bio.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/export.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #include <scsi/sg.h> /* for struct sg_iovec */
  29. #include <trace/events/block.h>
  30. /*
  31. * Test patch to inline a certain number of bi_io_vec's inside the bio
  32. * itself, to shrink a bio data allocation from two mempool calls to one
  33. */
  34. #define BIO_INLINE_VECS 4
  35. static mempool_t *bio_split_pool __read_mostly;
  36. /*
  37. * if you change this list, also change bvec_alloc or things will
  38. * break badly! cannot be bigger than what you can fit into an
  39. * unsigned short
  40. */
  41. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  42. static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  43. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  44. };
  45. #undef BV
  46. /*
  47. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  48. * IO code that does not need private memory pools.
  49. */
  50. struct bio_set *fs_bio_set;
  51. /*
  52. * Our slab pool management
  53. */
  54. struct bio_slab {
  55. struct kmem_cache *slab;
  56. unsigned int slab_ref;
  57. unsigned int slab_size;
  58. char name[8];
  59. };
  60. static DEFINE_MUTEX(bio_slab_lock);
  61. static struct bio_slab *bio_slabs;
  62. static unsigned int bio_slab_nr, bio_slab_max;
  63. static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  64. {
  65. unsigned int sz = sizeof(struct bio) + extra_size;
  66. struct kmem_cache *slab = NULL;
  67. struct bio_slab *bslab;
  68. unsigned int i, entry = -1;
  69. mutex_lock(&bio_slab_lock);
  70. i = 0;
  71. while (i < bio_slab_nr) {
  72. bslab = &bio_slabs[i];
  73. if (!bslab->slab && entry == -1)
  74. entry = i;
  75. else if (bslab->slab_size == sz) {
  76. slab = bslab->slab;
  77. bslab->slab_ref++;
  78. break;
  79. }
  80. i++;
  81. }
  82. if (slab)
  83. goto out_unlock;
  84. if (bio_slab_nr == bio_slab_max && entry == -1) {
  85. bio_slab_max <<= 1;
  86. bio_slabs = krealloc(bio_slabs,
  87. bio_slab_max * sizeof(struct bio_slab),
  88. GFP_KERNEL);
  89. if (!bio_slabs)
  90. goto out_unlock;
  91. }
  92. if (entry == -1)
  93. entry = bio_slab_nr++;
  94. bslab = &bio_slabs[entry];
  95. snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
  96. slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
  97. if (!slab)
  98. goto out_unlock;
  99. printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
  100. bslab->slab = slab;
  101. bslab->slab_ref = 1;
  102. bslab->slab_size = sz;
  103. out_unlock:
  104. mutex_unlock(&bio_slab_lock);
  105. return slab;
  106. }
  107. static void bio_put_slab(struct bio_set *bs)
  108. {
  109. struct bio_slab *bslab = NULL;
  110. unsigned int i;
  111. mutex_lock(&bio_slab_lock);
  112. for (i = 0; i < bio_slab_nr; i++) {
  113. if (bs->bio_slab == bio_slabs[i].slab) {
  114. bslab = &bio_slabs[i];
  115. break;
  116. }
  117. }
  118. if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
  119. goto out;
  120. WARN_ON(!bslab->slab_ref);
  121. if (--bslab->slab_ref)
  122. goto out;
  123. kmem_cache_destroy(bslab->slab);
  124. bslab->slab = NULL;
  125. out:
  126. mutex_unlock(&bio_slab_lock);
  127. }
  128. unsigned int bvec_nr_vecs(unsigned short idx)
  129. {
  130. return bvec_slabs[idx].nr_vecs;
  131. }
  132. void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
  133. {
  134. BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
  135. if (idx == BIOVEC_MAX_IDX)
  136. mempool_free(bv, bs->bvec_pool);
  137. else {
  138. struct biovec_slab *bvs = bvec_slabs + idx;
  139. kmem_cache_free(bvs->slab, bv);
  140. }
  141. }
  142. struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
  143. struct bio_set *bs)
  144. {
  145. struct bio_vec *bvl;
  146. /*
  147. * see comment near bvec_array define!
  148. */
  149. switch (nr) {
  150. case 1:
  151. *idx = 0;
  152. break;
  153. case 2 ... 4:
  154. *idx = 1;
  155. break;
  156. case 5 ... 16:
  157. *idx = 2;
  158. break;
  159. case 17 ... 64:
  160. *idx = 3;
  161. break;
  162. case 65 ... 128:
  163. *idx = 4;
  164. break;
  165. case 129 ... BIO_MAX_PAGES:
  166. *idx = 5;
  167. break;
  168. default:
  169. return NULL;
  170. }
  171. /*
  172. * idx now points to the pool we want to allocate from. only the
  173. * 1-vec entry pool is mempool backed.
  174. */
  175. if (*idx == BIOVEC_MAX_IDX) {
  176. fallback:
  177. bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
  178. } else {
  179. struct biovec_slab *bvs = bvec_slabs + *idx;
  180. gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
  181. /*
  182. * Make this allocation restricted and don't dump info on
  183. * allocation failures, since we'll fallback to the mempool
  184. * in case of failure.
  185. */
  186. __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
  187. /*
  188. * Try a slab allocation. If this fails and __GFP_WAIT
  189. * is set, retry with the 1-entry mempool
  190. */
  191. bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
  192. if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
  193. *idx = BIOVEC_MAX_IDX;
  194. goto fallback;
  195. }
  196. }
  197. return bvl;
  198. }
  199. void bio_free(struct bio *bio, struct bio_set *bs)
  200. {
  201. void *p;
  202. if (bio_has_allocated_vec(bio))
  203. bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
  204. if (bio_integrity(bio))
  205. bio_integrity_free(bio, bs);
  206. /*
  207. * If we have front padding, adjust the bio pointer before freeing
  208. */
  209. p = bio;
  210. if (bs->front_pad)
  211. p -= bs->front_pad;
  212. mempool_free(p, bs->bio_pool);
  213. }
  214. EXPORT_SYMBOL(bio_free);
  215. void bio_init(struct bio *bio)
  216. {
  217. memset(bio, 0, sizeof(*bio));
  218. bio->bi_flags = 1 << BIO_UPTODATE;
  219. atomic_set(&bio->bi_cnt, 1);
  220. }
  221. EXPORT_SYMBOL(bio_init);
  222. /**
  223. * bio_alloc_bioset - allocate a bio for I/O
  224. * @gfp_mask: the GFP_ mask given to the slab allocator
  225. * @nr_iovecs: number of iovecs to pre-allocate
  226. * @bs: the bio_set to allocate from.
