * re-used with the upper 16 bits of the uid/gid intact
  2813. */
  2814. if(!ei->i_dtime) {
  2815. raw_inode->i_uid_high =
  2816. cpu_to_le16(high_16_bits(inode->i_uid));
  2817. raw_inode->i_gid_high =
  2818. cpu_to_le16(high_16_bits(inode->i_gid));
  2819. } else {
  2820. raw_inode->i_uid_high = 0;
  2821. raw_inode->i_gid_high = 0;
  2822. }
  2823. } else {
  2824. raw_inode->i_uid_low =
  2825. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2826. raw_inode->i_gid_low =
  2827. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2828. raw_inode->i_uid_high = 0;
  2829. raw_inode->i_gid_high = 0;
  2830. }
  2831. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2832. disksize = cpu_to_le32(ei->i_disksize);
  2833. if (disksize != raw_inode->i_size) {
  2834. need_datasync = 1;
  2835. raw_inode->i_size = disksize;
  2836. }
  2837. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2838. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2839. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2840. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2841. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2842. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2843. #ifdef EXT3_FRAGMENTS
  2844. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2845. raw_inode->i_frag = ei->i_frag_no;
  2846. raw_inode->i_fsize = ei->i_frag_size;
  2847. #endif
  2848. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2849. if (!S_ISREG(inode->i_mode)) {
  2850. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2851. } else {
  2852. disksize = cpu_to_le32(ei->i_disksize >> 32);
  2853. if (disksize != raw_inode->i_size_high) {
  2854. raw_inode->i_size_high = disksize;
  2855. need_datasync = 1;
  2856. }
  2857. if (ei->i_disksize > 0x7fffffffULL) {
  2858. struct super_block *sb = inode->i_sb;
  2859. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2860. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2861. EXT3_SB(sb)->s_es->s_rev_level ==
  2862. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2863. /* If this is the first large file
  2864. * created, add a flag to the superblock.
  2865. */
  2866. unlock_buffer(bh);
  2867. err = ext3_journal_get_write_access(handle,
  2868. EXT3_SB(sb)->s_sbh);
  2869. if (err)
  2870. goto out_brelse;
  2871. ext3_update_dynamic_rev(sb);
  2872. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2873. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2874. handle->h_sync = 1;
  2875. err = ext3_journal_dirty_metadata(handle,
  2876. EXT3_SB(sb)->s_sbh);
  2877. /* get our lock and start over */
  2878. goto again;
  2879. }
  2880. }
  2881. }
  2882. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2883. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2884. if (old_valid_dev(inode->i_rdev)) {
  2885. raw_inode->i_block[0] =
  2886. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2887. raw_inode->i_block[1] = 0;
  2888. } else {
  2889. raw_inode->i_block[0] = 0;
  2890. raw_inode->i_block[1] =
  2891. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2892. raw_inode->i_block[2] = 0;
  2893. }
  2894. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2895. raw_inode->i_block[block] = ei->i_data[block];
  2896. if (ei->i_extra_isize)
  2897. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2898. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2899. unlock_buffer(bh);
  2900. rc = ext3_journal_dirty_metadata(handle, bh);
  2901. if (!err)
  2902. err = rc;
  2903. ext3_clear_inode_state(inode, EXT3_STATE_NEW);
  2904. atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  2905. if (need_datasync)
  2906. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  2907. out_brelse:
  2908. brelse (bh);
  2909. ext3_std_error(inode->i_sb, err);
  2910. return err;
  2911. }
  2912. /*
  2913. * ext3_write_inode()
  2914. *
  2915. * We are called from a few places:
  2916. *
  2917. * - Within generic_file_write() for O_SYNC files.
  2918. * Here, there will be no transaction running. We wait for any running
  2919. * trasnaction to commit.
  2920. *
  2921. * - Within sys_sync(), kupdate and such.
  2922. * We wait on commit, if tol to.
  2923. *
  2924. * - Within prune_icache() (PF_MEMALLOC == true)
  2925. * Here we simply return. We can't afford to block kswapd on the
  2926. * journal commit.
  2927. *
  2928. * In all cases it is actually safe for us to return without doing anything,
  2929. * because the inode has been copied into a raw inode buffer in
  2930. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2931. * knfsd.
  2932. *
  2933. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2934. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2935. * which we are interested.
  2936. *
  2937. * It would be a bug for them to not do this. The code:
  2938. *
  2939. * mark_inode_dirty(inode)
  2940. * stuff();
  2941. * inode->i_size = expr;
  2942. *
  2943. * is in error because a kswapd-driven write_inode() could occur while
  2944. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2945. * will no longer be on the superblock's dirty inode list.
  2946. */
  2947. int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
  2948. {
  2949. if (current->flags & PF_MEMALLOC)
  2950. return 0;
  2951. if (ext3_journal_current_handle()) {
  2952. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2953. dump_stack();
  2954. return -EIO;
  2955. }
  2956. if (wbc->sync_mode != WB_SYNC_ALL)
  2957. return 0;
  2958. return ext3_force_commit(inode->i_sb);
  2959. }
  2960. /*
  2961. * ext3_setattr()
  2962. *
  2963. * Called from notify_change.
  2964. *
  2965. * We want to trap VFS attempts to truncate the file as soon as
  2966. * possible. In particular, we want to make sure that when the VFS
  2967. * shrinks i_size, we put the inode on the orphan list and modify
  2968. * i_disksize immediately, so that during the subsequent flushing of
  2969. * dirty pages and freeing of disk blocks, we can guarantee that any
  2970. * commit will leave the blocks being flushed in an unused state on
  2971. * disk. (On recovery, the inode will get truncated and the blocks will
  2972. * be freed, so we have a strong guarantee that no future commit will
  2973. * leave these blocks visible to the user.)
  2974. *
  2975. * Called with inode->sem down.
  2976. */
  2977. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2978. {
  2979. struct inode *inode = dentry->d_inode;
  2980. int error, rc = 0;
  2981. const unsigned int ia_valid = attr->ia_valid;
  2982. error = inode_change_ok(inode, attr);
  2983. if (error)
  2984. return error;
  2985. if (is_quota_modification(inode, attr))
  2986. dquot_initialize(inode);
  2987. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2988. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2989. handle_t *handle;
  2990. /* (user+group)*(old+new) structure, inode write (sb,
  2991. * inode block, ? - but truncate inode update has it) */
  2992. handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  2993. EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
  2994. if (IS_ERR(handle)) {
  2995. error = PTR_ERR(handle);
  2996. goto err_out;
  2997. }
  2998. error = dquot_transfer(inode, attr);
  2999. if (error) {
  3000. ext3_journal_stop(handle);
  3001. return error;
  3002. }
  3003. /* Update corresponding info in inode so that everything is in
  3004. * one transaction */
  3005. if (attr->ia_valid & ATTR_UID)
  3006. inode->i_uid = attr->ia_uid;
  3007. if (attr->ia_valid & ATTR_GID)
  3008. inode->i_gid = attr->ia_gid;
  3009. error = ext3_mark_inode_dirty(handle, inode);
  3010. ext3_journal_stop(handle);
  3011. }
  3012. if (attr->ia_valid & ATTR_SIZE)
  3013. inode_dio_wait(inode);
  3014. if (S_ISREG(inode->i_mode) &&
  3015. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  3016. handle_t *handle;
  3017. handle = ext3_journal_start(inode, 3);
  3018. if (IS_ERR(handle)) {
  3019. error = PTR_ERR(handle);
  3020. goto err_out;
  3021. }
  3022. error = ext3_orphan_add(handle, inode);
  3023. if (error) {
  3024. ext3_journal_stop(handle);
  3025. goto err_out;
  3026. }
  3027. EXT3_I(inode)->i_disksize = attr->ia_size;
  3028. error = ext3_mark_inode_dirty(handle, inode);
  3029. ext3_journal_stop(handle);
  3030. if (error) {
  3031. /* Some hard fs error must have happened. Bail out. */
  3032. ext3_orphan_del(NULL, inode);
  3033. goto err_out;
  3034. }
  3035. rc = ext3_block_truncate_page(inode, attr->ia_size);
  3036. if (rc) {
  3037. /* Cleanup orphan list and exit */
  3038. handle = ext3_journal_start(inode, 3);
  3039. if (IS_ERR(handle)) {
  3040. ext3_orphan_del(NULL, inode);
  3041. goto err_out;
  3042. }
  3043. ext3_orphan_del(handle, inode);
  3044. ext3_journal_stop(handle);
  3045. goto err_out;
  3046. }
  3047. }
  3048. if ((attr->ia_valid & ATTR_SIZE) &&
  3049. attr->ia_size != i_size_read(inode)) {
  3050. truncate_setsize(inode, attr->ia_size);
  3051. ext3_truncate(inode);
  3052. }
  3053. setattr_copy(inode, attr);
  3054. mark_inode_dirty(inode);
  3055. if (ia_valid & ATTR_MODE)
  3056. rc = ext3_acl_chmod(inode);
  3057. err_out:
  3058. ext3_std_error(inode->i_sb, error);
  3059. if (!error)
  3060. error = rc;
  3061. return error;
  3062. }
  3063. /*
  3064. * How many blocks doth make a writepage()?