  227. *
  228. * Description:
  229. * bio_alloc_bioset will try its own mempool to satisfy the allocation.
  230. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  231. * for a &struct bio to become free.
  232. *
  233. * Note that the caller must set ->bi_destructor on successful return
  234. * of a bio, to do the appropriate freeing of the bio once the reference
  235. * count drops to zero.
  236. **/
  237. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  238. {
  239. unsigned long idx = BIO_POOL_NONE;
  240. struct bio_vec *bvl = NULL;
  241. struct bio *bio;
  242. void *p;
  243. p = mempool_alloc(bs->bio_pool, gfp_mask);
  244. if (unlikely(!p))
  245. return NULL;
  246. bio = p + bs->front_pad;
  247. bio_init(bio);
  248. if (unlikely(!nr_iovecs))
  249. goto out_set;
  250. if (nr_iovecs <= BIO_INLINE_VECS) {
  251. bvl = bio->bi_inline_vecs;
  252. nr_iovecs = BIO_INLINE_VECS;
  253. } else {
  254. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  255. if (unlikely(!bvl))
  256. goto err_free;
  257. nr_iovecs = bvec_nr_vecs(idx);
  258. }
  259. out_set:
  260. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  261. bio->bi_max_vecs = nr_iovecs;
  262. bio->bi_io_vec = bvl;
  263. return bio;
  264. err_free:
  265. mempool_free(p, bs->bio_pool);
  266. return NULL;
  267. }
  268. EXPORT_SYMBOL(bio_alloc_bioset);
  269. static void bio_fs_destructor(struct bio *bio)
  270. {
  271. bio_free(bio, fs_bio_set);
  272. }
  273. /**
  274. * bio_alloc - allocate a new bio, memory pool backed
  275. * @gfp_mask: allocation mask to use
  276. * @nr_iovecs: number of iovecs
  277. *
  278. * bio_alloc will allocate a bio and associated bio_vec array that can hold
  279. * at least @nr_iovecs entries. Allocations will be done from the
  280. * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
  281. *
  282. * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
  283. * a bio. This is due to the mempool guarantees. To make this work, callers
  284. * must never allocate more than 1 bio at a time from this pool. Callers
  285. * that need to allocate more than 1 bio must always submit the previously
  286. * allocated bio for IO before attempting to allocate a new one. Failure to
  287. * do so can cause livelocks under memory pressure.
  288. *
  289. * RETURNS:
  290. * Pointer to new bio on success, NULL on failure.
  291. */
  292. struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
  293. {
  294. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  295. if (bio)
  296. bio->bi_destructor = bio_fs_destructor;
  297. return bio;
  298. }
  299. EXPORT_SYMBOL(bio_alloc);
  300. static void bio_kmalloc_destructor(struct bio *bio)
  301. {
  302. if (bio_integrity(bio))
  303. bio_integrity_free(bio, fs_bio_set);
  304. kfree(bio);
  305. }
  306. /**
  307. * bio_kmalloc - allocate a bio for I/O using kmalloc()
  308. * @gfp_mask: the GFP_ mask given to the slab allocator
  309. * @nr_iovecs: number of iovecs to pre-allocate
  310. *
  311. * Description:
  312. * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
  313. * %__GFP_WAIT, the allocation is guaranteed to succeed.
  314. *
  315. **/
  316. struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
  317. {
  318. struct bio *bio;
  319. if (nr_iovecs > UIO_MAXIOV)
  320. return NULL;
  321. bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
  322. gfp_mask);
  323. if (unlikely(!bio))
  324. return NULL;
  325. bio_init(bio);
  326. bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
  327. bio->bi_max_vecs = nr_iovecs;
  328. bio->bi_io_vec = bio->bi_inline_vecs;
  329. bio->bi_destructor = bio_kmalloc_destructor;
  330. return bio;
  331. }
  332. EXPORT_SYMBOL(bio_kmalloc);
  333. void zero_fill_bio(struct bio *bio)
  334. {
  335. unsigned long flags;
  336. struct bio_vec *bv;
  337. int i;
  338. bio_for_each_segment(bv, bio, i) {
  339. char *data = bvec_kmap_irq(bv, &flags);
  340. memset(data, 0, bv->bv_len);
  341. flush_dcache_page(bv->bv_page);
  342. bvec_kunmap_irq(data, &flags);
  343. }
  344. }
  345. EXPORT_SYMBOL(zero_fill_bio);
  346. /**
  347. * bio_put - release a reference to a bio
  348. * @bio: bio to release reference to
  349. *
  350. * Description:
  351. * Put a reference to a &struct bio, either one you have gotten with
  352. * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
  353. **/
  354. void bio_put(struct bio *bio)
  355. {
  356. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  357. /*
  358. * last put frees it
  359. */
  360. if (atomic_dec_and_test(&bio->bi_cnt)) {
  361. bio->bi_next = NULL;
  362. bio->bi_destructor(bio);
  363. }
  364. }
  365. EXPORT_SYMBOL(bio_put);
  366. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  367. {
  368. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  369. blk_recount_segments(q, bio);
  370. return bio->bi_phys_segments;
  371. }
  372. EXPORT_SYMBOL(bio_phys_segments);
  373. /**
  374. * __bio_clone - clone a bio
  375. * @bio: destination bio
  376. * @bio_src: bio to clone
  377. *
  378. * Clone a &bio. Caller will own the returned bio, but not
  379. * the actual data it points to. Reference count of returned
  380. * bio will be one.