  3065. *
  3066. * With N blocks per page, it may be:
  3067. * N data blocks
  3068. * 2 indirect block
  3069. * 2 dindirect
  3070. * 1 tindirect
  3071. * N+5 bitmap blocks (from the above)
  3072. * N+5 group descriptor summary blocks
  3073. * 1 inode block
  3074. * 1 superblock.
  3075. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  3076. *
  3077. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  3078. *
  3079. * With ordered or writeback data it's the same, less the N data blocks.
  3080. *
  3081. * If the inode's direct blocks can hold an integral number of pages then a
  3082. * page cannot straddle two indirect blocks, and we can only touch one indirect
  3083. * and dindirect block, and the "5" above becomes "3".
  3084. *
  3085. * This still overestimates under most circumstances. If we were to pass the
  3086. * start and end offsets in here as well we could do block_to_path() on each
  3087. * block and work out the exact number of indirects which are touched. Pah.
  3088. */
  3089. static int ext3_writepage_trans_blocks(struct inode *inode)
  3090. {
  3091. int bpp = ext3_journal_blocks_per_page(inode);
  3092. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  3093. int ret;
  3094. if (ext3_should_journal_data(inode))
  3095. ret = 3 * (bpp + indirects) + 2;
  3096. else
  3097. ret = 2 * (bpp + indirects) + indirects + 2;
  3098. #ifdef CONFIG_QUOTA
  3099. /* We know that structure was already allocated during dquot_initialize so
  3100. * we will be updating only the data blocks + inodes */
  3101. ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
  3102. #endif
  3103. return ret;
  3104. }
  3105. /*
  3106. * The caller must have previously called ext3_reserve_inode_write().
  3107. * Give this, we know that the caller already has write access to iloc->bh.
  3108. */
  3109. int ext3_mark_iloc_dirty(handle_t *handle,
  3110. struct inode *inode, struct ext3_iloc *iloc)
  3111. {
  3112. int err = 0;
  3113. /* the do_update_inode consumes one bh->b_count */
  3114. get_bh(iloc->bh);
  3115. /* ext3_do_update_inode() does journal_dirty_metadata */
  3116. err = ext3_do_update_inode(handle, inode, iloc);
  3117. put_bh(iloc->bh);
  3118. return err;
  3119. }
  3120. /*
  3121. * On success, We end up with an outstanding reference count against
  3122. * iloc->bh. This _must_ be cleaned up later.
  3123. */
  3124. int
  3125. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  3126. struct ext3_iloc *iloc)
  3127. {
  3128. int err = 0;
  3129. if (handle) {
  3130. err = ext3_get_inode_loc(inode, iloc);
  3131. if (!err) {
  3132. BUFFER_TRACE(iloc->bh, "get_write_access");
  3133. err = ext3_journal_get_write_access(handle, iloc->bh);
  3134. if (err) {
  3135. brelse(iloc->bh);
  3136. iloc->bh = NULL;
  3137. }
  3138. }
  3139. }
  3140. ext3_std_error(inode->i_sb, err);
  3141. return err;
  3142. }
  3143. /*
  3144. * What we do here is to mark the in-core inode as clean with respect to inode
  3145. * dirtiness (it may still be data-dirty).
  3146. * This means that the in-core inode may be reaped by prune_icache
  3147. * without having to perform any I/O. This is a very good thing,
  3148. * because *any* task may call prune_icache - even ones which
  3149. * have a transaction open against a different journal.
  3150. *
  3151. * Is this cheating? Not really. Sure, we haven't written the
  3152. * inode out, but prune_icache isn't a user-visible syncing function.
  3153. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3154. * we start and wait on commits.
  3155. *
  3156. * Is this efficient/effective? Well, we're being nice to the system
  3157. * by cleaning up our inodes proactively so they can be reaped
  3158. * without I/O. But we are potentially leaving up to five seconds'
  3159. * worth of inodes floating about which prune_icache wants us to
  3160. * write out. One way to fix that would be to get prune_icache()
  3161. * to do a write_super() to free up some memory. It has the desired
  3162. * effect.
  3163. */
  3164. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3165. {
  3166. struct ext3_iloc iloc;
  3167. int err;
  3168. might_sleep();
  3169. trace_ext3_mark_inode_dirty(inode, _RET_IP_);
  3170. err = ext3_reserve_inode_write(handle, inode, &iloc);
  3171. if (!err)
  3172. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  3173. return err;
  3174. }
  3175. /*
  3176. * ext3_dirty_inode() is called from __mark_inode_dirty()
  3177. *
  3178. * We're really interested in the case where a file is being extended.
  3179. * i_size has been changed by generic_commit_write() and we thus need
  3180. * to include the updated inode in the current transaction.
  3181. *
  3182. * Also, dquot_alloc_space() will always dirty the inode when blocks
  3183. * are allocated to the file.
  3184. *
  3185. * If the inode is marked synchronous, we don't honour that here - doing
  3186. * so would cause a commit on atime updates, which we don't bother doing.
  3187. * We handle synchronous inodes at the highest possible level.
  3188. */
  3189. void ext3_dirty_inode(struct inode *inode, int flags)
  3190. {
  3191. handle_t *current_handle = ext3_journal_current_handle();
  3192. handle_t *handle;
  3193. handle = ext3_journal_start(inode, 2);
  3194. if (IS_ERR(handle))
  3195. goto out;
  3196. if (current_handle &&
  3197. current_handle->h_transaction != handle->h_transaction) {
  3198. /* This task has a transaction open against a different fs */
  3199. printk(KERN_EMERG "%s: transactions do not match!\n",
  3200. __func__);
  3201. } else {
  3202. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3203. current_handle);
  3204. ext3_mark_inode_dirty(handle, inode);
  3205. }
  3206. ext3_journal_stop(handle);
  3207. out:
  3208. return;
  3209. }
  3210. #if 0
  3211. /*
  3212. * Bind an inode's backing buffer_head into this transaction, to prevent
  3213. * it from being flushed to disk early. Unlike
  3214. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3215. * returns no iloc structure, so the caller needs to repeat the iloc
  3216. * lookup to mark the inode dirty later.
  3217. */
  3218. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3219. {
  3220. struct ext3_iloc iloc;
  3221. int err = 0;
  3222. if (handle) {
  3223. err = ext3_get_inode_loc(inode, &iloc);
  3224. if (!err) {
  3225. BUFFER_TRACE(iloc.bh, "get_write_access");
  3226. err = journal_get_write_access(handle, iloc.bh);
  3227. if (!err)
  3228. err = ext3_journal_dirty_metadata(handle,
  3229. iloc.bh);
  3230. brelse(iloc.bh);
  3231. }
  3232. }
  3233. ext3_std_error(inode->i_sb, err);
  3234. return err;
  3235. }
  3236. #endif
  3237. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3238. {
  3239. journal_t *journal;
  3240. handle_t *handle;
  3241. int err;
  3242. /*
  3243. * We have to be very careful here: changing a data block's
  3244. * journaling status dynamically is dangerous. If we write a
  3245. * data block to the journal, change the status and then delete
  3246. * that block, we risk forgetting to revoke the old log record
  3247. * from the journal and so a subsequent replay can corrupt data.
  3248. * So, first we make sure that the journal is empty and that
  3249. * nobody is changing anything.
  3250. */
  3251. journal = EXT3_JOURNAL(inode);
  3252. if (is_journal_aborted(journal))
  3253. return -EROFS;
  3254. journal_lock_updates(journal);
  3255. journal_flush(journal);
  3256. /*
  3257. * OK, there are no updates running now, and all cached data is
  3258. * synced to disk. We are now in a completely consistent state
  3259. * which doesn't have anything in the journal, and we know that
  3260. * no filesystem updates are running, so it is safe to modify
  3261. * the inode's in-core data-journaling state flag now.
  3262. */
  3263. if (val)
  3264. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3265. else
  3266. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3267. ext3_set_aops(inode);
  3268. journal_unlock_updates(journal);
  3269. /* Finally we can mark the inode as dirty. */
  3270. handle = ext3_journal_start(inode, 1);
  3271. if (IS_ERR(handle))
  3272. return PTR_ERR(handle);
  3273. err = ext3_mark_inode_dirty(handle, inode);
  3274. handle->h_sync = 1;
  3275. ext3_journal_stop(handle);
  3276. ext3_std_error(inode->i_sb, err);
  3277. return err;
  3278. }