  381. */
  382. void __bio_clone(struct bio *bio, struct bio *bio_src)
  383. {
  384. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  385. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  386. /*
  387. * most users will be overriding ->bi_bdev with a new target,
  388. * so we don't set nor calculate new physical/hw segment counts here
  389. */
  390. bio->bi_sector = bio_src->bi_sector;
  391. bio->bi_bdev = bio_src->bi_bdev;
  392. bio->bi_flags |= 1 << BIO_CLONED;
  393. bio->bi_rw = bio_src->bi_rw;
  394. bio->bi_vcnt = bio_src->bi_vcnt;
  395. bio->bi_size = bio_src->bi_size;
  396. bio->bi_idx = bio_src->bi_idx;
  397. bio->bi_dio_inode = bio_src->bi_dio_inode;
  398. }
  399. EXPORT_SYMBOL(__bio_clone);
  400. /**
  401. * bio_clone - clone a bio
  402. * @bio: bio to clone
  403. * @gfp_mask: allocation priority
  404. *
  405. * Like __bio_clone, only also allocates the returned bio
  406. */
  407. struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
  408. {
  409. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  410. if (!b)
  411. return NULL;
  412. b->bi_destructor = bio_fs_destructor;
  413. __bio_clone(b, bio);
  414. if (bio_integrity(bio)) {
  415. int ret;
  416. ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
  417. if (ret < 0) {
  418. bio_put(b);
  419. return NULL;
  420. }
  421. }
  422. return b;
  423. }
  424. EXPORT_SYMBOL(bio_clone);
  425. /**
  426. * bio_get_nr_vecs - return approx number of vecs
  427. * @bdev: I/O target
  428. *
  429. * Return the approximate number of pages we can send to this target.
  430. * There's no guarantee that you will be able to fit this number of pages
  431. * into a bio, it does not account for dynamic restrictions that vary
  432. * on offset.
  433. */
  434. int bio_get_nr_vecs(struct block_device *bdev)
  435. {
  436. struct request_queue *q = bdev_get_queue(bdev);
  437. int nr_pages;
  438. nr_pages = min_t(unsigned,
  439. queue_max_segments(q),
  440. queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
  441. return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
  442. }
  443. EXPORT_SYMBOL(bio_get_nr_vecs);
  444. static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  445. *page, unsigned int len, unsigned int offset,
  446. unsigned short max_sectors)
  447. {
  448. int retried_segments = 0;
  449. struct bio_vec *bvec;
  450. /*
  451. * cloned bio must not modify vec list
  452. */
  453. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  454. return 0;
  455. if (((bio->bi_size + len) >> 9) > max_sectors)
  456. return 0;
  457. /*
  458. * For filesystems with a blocksize smaller than the pagesize
  459. * we will often be called with the same page as last time and
  460. * a consecutive offset. Optimize this special case.
  461. */
  462. if (bio->bi_vcnt > 0) {
  463. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  464. if (page == prev->bv_page &&
  465. offset == prev->bv_offset + prev->bv_len) {
  466. unsigned int prev_bv_len = prev->bv_len;
  467. prev->bv_len += len;
  468. if (q->merge_bvec_fn) {
  469. struct bvec_merge_data bvm = {
  470. /* prev_bvec is already charged in
  471. bi_size, discharge it in order to
  472. simulate merging updated prev_bvec
  473. as new bvec. */
  474. .bi_bdev = bio->bi_bdev,
  475. .bi_sector = bio->bi_sector,
  476. .bi_size = bio->bi_size - prev_bv_len,
  477. .bi_rw = bio->bi_rw,
  478. };
  479. if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
  480. prev->bv_len -= len;
  481. return 0;
  482. }
  483. }
  484. goto done;
  485. }
  486. }
  487. if (bio->bi_vcnt >= bio->bi_max_vecs)
  488. return 0;
  489. /*
  490. * we might lose a segment or two here, but rather that than
  491. * make this too complex.
  492. */
  493. while (bio->bi_phys_segments >= queue_max_segments(q)) {
  494. if (retried_segments)
  495. return 0;
  496. retried_segments = 1;
  497. blk_recount_segments(q, bio);
  498. }
  499. /*
  500. * setup the new entry, we might clear it again later if we
  501. * cannot add the page
  502. */
  503. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  504. bvec->bv_page = page;
  505. bvec->bv_len = len;
  506. bvec->bv_offset = offset;
  507. /*
  508. * if queue has other restrictions (eg varying max sector size
  509. * depending on offset), it can specify a merge_bvec_fn in the
  510. * queue to get further control
  511. */
  512. if (q->merge_bvec_fn) {
  513. struct bvec_merge_data bvm = {
  514. .bi_bdev = bio->bi_bdev,
  515. .bi_sector = bio->bi_sector,
  516. .bi_size = bio->bi_size,
  517. .bi_rw = bio->bi_rw,
  518. };
  519. /*
  520. * merge_bvec_fn() returns number of bytes it can accept
  521. * at this offset
  522. */
  523. if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
  524. bvec->bv_page = NULL;
  525. bvec->bv_len = 0;
  526. bvec->bv_offset = 0;
  527. return 0;
  528. }
  529. }
  530. /* If we may be able to merge these biovecs, force a recount */
  531. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  532. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  533. bio->bi_vcnt++;
  534. bio->bi_phys_segments++;
  535. done:
  536. bio->bi_size += len;
  537. return len;
  538. }
  539. /**
  540. * bio_add_pc_page - attempt to add page to bio
  541. * @q: the target queue
  542. * @bio: destination bio
  543. * @page: page to add
  544. * @len: vec entry length
  545. * @offset: vec entry offset
  546. *
  547. * Attempt to add a page to the bio_vec maplist. This can fail for a
  548. * number of reasons, such as the bio being full or target block device
  549. * limitations. The target block device must allow bio's up to PAGE_SIZE,
  550. * so it is always possible to add a single page to an empty bio.
  551. *
  552. * This should only be used by REQ_PC bios.
  553. */
  554. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  555. unsigned int len, unsigned int offset)
  556. {
  557. return __bio_add_page(q, bio, page, len, offset,
  558. queue_max_hw_sectors(q));
  559. }
  560. EXPORT_SYMBOL(bio_add_pc_page);
  561. /**
  562. * bio_add_page - attempt to add page to bio
  563. * @bio: destination bio
  564. * @page: page to add
  565. * @len: vec entry length
  566. * @offset: vec entry offset
  567. *
  568. * Attempt to add a page to the bio_vec maplist. This can fail for a
  569. * number of reasons, such as the bio being full or target block device
  570. * limitations. The target block device must allow bio's up to PAGE_SIZE,
  571. * so it is always possible to add a single page to an empty bio.
  572. */
  573. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  574. unsigned int offset)
  575. {
  576. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  577. return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
  578. }
  579. EXPORT_SYMBOL(bio_add_page);
  580. struct bio_map_data {
  581. struct bio_vec *iovecs;
  582. struct sg_iovec *sgvecs;
  583. int nr_sgvecs;
  584. int is_our_pages;
  585. };
  586. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
  587. struct sg_iovec *iov, int iov_count,
  588. int is_our_pages)
  589. {
  590. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  591. memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
  592. bmd->nr_sgvecs = iov_count;
  593. bmd->is_our_pages = is_our_pages;
  594. bio->bi_private = bmd;
  595. }
  596. static void bio_free_map_data(struct bio_map_data *bmd)
  597. {
  598. kfree(bmd->iovecs);
  599. kfree(bmd->sgvecs);
  600. kfree(bmd);
  601. }
  602. static struct bio_map_data *bio_alloc_map_data(int nr_segs,
  603. unsigned int iov_count,
  604. gfp_t gfp_mask)
  605. {
  606. struct bio_map_data *bmd;
  607. if (iov_count > UIO_MAXIOV)
  608. return NULL;
  609. bmd = kmalloc(sizeof(*bmd), gfp_mask);
  610. if (!bmd)
  611. return NULL;
  612. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
  613. if (!bmd->iovecs) {
  614. kfree(bmd);
  615. return NULL;
  616. }
  617. bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
  618. if (bmd->sgvecs)
  619. return bmd;
  620. kfree(bmd->iovecs);
  621. kfree(bmd);
  622. return NULL;
  623. }
  624. static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
  625. struct sg_iovec *iov, int iov_count,
  626. int to_user, int from_user, int do_free_page)
  627. {
  628. int ret = 0, i;
  629. struct bio_vec *bvec;
  630. int iov_idx = 0;
  631. unsigned int iov_off = 0;
  632. __bio_for_each_segment(bvec, bio, i, 0) {
  633. char *bv_addr = page_address(bvec->bv_page);
  634. unsigned int bv_len = iovecs[i].bv_len;
  635. while (bv_len && iov_idx < iov_count) {
  636. unsigned int bytes;
  637. char __user *iov_addr;
  638. bytes = min_t(unsigned int,
  639. iov[iov_idx].iov_len - iov_off, bv_len);
  640. iov_addr = iov[iov_idx].iov_base + iov_off;
  641. if (!ret) {
  642. if (to_user)
  643. ret = copy_to_user(iov_addr, bv_addr,
  644. bytes);
  645. if (from_user)
  646. ret = copy_from_user(bv_addr, iov_addr,
  647. bytes);
  648. if (ret)
  649. ret = -EFAULT;
  650. }
  651. bv_len -= bytes;
  652. bv_addr += bytes;
  653. iov_addr += bytes;
  654. iov_off += bytes;
  655. if (iov[iov_idx].iov_len == iov_off) {
  656. iov_idx++;
  657. iov_off = 0;
  658. }
  659. }
  660. if (do_free_page)
  661. __free_page(bvec->bv_page);
  662. }
  663. return ret;
  664. }
  665. /**
  666. * bio_uncopy_user - finish previously mapped bio
  667. * @bio: bio being terminated
  668. *
  669. * Free pages allocated from bio_copy_user() and write back data
  670. * to user space in case of a read.
  671. */
  672. int bio_uncopy_user(struct bio *bio)
  673. {
  674. struct bio_map_data *bmd = bio->bi_private;
  675. struct bio_vec *bvec;
  676. int ret = 0, i;
  677. if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
  678. /*
  679. * if we're in a workqueue, the request is orphaned, so
  680. * don't copy into a random user address space, just free.
  681. */
  682. if (current->mm)
  683. ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
  684. bmd->nr_sgvecs, bio_data_dir(bio) == READ,
  685. 0, bmd->is_our_pages);
  686. else if (bmd->is_our_pages)
  687. __bio_for_each_segment(bvec, bio, i, 0)
  688. __free_page(bvec->bv_page);
  689. }
  690. bio_free_map_data(bmd);
  691. bio_put(bio);
  692. return ret;
  693. }
  694. EXPORT_SYMBOL(bio_uncopy_user);
  695. /**
  696. * bio_copy_user_iov - copy user data to bio
  697. * @q: destination block queue
  698. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  699. * @iov: the iovec.
  700. * @iov_count: number of elements in the iovec
  701. * @write_to_vm: bool indicating writing to pages or not
  702. * @gfp_mask: memory allocation flags
  703. *
  704. * Prepares and returns a bio for indirect user io, bouncing data
  705. * to/from kernel pages as necessary. Must be paired with
  706. * call bio_uncopy_user() on io completion.
  707. */
  708. struct bio *bio_copy_user_iov(struct request_queue *q,
  709. struct rq_map_data *map_data,
  710. struct sg_iovec *iov, int iov_count,
  711. int write_to_vm, gfp_t gfp_mask)
  712. {
  713. struct bio_map_data *bmd;
  714. struct bio_vec *bvec;
  715. struct page *page;
  716. struct bio *bio;
  717. int i, ret;
  718. int nr_pages = 0;
  719. unsigned int len = 0;
  720. unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
  721. for (i = 0; i < iov_count; i++) {
  722. unsigned long uaddr;
  723. unsigned long end;
  724. unsigned long start;
  725. uaddr = (unsigned long)iov[i].iov_base;
  726. end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  727. start = uaddr >> PAGE_SHIFT;
  728. /*
  729. * Overflow, abort
  730. */
  731. if (end < start)
  732. return ERR_PTR(-EINVAL);
  733. nr_pages += end - start;
  734. len += iov[i].iov_len;
  735. }
  736. if (offset)
  737. nr_pages++;
  738. bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
  739. if (!bmd)
  740. return ERR_PTR(-ENOMEM);
  741. ret = -ENOMEM;
  742. bio = bio_kmalloc(gfp_mask, nr_pages);
  743. if (!bio)
  744. goto out_bmd;
  745. if (!write_to_vm)
  746. bio->bi_rw |= REQ_WRITE;
  747. ret = 0;
  748. if (map_data) {
  749. nr_pages = 1 << map_data->page_order;
  750. i = map_data->offset / PAGE_SIZE;
  751. }
  752. while (len) {
  753. unsigned int bytes = PAGE_SIZE;
  754. bytes -= offset;
  755. if (bytes > len)
  756. bytes = len;
  757. if (map_data) {
  758. if (i == map_data->nr_entries * nr_pages) {
  759. ret = -ENOMEM;
  760. break;
  761. }
  762. page = map_data->pages[i / nr_pages];
  763. page += (i % nr_pages);
  764. i++;
  765. } else {
  766. page = alloc_page(q->bounce_gfp | gfp_mask);
  767. if (!page) {
  768. ret = -ENOMEM;
  769. break;
  770. }
  771. }
  772. if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
  773. break;
  774. len -= bytes;
  775. offset = 0;
  776. }
  777. if (ret)
  778. goto cleanup;
  779. /*
  780. * success
  781. */
  782. if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
  783. (map_data && map_data->from_user)) {
  784. ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
  785. if (ret)
  786. goto cleanup;
  787. }
  788. bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
  789. return bio;
  790. cleanup:
  791. if (!map_data)
  792. bio_for_each_segment(bvec, bio, i)
  793. __free_page(bvec->bv_page);
  794. bio_put(bio);
  795. out_bmd:
  796. bio_free_map_data(bmd);
  797. return ERR_PTR(ret);
  798. }
  799. /**
  800. * bio_copy_user - copy user data to bio
  801. * @q: destination block queue
  802. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  803. * @uaddr: start of user address
  804. * @len: length in bytes
  805. * @write_to_vm: bool indicating writing to pages or not
  806. * @gfp_mask: memory allocation flags
  807. *
  808. * Prepares and returns a bio for indirect user io, bouncing data
  809. * to/from kernel pages as necessary. Must be paired with
  810. * call bio_uncopy_user() on io completion.
  811. */
  812. struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
  813. unsigned long uaddr, unsigned int len,
  814. int write_to_vm, gfp_t gfp_mask)
  815. {
  816. struct sg_iovec iov;
  817. iov.iov_base = (void __user *)uaddr;
  818. iov.iov_len = len;
  819. return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
  820. }
  821. EXPORT_SYMBOL(bio_copy_user);
  822. static struct bio *__bio_map_user_iov(struct request_queue *q,
  823. struct block_device *bdev,
  824. struct sg_iovec *iov, int iov_count,
  825. int write_to_vm, gfp_t gfp_mask)
  826. {
  827. int i, j;
  828. int nr_pages = 0;
  829. struct page **pages;
  830. struct bio *bio;
  831. int cur_page = 0;
  832. int ret, offset;
  833. for (i = 0; i < iov_count; i++) {
  834. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  835. unsigned long len = iov[i].iov_len;
  836. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  837. unsigned long start = uaddr >> PAGE_SHIFT;
  838. /*
  839. * Overflow, abort
  840. */
  841. if (end < start)
  842. return ERR_PTR(-EINVAL);
  843. nr_pages += end - start;
  844. /*
  845. * buffer must be aligned to at least hardsector size for now
  846. */
  847. if (uaddr & queue_dma_alignment(q))
  848. return ERR_PTR(-EINVAL);
  849. }
  850. if (!nr_pages)
  851. return ERR_PTR(-EINVAL);
  852. bio = bio_kmalloc(gfp_mask, nr_pages);
  853. if (!bio)
  854. return ERR_PTR(-ENOMEM);
  855. ret = -ENOMEM;
  856. pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
  857. if (!pages)
  858. goto out;
  859. for (i = 0; i < iov_count; i++) {
  860. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  861. unsigned long len = iov[i].iov_len;
  862. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  863. unsigned long start = uaddr >> PAGE_SHIFT;
  864. const int local_nr_pages = end - start;
  865. const int page_limit = cur_page + local_nr_pages;
  866. ret = get_user_pages_fast(uaddr, local_nr_pages,
  867. write_to_vm, &pages[cur_page]);
  868. if (ret < local_nr_pages) {
  869. ret = -EFAULT;
  870. goto out_unmap;
  871. }
  872. offset = uaddr & ~PAGE_MASK;
  873. for (j = cur_page; j < page_limit; j++) {
  874. unsigned int bytes = PAGE_SIZE - offset;
  875. if (len <= 0)
  876. break;
  877. if (bytes > len)
  878. bytes = len;
  879. /*
  880. * sorry...
  881. */
  882. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  883. bytes)
  884. break;
  885. len -= bytes;
  886. offset = 0;
  887. }
  888. cur_page = j;
  889. /*
  890. * release the pages we didn't map into the bio, if any
  891. */
  892. while (j < page_limit)
  893. page_cache_release(pages[j++]);
  894. }
  895. kfree(pages);
  896. /*
  897. * set data direction, and check if mapped pages need bouncing
  898. */
  899. if (!write_to_vm)
  900. bio->bi_rw |= REQ_WRITE;
  901. bio->bi_bdev = bdev;
  902. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  903. return bio;
  904. out_unmap:
  905. for (i = 0; i < nr_pages; i++) {
  906. if(!pages[i])
  907. break;
  908. page_cache_release(pages[i]);
  909. }
  910. out:
  911. kfree(pages);
  912. bio_put(bio);
  913. return ERR_PTR(ret);
  914. }
  915. /**
  916. * bio_map_user - map user address into bio
  917. * @q: the struct request_queue for the bio
  918. * @bdev: destination block device
  919. * @uaddr: start of user address
  920. * @len: length in bytes
  921. * @write_to_vm: bool indicating writing to pages or not
  922. * @gfp_mask: memory allocation flags
  923. *
  924. * Map the user space address into a bio suitable for io to a block
  925. * device. Returns an error pointer in case of error.
  926. */
  927. struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
  928. unsigned long uaddr, unsigned int len, int write_to_vm,
  929. gfp_t gfp_mask)
  930. {
  931. struct sg_iovec iov;
  932. iov.iov_base = (void __user *)uaddr;
  933. iov.iov_len = len;
  934. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
  935. }
  936. EXPORT_SYMBOL(bio_map_user);
  937. /**
  938. * bio_map_user_iov - map user sg_iovec table into bio
  939. * @q: the struct request_queue for the bio
  940. * @bdev: destination block device
  941. * @iov: the iovec.
  942. * @iov_count: number of elements in the iovec
  943. * @write_to_vm: bool indicating writing to pages or not
  944. * @gfp_mask: memory allocation flags
  945. *
  946. * Map the user space address into a bio suitable for io to a block
  947. * device. Returns an error pointer in case of error.
  948. */
  949. struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
  950. struct sg_iovec *iov, int iov_count,
  951. int write_to_vm, gfp_t gfp_mask)
  952. {
  953. struct bio *bio;
  954. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
  955. gfp_mask);
  956. if (IS_ERR(bio))
  957. return bio;
  958. /*
  959. * subtle -- if __bio_map_user() ended up bouncing a bio,
  960. * it would normally disappear when its bi_end_io is run.
  961. * however, we need it for the unmap, so grab an extra
  962. * reference to it
  963. */
  964. bio_get(bio);
  965. return bio;
  966. }
  967. static void __bio_unmap_user(struct bio *bio)
  968. {
  969. struct bio_vec *bvec;
  970. int i;
  971. /*
  972. * make sure we dirty pages we wrote to
  973. */
  974. __bio_for_each_segment(bvec, bio, i, 0) {
  975. if (bio_data_dir(bio) == READ)
  976. set_page_dirty_lock(bvec->bv_page);
  977. page_cache_release(bvec->bv_page);
  978. }
  979. bio_put(bio);
  980. }
  981. /**
  982. * bio_unmap_user - unmap a bio
  983. * @bio: the bio being unmapped
  984. *
  985. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  986. * a process context.
  987. *
  988. * bio_unmap_user() may sleep.
  989. */
  990. void bio_unmap_user(struct bio *bio)
  991. {
  992. __bio_unmap_user(bio);
  993. bio_put(bio);
  994. }
  995. EXPORT_SYMBOL(bio_unmap_user);
  996. static void bio_map_kern_endio(struct bio *bio, int err)
  997. {
  998. bio_put(bio);
  999. }
  1000. static struct bio *__bio_map_kern(struct request_queue *q, void *data,
  1001. unsigned int len, gfp_t gfp_mask)
  1002. {
  1003. unsigned long kaddr = (unsigned long)data;
  1004. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1005. unsigned long start = kaddr >> PAGE_SHIFT;
  1006. const int nr_pages = end - start;
  1007. int offset, i;
  1008. struct bio *bio;
  1009. bio = bio_kmalloc(gfp_mask, nr_pages);
  1010. if (!bio)
  1011. return ERR_PTR(-ENOMEM);
  1012. offset = offset_in_page(kaddr);
  1013. for (i = 0; i < nr_pages; i++) {
  1014. unsigned int bytes = PAGE_SIZE - offset;
  1015. if (len <= 0)
  1016. break;
  1017. if (bytes > len)
  1018. bytes = len;
  1019. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  1020. offset) < bytes)
  1021. break;
  1022. data += bytes;
  1023. len -= bytes;
  1024. offset = 0;
  1025. }
  1026. bio->bi_end_io = bio_map_kern_endio;
  1027. return bio;
  1028. }
  1029. /**
  1030. * bio_map_kern - map kernel address into bio
  1031. * @q: the struct request_queue for the bio
  1032. * @data: pointer to buffer to map
  1033. * @len: length in bytes
  1034. * @gfp_mask: allocation flags for bio allocation
  1035. *
  1036. * Map the kernel address into a bio suitable for io to a block
  1037. * device. Returns an error pointer in case of error.
  1038. */
  1039. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  1040. gfp_t gfp_mask)
  1041. {
  1042. struct bio *bio;
  1043. bio = __bio_map_kern(q, data, len, gfp_mask);
  1044. if (IS_ERR(bio))
  1045. return bio;
  1046. if (bio->bi_size == len)
  1047. return bio;
  1048. /*
  1049. * Don't support partial mappings.
  1050. */
  1051. bio_put(bio);
  1052. return ERR_PTR(-EINVAL);
  1053. }
  1054. EXPORT_SYMBOL(bio_map_kern);
  1055. static void bio_copy_kern_endio(struct bio *bio, int err)
  1056. {
  1057. struct bio_vec *bvec;
  1058. const int read = bio_data_dir(bio) == READ;
  1059. struct bio_map_data *bmd = bio->bi_private;
  1060. int i;
  1061. char *p = bmd->sgvecs[0].iov_base;
  1062. __bio_for_each_segment(bvec, bio, i, 0) {
  1063. char *addr = page_address(bvec->bv_page);
  1064. int len = bmd->iovecs[i].bv_len;
  1065. if (read)
  1066. memcpy(p, addr, len);
  1067. __free_page(bvec->bv_page);
  1068. p += len;
  1069. }
  1070. bio_free_map_data(bmd);
  1071. bio_put(bio);
  1072. }
  1073. /**
  1074. * bio_copy_kern - copy kernel address into bio
  1075. * @q: the struct request_queue for the bio
  1076. * @data: pointer to buffer to copy
  1077. * @len: length in bytes
  1078. * @gfp_mask: allocation flags for bio and page allocation
  1079. * @reading: data direction is READ
  1080. *
  1081. * copy the kernel address into a bio suitable for io to a block
  1082. * device. Returns an error pointer in case of error.
  1083. */
  1084. struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
  1085. gfp_t gfp_mask, int reading)
  1086. {
  1087. struct bio *bio;
  1088. struct bio_vec *bvec;
  1089. int i;
  1090. bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
  1091. if (IS_ERR(bio))
  1092. return bio;
  1093. if (!reading) {
  1094. void *p = data;
  1095. bio_for_each_segment(bvec, bio, i) {
  1096. char *addr = page_address(bvec->bv_page);
  1097. memcpy(addr, p, bvec->bv_len);
  1098. p += bvec->bv_len;
  1099. }
  1100. }
  1101. bio->bi_end_io = bio_copy_kern_endio;
  1102. return bio;
  1103. }
  1104. EXPORT_SYMBOL(bio_copy_kern);
  1105. /*
  1106. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  1107. * for performing direct-IO in BIOs.
  1108. *
  1109. * The problem is that we cannot run set_page_dirty() from interrupt context
  1110. * because the required locks are not interrupt-safe. So what we can do is to
  1111. * mark the pages dirty _before_ performing IO. And in interrupt context,
  1112. * check that the pages are still dirty. If so, fine. If not, redirty them
  1113. * in process context.
  1114. *
  1115. * We special-case compound pages here: normally this means reads into hugetlb
  1116. * pages. The logic in here doesn't really work right for compound pages
  1117. * because the VM does not uniformly chase down the head page in all cases.
  1118. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  1119. * handle them at all. So we skip compound pages here at an early stage.
  1120. *
  1121. * Note that this code is very hard to test under normal circumstances because
  1122. * direct-io pins the pages with get_user_pages(). This makes
  1123. * is_page_cache_freeable return false, and the VM will not clean the pages.
  1124. * But other code (eg, pdflush) could clean the pages if they are mapped
  1125. * pagecache.
  1126. *
  1127. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  1128. * deferred bio dirtying paths.
  1129. */
  1130. /*
  1131. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  1132. */
  1133. void bio_set_pages_dirty(struct bio *bio)
  1134. {
  1135. struct bio_vec *bvec = bio->bi_io_vec;
  1136. int i;
  1137. for (i = 0; i < bio->bi_vcnt; i++) {
  1138. struct page *page = bvec[i].bv_page;
  1139. if (page && !PageCompound(page))
  1140. set_page_dirty_lock(page);
  1141. }
  1142. }
  1143. static void bio_release_pages(struct bio *bio)
  1144. {
  1145. struct bio_vec *bvec = bio->bi_io_vec;
  1146. int i;
  1147. for (i = 0; i < bio->bi_vcnt; i++) {
  1148. struct page *page = bvec[i].bv_page;
  1149. if (page)
  1150. put_page(page);
  1151. }
  1152. }
  1153. /*
  1154. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  1155. * If they are, then fine. If, however, some pages are clean then they must
  1156. * have been written out during the direct-IO read. So we take another ref on
  1157. * the BIO and the offending pages and re-dirty the pages in process context.
  1158. *
  1159. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  1160. * here on. It will run one page_cache_release() against each page and will
  1161. * run one bio_put() against the BIO.
  1162. */
  1163. static void bio_dirty_fn(struct work_struct *work);
  1164. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  1165. static DEFINE_SPINLOCK(bio_dirty_lock);
  1166. static struct bio *bio_dirty_list;
  1167. /*
  1168. * This runs in process context
  1169. */
  1170. static void bio_dirty_fn(struct work_struct *work)
  1171. {
  1172. unsigned long flags;
  1173. struct bio *bio;
  1174. spin_lock_irqsave(&bio_dirty_lock, flags);
  1175. bio = bio_dirty_list;
  1176. bio_dirty_list = NULL;
  1177. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1178. while (bio) {
  1179. struct bio *next = bio->bi_private;
  1180. bio_set_pages_dirty(bio);
  1181. bio_release_pages(bio);
  1182. bio_put(bio);
  1183. bio = next;
  1184. }
  1185. }
  1186. void bio_check_pages_dirty(struct bio *bio)
  1187. {
  1188. struct bio_vec *bvec = bio->bi_io_vec;
  1189. int nr_clean_pages = 0;
  1190. int i;
  1191. for (i = 0; i < bio->bi_vcnt; i++) {
  1192. struct page *page = bvec[i].bv_page;
  1193. if (PageDirty(page) || PageCompound(page)) {
  1194. page_cache_release(page);
  1195. bvec[i].bv_page = NULL;
  1196. } else {
  1197. nr_clean_pages++;
  1198. }
  1199. }
  1200. if (nr_clean_pages) {
  1201. unsigned long flags;
  1202. spin_lock_irqsave(&bio_dirty_lock, flags);
  1203. bio->bi_private = bio_dirty_list;
  1204. bio_dirty_list = bio;
  1205. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1206. schedule_work(&bio_dirty_work);
  1207. } else {
  1208. bio_put(bio);
  1209. }
  1210. }
  1211. #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
  1212. void bio_flush_dcache_pages(struct bio *bi)
  1213. {
  1214. int i;
  1215. struct bio_vec *bvec;
  1216. bio_for_each_segment(bvec, bi, i)
  1217. flush_dcache_page(bvec->bv_page);
  1218. }
  1219. EXPORT_SYMBOL(bio_flush_dcache_pages);
  1220. #endif
  1221. /**
  1222. * bio_endio - end I/O on a bio
  1223. * @bio: bio
  1224. * @error: error, if any
  1225. *
  1226. * Description:
  1227. * bio_endio() will end I/O on the whole bio. bio_endio() is the
  1228. * preferred way to end I/O on a bio, it takes care of clearing
  1229. * BIO_UPTODATE on error. @error is 0 on success, and and one of the
  1230. * established -Exxxx (-EIO, for instance) error values in case
  1231. * something went wrong. No one should call bi_end_io() directly on a
  1232. * bio unless they own it and thus know that it has an end_io
  1233. * function.
  1234. **/
  1235. void bio_endio(struct bio *bio, int error)
  1236. {
  1237. if (error)
  1238. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  1239. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1240. error = -EIO;
  1241. if (bio->bi_end_io)
  1242. bio->bi_end_io(bio, error);
  1243. }
  1244. EXPORT_SYMBOL(bio_endio);
  1245. void bio_pair_release(struct bio_pair *bp)
  1246. {
  1247. if (atomic_dec_and_test(&bp->cnt)) {
  1248. struct bio *master = bp->bio1.bi_private;
  1249. bio_endio(master, bp->error);
  1250. mempool_free(bp, bp->bio2.bi_private);
  1251. }
  1252. }
  1253. EXPORT_SYMBOL(bio_pair_release);
  1254. static void bio_pair_end_1(struct bio *bi, int err)
  1255. {
  1256. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  1257. if (err)
  1258. bp->error = err;
  1259. bio_pair_release(bp);
  1260. }
  1261. static void bio_pair_end_2(struct bio *bi, int err)
  1262. {
  1263. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  1264. if (err)
  1265. bp->error = err;
  1266. bio_pair_release(bp);
  1267. }
  1268. /*
  1269. * split a bio - only worry about a bio with a single page in its iovec
  1270. */
  1271. struct bio_pair *bio_split(struct bio *bi, int first_sectors)
  1272. {
  1273. struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
  1274. if (!bp)
  1275. return bp;
  1276. trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
  1277. bi->bi_sector + first_sectors);
  1278. BUG_ON(bi->bi_vcnt != 1);
  1279. BUG_ON(bi->bi_idx != 0);
  1280. atomic_set(&bp->cnt, 3);
  1281. bp->error = 0;
  1282. bp->bio1 = *bi;
  1283. bp->bio2 = *bi;
  1284. bp->bio2.bi_sector += first_sectors;
  1285. bp->bio2.bi_size -= first_sectors << 9;
  1286. bp->bio1.bi_size = first_sectors << 9;
  1287. bp->bv1 = bi->bi_io_vec[0];
  1288. bp->bv2 = bi->bi_io_vec[0];
  1289. bp->bv2.bv_offset += first_sectors << 9;
  1290. bp->bv2.bv_len -= first_sectors << 9;
  1291. bp->bv1.bv_len = first_sectors << 9;
  1292. bp->bio1.bi_io_vec = &bp->bv1;
  1293. bp->bio2.bi_io_vec = &bp->bv2;
  1294. bp->bio1.bi_max_vecs = 1;
  1295. bp->bio2.bi_max_vecs = 1;
  1296. bp->bio1.bi_end_io = bio_pair_end_1;
  1297. bp->bio2.bi_end_io = bio_pair_end_2;
  1298. bp->bio1.bi_private = bi;
  1299. bp->bio2.bi_private = bio_split_pool;
  1300. if (bio_integrity(bi))
  1301. bio_integrity_split(bi, bp, first_sectors);
  1302. return bp;
  1303. }
  1304. EXPORT_SYMBOL(bio_split);
  1305. /**
  1306. * bio_sector_offset - Find hardware sector offset in bio
  1307. * @bio: bio to inspect
  1308. * @index: bio_vec index
  1309. * @offset: offset in bv_page
  1310. *
  1311. * Return the number of hardware sectors between beginning of bio
  1312. * and an end point indicated by a bio_vec index and an offset
  1313. * within that vector's page.
  1314. */
  1315. sector_t bio_sector_offset(struct bio *bio, unsigned short index,
  1316. unsigned int offset)
  1317. {
  1318. unsigned int sector_sz;
  1319. struct bio_vec *bv;
  1320. sector_t sectors;
  1321. int i;
  1322. sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
  1323. sectors = 0;
  1324. if (index >= bio->bi_idx)
  1325. index = bio->bi_vcnt - 1;
  1326. __bio_for_each_segment(bv, bio, i, 0) {
  1327. if (i == index) {
  1328. if (offset > bv->bv_offset)
  1329. sectors += (offset - bv->bv_offset) / sector_sz;
  1330. break;
  1331. }
  1332. sectors += bv->bv_len / sector_sz;
  1333. }
  1334. return sectors;
  1335. }
  1336. EXPORT_SYMBOL(bio_sector_offset);
  1337. /*
  1338. * create memory pools for biovec's in a bio_set.
  1339. * use the global biovec slabs created for general use.
  1340. */
  1341. static int biovec_create_pools(struct bio_set *bs, int pool_entries)
  1342. {
  1343. struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
  1344. bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
  1345. if (!bs->bvec_pool)
  1346. return -ENOMEM;
  1347. return 0;
  1348. }
  1349. static void biovec_free_pools(struct bio_set *bs)
  1350. {
  1351. mempool_destroy(bs->bvec_pool);
  1352. }
  1353. void bioset_free(struct bio_set *bs)
  1354. {
  1355. if (bs->bio_pool)
  1356. mempool_destroy(bs->bio_pool);
  1357. bioset_integrity_free(bs);
  1358. biovec_free_pools(bs);
  1359. bio_put_slab(bs);
  1360. kfree(bs);
  1361. }
  1362. EXPORT_SYMBOL(bioset_free);
  1363. /**
  1364. * bioset_create - Create a bio_set
  1365. * @pool_size: Number of bio and bio_vecs to cache in the mempool
  1366. * @front_pad: Number of bytes to allocate in front of the returned bio
  1367. *
  1368. * Description:
  1369. * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
  1370. * to ask for a number of bytes to be allocated in front of the bio.
  1371. * Front pad allocation is useful for embedding the bio inside
  1372. * another structure, to avoid allocating extra data to go with the bio.
  1373. * Note that the bio must be embedded at the END of that structure always,
  1374. * or things will break badly.
  1375. */
  1376. struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
  1377. {
  1378. unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
  1379. struct bio_set *bs;
  1380. bs = kzalloc(sizeof(*bs), GFP_KERNEL);
  1381. if (!bs)
  1382. return NULL;
  1383. bs->front_pad = front_pad;
  1384. bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
  1385. if (!bs->bio_slab) {
  1386. kfree(bs);
  1387. return NULL;
  1388. }
  1389. bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
  1390. if (!bs->bio_pool)
  1391. goto bad;
  1392. if (!biovec_create_pools(bs, pool_size))
  1393. return bs;
  1394. bad:
  1395. bioset_free(bs);
  1396. return NULL;
  1397. }
  1398. EXPORT_SYMBOL(bioset_create);
  1399. static void __init biovec_init_slabs(void)
  1400. {
  1401. int i;
  1402. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1403. int size;
  1404. struct biovec_slab *bvs = bvec_slabs + i;
  1405. if (bvs->nr_vecs <= BIO_INLINE_VECS) {
  1406. bvs->slab = NULL;
  1407. continue;
  1408. }
  1409. size = bvs->nr_vecs * sizeof(struct bio_vec);
  1410. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  1411. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1412. }
  1413. }
  1414. static int __init init_bio(void)
  1415. {
  1416. bio_slab_max = 2;
  1417. bio_slab_nr = 0;
  1418. bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
  1419. if (!bio_slabs)
  1420. panic("bio: can't allocate bios\n");
  1421. bio_integrity_init();
  1422. biovec_init_slabs();
  1423. fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
  1424. if (!fs_bio_set)
  1425. panic("bio: can't allocate bios\n");
  1426. if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
  1427. panic("bio: can't create integrity pool\n");
  1428. bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
  1429. sizeof(struct bio_pair));
  1430. if (!bio_split_pool)
  1431. panic("bio: can't create split pool\n");
  1432. return 0;
  1433. }
  1434. subsys_initcall(init_bio);